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ABSTRACT

This study introduces an equilibrium approach to price mortality-linked secu-
rities in a discrete time economy, assuming that the mortality rate has a trans-
formed normal distribution. This pricing method complements current studies
on the valuation of mortality-linked securities, which only have discrete trading
opportunities and insufficient market trading data. Like the Wang transform,
the valuation relationship is still risk-neutral (preference-free) and themortality-
linked security is priced as the expected value of its terminal payoff, discounted
by the risk-free rate. This study provides an example of pricing the Swiss Re
mortality bond issued in 2003 and obtains an approximated closed-form solu-
tion.
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1. INTRODUCTION

Longevity and mortality risks have created new challenges for financial insti-
tutions, especially for life insurers, reinsurers, annuity providers and pension
funds. These risks are systematic, long-trending and widespread. To avoid these
risks, the insurance industry has begun to issue mortality-related securities in
capital markets. These securities are called mortality-linked contingent claims
(MLCCs).1

One major task in securitization is determining the values of MLCCs. The
MLCC valuation literature contains three main methods: the Wang transform
(Wang, 2000, 2002), the arbitrage-free pricing method of Cairns et al. (2006b)
and the Sharpe ratio method of Milevsky et al. (2005).2 First, Wang’s approach
provides a distortion operator that transforms the underlying distribution to
a risk-adjusted distribution that can be used to calculate the value of MLCCs.
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Under the risk-adjusted probability, the prices ofMLCCs are the expected value
of cash flows discounted by the risk-free rate. Lin and Cox (2008) and Cox et al.
(2006) used this approach to price the Swiss Re mortality bond issued in 2003.
Second, Cairns et al. (2006b) used the arbitrage-free approach to price the Euro-
pean Investment Bank (EIB) longevity bond issued in 2004. The arbitrage-free
approach assumes that if the market prohibits arbitrage opportunities, at least
one risk-neutral measure can be derived to obtain security prices. Cairns et al.
(2006b) estimate the market prices of longevity risk by the issue price of EIB
longevity bond. Third, Milevsky et al. (2005) suggest that insurers bearing non-
diversifiable mortality risk request a risk premium with a Sharpe ratio equal
to that of a well-diversified portfolio in the capital market. Thus, they derive
the Sharpe ratio valuation method for pricing mortality risk in an incomplete
market. Bayraktar et al. (2009) and Young (2008) use this method to price ML-
CCs. Bauer et al. (2010) and Chen et al. (2010) compare and comment on the
robustness of these approaches and provide guidance for choosing among these
pricing methods.

In this paper, we propose an alternative valuation method that is distinct
from above three approaches. The proposed method possesses the risk-neutral
valuation relationship (RNVR) property of Rubinstein (1976) and Brennan
(1979). The classical literature of asset pricing, Rubinstein (1976) and
Brennan (1979), presents a risk-neutral valuation approach in which asset prices
are equal to the expected cash flow of contingent claims discounted by the
risk-free rate. Their option pricing formula is identical to that of Black and
Scholes (1973), when the representative agent has a constant relative risk aver-
sion (CRRA)/constant absolute risk aversion (CARA) preference, the aggregate
wealth and the underlying assets have a joint lognormal/normal distribution.
Their risk-neutral valuation approach depends on the triple economic assump-
tions: preference, wealth and underlying distributions, and do not require trans-
action data or perfect hedge.

Onemajor problem in applying their risk-neutral valuation approach to pric-
ing MLCCs is that the underlying mortality distribution may not be lognormal
or normal, especially when the mortality rate is accompanied by longevity or
catastrophe risk. For example, when mortality processes accompany a jump ef-
fect, the terminal distribution tends toward a positive skew (Lin and Cox, 2008).
To take this risk into consideration, this study introduces a transformed normal
distribution (Johnson et al., 1994) to accommodate high-ordermoments ofmor-
tality risk in the MLCC pricing. The transformed normal distribution includes
the lognormal, four-parameter lognormal, and SU distribution as special cases.
This distribution can have negative, zero, or positive skewness and can be more
leptokurtic than the standard lognormal distribution. Based on this distribu-
tional generalization, we derive a risk-neutral valuation approach for MLCCs
and the result still satisfies the RNVR property of Rubinstein (1976), Brennan
(1979) and Camara (2003).3 The meaning of this transformed normal distribu-
tion differs from that ofWang’s transform; it means the distribution in a general
form that can be transformed into a normal distribution without distorting the
underlying distribution.
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Based on the triple assumptions and the distributional generalization, the
prices of MLCCs are the expected end-of-period payoffs discounted at risk-free
rate, taken with respect to a risk-neutral transformed normal density. This re-
sult is valuable for current MLCCs studies in three aspects. First, unlike the
three valuation approaches mentioned above, it provides an alternative valua-
tion approach forMLCCs in an incomplete market. This approach places much
more restrictive assumptions on underlying distribution, individual wealth, and
preference compared with the no-arbitrage pricing approach. However, when a
replication portfolio or a perfect hedge is unavailable forMLCCs, this approach
can still provide valuable price information in the securitization. Second, we use
the proposed approach to price the Swiss Remortality bond issued in 2003 as an
example, obtaining approximated closed-form solutions for the mortality bond
under some specific distributions of transformed normal distribution. The pric-
ing results can be regarded as a referring price for the MLCC issuer. Third, our
approach requires no market transaction data. Most MLCCs are traded in the
over-the-counter market, and the trading data is unavailable. In the spirit of
direct pricing, this approach can evaluate the MLCCs payoff without referring
to other asset prices.

The remainder of this paper is organized as follows. Section 2 sets the val-
uation methods in a discrete time economy; and explains how to obtain the
risk-neutral valuation relationship. Section 3 presents the decomposition of the
Swiss Remortality bond and the approximationmethod, and derives the closed-
form formulas under three specific underlying distributions. Section 4 uses the
Lin and Cox (2008) model and the Chen and Cox (2009) model to project the
mortality distributions and fit them by the transformed normal distributions to
obtain pricing parameters. This section also determines the price of the Swiss Re
mortality bond and calculates its premium spread. Section 5 offers a conclusion
and implications.

