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Abstract
This paper creates a multinomial framework for ideal point estimation (mIRT) using recent developments in

Bayesian statistics. The coremodel relies on a flexiblemultinomial specification that includesmost common

models in political science as “special cases.” I show that popular extensions (e.g., dynamic smoothing,

inclusion of covariates, and network models) can be easily incorporated whilst maintaining the ability to

estimate amodel using a Gibbs Sampler or exact EM algorithm. By showing that thesemodels can bewritten

and estimated using a shared framework, the paper aims to reduce the proliferation of bespoke ideal point

models aswell as extend theabilityof applied researchers toestimatemodelsquicklyusing theEMalgorithm.

I apply this framework to a thorny question in scaling survey responses—the treatment of nonresponse.

Focusing on the AmericanNational Election Study (ANES), I suggest that a simple but principled solution is to

treat questions as multinomial where nonresponse is a distinct (modeled) category. The exploratory results

suggest that certain questions tend to attract many more invalid answers and that many of these questions

(particularly when signaling out particular social groups for evaluation) are masking noncentrist (typically

conservative) beliefs.

Keywords: ideal point estimation, Markov chain Monte Carlo methods, Bayesian estimation,

data augmentation

1 Introduction

Ideal point estimation is critical to understanding many important political questions. From

topics as diverse as voting in legislatures or the US Supreme Court, campaign donations, survey

responses, and many others, these models have revolutionized political science and are crucial

to our understanding of complex phenomena where actors have latent preferences. Whilst many

ways to analyze this data exist, a common approach—item response theory (IRT)—specifies

a generative model for the observed outcomes and estimates the underlying parameters of

interest.1 Most existing IRT frameworks focus on generative models for binomial outcomes,

although recent work has provided extensions to ordinal data in a Bayesian framework (Martin,

Quinn, and Park 2011; Imai, Lo, and Olmsted 2016). Whilst important, these extensions miss a

key type of data in political science—multinomial or unordered categorical data. Typically, these

questions are not included in Bayesian IRTmodels or are treated as ordinal. It is possible to extend

existing frameworks to includemultinomial datamodeled via the classic form of themultinomial

logistic regression, however, this would likely require estimation techniques that scale poorly to

large datasets or further approximations to the underlying likelihood function.

This paper addresses these problems and pushes this literature forward by creating a

multinomial framework for ideal point estimation (mIRT). The framework has two elements;

Author’s note: I thank Kosuke Imai, Gary King, Michael Peress, Marc Ratkovic, Dustin Tingley, Christopher Warshaw,

Xiang Zhou and discussants at MPSA 2017 for helpful comments on earlier versions of this paper. All errors

remaining are my own. Code to implement the models in the paper, and the mIRT more generally, can be found at
http://dx.doi.org/10.7910/DVN/LD0ITE.

1 One could think of some approaches relying onmachine learning techniques (e.g., Lauderdale and Clark 2012) or optimal

classification (Poole 2000) as “nongenerative.”
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first, it relies on a different representation of multinomial data (“stick-breaking representation”;

Linderman, Johnson, and Adams 2015) that remains tractable whilst also containing binary and

ordinal data as “special cases.” Thus, this framework not only permits the analysis of purely

multinomial data but allows scaling of data that includes any combination of binary, ordinal,

and multinomial data. Second, I show that this model can be estimated exactly using a Gibbs

Sampler or an Expectation–Maximization (EM) algorithm without approximation using a special

form of data augmentation (Polson, Scott, and Windle 2013); using the EM algorithm will allow

the researcher to exactly recover the posterior mode of the parameters of interest—up to error

that comes from stopping the EM algorithm before “perfect” convergence is achieved. Thus, this

framework can be seen as an important extension of the path-breaking work of Imai, Lo, and

