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The two-dimensional free-boundary problem describing steady gravity waves with
vorticity on water of finite depth is considered. It is proved that no small-amplitude
waves are supported by a horizontal shear flow whose free surface is still, that is, it
is stagnant in a coordinate frame such that the flow is time-independent in it. The
class of vorticity distributions for which such flows exist includes all positive constant
distributions, as well as linear and quadratic ones with arbitrary positive coefficients.
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1. Introduction
We consider the two-dimensional nonlinear problem of steady waves in a horizontal

open channel that has uniform rectangular cross-section and is occupied by an
inviscid incompressible heavy fluid, say, water. The water motion is assumed to be
rotational, which, according to observations, is the type of motion commonly occurring
in nature (see e.g. Thomas 1990; Swan, Cummins & James 2001, and references
therein). There are two essential features that distinguish this type of motion from
the irrotational one. The first is that interior stagnation points and closed streamlines
exist for some rotational flows with waves (see e.g. Wahlén 2009). Secondly, any
set of stagnation points on the free surface of irrotational waves consists only of
isolated points, whereas no such points occur on the surface of a uniform stream.
On the contrary, there are shear flows for which these points fill up the whole free
surface in the rotational case (see Kozlov & Kuznetsov 2011b), and the present work
deals just with this case. It is also worth mentioning that properties of shear flows
might be completely different when the corresponding vorticity distributions are of the
same type, but have opposite signs. In particular, shear flows are unidirectional (like
irrotational uniform streams) for any negative linear vorticity distribution; whereas if
a linear vorticity distribution is positive, then there are shear flows having as many
counter-currents as one pleases. A brief characterization of results obtained for the
problem under consideration and a similar one dealing with waves on water of infinite
depth is given in Kozlov & Kuznetsov (2012). Further details can be found in the
survey article by Strauss (2010).
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

59
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:nikolay.g.kuznetsov@gmail.com
https://doi.org/10.1017/jfm.2012.593


524 V. Kozlov and N. Kuznetsov

In the present paper, our aim is to prove that no small-amplitude waves are
supported by a horizontal shear flow whose free surface is still (in other words, it
is stagnant in a coordinate frame in which the flow is time-independent). The reason
for undertaking this study is as follows. Both versions of bifurcation theory – one used
by Ehrnström, Escher & Wahlén (2011) in the case of constant vorticity, and the other
one developed by Kozlov & Kuznetsov (2012) for general sufficiently smooth vorticity
distributions – correctly describe the bifurcation of small-amplitude waves from any
shear flow with non-stagnant free surface, but fail when it is stagnant. All steady flows
with horizontal free surfaces are investigated in detail in Kozlov & Kuznetsov (2011b)
provided their stream functions depend on the vertical coordinate only. Furthermore,
the above-mentioned existence proof for Stokes waves with general vorticity is based
on a dispersion equation introduced and investigated in Kozlov & Kuznetsov (2012).
Thus, the results obtained here are complementary to those in the latter paper. It is
also worth mentioning that the case considered here that deals with the absence of
waves is essentially distinguished from that when waves do not arise on the free
surface of the critical irrotational flow (see Kozlov & Kuznetsov (2008), theorem 1(i);
the latter result complements the proof of the Benjamin–Lighthill conjecture for the
near-critical case obtained in Kozlov & Kuznetsov (2010, 2011a)). Further details
concerning the hydrodynamic interpretation of the present result are given in § 3.

As in Kozlov & Kuznetsov (2011b, 2012), no assumption is made about the absence
of counter-currents in a shear flow. Moreover, we impose no restriction on the type of
waves; they may be solitary, periodic with an arbitrary number of crests per period,
whatever. However, the slope of the free surface profile is supposed to be bounded
by a constant given a priori. Also, certain conditions that will be described later are
imposed on the vorticity distribution.

1.1. Statement of the problem
Let an open channel of uniform rectangular cross-section be bounded below by a
horizontal rigid bottom and let water occupying the channel be bounded above by a
free surface not touching the bottom. The surface tension is neglected and the pressure
is constant on the free surface. The water motion is supposed to be two-dimensional
and rotational, which, combined with the incompressibility of water, allows us to seek
the velocity field in the form (ψy,−ψx), where ψ(x, y) is referred to as the stream
function (see e.g. the book by Lavrentiev & Shabat (1980)). It is also supposed that
the vorticity distribution ω (which is a function of ψ as explained in § 1 of the cited
book) is a prescribed Lipschitz function on R subject to some conditions (see (1.6)
and (1.8) below).