2. EQUILIBRIUM PRICING MODEL

Following Brennan (1979) and Camara (2003), this section reviews the pric-
ing process of contingent claims with uncertain payoffs. Let EP [·] be the ex-
pected value operator under the actual probability measure. U is the utility
function of the representative investor. The current consumption is X0, and the
initial wealth and the end-of-period wealth are W0 and WT. Pj0(q) and PjT(q)

are the prices of security j written on the mortality underlying q at t = 0
and T, where j = 1, ..., J, denotes j th security in the market. The demand
for security j is yj . The representative agent is non-satiated, risk-averse, and
attempts tomaximize the expected utility by choosing current consumption and
future payoff:

Max
Xo, yj

U(X0) + EP

{
U

[
(W0 − X0) erT +

J∑
j=1

yj (Pj1(q) − Pj0(q)erT)

]}
,
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where r is risk-free rate. Replacing (W0 − X0) erT +∑J
j=1 yj (Pj1(q) − Pj0erT)

by WT and following the equilibrium condition yields the familiar economic
pricing rule:

Pj0(q) = e−rT E
P
[
U ′(WT)PjT(q)

]
EP [U ′(WT)]

= e−rTEP [ξ(WT)PjT(q)
]
, (1)

where

ξ(WT) = U ′(WT)

EP [U ′(WT)]

is the pricing kernel. Conditioning ξ(WT) with respect to the underlying q pro-
duces the asset-specific pricing kernel, defined as

φ(q) = EP [ξ(WT) |q ] . (2)

This asset-specific pricing kernel reduces the integral dimension of the pricing
problem such that the valuation only involves a single integral. The rest of this
study focuses on one underlying and one contingent claim written on it; thus,
the subscripts j in (1) can be suppressed as

P0 = e−rTEP [φ(q)PT(q)] . (3)

Equation (3) states that the price of security can be expressed as the expected
payoff multiplied by its marginal rate of substitution, discounted by the risk-
free rate. Here, the pricing kernel still depends on the marginal utility and the
pricing relationship is preference-dependent.

To analyze the expected value of (3), we have to specify the explicit form of
the terminal wealth, underlying assets, and representative agent’s preference.
We propose a transformed-normal distribution to describe them.

DEFINITION. The transformed normal distribution is defined by the transfor-
mation of a random variable q such that

f
(
q − α

β

)
= x ∼ N(μ, σ 2), (4)

where α, β, μ and σ are parameters (β, σ > 0) and f is a strictly monotonic
differentiable function. N(μ, σ 2) is a normal distribution with mean μ and
variance σ 2.

Appendix A provides details about transformed normal distribution. This
definition is identical to the four-parameter transformed normal distribution
of Johnson (1949) and Johnson et al. (1994), but differs slightly from the
three-parameter transformed normal distribution of Camara (2003). This study
adapts Johnson’s definition because it fits the mortality data better than Ca-
mara’s definition. The transformed normal distributions are muchmore general
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than normal or lognormal distributions. Some well-known distributions can be
included as special cases of the transformed normal distributions. For example,
if α = 0, β = 1 and f is log function, then q has a lognormal distribution.

To the risk-neutral valuation, first, assume that the terminal wealthWT and
the underlying q have a joint transformed normal distribution:

( f (WT), f1(q)) ∼ N(μw, μ, σw, σ, ρ), (5)

where f () and f1() are strictly monotonic differentiable functions defined in (4);
N denotes the bivariate normal distribution with means μw and μ, standard
deviations σw and σ, and a correlation coefficient ρ. The subscripts w denote
the parameters with respect to wealth.

Second, specify the representative agent’s preference. Assume the marginal
utility of the representative agent has the form

U ′(WT) = exp(δ f (WT)), (6)

where δ is a constant and f () is identical to the one in (5). This utility specifica-
tion is quite general and includes several types of utility, such as HARA utility.
For example, we can choose

f (WT) = ln
[
a

1
γ−1 ×

(
aWT

1 − γ
+ b

)]
and δ = γ − 1,

where γ �= 1, a > 0, aWT
1−γ

+ b > 0, and b = 1 if γ = −∞, then we obtain the

marginal utility of HARA utility.4 This transform function satisfies the strictly
monotonic requirement in the definition.

Following these triple assumptions in (5) and (6), the security price can be
derived as

P0 = e−rTEQ [PT(q)] , (7)

where EQ [·] is the expected value operator under the Q probability measure
with respect to a risk-neutral transformed normal density and a new location
parameter μQ.

Proof. See Appendix B.

This risk-neutral density has a shifted location of the underlying densityμQ,

which is unrelated to the preference parameter. Thus, we obtain a risk-neutral
valuation relationship for MLCC pricing.

3. MORTALITY-LINKED CONTINGENT CLAIM VALUATION

This section first describes the payoffs of the Swiss Re mortality bond, which
can be decomposed into three bull spreads. Next, we price these bull spreads
and obtain the mortality bond price in closed-form solutions.
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FIGURE 1: Loss ratio Lt and a bull spread payoff with exercise price K1 and K2.

3.1. The decomposition of Swiss Re mortality bond

The Swiss Re Insurance Company issued a three-yearmortality bond inDecem-
ber 2003 through a special-purpose vehicle, Vita Capital.5 The total amount
was $400 million, and the bondholders receive coupons quarterly at a rate of
three-month U.S. dollar LIBOR plus 135 basis points. The principal is not fully
protected and depends on the mortality index weighted by five countries’ mor-
tality experiences.6 If the mortality index qt in year t exceeds 130% of the 2002
level q0, the principal decreases by 5% for every 1% increase in the index. If qt
exceeds 150% of q0, the principal is exhausted. The principal loss ratio at time
t, Lt, can be written as

Lt =
⎧⎨
⎩
0 if qt < 1.3q0
(qt − 1.3q0) /0.2q0 if 1.3q0 ≤ qt ≤ 1.5q0
1 if qt > 1.5q0

(8)

where t = 1, 2 and 3 for years 2004, 2005 and 2006, respectively.
Figure 1(a) shows that Lt is in the form of a bull spread depending on the

mortality level qt. A bull spread payoff can be replicated by buying a call option
with one strike price and selling another call option with a different strike price.
Figure 1(b) indicates that the loss ratio in Figure 1(a) can be replicated by buying
a call option at a strike price K1 = 1.3q0 and simultaneously selling the other
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call option at strike price K2 = 1.5q0. The aggregate payoff in Figure 1(b) is
identical to the payoff in Figure 1(a).