Olmsted (2016) for fast ideal point estimation to a more complex set of generative models whilst

also allowing exact inference. One contribution of this paper is therefore to bring the fast and

tractable estimation techniques to theexistingworkonmultinomial ideal pointmodels inpolitical

science (e.g., Groseclose and Milyo 2005; Lo 2013; Hill and Tausanovitch 2015) as well as a longer

tradition in the psychometric literature (e.g., Bock 1972).2

More broadly, this framework also is extremely flexible and can serve as the basis for specifying

more complicated models whilst maintaining the same simple inference procedure and not

requiring a move to approximate methods. For example, adding covariates to the generative

model (e.g., Bailey and Maltzman 2011), dynamic smoothing of ideal points (Martin and Quinn

2002), or modeling networks (e.g., Barberá 2015) can all be added whilst maintaining a model

that can be estimated via a Gibbs Sampler or an exact EM algorithm and thus only require fairly

simple modifications of the corresponding Gibbs updates or theM step in the EM algorithm.3 An

additional improvement of this framework over existing EM implementations is that it allows the

easy (and exact) fitting of multidimensional models for ordinal andmultinomial data that are not

present in existing frameworks, e.g., Imai, Lo, andOlmsted (2016). Identificationconcerns for these

multidimensionalmodels canbeaddressedby thewell-known techniques inRivers (2003) andare

discussed in detail in Appendix B.

The paper proceeds as follows; first, it outlines the data generating process that underlies

the mIRT. It then discusses particular features of the stick-breaking representation and argues
that it provides a different but flexible way of modeling multinomial data. Second, it shows

how Pólya-Gamma data augmentation leads to a simple and exact estimation procedure for

this model. For an application of this model, I suggest that nonresponse in survey data can be

meaningfully analyzed as a separate multinomial category. Focusing on the American National

Election Study (ANES), I focus on a scale of “moral values.” I show that rather than treating

nonresponse asmissing at random, it canbemodeledusing amultinomial framework. This allows

us to explore how social desirability (e.g., deliberately not responding to a question) interactswith

the underlying latent scale. The analysis is more exploratory but suggests that the bias toward

nonresponse is strongest for when questions focus on particular social groups (e.g., women,

Christians, and homosexuals) rather than on asking about the moral fabric of society as a whole.

The evidence suggests that while conservatives are more likely to exhibit this “shyness” when

responding (e.g., not responding versus giving morally conservative attitudes on women and

homosexuals), moral liberals exhibit a similar shyness when asked to evaluate certain aspects of

Christianity.

2 Other relevant work in political science on ordinal models that could be estimated in this framework are Treier and

Jackman (2008), Treier and Hillygus (2009), Bailey, Strezhnev, and Voeten (2017). A related, although distinct, model is

Rosas, Shomer, and Haptonstahl (2015); their model can be integrated into this framework by defining a three-valued

response based on whether an actor chooses to (a) follow their principal; (b) defy their principal by abstaining; (c) defy

their principal by voting against them.

3 The exception is that for the network model, only the EM estimation method is “simple.”
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2 Stick-Breaking Ideal Point Models

Ideal point models in political science address the following question: Given some observed set

of outcomes, e.g., votes, how can researchers recover both the underlying ideal points as well as

parameters that determine how these ideal points are translated into outcomes? I assume, for

simplicity, that there are no missing data (or these are coded into some distinct “category” of

response),4 and there are I individuals indexed by i who answer (vote) on J questions indexed by

j . Define yi j as the answer by person i on question j . The core binary case assumes the following

(where “yes” is 1 and “no” is 0), assuming a logistic link:5

Pr(yi j = 1) =
exp(ψij )

1 + exp(ψij )
; ψij = κj + βTj xi . (1)

Models may differ in how they specify ψij , but the most common approach posits a linear

formulation for ψij with the following parameters: xi is individual i ’s ideal point as an s × 1

vector, and βj are question-specific vectors of discrimination parameters. κj is a scalar intercept.