We use non-dimensional variables chosen so that the constant volume rate of flow
per unit span and the constant acceleration due to gravity are scaled to unity in our
equations. For this purpose, lengths and velocities are scaled to (Q2/g)1/3 and (Qg)1/3,
respectively; here Q and g are the dimensional quantities for the rate of flow and
the gravitational acceleration, respectively. We recall that (Q2/g)1/3 is the depth of the
critical uniform stream in the irrotational case (see e.g. Benjamin 1995).

In appropriate Cartesian coordinates (x, y), the bottom coincides with the x-axis and
gravity acts in the negative y-direction. We choose the frame of reference so that the
velocity field is time-independent, as well as the unknown free-surface profile. The
latter is assumed to be the graph of y= η(x), x ∈ R, where η is a positive C1-function.
Therefore, the longitudinal section of the water domain is D = {x ∈ R, 0 < y < η(x)},
and ψ is assumed to belong to C2(D) ∩ C1(D̄).
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No steady waves are supported by shear flow with still free surface 525

Since the surface tension is neglected, ψ and η must satisfy the following free-
boundary problem:

ψxx + ψyy + ω(ψ)= 0, (x, y) ∈ D; (1.1)
ψ(x, 0)= 0, x ∈ R; (1.2)
ψ(x, η(x))= 1, x ∈ R; (1.3)

|∇ψ(x, η(x))|2+2η(x)= 3r, x ∈ R. (1.4)

Here r is a constant considered as the problem’s parameter and referred to as the total
head (see e.g. Keady & Norbury (1978)). This statement has long been known and
its derivation from the governing equations and the assumptions about the boundary
behaviour of water particles can be found, for example, in Constantin & Strauss
(2004).

Note that the boundary condition (1.3) yields that relation (1.4) (Bernoulli’s
equation) can be written as follows:

[∂nψ(x, η(x))]
2
+2η(x)= 3r, x ∈ R. (1.5)

Here and below ∂n denotes the normal derivative on ∂D, and the normal n = (nx, ny)
has unit length and points out of D.

1.2. Assumptions and the result
We begin with the conditions that are imposed on the vorticity distribution ω in our
main theorem. Let rc denote the critical value of r for ω (see Kozlov & Kuznetsov
(2011b, p. 386) for its definition). The role of rc is analogous to the total head of
the critical stream in the irrotational case; that is, for r < rc, problem (1.1)–(1.4) has
no solutions of the form (U(y), h), where h = const. (they are referred to as stream
solutions and describe shear flows). First, we require that

for some r > rc, problem (1.1)–(1.4) has a stream solution for which Uy(h)= 0. (1.6)

This implies that r = 2h/3 in (1.4). Thus the Bernoulli constant for which we are
going to consider our problem is expressed in terms of the depth of the corresponding
shear flow with stagnant free surface. In Kozlov & Kuznetsov (2011b), it is proved
that a finite number, say, n > 1, of stream solutions (U(j), h(j)), j = 1, . . . , n, exists for
the same r, but for them we have h(j) 6= h and, what is more important, U(j)

y (h
(j)) 6= 0.

Note that, if some pair (ψ, η) satisfies problem (1.1)–(1.4) for the same r as (U, h),
then the last equality yields that equation (1.5) for (ψ, η) takes the form

[∂nψ(x, η(x))]
2
= 2[h− η(x)], x ∈ R. (1.7)

Hence h− η(x)> 0, which means that, if there exists a wavy flow perturbing the shear
one of the depth h, then the free surface of waves lies under the level y= h.

The second restriction that we impose on ω is as follows:

µ= ess sup
τ∈(−∞,∞)

ω′(τ ) <
π2

h2
. (1.8)

This bound for µ is equal to the fundamental Dirichlet eigenvalue for the operator
−d2/d2y on the interval (0, h). As in Keady & Norbury (1978), where a similar
condition was introduced, inequality (1.8) is essential for the validity of a certain
version of the maximum principle. It holds for domains close to a strip of constant
width and is applied in the proof of lemma 2, whereas our proof of the main result is
based on this lemma.
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Now we are in a position to formulate the following.