Thus, the loss ratio can be written as a bull spread:

Lt = Max
(
qt − K1

K2 − K1
, 0
)

− Max
(
qt − K2

K2 − K1
, 0
)

. (9)

The aggregate loss ratio at time T is
∑

tLt = L1 + L2 + L3 and the principal
return to the bondholders is

BT = Max
(
1 −∑

tLt, 0
)
. (10)

Following the risk-neutral valuation approach in Section 2, the mortality bond
value at time 0 is

B0 = e−rTEQ [Max
(
1 −∑

tLt, 0
)]× FaceValue, (11)

where Q is the probabilitymeasurewith respect to the risk-adjusted transformed
normal density defined in Section 2. Equation (11) is ready to evaluate the mor-
tality bond price B0.

However, themortality bond payoff in (11) is a form of options on options or
compound options that is complex to be analyzed in the framework.We impose
an additional assumption to simplify the payoff function. If (i) the probability
of sequential catastrophes occurring in three years is small (Lin and Cox, 2008),
and (ii) not every sequential mortality jump erodes the principal completely, the
payoff function can be approximated by

EQ [Max
(
1 −∑

Lt, 0
)] � Max

(
1 − EQ [∑Lt

]
, 0
)
. (12)

Proof. See Appendix C.

Based on this approximation, the mortality bond price can be written as

B0 = e−rTEQ [Max
(
1 −∑

Lt, 0
)]× FaceValue

� e−rTMax
(
1 − EQ [∑Lt

]
, 0
)× FaceValue

= e−rTMax
(
FaceValue −∑3

t=1

(
C1
t − C2

t

)
, 0
)

, (13)

where

C1
t = EQ [Max(qt − K1, 0)/ (K2 − K1)] × FaceValue and

C2
t = EQ [Max(qt − K2, 0)/ (K2 − K1)] × FaceValue (14)

are call payoffs at maturity date T with respect to underlying qt and strike prices
K1 and K2. If the values of C1

t and C2
t are known, we obtain B0. In the next

section, we use this approximation method to value the mortality bond price,
which equals its face value minus the prices of three bull spreads.
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The low-correlation assumption is restricted, but greatly simplifies the pay-
off of the mortality bond. An alternative simplification is the approximation
method of Lin and Cox (2008):

∑
Lt = Max

(
qmax − K1

K2 − K1
, 0
)

− Max
(
qmax − K2

K2 − K1
, 0
)

, (15)

where qmax = Max(q1, q2, q3).
These two simplifications provide a snapshot of the multi-period valuation

as a single-period one. In Section 4, we use both methods to price the Swiss Re
mortality bond.

3.2. Specification and valuation

Equation (13) shows that the terminal payoff of the Swiss Re mortality bond is
related to the three bull spreads. Dropping subscript t of qt for conciseness, the
call value depending on the mortality rate q is

C = e−rTEQ [Max(q − K, 0)] . (16)

Assuming that the underlying q has a specific transformed normal distribution
that leads to the option price solution possessing a Black–Scholes closed-form
type.We discuss three cases of underlying q following (a) the SU distribution, (b)
the four-parameter lognormal distribution and (c) the lognormal distribution,
and derive their analytic pricing formulas.

(a) The SU distribution. Assuming the mortality rate q has a SU distribu-
tion, the terminal wealth WT has a transform normal distribution, and their
transformed variables sinh−1

(
q−α

β
) = ln(

q−α

β
+
√
1 + (

q−α

β
)2) and f (WT) have

a bivariate normal distribution:

(
f (WT) , sinh−1

(
q − α

β

))
∼ N(μw, μ, σw, σ, ρ),

where β and σ are positive constants and ρ is the correlation coefficient. The
representative agent’s utility function is

U ′(WT) = exp(δ f (WT)),

includingHARA utility. Using the RNVR derived in Section 2, the option price
in (16) is

C = β

2 e
−rT+μQ+ 1

2 σ 2 ·
 (d1)− β

2 e
−rT−μQ+ 1

2 σ 2 ·
 (d2)+(α−K)e−rT ·
 (d3) , (17)
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where

d1 = − sinh−1
( K−α

β

)
+μQ

σ
+ σ,

d2 = − sinh−1
( K−α

β

)
+μQ

σ
− σ,

d3 = − sinh−1
( K−α

β

)
+μQ

σ
and μQ = sinh−1

(
1
β
e− 1

2 σ 2
(q0erT − α)

)
. (18)

The term 
(·) is the cumulative standard normal distribution.

Proof. See Appendix D.

(b) The four-parameter lognormal distribution. Assume that the terminal
wealth has a transform normal distribution and the mortality rate q has a four-
parameter lognormal distribution, i.e., f1(q) = ln(

q−α

β
), and they have a jointly

normal distribution:(
f (WT) , ln(

q − α

β
)

)
∼ N(μw, μ, σw, σ, ρ).

The representative agent’s utility function is U ′(WT) = exp(δ f (WT)) which in-
cludes a HARA utility. The option price is

C = βe−rT+μQ+ 1
2 σ 2T · 
 (d1) + (α − K)e−rT · 
 (d2) , (19)

where

d1 = − ln
( K−α

β

)
+μQ

σ
+ σ,

d2 = − ln
( K−α

β

)
+μQ

σ
and μQ = ln

(
1
β
(q0erT − α)

)
− 1

2
σ 2.