To generalize this multinomial or ordinal outcomes, I rely on a “stick-breaking” representation

(Linderman, Johnson, and Adams 2015) or a “continuation logit” representation (Mare 1980,

see Agresti (2002) for a more general discussion).6 This decomposes a choice between multiple

outcomes into a series of pairwise choices; the intuition is that a choice withmultiple options can

be considered sequentially. The individual i first decides whether to pick option “A” (“A” or “not

A”). If they choose “not A,” they then consider whether to pick “B” or “not B” conditional on not

picking A. The name “stick-breaking” comes from the fact that one can think of the probability

that an individual i assigns to the outcomes as constituting a “stick” with length one. The first

choice “breaks off” part of the stick and assigns that to the probability of choice A. The second

choice takes the remainder of the stick and breaks off another chunk that is assigned to choice

B. This procedure is repeated for all but one categories (as the final choice is determined given

all previous choices) to generate the probability distribution for i ’s choice over the outcomes for

bill or question j . It can be shown that the stick-breaking representation of amultinomial random

variable is equivalent to the “standard” formulation.7

To formally outline the generative model, assume there are Kj choices for question j and the

researcher imposed some ordering on them from k = 1, . . . ,Kj . DefineOk as the set of outcomes

that occur before k in the ordering. Thus, calling σk
i j
the probability of person i on question j

choosing k given that they have not “stopped” before k , it can be written as follows:

σk
i j = Pr(yi j = k �yi j � Ok ) =

Pr(yi j = k )

Pr(yi j � Ok )
=

Pr(yi j = k )

1 − Pr(yi j ∈ Ok )
. (2)

As noted above, this formalizes a “sequential” process: on question j , i first decideswhether to

choose k = 1. If they decide against choosing k = 1, then they decide whether to pick k = 2

given that they have not picked k = 1. Crucially for the estimation later, these binary choices

are independent. Whilst this may seem counterintuitive, consider the following stylized example.

4 See Appendix D for how the mIRT’s Bayesian procedure addresses “true” missing data by imputation.
5 A “principled” reason for this DGPcomes fromMcFadden (1974); if one assumes thatψi j is a latent utility of voting “yes” and

there is a stochastic shock of a logistic variable, this implies the formused above. This interpretation is not necessary to the

results, however, as a researcher could simply prefer the logistic link function for other a priori reasons. To avoid confusing

what the “missing” variable is in the EM framework, I do not refer to this latent utility interpretation in the remainder of

the article.

6 Sometimes this is referred to as a “stopping logit’ insofar as it ismodeling the probability of stopping at some level yi j = k ,

but sources are inconsistent on labeling. This formulation also looks similar to the “graded responsemodel” in the ordinal

IRT literature.

7 Note that this requires imposing some (arbitrary) orderingon thechoices; thispoint isnotdiscussed indetail byLinderman,

Johnson, and Adams (2015) but is an important feature of the stick-breaking representation. Thus, Appendix A discusses

the choiceof ordering indetail (andhow it doesnot affect thequantities of interest) providingbothanalytical andempirical

results.
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Respondent i on question j flips Kj − 1 independent coins with probability of heads equal to the
correspondingσk

i j
. They examine the coins and “reveal” their outcomeas described above; yi j = 1

if the first coin is “heads,” yi j = 2 if the first coin is “tails” and the second coin is “heads,” etc. An

important implication of this stopping rule is that for some outcome k , all coin flips for outcomes

of k + 1 or greater are irrelevant to whether k is revealed.

This independence between stick-breaking decisions is crucial to the tractability of the

stick-breaking representation and encodes the analogue to the independent of irrelevant

alternatives (IIA) assumption in this framework.8 Consider a three-level question about party

identification: “Do you think of yourself as a Democrat (D ), Republican (R ), or Independent

(I )?” The traditional multinomial representation would assign probabilities to each of the three

outcomes, say 〈0.6, 0.1, 0.3〉. The IIA assumption in this context can be written as follows:

Pr(D �Answer ∈ {D , R , I })
Pr(R �Answer ∈ {D , R , I }) =

Pr(D �Answer ∈ {D , R})
Pr(R �Answer ∈ {D , R}) .