MAIN THEOREM. Let the vorticity distribution ω satisfy (1.6) and (1.8). Then for
any B > 0 there exists ε(µ, h,B) > 0 such that every solution (ψ, η) of problem
(1.1)–(1.4) corresponding to the same r as (U, h) coincides with the latter one if

|ηx(x)|6 B and h− η(x) < ε for all x ∈ R. (1.9)

The first and second inequalities (1.9) mean that the wave profile η has bounded
slope and sufficiently small amplitude, respectively.

2. Proof of the main theorem
Our proof is based on two lemmas. In the first, we estimate the normal derivative

of a solution satisfying an auxiliary boundary value problem in the domain D. In the
second, some particular perturbation of the stream function is estimated through the
perturbation of the free surface profile. This requires the problem to be reformulated in
terms of perturbations prior to formulating and proving lemmas.

2.1. Reformulation of the problem

First, we consider problem (1.1)–(1.4) as a perturbation of that for (U, h) and write the
problem for

φ(x, y)= ψ(x, y)− U(y) and ζ(x)= h− η(x), (2.1)

which is as follows:

∇
2φ + ω(U + φ)− ω(U)= 0, (x, y) ∈ D, ∇ = (∂x, ∂y); (2.2)

φ(x, 0)= 0, x ∈ R; (2.3)
φ(x, h− ζ(x))= 1− U(h− ζ(x)), x ∈ R; (2.4)[
∂nφ +

Uy(y)

(1+ ζ 2
x )

1/2

]2

y=h−ζ(x)

= 2ζ(x), x ∈ R. (2.5)

The last condition is a consequence of (1.5) and yields that ζ is a non-negative
function. Thus, our aim is to show that the φ and ζ that satisfy this problem vanish if
the condition (1.8) is fulfilled for ω.

In order to simplify the boundary condition (2.4), we put

v(x, y)= φ(x, y)− u(x, y) where u(x, y)= [1− U(h− ζ(x))]
y

h− ζ(x)
, (2.6)

thus obtaining the following problem for v and ζ :

∇
2v + ω(U + u+ v)= ω(U)−∇2u, (x, y) ∈ D; (2.7)

v(x, 0)= 0, x ∈ R; (2.8)
v(x, h− ζ(x))= 0, x ∈ R; (2.9)[

∂nv

(1+ ζ 2
x )

1/2 +
1− U(y)

y
+
ζ 2

x Uy(y)

1+ ζ 2
x

]2

y=h−ζ(x)

=
2 ζ(x)
1+ ζ 2

x

, x ∈ R. (2.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

59
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.593


No steady waves are supported by shear flow with still free surface 527

Now we list a couple of properties that will be used below. If ζ is small enough,
then Taylor’s theorem and the chain rule of differentiation immediately yield the
inequalities

|u(x, y)|6 C [ζ(x)]2, |uy(x, y)|6 C [ζ(x)]2 and |ux(x, y)|6 C |ζx(x)| ζ(x). (2.11)

In the first and second of these, the constant C depends on the stream solution (U, h),
whereas the constant is absolute in the last inequality. Hence the conditions imposed
on ω yield that |v| is bounded on D̄.

2.2. Two lemmas

For the convenience of the reader we recall the definitions of functional spaces used in
what follows. (An elementary description of their properties can be found, for example,
in Michlin (1978), part 1.) Let (a, b) be a finite subinterval of R, then ‖f‖p

Lp(a,b) =∫ b
a |f (x) |

p dx for p > 1 and ‖f‖2
W1,2(a,b) =

∫ b
a (|f (x)|

2
+|f ′(x) |2) dx, whereas f ∈W1,2

loc (R)
provided f ∈ W1,2(a, b) for any (a, b). Furthermore, ‖f‖2

L2(Dt)
=
∫

Dt
|f (x, y)|2 dx dy,

where

Dt = {(x, y) : x ∈ (t − 1, t + 2), y ∈ (0, η(x)} (2.12)

and t ∈ R is arbitrary; f ∈ L2
loc(D) provided f ∈ L2(K) for any domain K ⊂ D with a

compact closure. Finally, ‖f‖2
W1,2(Dt)

= ‖f‖2
L2(Dt)
+
∫

Dt
|∇f |2 dx dy.