Proof. See Appendix E.

(c) Lognormal distribution. The lognormal distribution can be included in
(b) by choosing α = 0 and β = 1. For paper’s completeness, we discuss it
briefly. Assuming that the mortality rate q and terminal wealth have a joint
lognormal/normal distribution and the agent has a utility function displaying a
CRRA/CARA preference, the option formulas are the same as those of Black
and Scholes (1973). This result is the same as those of Rubinstein (1976) and
Brennan (1979). We omit the formula and proof here.

4. PARAMETER ESTIMATION AND VALUATION

This section applies two stochastic mortality models as data generating pro-
cesses (DGPs) to generate the future distribution of q for each time t. The
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models are the mortality catastrophe model of Lin and Cox (2008) and the
Lee–Carter model with jumps of Chen and Cox (2009). The transformed nor-
mal distributions are employed to fit these mortality distributions. The Swiss Re
mortality bond price is calculated by substituting the obtained parameters into
the closed-form formulas.

The mortality data are obtained from the National Center for Health Statis-
tics (NCHS).7 NCHS reports the U.S. age-adjusted death rate per 100,000 stan-
dard million people for selected causes of death. The observation period starts
from 1900 to 2002.

We first show the quantile–quantile plot (Q–Qplot) of themortality distribu-
tions and the fitting distributions of SU , four-parameter lognormal, and lognor-
mal distributions. They are plotted in Figure 2. Figure 2 shows that the SU distri-
bution has better-fitting results than the four-parameter lognormal distribution
and the lognormal distribution in both the Lin–Cox and Chen–Cox mortality
distributions.Most dots plotted in the SU-fitting fall on the 45◦ line, and the dots
in the four-parameter-lognormal and lognormal fitting tend to deviate from the
45◦ line in tails. This shows that the four-parameter-lognormal and lognormal
fittings perform worse than the SU distribution in the extreme or catastrophe
events. The fitting results of the mortality data in the years 2003 and 2004 are
similar to those of the year 2005, and are not shown here. Therefore, throughout
this section, we demonstrate our results based on the SU distribution.

4.1. The SU fitting

The estimation for the SU distribution using a maximum likelihood method
sometimes is unstable. This study proposes a quantile-estimation method
adapted from Slifker and Shapiro (1980) to facilitate parameter estimation. The
quantile-based estimation method of Slifker and Shapiro (1980) provides two
advantages. One advantage is an increase in the accuracy when the number of
observations of data is sufficiently large.8 The other advantage is that the esti-
mators have explicit formulations. Appendix F describes the steps of estimating
these parameters.

The mortality projections are simulated by 100,000 times from 2004 to 2006
and are regarded as three discrete-time distributions. Tables 1 and 2 show the
basic statistics of the simulated distributions. Table 1 shows the parameters of
simulated distributions from the Lin and Cox (2008) model. The basic statistics
are shown for q2004, q2005, q2006 and qmax, respectively, where qmax is the maxi-
mum value of the three years, defined in the approximate equation (15). In the
basic statistics, the means have a decreasing trend from 0.008691 to 0.008524
from year 2004 to 2006. qmax has a greatest mean value of 0.008826. The stan-
dard deviations show an increasing trend from 0.000310 to 0.000483 from year
2004 to 2006. This is because the Lin and Cox model assumes that the mortality
rate follows a geometric Brownian motion and that its volatility increases over
time.9 The skewness, ranging from 1.3585 to 0.52016, shows a positive skew of
data for each year. This is consistent with the mortality jumps in the processes
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FIGURE 2: Q–Q plot of the fitted distributions for the Lin–Cox and Chen–Cox models (left half: 2005
Lin–Cox mortality distribution; right half: 2005 Chen–Cox mortality distribution).
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TABLE 1

THE PARAMETERS OF THE 100,000-TIMES SIMULATED DISTRIBUTION GENERATED BY THE LIN AND
COX MODEL.

q2004 q2005 q2006 qmax

Basic statistics Mean 0.008691 0.008607 0.008524 0.008826
Std 0.000310 0.000406 0.000483 0.000401
Skewness 1.3585 0.67229 0.52016 1.4969
Kurtosis 10.106 5.3958 4.4473 8.0794

Parameters α 0.008399 0.008169 0.007905 0.008403
fitted by SU β 0.000298 0.000613 0.000904 0.000392

μ 0.70780 0.58728 0.58743 0.79031
σ 0.67281 0.50654 0.42218 0.60124
Criteria 3.014 2.030 1.648 2.297

TABLE 2

THE PARAMETERS OF THE 100,000-TIMES SIMULATED DISTRIBUTION GENERATED BY THE CHEN AND
COX MODEL.

q2004 q2005 q2006 qmax

Basic statistics Mean 0.008167 0.008092 0.008017 0.008229
Std 0.000255 0.000286 0.000311 0.000296
Skewness 0.4269 0.4111 0.3178 1.0487
Kurtosis 10.108 7.8531 6.2193 9.5241

Parameters α 0.008129 0.008038 0.007946 0.008155
fitted by SU β 0.000213 0.000308 0.000392 0.000242
distribution μ 0.12210 0.13146 0.14309 0.19654

σ 0.84453 0.72561 0.65284 0.82233
Criteria 7.736 4.998 3.863 6.981

leading to a skewed distribution. qmax shows the greatest degree of skewness
because we chose the maximum value of qt in each simulation. The simulated
distributions have positive excess kurtosis, meaning that the mortality distribu-
tions are leptokurtic and fat-tailed.

The fitted transformed parameters of themortality distribution are shown in
the bottom half of Table 1. The location parameter of transformed parameters,
α, shows a decreasing trend from 2004 to 2006, and qmax has a greatest location
value. The scale parameter, β, shows an increasing trend from 2004 to 2006.
After the transform, the distribution is a normal distribution with mean μ and
standard deviation σ . All the criterion values are larger than one indicating that
the estimation using the SU fitting is appropriate (see Appendix F).