It states that the ratio of the probability ofmy choosing “Democrat” to “Republican” is constant

even if the choice of “Independent” was removed. However, if the probability assigned to the

“Independent” might split “unevenly” to the other categories, this assumption could be thought

of as relatively restrictive. Numerically, it can be shown that Pr(D �Answer ∈ {D , R}) = 0.6/0.7 ≈
0.86.

Now consider the question in a stick-breaking frameworkwhere the order of the outcomeswas

{I ,D , R}. Respondents are thought to reason in the following way: First, “Do I think of myself

as an Independent?” (Yes or No). This would have a probability of 0.3 of the respondent saying

“yes.” Then, “given that I can only pick fromD or R , which would I choose?” The key assumption

in the stick-breaking representation is that the answer to the second question does not depend

on whether one said I or not I to the first question. The implied probability is Pr(D �Answer ∈
{D , R}) = 0.6/0.7 = 0.86—exactly as in the traditional formulation of the multinomial choice

question!9 Thus, whilst the way one formulates the IIA assumption may appear different in the

stick-breaking representation, it encodes a very similar assumption to theoneplaced in the classic

formulation ofmultinomial choices. The equivalence between IIA in both frameworks comes from

the fact that anymultinomial distribution canbe factorizedby rearranging thedensity into a series

of binary stick-breaking choices for any arbitrary ordering of the choice categories.

Thus, any difference between the two frameworks comes in how one models the probability

of each outcome (in the classic multinomial case) or the stick-breaks. Both frameworks

traditionally rely on a linear link that encodes different functional form assumptions, although

neither is inherently better or worse; they are merely different models. A clear analogue here

comes when modeling ordinal data in a regression context. There are at least three different

ways of parameterizing ordinal choices. Whilst the most classic formulation is a cumulative

logistic regression, other options exist. For example, researchers could choose a stick-breaking

representation similar to the one above (continuation logit) or an adjacent-category regression

where they attempt to model whether some observation yi j is equal to category k or category

k + 1 (Agresti 2002). The use of a linear systematic component leads to coefficients that have

different interpretations, although the hope is that this functional form is sufficiently flexible to

8 Given that multinomial probit models are at best “fragile” in terms of identification even given fully observed data (Keane

1992), my sense is that they would prove to be too unstable and intractable for ideal point models. Further, estimating the

variance–covariancematrix of the error structure is complicated in amultinomial probit frameworkwithmany categories.

As I discuss later, a possible solution to both the IIA assumption and the ordering requirement of the stick-breaking

formulation could be introducing an error term that is correlated across outcomes as in the “mixed logistic regression”

formulation (Train 1998; McFadden and Train 2000).

9 Imagine I chose a different ordering, say, {D , R , I }. The first question would have a probability of 0.6 of saying D . The
second stick-break Pr(R �Answer ∈ {R , I }) is equal to 0.1/0.4 = 0.25. The IIA assumption in the traditional multinomial
model implies that the ratio of the choices withD eliminated should be 0.1/0.3. The reduced probability is thus also 0.25.
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lead to similar predicted probabilities for different covariate profiles. Appendix A justifies the use

of a stick-breaking specification instead of a classic multinomial (or “softmax”) specification in

extensive detail to make the case that the two-parameter IRT specification is sufficiently flexible

tomake the order of the categories unimportant for the key quantities of interest (the ideal points

and thepredictedprobabilities).10 These results are not definitive, and thus researchers should try

multiple orderings to ensure that the correlations are high, but in every scenario attempted in this

paper, the results are highly invariant to permutations of the ordering—even using permutations

that are deliberately “bad” (correlations above 0.99).