LEMMA 1. Let y= η(x) be a fixed curve such that the first condition (1.9) is fulfilled.
Let also η(x) > h− for all x, where h− is some positive constant. If w is a solution of
the problem

∇
2w= f , (x, y) ∈ D, w(x, 0)= 0, x ∈ R, w(x, η(x))= H, x ∈ R, (2.13)

with f ∈ L2
loc(D) and H ∈W1,2

loc (R), then for every t ∈ R the following estimate holds:∥∥∂nw|y=η(x)
∥∥

L2(t,t+1)
6 C

[
‖f‖L2(Dt)+‖H‖W1,2(t−1,t+2)+‖w‖W1,2(Dt)

]
, (2.14)

where the constant C does not depend on f , H and t.

Proof. By χ we denote a smooth cut-off function such that χ(x)= 1 for x ∈ (t, t + 1),
χ(x) = 0 for x ∈ (−∞, t − 1/2) ∪ (t + 3/2,+∞) and 0 6 χ(x) 6 1 for all x. Let us
multiply the equality

∇
2(χw)= χ f + w∇2χ + 2∇w ·∇χ (2.15)

by (χw)y and integrate over D, thus obtaining

−
1
2

∫
D
(|∇(χw)|2)y dx dy+

∫
∂D
(χw)y ∂n(χw) ds

=

∫
D
(χ f + w∇2χ + 2∇w ·∇χ) (χw)y dx dy. (2.16)

The expression on the left-hand side arises after applying the first Green’s formula; ds
stands for an element of the arclength. Introducing ∂t so that ∇ = (∂t, ∂n) on y = η(x),
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we transform the left-hand side as follows:

−
1
2

∫
+∞

−∞

[
|∇(χw)|2

]y=η(x)

y=0
dx

+

∫
+∞

−∞

[
(ny∂n − nx∂t)(χw) ∂n(χw)

]
y=η(x)

√
1+ η2

x dx−
∫
+∞

−∞

[
(χw)2y

]
y=0

dx

=

∫
+∞

−∞

(
ny

√
1+ η2

x −
1
2

)
[∂n(χw)]2

y=η(x)dx

−

∫
+∞

−∞

[
nx

√
1+ η2

x ∂t(χw) ∂n(χw)+
1
2
|∂t(χw)|2

]
y=η(x)

dx

−

∫
+∞

−∞

[
(χw)2y

]
y=0

dx. (2.17)

We substitute the last expression into (2.16) and take into account that

nx

√
1+ η2

x =−ηx, (2.18)

whereas the first factor in the first integrand is equal to 1/2. Then we arrive, after
rearranging terms and multiplying by 2, at the following equality:∫

+∞

−∞

[∂n(χw)]2
y=η(x)dx

=

∫
+∞

−∞

[
|∂t(χw)|2−2 ηx ∂t(χw) ∂n(χw)

]
y=η(x)

dx

+

∫
+∞

−∞

[
(χw)2y

]
y=0

dx+ 2
∫

D
(χ f + w∇2χ + 2∇w ·∇χ) (χw)y dx dy. (2.19)

Since the left-hand side in (2.14) is less than that in the last equality, it is sufficient to
estimate each term on the right-hand side with proper constants in order to complete
the proof of the required inequality (2.14).

First, we have that∣∣∣∣∫ +∞
−∞

[ηx ∂t(χw) ∂n(χw)]y=η(x)dx

∣∣∣∣
6

1
4

∫
+∞

−∞

[∂n(χw)]2
y=η(x)dx+ 4 B2

∫
+∞

−∞

[∂t(χw)]2
y=η(x)dx, (2.20)

because y = η(x) satisfies the first condition (1.9). Furthermore, the assumption that
η(x) > h− for all x, where the constant h− > 0, allows us to apply the general theory
of elliptic boundary value problems (see e.g. Agmon, Douglis & Nirenberg 1959),
from which it follows that∫

+∞

−∞

[
(χw)2y

]
y=0

dx6 C
[
‖f‖L2(Dt)+‖H‖W1,2(t−1,t+2)+‖w‖W1,2(Dt)

]
, (2.21)

where C depends only on h−. Finally, using the Schwarz and Cauchy inequalities,
one readily obtains that the absolute value of the integral over D is estimated by the
right-hand side in the last inequality. �

Applying lemma 1 to problem (2.2)–(2.4) (we are able to do this because ω is a
Lipschitz function), we obtain the following corollary.
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Corollary 1. If φ is defined by the first formula (2.1), then the estimate (2.14) for φ
takes the form:∥∥∂nφ|y=h−ζ(x)

∥∥
L2(t,t+1)

6 C
[
‖φ‖W1,2(Dt)+‖1− U(h− ζ )‖W1,2(t−1,t+2)

]
. (2.22)

Moreover, the last term in the square brackets does not exceed C(ε + B) ‖ζ‖L2(t−1,t+2)
provided conditions (1.9) are fulfilled.