Table 2 shows the parameters of the simulated mortality distribution gener-
ated from the Chen and Cox (2009) model. The trends of the means and α are
decreasing, but with a slower mortality improvement compared with the trends
shown in Table 1. The standard deviations and β in Table 2 are smaller, implying
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that the dispersion risk in the Chen and Cox model is smaller than that in the
Lin and Cox model. The row of criteria also shows that the SU estimation is
suitable.

There are two parameters in the SU distribution that control the scale size
of the random variable q. β captures the scale effect before the transformation,
and σ captures the scale size after the transformation. As Tables 1 and 2 show, β
increases over time from2004 to 2006, which is consistent with the intuition. The
SU function has amonotonic transformation on scale but has a decreasing effect
on the larger variance distributions (concave). Therefore, if the scale increase
effects are captured by β, σ captures the reverse effect of scale size after the
transformation and has a decrease trend in Table 1 and 2.

Figure 3 shows the simulated distributions and the SU-fitted distributions.
The simulated distributions generated by the Lin and Cox (2008) model ap-
pear on the left half; the simulated distributions derived from the Chen and Cox
(2009) model appear on the right half. These histograms represent the simulated
frequency, and the solid line shows the SU-fitted results. We find that the mortal-
ity distributions generated by the Lin and Cox model exhibit greater mortality
improvements from 2004 to 2006 and a wider distributional risk, whereas the
distributions of the Chen and Cox model are more concentrated and have a
smaller mortality improvement. These figures are consistent with the parame-
ters in Tables 1 and 2.

4.2. The mortality bond prices

Using the parameters in Tables 1 and 2, we can calculate the Swiss Re mortality
bond prices and the par spreads. Some exogenous data are given: the initial
mortality rate q0 is 0.008453 from NCHS 2002 data, the risk-free interest rate
is 0%,10 the time t starts from 1 to 3 (t = 3 for qmax), and the exercise prices are
K1 = q0 × 1.3 and K2 = q0 × 1.5. For a more intuitive presentation, we assume
that the face value is 1,000 instead of 400 million. Table 3 shows the prices of the
call options based on the parameters in Table 1 and the option pricing equation
(17).

Table 3 shows the results separately under the bull spread approximation
method and the qmax approximation method of Lin and Cox (2008). In the bull
spreadmethod, the call pricesC1

t have an increasing trend from0.6539 to 1.9744.
This is because the scale parameter of qt increased from 2004 to 2006, the call
prices have an increasing trend. Table 3 also shows that C2

t is cheaper than C
1
t .

This is because the exercise price K2 is larger than K1, implying that C2
t is much

more out-of-the-money than C1
t for all t. Substituting these call prices into the

valuation equation (13) shows that loss amounts at year 2006 are L1 = 0.5973,
L2 =0.9908, L3 =1.8114, and the aggregated loss

∑
Lt =3.3995. The mortality

bond price is 996.6 and the resulting par spread is 11.4 bps.
In the results of the qmax approximation, the mortality bond price is 999.45

and the par spread is 1.83 bps.11 This result is smaller than the spread of the bull
spread approximation, 11.4 bps.
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FIGURE 3: The 100,000-times simulated mortality distributions from years 2004 to 2006 and their SU -fitted
distributions (x-axis: values of q; y-axis: relative probability).
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TABLE 3

THE VALUES OF CALLS AND THE MORTALITY BOND PRICE BASED ON THE LIN AND COX MODEL.

Bull Spread Method qmaxMethod

Call values at t =3 t =1 t =2 t =3 t =3

C1
t 0.6539 1.0729 1.9744 0.5960

C2
t 0.0566 0.0821 0.1630 0.0467

Lt= C1
t − C2

t 0.5973 0.9908 1.8114 0.5493∑
Lt 3.3995

B0 996.6 999.45
Par spread 11.4 bps 1.83 bps

TABLE 4

THE VALUES OF CALLS AND THE MORTALITY BOND PRICE BASED ON THE CHEN AND COX MODEL.

Bull Spread Method qmax Method

Call values at t =3 t =1 t =2 t =3 t =3

C1
t 1.4043 1.1087 1.0592 1.0538

C2
t 0.2989 0.1738 0.1353 0.2023

Lt= C1
t − C2

t 1.1054 0.9349 0.9239 0.8515∑
Lt 2.964

B0 997.04 999.15
Par spread 9.9 bps 2.8 bps

Table 4 shows the mortality bond prices derived from the Chen and Cox
(2009) mortality model. The aggregated loss

∑
Lt is 2.964 dollars and the bond

price is 997.04 under the bull spread approximation. The bond price is 999.15
under the qmax approximation. The spreads are 9.9 bps and 2.8 bps, respec-
tively.12 We also find that the qmax approximation has a lower spread than the
bull spread approximation. This is because choosing qmax from q1, q2 and q3 in-
creases the mean but decreases the variance of the mortality distribution. If the
variance of mortality risk is important to the valuation, the qmax approximation
undervalues the mortality bond price.

In Tables 3 and 4, the par spreads are smaller than the Swiss Re spread of
135 bps for both the bull spread and the qmax approximation. Therefore, we may
conclude that the Swiss Re mortality bond (with a spread of 135 bps) is a good
deal for investors. We emphasize that these numerical results do not include any
transaction costs and fees. However, if the transaction costs are small or negli-
gible, we believe that the issue price of the Swiss Re mortality bond is relatively
cheap. This result is consistent with the finding of Lin and Cox (2008), and may
support one of the reasons why the Swiss Re mortality bonds were so popular
when they were issued.
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5. CONCLUSION AND DISCUSSION

This study provides an equilibrium pricing approach to value MLCCs and uses
it to price the SwissRemortality bond as a numerical example.A convenient and
closed-form formulation for the Swiss Re mortality bond is obtained. The pro-
posed valuation approach has several unique features. First, relative to the no-
arbitrage pricing, we make restricted assumptions on the utility, wealth and un-
derlying distribution. The benefits are that we do not require market transaction
data and replicating portfolio assumption to determine the price of MLCCs.
Second, similar to theWang transform, this valuation formulation is preference-
free and the payoffs are discounted by the risk-free rate. Third, this method em-
ploys a general distribution that can be transformed into a normal distribution
that is more suitable for mortality data than normal and lognormal distribu-
tions. This transformed normal distribution can integrate the high-order mo-
ments risk into pricing when the mortality jump is critical. Fourth, the utility
specification covers most classical utility specifications in the mortality-linked
security literature, such as the HARA utility. By applying the results of RNVR
and option pricing formula, the MLCC valuation problem is simplified as a
mortality forecasting problem and the individual preference does not play a
crucial role in the valuation. Finally, this equilibrium valuation approach is ap-
plicable to most MLCCs, and contributes an alternative method to the existing
literature to explore fair value of MLCCs.