I adopt the stick-breaking parameterization following an intuition by Linderman, Johnson,

and Adams (2015); they note that some complex Bayesian models, e.g., correlated topic models,

can be made easily tractable by using this representation of multinomial data as it reduces to a

series of binary choices, rather than having to work with the complicated softmax formulation

associated with the traditional multinomial logistic parameterization. I use their intuition and

derive results for a different class of model: the two-parameter IRT models. This is the workhorse

ideal point model in political science and states that the ideal point xi is linearly combined with a

question-and-level specific “discrimination” parameter βk
j
as well as an intercept κk

j
to generated

predicted probabilities. The stick-breaking formulation is shown in Equation (3).

σk
i j = Pr(yi j = k �yi j � Ok ) =

exp(ψk
i j
)

1 + exp(ψk
i j
)
; ψk

i j = κkj + [βk
j ]

T xi . (3)

From this parameterization, the outcome probabilities of some choice k for respondent i on

question j (pk
i j
) can be backed out from the stick-breaks leading to the following identities:

�k ∈ {1, . . . ,Kj − 1}, pki j = Pr(yi j = k ) ≡ σk
i j

k−1∏
n=1

1 − σn
i j (4)

p
Kj

i j
= Pr(yi j = Kj ) ≡

Kj−1∏
n=1

1 − σn
i j . (5)

Note that for k = 1, the stick-breaking probability is the “raw” probability of choosing category

one, i.e., σ1
i j
= p1

i j
. When choosing an ordering, a key point to keep in mind is that the predicted

probabilities from first category given this formulation ofψn
i j
will be monotonically increasing or

decreasing as the ideal point xi changes. Phrased differently, the baseline category should be

chosen such that our subject-specific knowledge suggests that the probability of choosing the

baseline outcome increases smoothly from zero to one (or one to zero if it is decreasing) as the

ideal point xi moves across the real line.
11 This requires the use of a researcher’s substantive

knowledge about what roughly they think the underlying latent dimensionwill map onto. Inmost

10 Tosummarize that section, it shows that the stick-breaking formulation canbe interpretedasa first-order approximation to

the classicmultinomial formulation. It then tests this via simulations by trying a variety of (random)orderingswhich shows

that the ideal points recovered are extremely similar (no correlation below 0.925 with the “truth” across all simulations)

across all orderings. Finally, it reanalyzes the ANES data outlined below under different orderings and shows that the ideal

points recovered are again virtually unchanged (correlations above 0.98) as well as correlating nearly perfectly with ideal

points estimated via finding the posterior mode via gradient descent of a “classic” multinomial formulation (correlation

of 0.989). It also discusses possible extensions of this to allow for a more flexible implied distribution whilst maintaining

most of the tractability of the two-parameter formulation dealt with in the main body of the paper.

11 Other categories can have nonmonotonic effects of the ideal point, i.e., have predicted probabilities that have a local

maximum at some finite value of the ideal point versus increasing/decreasing without bound as xi goes to infinity.

Note, further, the existence of twomonotonic categories is not a particular feature or fault of the mIRT: This is required
in all standard ideal pointmodels insofar as an arbitrarily extreme ideal point in either directionmust be assigned to some

category with probability one. Thus, a way in which the mIRT’s stick-breaking representation differs from the traditional

multinomial representation is that one must specify one monotonic category.
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survey settings, a plausible choice is to put an extreme outcome as the baseline category as that is

mostplausiblyone thathasamonotonic relationshipwith the idealpoint. If there isno substantive

guide, however, Appendix A shows that the estimated ideal points are likely robust to incorrectly

specifying the first category and discusses how to use various model selection techniques to

choose between orderings.

If the data are truly ordinal, this order should be used for each question.12 This framework thus

allows for different numbers of categories across questions, e.g., in a survey with 5-point and 7-

point scales. This is an improvement above existing implementations, e.g., Imai, Lo, and Olmsted

(2016), that require variational approximations and collapsing scales down to three categories to

analyze ordinal data.