LEMMA 2. Let the conditions imposed on ω in the main theorem be fulfilled. If ζ is
sufficiently small and |ζx| 6 B for some B > 0, then there exist δ > 0, depending
on (π/h)2−µ, h and B, and Cδ > 0 such that the inequality∫

D
e−δ|t−x|(v2

+ |∇v|2) dx dy6 Cδ

∫
+∞

−∞

e−δ|t−x|ζ 2
(
ζ 2
+ ζ 2

x

)
dx (2.23)

holds for every function v satisfying relations (2.7)–(2.9) and all t ∈ R.

Proof. Let χ1(x) denote a cut-off function equal to unity on (−1, 1) and vanishing for
|x|> 2, whereas χN(x)= χ1(x/N). We write (2.2) in the form

∇
2v + ω(U + u+ v)− ω(U + u)= ω(U)− ω(U + u)−∇2u, (2.24)

multiply it by −v(x)χN(x − t)/ cosh δ(x − t) with some δ > 0, and integrate over D.
After applying the first Green’s formula and integrating by parts on the left-hand side,
we arrive at the following equality:∫

D

{
χN(x− t)

cosh δ(x− t)

(
|∇v|2−v

∫ v

0
ω′(U + u+ τ) dτ

)
−
v2

2

[
χN(x− t)

cosh δ(x− t)

]
xx

}
dx dy

=

∫
D

χN(x− t)

cosh δ(x− t)
v
[
∇

2u+ ω(U + u+ v)− ω(U)
]

dx dy. (2.25)

Here the boundary conditions (2.8) and (2.9) are also taken into account.
Using assumption (1.8), we get that the absolute value of the left-hand side is

greater than or equal to∫
D

{
χN(x− t)

cosh δ(x− t)

[
|∇v|2−(µ+ 3 δ2) v2

]
−
v2

2

∣∣∣∣ χ ′′N(x− t)

cosh δ(x− t)
+ 2χ ′N(x− t) [1/ cosh δ(x− t)]′

∣∣∣∣} dx dy, (2.26)

because | (1/ cosh δx)′′ |6 3 δ2/ cosh δx. Furthermore, we have that∫ h−ζ

0
v2

y dy> δ2

∫ h−ζ

0
v2

y dy+ (1− δ2) (π/h)2
∫ h−ζ

0
v2 dy, (2.27)

which gives that the integral in the first line of (2.26) is estimated from below by the
following expression:∫

D

χN(x− t)

cosh δ(x− t)

{(
v2

x + δ
2v2

y

)
+

[
(1− δ2)

(
π

h

)2
− µ− 3δ2

]
v2

}
dx dy. (2.28)

In view of assumption (1.8), the number in the square brackets is positive provided δ
is chosen sufficiently small.
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Now we turn to estimating from above the absolute value of the right-hand side in
(2.25). First, the Cauchy inequality yields that∣∣∣∣∫

D

χN(x− t)

cosh δ(x− t)
[ω(U + u+ v)− ω(U)] dx dy

∣∣∣∣
6 Cω

∫
D

χN(x− t)

cosh δ(x− t)
|u+ v| dx dy

6 δ2

∫
D

χN(x− t)

cosh δ(x− t)
v2 dx dy+

C2
ω

4δ2

∫
D

χN(x− t)

cosh δ(x− t)
u2 dx dy, (2.29)

where Cω is the Lipschitz constant of ω. Second, we apply the first Green’s formula
to the other term and get, in view of the boundary conditions (2.8) and (2.9), that its
absolute value can be written as follows:∣∣∣∣∫

D

{
χN(x− t)

cosh δ(x− t)
∇u ·∇v

+ vux

[
χ ′N(x− t)

cosh δ(x− t)
+ χN(x− t)

[
1

cosh δ(x− t)

]′]}
dx dy

∣∣∣∣ . (2.30)

Here the first and third terms do not exceed

δ2

2

∫
D

χN(x− t)

cosh δ(x− t)
|∇v|2 dx dy+

1
2 δ2

∫
D

χN(x− t)

cosh δ(x− t)
|∇u|2 dx dy (2.31)

and

δ2

∫
D

χN(x− t)

cosh δ(x− t)
v2 dx dy+

1
4

∫
D

χN(x− t)

cosh δ(x− t)
u2

x dx dy, (2.32)

respectively, whereas we simply take the absolute value of the integrand in the second
term.