There are several study limitations to this paper. First, we do not consider
the default risk and loading fees in the valuation, which may increase the mor-
tality bond issue price. Second, we use the U.S. mortality rate as a proxy for the
five-country weighted mortality index. Because of the diversification effect, the
weighted mortality index would have a lower volatility and a lower risk spread.
This proxy may not change our results significantly if there are no high correla-
tions inmortality catastrophes across these countries. Third, the valuation result
depends on the mortality model selection and therefore involves the mortality
model risk. However, the mortality model selection is arbitrary in this method;
model builders can choose their preferred mortality projection model, such as
a non-parametric model to mitigate the model risk. Thus, the remaining model
risk is the transform normal distribution failing to achieve a good fitting. Fi-
nally, the proposed approximation method may undervalue the bond price if
the probability of sequential mortality catastrophe is high. It may be fruitful to
consider these issues in future studies.

NOTES

1. See, for example, Lin andCox (2005), Blake et al. (2006a, 2006b), Cairns et al. (2006a), Dowd
et al. (2006), Sherris (2006), Cox and Lin (2007) and Cox et al. (2010).

2. For example, Denuit et al. (2007), Bauer et al. (2010), Chen and Cox (2009) and Chen
et al. (2010) used the Wang transform; Milevsky and Promislow (2001), Biffis (2005), Biffis and
Millossovich (2006), Cairns et al. (2006b) and Dahl and Moller (2006) used the arbitrage-free

https://doi.org/10.1017/asb.2013.3 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.3


THE PRICING OFMORTALITY-LINKED CONTINGENT CLAIMS 113

method; Milevsky et al. (2005), Bayraktar and Young (2007) and Young (2008) used the Sharpe
ratio method to price mortality risk.

3. Camara (2003) also obtains the RNVR property, but the definition of transformed normal
distribution is different from ours.

4. The HARA utility (Ingersoll, 1987) is defined as U(W) = 1−γ

γ

(
aW
1−γ

+ b
)γ

, where γ �= 1,

a > 0, aW
1−γ

+ b > 0, and b = 1 if γ = −∞. This utility displays IARA if 1 < γ < ∞, CARA if
b = 0, and DARA if −∞ < γ < 1; is IRRA if b > 0 (for γ �= 1), CRRA if b = 0, and DRRA if
b < 0 (for −∞ < γ < 1).

5. http://www.swissre.com/media/news releases/
6. The weights of the five countries are the United States (70%), the United Kingdom (15%),

France (7.5%), Italy (5%) and Switzerland (2.5%). The index also has weights on males (65%) and
females (35%) for each country.

7. http://www.cdc.gov/nchs/nvss/mortality/
8. In the numerical study, the 103 mortality data points are used to estimate the parameters of

the Lin–Cox model and the Chen–Cox model, and we regard these two mortality models as DGPs
to generate future mortality projections. Then the future mortality projections are fitted by the SU
distribution for the valuation. The number of generated processes (simulation times) is 100,000,
and this number is sufficiently large to achieve a good fit by using the quantile-estimation method.

9. However, compared with other years, qmax has a smaller standard deviation of 0.000401.
We observe that the approximation of Lin and Cox (2008) creates a censor effect and qmax no
longer has the largest standard deviation. If the standard deviation is crucial in the pricing, this
approximation method may undervalue the price.
10. We discuss our results with regard to a premium spread; therefore, the assumption of risk-

free rate does not change these results.
11. Comparing the results with other studies, for example, the spread of Lin and Cox (2008)

is 39 bps. Because of the lack of mortality transaction data, Lin and Cox (2008) calculated their
spread according to the market price of risk of property catastrophe bonds.
12. Compared with the spread derived from Chen and Cox (2009), which is 56 bps. However,

the design of the mortality bonds is somewhat different. For details, please see Chen and Cox
(2009).
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APPENDIX A. SUMMARY OF JOHNSON’S TRANSFORMED
NORMAL DISTRIBUTION

The probability density function of the transformed normal distribution is

h(q) = h(q; f, μ, σ ) = 1√
2πσ

∣∣ f ′(q)
∣∣ exp

[
−1
2

(
f (q) − μ

σ

)2
]

, (20)

where f is the transform function. The transformed normal distribution devel-
oped by Johnson et al. (1994) includes three distribution families (i) the lognor-
mal distribution SL, (ii) the range-bounded distribution SB and (iii) the range-
unbounded distribution SU .

Following the definition in (4), if f has a log function, q > α and β = 0, we
obtain the family of the lognormal distribution:

SL : log(q − α) = x− μ

σ
.

If f has a log function and q is bounded at α < q < α + β, then the bounded
transform normal distribution is

SB : log
(

q − α

α + β − q

)
= x− μ

σ
.

If f has an inverse hyperbolic function, q is unbounded and the unbounded
transform normal distribution is

SU : sinh−1
(
q − α

β

)
= x− μ

σ
.

For more details, please refer to Johnson et al. (1994).