From the above notation and recalling that there are I individuals answering J questions, the

full likelihood function can be written compactly as shown below using the definition of Pr(yi j =

k ) in terms of the stick-breaks shown in the previous equations. To introduce some additional

notation to make the subsequent results tidier, define y ′
i j
as the minimum of the observed yi j or

the highest modeled category Kj − 1; this is used to denote that if yi j = Kj , it is not modeled as it

is defined implicitly by the constraint that the probabilities of all choices sum to one.

L(κn
j , β

n
j , xi ) ∝

I∏
i=1

J∏
j=1

y ′
i j∏

n=1

exp(ψn
i j
)I (yi j=n)

1 + exp(ψn
i j
)

(6)

ψn
i j = κnj + [βn

j ]
T xi ; y ′i j = min(yi j ,Kj − 1).

3 Estimation

Estimation in this framework can be done using Markov Chain Monte Carlo (MCMC)methods via a

Gibbs Sampler or an Expectation–Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977).

I focus on the later as it is much faster (Imai, Lo, and Olmsted 2016), although the requisite MCMC

updates are stated implicitly in the M -steps.13 The crux of either estimation method relies on

transforming the logistic link to become tractable by relying on a recent innovation in Bayesian

statistics.14 The key identity comes from Polson, Scott, and Windle (2013) who in turn drew on a

detailed analysis by Biane, Pitman, and Yor (2001). They define a Pólya-Gamma random variable

ω ∼ PG (b, c) (b > 0; c > 0) as an infinite sum of independent gamma random variables, scaled in

a particular fashion (Polson, Scott, and Windle 2013, p. 1341):

ω =
1

2π2

∞∑
n=1

Zn

(n − 1/2)2 + c2/(4π2)
; Zn ∼i .i .d . Gamma(b, 1). (7)

12 It is possible, although not recommended, to specify an “ordinal” model by constraining βk
j
to be equal for each j , i.e.,

βj = βk
j
, �k . This, however, enforces a very particularmodel for little gain. The analogy here is that it is always permissible

to run a multinomial logistic regression on ordered data instead of an ordinal logit (probit). Indeed, this has benefits in

terms of relaxing the assumptions of ordered regression models (e.g., proportional odds) even if the underlying data are

ordered. The cost is (a) uninterpretable coefficients and (b) a proliferation of parameters. However, as (a) the dominant

trend in political science is to show quantities such as predicted probabilities and not look at the coefficients and (b) the

effect of the prior stabilizes the coefficients from “exploding,” these costs seem limited for ideal point estimation. Thus,

I would suggest allowing βk
j
to vary across outcomes even if the data are ordered as this allows more flexibility and thus

decreases sensitivity to the choice of ordering.

13 For the EM framework, if standard errors are desired, Imai, Lo, and Olmsted (2016) suggest using the parametric bootstrap

(Lewis and Poole 2004; Carroll et al. 2009; Imai, Lo, and Olmsted 2016). Alternatively, as I do below, one can use the

EM estimates of the posterior mode as starting values for a Gibbs Sampler that can be run for a short period of time

as convergence is obtained rapidly as the sampler is starting from a place of high posterior density. To decide when

to terminate the EM algorithm, I use a similar stopping rule to that in Imai, Lo, and Olmsted (2016), i.e., stop when the

correlation between iterations of the parameters is sufficiently high.

14 Existing research has applied this tool to a number of tasks, e.g., a standard logistic regression (Scott and Sun 2013), topic

models (Linderman, Johnson, and Adams 2015); however, I am the first to apply it to ideal point estimation.
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The b parameter governs the type of Gamma variable being summed together and the c

parameter is seen as an “exponential tilt.”15 This carefully constructed variable leads to a powerful

identity; returning to the notation above, Polson, Scott, and Windle (2013) demonstrate that for

anyψij ∈ �, and whereωi j ∼ PG (1, 0):

exp(ψij )
yi j

1 + exp(ψij )
=

1

2
exp([yi j − 1/2]ψij )