Using (2.26)–(2.32) in equality (2.25) and letting N→∞, we arrive at the following
inequality:∫

D

[(
1−

δ2

2

)
v2

x +
δ2

2
v2

y +

{(
π

h

)2
− µ− δ2

[
5+

(
π

h

)2
]}

v2

]
dx dy

cosh δ(x− t)

6
∫

D

[(
1
4
+

1
2 δ2

)
|∇u|2+

C2
ω

4 δ2
u2

]
dx dy

cosh δ(x− t)
, (2.33)

because χN goes to unity, whereas χ ′N and χ ′′N go to zero. Now (2.23) follows from
assumption (1.8) and inequalities (2.11). �

The following corollary is a consequence of lemma 2.

Corollary 2. Let the assumptions of lemma 2 be fulfilled, and let ζ(x) < h for
all x ∈ R. Then

‖v‖W1,2(Dt) 6 C(δ, h,B) sup
τ∈R
‖ζ‖L2(τ,τ+1) for all t ∈ R. (2.34)

Proof. It is clear that the left-hand side of (2.23) is greater than or equal to∫ t+2

t−1
e−δ|t−x| dx

∫ h−ζ

0
(v2
+ |∇v|2)dy> e−2δ

‖v‖2
W1,2(Dt)

, (2.35)
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because e−2δ
= minx∈[t−1,t+2] e−δ|t−x|. Since

∫
∞

−∞
f (x) dx =

∫
∞

−∞
dτ
∫ τ+1
τ

f (x) dx for any f ,
we write the right-hand side of (2.23) as follows:

Cδ

∫
+∞

−∞

dτ
∫ τ+1

τ

e−δ|t−x| ζ 2(ζ 2
+ ζ 2

x )dx. (2.36)

This, in view of the assumptions made about ζ and ζx, is less than or equal to

Cδ eδ(h2
+ B2)

∫
+∞

−∞

e−δ|t−τ | ‖ζ‖2
L2(τ,τ+1) dτ, (2.37)

because e−δ|t−x| 6 eδe−δ|t−τ | provided τ 6 x6 τ + 1. Taking the supremum of the norm,
we arrive at the required inequality, because the integral of e−δ|t−τ | is equal to 2/δ. �

2.3. Proof of the main theorem
The assumptions made about η and ηx allow us to apply inequalities (2.11) for
estimating u and Corollary 2 for estimating v. Since φ = u+ v, we get

‖φ‖W1,2(Dt) 6 C (B2
+ h2)

1/2
‖ζ‖L2(t−1,t+2)+C(δ, h,B) sup

τ∈R
‖ζ‖L2(τ,τ+1), (2.38)

and so the right-hand side does not exceed C1(δ, h,B) supτ∈R ‖ζ‖L2(τ,τ+1). Combining
this fact and Corollary 1, we obtain that∥∥∂nφ|y=h−ζ(x)

∥∥
L2(t,t+1)

6 C2(δ, h,B) sup
τ∈R
‖ζ‖L2(τ,τ+1)

6 ε1/2C2(δ, h,B) sup
τ∈R
‖ζ‖

1/2
L1(τ,τ+1)

, (2.39)

where the last inequality is a consequence of the second assumption (1.9).
Bernoulli’s equation written as follows (cf. (2.5))

[ζ(x)]1/2 =
1
√

2

∣∣∣∣∣∂nφ +
Uy(y)

(1+ ζ 2
x )

1/2

∣∣∣∣∣
y=h−ζ(x)

, x ∈ R, (2.40)

immediately yields that

sup
τ∈R
‖ζ‖

1/2
L1(τ,τ+1)

6
1
√

2
sup
τ∈R

[∥∥∂nφ|y=h−ζ(x)

∥∥
L2(τ,τ+1)

+ C ‖ζ ‖L2(τ,τ+1)

]
. (2.41)

Using inequalities (2.39) for estimating both terms in the square brackets, we arrive at

sup
τ∈R
‖ζ ‖

1/2
L1(τ,τ+1)

6 ε1/2C sup
τ∈R
‖ζ ‖

1/2
L1(τ,τ+1)

, (2.42)

which is impossible for sufficiently small ε. The obtained contradiction proves the
theorem.