APPENDIX B. DERIVE THE RISK-NEUTRAL VALUATION
APPROACH IN AN EQUILIBRIUM SETTING

This proof is mathematically tedious, and we only show the main steps and con-
cepts. For details, please refer to Brennan (1979) and Camara (2003). What we
want to show is that if the representative agent’s marginal utility has the form of
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U ′(W) = exp(δ f (W)), terminal wealth WT and the underlying q have a jointly
transformed normal distribution

( f (WT), f1(q)) ∼ N(μw, μ, σw, σ, ρ),

then the security price and payoff have an RNVR as P0 = e−rTEQ [PT(q)] .
We first show that the asset-specific pricing kernel in (2) has a lognormal

distribution. Because δ f (W) and f1(q) are joint normal, we can orthogonally
project ln [U ′(WT)] onto f1(q):

δ f (WT) = a + bf1(q) + ε,

where f1(q) is independent of ε. By definition, E (δ f (WT)) = a + bμ = δμw

and V(δ f (WT)) = b2σ 2 + σ 2
ε = δ2σ 2

w. Using the property of linear regression
and the strict monotonicity of f1(·), we obtain

EP (δ f (WT)|q) = a + bf1(q) = δμw − bμ + bf1(q)

and
VP (δ f (WT)|q) = σ 2

ε = δ2σ 2
w − b2σ 2.

Since δ f (WT) = ln [U ′(WT)] is normal distribution, and recalling the mean for
the lognormal distribution, we have

EP [U ′(WT)
] = exp

[
δμw + 1

2
δ2σ 2

w

]

and

EP [U ′(WT) |q ] = exp
[
δμw − bμ + bf1(q) + 1

2

(
δ2σ 2

w − b2σ 2)] .

Therefore, the asset-specific pricing kernel is

φ(q) = EP [U ′(WT) |q ]
EP [U ′(WT)]

= exp
[
−bμ + bf1(q) − 1

2
b2σ 2

]
∼ L.N.D., (21)

with EP (lnφ(q)) = − 1
2δ

2ρ2σ 2
w and VP (lnφ(q)) = δ2ρ2σ 2

w, where b = δρσw/σ.

Note that the asset-specific pricing kernel in (21) does not change even when
we revise the transform function f (·) of the utility setting. This means that the
φ(q) is robust to other utility and wealth specifications which belong to the
transformed normal distribution.

By multiplying the asset-specific pricing kernel with the payoff PT(q) in (3),
the security price under true probability is

P0 = e−rTEP [φ(q)PT(q)] = e−rT
∫

φ(q)PT(q)h(q; f1, μ, σ )dq, (22)
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where h(q; f1, μ, σ ) is the transform normal density of the underlying q which
is defined in (20). Collecting the terms of φ(q) and h(q; f1, μ, σ ), (22) can be
written as

P0 = e−rT
∫

PT(q)h(q; f1, μ + δρσwσ, σ )dq. (23)

This equation has a shifted location parameter μ + δρσwσ and a scale param-
eter σ. The price in (23) is still preference dependent. This equation also has to
correctly price a primary asset that pays q dollar at time T with current price q0
(this primary asset need not really exist):

q0 = e−rT
∫
q · h(q; f1, μ + δρσwσ, σ )dq. (24)

If the preference-dependent term μ + δρσwσ in f1 can be explicitly written as
a function of q0erT, it can be replaced. For example, Appendices D and E set
specific forms of f1 as SU and four-parameter lognormal distributions to de-
rive the explicit results. Thus, we denote μ + δρσwσ by μQ and write down the
preference-free pricing equation as

P0 = e−rT
∫

PT(q)h(q; f1, μQ, σ )dq = e−rTEQ [PT(q)] , (25)

whereμQ has a functional form of q0erT and represents the new location-shifted
parameter under Q measure which is independent of the preference parameter.

APPENDIX C. PROOF OF THE APPROXIMATION METHOD

The loss ratios Lt have a bull spread payoff between 0 ≤ Lt ≤ 1, for t =1, 2, 3,
and the aggregated loss ratio

∑
Lt is bounded by 0 ≤ ∑

Lt ≤ 3. Assume that
the probability of sequential mortality catastrophes is small and the events for
an aggregate loss ratio larger than 1 are rare, then

Prob(0 ≤ ∑
Lt ≤ 3) � Prob(0 ≤ ∑

Lt ≤ 1) � 1.

That is, prob(1 <
∑
Lt ≤ 3) � 0, then

EQ [Max
(
1 −∑

Lt, 0
)] � EQ[1 −∑

Lt] = 1 − EQ[
∑
Lt].

Additionally, in most of our simulation results, 0 ≤ EQ
[∑

Lt
] ≤ 1 is held,

representing that

Max
(
1 − EQ [∑Lt

]
, 0
) � 1 − EQ [∑Lt

]
.

Therefore, EQ
[
Max

(
1 −∑

Lt, 0
)] � Max

(
1 − EQ

[∑
Lt
]
, 0
)
.
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APPENDIX D. THE CLOSED-FORM SOLUTION OF CALL OPTION
UNDER SU DISTRIBUTION

The underlying q has a SU-type transformed normal distribution,

sinh−1
(
q−α

β

)
= x ∼ N(μ, σ ) where β, σ > 0. Following the risk-neutral

valuation approach, the price of a call written on q with exercise price K is

C · erT = EQ [PT(q)] = EQ [q − K| q ≥ K ] .

Replacing q by α + β sinh x yields

C · erT = EQ
[
α + β sinh x− K| x ≥ sinh−1

(
K−α

β

)]

=
∫ ∞

sinh−1( K−α
β

)

(α + β sinh x− K) · f (x; μQ, σ
)
dx

= β

2

∫ ∞

sinh−1(
K−α

β
)

ex · f (x; μQ, σ
)
dx

− β

2

∫ ∞

sinh−1(
K−α

β
)

e−x · f (x; μQ, σ
)
dx

+ (α − K)

∫ ∞

sinh−1(
K−α

β
)

f
(
x; μQ, σ

)
dx.

Because x is the normal distribution and by the property of the normal distri-
bution, it follows that

C · erT = β

2 e
μQ+ 1

2 σ 2 · 


(− sinh−1
( K−α

β
) + μQ

σ
+ σ

)

− β

2 e
−μQ+ 1

2 σ 2 · 


(− sinh−1
( K−α

β
) + μQ

σ
− σ

)

+ (α − K) · 


(− sinh−1
( K−α

β
) + μQ

σ

)
.

Therefore, the option price is

C = β

2 e
−rT+μQ+ 1

2 σ 2 · 
 (d1) − β

2 e
−rT−μQ+ 1

2 σ 2 · 
 (d2) + (α − K)e−rT · 
 (d3) ,
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where

d1 = − sinh−1(
K−α

β
)+μQ

σ
+ σ

d2 = − sinh−1(
K−α

β
)+μQ

σ
− σ

d3 = − sinh−1(
K−α

β
)+μQ

σ
, and μQ = sinh−1

(
1
β
e− 1

2 σ 2
(q0erT − α)

)
.

This is (17). The risk-adjusted mean μQ is obtained by the equation correctly
pricing the basis asset that pays q dollars at t = T with current price q0:

q0 · erT =
∫ ∞

−∞
q · f (q; f1, μQ, σ

)
dq =

∫ ∞

−∞
(α + β sinh x) · f (x; μQ, σ

)
dx

= α + β

∫ ∞

−∞

(
1
2
ex − 1

2
e−x
)

· f (x; μQ, σ
)
dx

= α + βe
1
2 σ 2

(
1
2
eμQ − 1

2
e−μQ

)
= α + βe

1
2 σ 2

sinhμQ.

This basis asset does not need to be actually traded in the real world,
as it is just a mathematical substitution. Rearrangement leads to μQ =
sinh−1

(
1
β
e− 1

2 σ 2
(q0erT − α)

)
, which is independent of preference.

APPENDIX E. THE CLOSED-FORM SOLUTION OF CALL OPTION
UNDER THE FOUR-PARAMETER LOGNORMAL DISTRIBUTION

The underlying q has a four-parameter lognormal distribution, i.e., ln(
q−α

β
) = x

∼ N(μ, σ ) and (q − α) /β > 0, σ > 0.Following the risk-neutral valuation, (7),
the price of call option written on q with exercise price K is

C · erT = EQ [PT(q)] = EQ [q − K| q ≥ K ] .

Substituting q = α + βex into the above equation yields the result

C · erT = EQ [α + βex − K
∣∣α + βex ≥ K

]
=
∫ ∞

ln( K−α
β

)

(
α + βex − K

) · f (x; μQ, σ
)
dx

= β

∫ ∞

ln( K−α
β

)

ex · f (x; μQ, σ
)
dx+ (α − K)

∫ ∞

ln( K−α
β

)

f
(
x; μQ, σ

)
dx.
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Since x is normally distributed, and by the property of normal distribution, it
follows that

C·erT = βeμQ+ 1
2 σ 2 ·


(− ln( K−α
β

) + μQ

σ
+ σ

)
+(α−K)·


(− ln( K−α
β

) + μQ

σ

)
.

Thus, the option price is

C = βe−rT+μQ+ 1
2 σ 2 · 
 (d1) + (α − K)e−rT · 
 (d2) ,

where

d1 = − ln
( K−α

β

)
+μQ

σ
√
T

+ σ,

d2 = − ln
( K−α

β

)
+μQ

σ
and μQ = ln

(
1
β
(q0erT − α)

)
− 1

2
σ 2.

This is (19). μQ is obtained from the price of the basis asset that pays q dollars
at t = T with current price q0:

q0 · erT =
∫ ∞

−∞
q · f (q; f1, μQ, σ

)
dq =

∫ ∞

−∞

(
α + βex

) · f (x; μQ, σ
)
dx

= α + β

∫ ∞

−∞
ex · f (x; μQ, σ

)
dx = α + βeμQ+ 1

2 σ 2
.

Rearrangement leads to μQ = ln
(

1
β
(q0erT − α)

)
− 1

2σ
2, which is independent

of preference.

APPENDIX F. THE TRANSFORM NORMAL DISTRIBUTION
ESTIMATORS OF SLIFKER AND SHAPIRO (1980)

Choose a fixed value z > 0 and use its cumulative probability of a standard
normal distribution to determine the corresponding value in the raw data. For
example, choosing z = 1 and its cumulative probability is 0.8413. Then, find the
corresponding value q in the data with a cumulative probability 0.8413. Simi-
larly, find four points ±z and ±3z to determine the corresponding value in the
data. Denote the corresponding value q−3z, q−z, qz and q3z. Let

m = q3z − qz,

n = q−z − q−3z and

p = qz − q−z.

https://doi.org/10.1017/asb.2013.3 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.3


THE PRICING OFMORTALITY-LINKED CONTINGENT CLAIMS 121

If the data satisfy the criterion, mn/p2 > 1, the distribution can be estimated
using SU . The estimates for the four parameters are

α = xz + x−z
2

+ n −m
2(mp + n

p − 2)
, μ = sinh−1

⎡
⎢⎣ m

p − n
p

2
(
m
p
n
p − 1

)1/2
⎤
⎥⎦ ,

β =
2p
(
m
p
n
p − 1

)1/2
(
m
p + n

p − 2
) (

m
p + n

p + 2
)1/2 (β > 0), σ =

cosh−1
[
1
2

(
m
p + n

p

)]
2z

(σ > 0).

If the criterion mn/p2 approaches 1, the parameters can be estimated using the
four-parameter lognormal distribution:

α = xz + x−z
2

− p
2

m
p + 1
m
p − 1

, μ = sinh−1

⎡
⎢⎣ m

p − n
p

2
(
m
p
n
p − 1

)1/2
⎤
⎥⎦ ,

β =
2p
(
m
p
n
p − 1

)1/2
(
m
p + n

p − 2
) (

m
p + n

p + 2
)1/2 (β > 0), σ =

cosh−1
[
1
2

(
m
p + n

p

)]
2z

(σ > 0).

If mn/p2 < 1, the data cannot be estimated using the SU or the four-parameter
lognormal distribution.
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