3. Discussion
In the framework of the classical approach to steady water waves with vorticity,

it is proved under assumptions (1.6) and (1.8) that no waves of small amplitude are
supported by a horizontal shear flow with still free surface. Here we discuss the first
of these assumptions in greater detail and consider examples when both of them are
fulfilled.
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The first assumption (there exists a stream solution with still free surface) yields that

h0 =

∫ 1

0

dτ√
s2

0 − 2Ω(τ)
<∞

where Ω(τ)=

∫ τ

0
ω(t) dt and s0 =

√
2 max
τ∈[0,1]

Ω(τ)

 (3.1)

(see Kozlov & Kuznetsov (2011b), the first assertion in § 4.2). For a given vorticity
distribution, h0 is the smallest depth of a shear flow for which the free surface is
stagnant. Let the maximum of Ω be attained at τ0 ∈ [0, 1]; then h0 <∞ if and only
if ω(τ0) 6= 0 (see Kozlov & Kuznetsov (2011b, p. 382)), and so τ0 is either 0 or 1.
These are the conditions of either case (ii) or case (iii), according to the classification
of vorticity distributions proposed in § 4.2 of the cited paper.

It is shown in Kozlov & Kuznetsov (2011b, §§ 5.2 and 5.3) that for s0 > 0 any
stream solution (U, h) that satisfies assumption (1.6) is

either (U(y; s0), h(+)k ) or (U(y;−s0), h(−)k ). (3.2)

Here U(y; s) denotes (as in the cited paper) a unique solution of the Cauchy problem:

Uyy + ω(U)= 0, U(0)= 0, Uy(0)= s. (3.3)

The restriction of U(y;+s0) (U(y;−s0)) on [0, h(+)k ] ([0, h(−)k ]) is the stream function
of a shear flow with the stagnant free surface, whose depth is equal to

h(+)k = h0 + 2 k [h0 − y−(s0)] (h(−)k = h(+)k − 2 y−(s0)), k = 0, 1, . . . (3.4)

The bottom velocity is positive (negative) for flows corresponding to the plus (minus)
sign in these formulae, whereas the value y−(s0) < 0 (see its definition in Kozlov &
Kuznetsov (2011b, § 3, in particular, pp. 378 and 379)) can be finite as well as infinite
depending on the vorticity distribution; it is such that (y−(s0), h0) is the maximal
interval containing y = 0 inside, on which U(y; s0) increases strictly monotonically.
Thus, if y−(s0) > −∞, then U(y; s0) is periodic and the above formulae are valid for
all non-negative integers k; that is, there are infinitely many shear flows with stagnant
free surfaces, but they have either different numbers of counter-currents or the opposite
directions of the bottom velocity. Otherwise, only the first formula (3.2) with k = 0
gives a stream solution satisfying assumption (1.6), and the corresponding shear flow
is unidirectional.

If s0 = 0, then we have y−(s0)= 0, and so all stream solutions satisfying assumption
(1.6) are given by the first formula (3.2) provided U(y; s0) is periodic.

Now we turn to examples of vorticity distributions ω for which both assumptions
(1.6) and (1.8) are fulfilled.

First, we take the vorticity equal to an arbitrary positive constant, say, b > 0 (see
details in Kozlov & Kuznetsov (2011b, § 6.1)), and obtain the simplest example of
the unique stream solution satisfying (1.6) and (1.8) simultaneously. Indeed, in this
case s0 =

√
2b > 0, h0 =

√
2/b = h and the stream function is U =

√
2b y − by2/2.

Therefore, the corresponding shear flow has the velocity profile in the form of a
straight segment which goes from

√
2b on the bottom to zero on the free surface. In

his study of bifurcation of waves from shear flows with constant vorticity, Wahlén
(2009) also excluded the above stream solution from his considerations.

Alternatively, if the vorticity is equal to a negative constant, say, −b < 0, then
s0 = 0, and the corresponding stream solution (U, h) = (by2/2,

√
2/b) gives a positive

value of the flow velocity on the free surface. The existence of Stokes waves
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bifurcating from this shear flow is proved by Wahlén (2009), but the general results
obtained by Kozlov & Kuznetsov (2012) are not applicable in this case. Presumably,
the reason for this lies in the degeneration of the streamline pattern for s0 = 0,
which becomes clear from figures 1 and 2 in Wahlén (2009). Indeed, the velocity of
flow is negative (vanishes) on the bottom for the flow shown in figure 1 (figure 2,
respectively). In the middle of the flow corresponding to the negative bottom velocity
(see figure 1), there is a critical layer formed by closed cat’s-eye vortices. However, for
s0 = 0 domains with closed streamlines are attached to the bottom and separated from
each other.

In the case of positive linear vorticity, that is, ω(τ) = bτ , b > 0, we have that
s0 =
√

b and h0 = π/(2
√

b) (see details in Kozlov & Kuznetsov (2011b, § 6.3)). There
are infinitely many stream solutions corresponding to s0, and their second components
are equal to πk/(2

√
b) (k = 1, 3, 5, . . .). Condition (1.8) is fulfilled only for k = 1,

in which case the main theorem is valid, but it gives no answer for k > 2. However,
Ehrnström et al. (2011) exclude from consideration all shear flows with still free
surfaces in their detailed study of waves with positive linear vorticity. The reason for
this is as follows: ‘without this assumption the linearized operator [. . . ] appearing in
the bifurcation problem’ can be shown not to be Fredholm.

The main theorem is also applicable to a shear flow with ω(τ) = bτ 2 on [−R,R]
and constant ω(τ) for |τ | outside (−R,R) (the constant is taken so that ω is
continuous); here R > 1 and b is a positive constant. For this vorticity, s0 =

√
2b/3

and formula (1.6) gives that

h0 =

√
3
2b

∫ 1

0

dτ
√

1− τ 3
. (3.5)

The equation for the first component of the corresponding stream solution is as
follows:

3U2
y + 2bU3

= 2b. (3.6)

Using elliptic functions, one can obtain its general solution (see Kamke (1959, part 3,
ch. 6, § 6.5)), but this is superfluous in the present context. Of course, the smallest (if
there are more than one) second component of stream solutions with still free surfaces
is equal to h0 for which, according to formula 17.4.59 in Abramowitz & Stegun
(1965), we have the following expression:√

3
2b

F(ϕ0 \ α0)
4
√

3
where ϕ0 = arccos

√
3− 1
√

3+ 1
, α0 = 75◦, (3.7)

and F(ϕ \ α) denotes the elliptic integral of the first kind. Then condition (1.8) is
fulfilled if

√
3 [F(ϕ0 \ α0)]

2 < π2, and this inequality is true because after simple
computations one gets from table 17.5 in Abramowitz & Stegun (1965) that
F(ϕ0 \ α0) < 1.9.

Any of the shear flows described above might be called a critical flow of the second
kind. Indeed, Stokes waves bifurcate from all shear flows whose depths are close to
h for positive constant and positive linear vorticity (see Kozlov & Kuznetsov (2012,
§ 5)). On the other hand, the bifurcation pattern is different near a flow that is referred
to as critical on p. 386 of Kozlov & Kuznetsov (2011b). We recall that this flow
described by (U(y; sc), h(sc)) exists for all vorticity distributions. On the s-axis, the
value sc separates two intervals with different properties. On the left of sc, there lies a
finite interval, and for s belonging to it, small-amplitude Stokes waves bifurcate from
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the corresponding horizontal shear flows (see main theorem in Kozlov & Kuznetsov
(2012)). On the right of sc, a sufficiently small interval exists such that solitary
waves are present for those s, as Hur (2008) proved. This near-critical behaviour is
distinct from that outlined above, but is completely analogous to that taking place in
the irrotational case when the critical uniform flow separates sub- and supercritical
flows from which Stokes and solitary waves, respectively, bifurcate (see e.g. Kozlov &
Kuznetsov (2010, 2011a)). Besides, only a uniform flow exists for the critical value
of the problem’s parameter in the irrotational case (see Kozlov & Kuznetsov (2008,
theorem 1), for the proof). On the other hand, a similar fact for problem (1.1)–(1.4) is
still an open question.
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R E F E R E N C E S

ABRAMOWITZ, M. & STEGUN, I. A. 1965 Handbook of Mathematical Functions. Dover.
AGMON, S., DOUGLIS, A. & NIRENBERG, L. 1959 Estimates near the boundary for solutions of

elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure
Appl. Maths 12, 623–727.

BENJAMIN, T. B. 1995 Verification of the Benjamin–Lighthill conjecture about steady water waves.
J. Fluid Mech. 295, 337–356.

CONSTANTIN, A. & STRAUSS, W. 2004 Exact steady periodic water waves with vorticity. Commun.
Pure Appl. Maths 57, 481–527.
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