∫ ∞

0
exp(−ωi jψ

2
i j /2)f (ωi j ) dωi j ; ωi j ∼ PG (1, 0). (8)

The power of this augmentation means that if one augments each stick-breaking choice with

PG (1, 0) random variables, then the complete data log-likelihood becomes quadratic in the

ψn
i j
.16 More broadly, this data augmentation makes models with logistic links as tractable as

traditional probit models. Consider some observed choice yi j , the complete data likelihood for

this observation after augmenting the Pólya-Gamma random variables is as follows:

f (yi j , {ω
n
i j }�κ

n
j , β

n
j , xi ) ∝ exp

���
�

y ′
i j∑

n=1

sni j ψ
n
i j −

ωn
i j

2
(ψn

i j )
2���
�

y ′
i j∏

n=1

f (ωn
i j �1, 0) (9)

y ′i j = min(yi j ,Kj − 1); sni j = I (yi j = n) − 1/2.

This data augmentation allows us to use an exact EM algorithm to find either the maximum-

likelihood estimate of the parameters of interest θ = (κn
j
, βn

j , xi ) from this data generating process

or, more commonly in ideal point estimation, estimates of the posterior mode (maximum a

posteriori estimates) of θ when priors are included. I follow with the later tradition and add

independentnormalpriorson κn
j
,βn

j
,xi ,withmeanzeroandvariancesΣβ ,Σx ,Σκ . Iwill sometimes

denote the prior distribution by p(xi , βn
j , κ

n
j
) for simplicity.17 The EM algorithm provides a way of

finding θ given that the stick-breaking generative process can be augmented with the relevant

Pólya-Gamma variables as noted above. One can write the maximization question as follows,

where ω denotes the collection of (independent) augmented Pólya-Gamma variables that are

being integrating over:

max
θ
log

∫
ω

I∏
i=1

J∏
j=1

exp
���
�

y ′
i j∑

n=1

sni j ψ
n
i j −

ωn
i j

2
(ψn

i j )
2���
�

y ′
i j∏

n=1

f (ωn
i j �1, 0) · p(xi , βn

j , κ
n
j ) dω. (10)

15 This variable’s density function can be expressed as an infinite sum as follows, as outlined in Polson, Scott, and Windle

(2013):

f (ω�b, c) = coshb (c/2)
2b−1
Γ (b)

∞∑
n=0

(−1)n Γ (n + b)(2n + b)

Γ (n + 1)
√
2πω3

exp

(−(2n + b)2

8ω
− c2/2ω

)
.

Biane, Pitman, and Yor (2001) and Polson, Scott, and Windle (2013) provide further details. Whilst this is difficult to work

with, the cited authors note that (fortunately!) the first moment has a tractable closed form:

�[ω] =
b

2c
tanh(c/2).

They also note it is possible to efficiently sample Pólya-Gamma randomvariables inways that avoid a naive approachof

truncating the infinite convolution. Polson, Scott, andWindle (2013) provide a detailed discussion of how to sample these

random variables.

16 This means in a fully Bayesian framework that the posterior conditional distributions for the κj , βj , xi are normal.
17 This interpretation follows that in Imai, Lo, and Olmsted (2016), i.e., using EM to maximize the joint posterior density with

respect to θ. The augmented ωn
i j
Pólya-Gamma random variables are thus “nuisance” latent variables that are averaged

out in the E -step. Their inclusion is essential tomake the posterior tractable by “removing” the logistic link. The priors are

used to ensure stability of the estimates with limited data as well as resolving identification concerns; they could also be

thought of as adding some regularization to the model.
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Defining θ (t ) as the vector of parameters obtained at some iteration t of the EM algorithm, the

Q function is defined as the expectation of the log of the integrand with respect to p(ω�y, θ (t−1)):

Q (θ, θ (t−1)) ∝
I∑
i=1

J∑
j=1

y ′
i j∑

n=1

sni j ψ
n
i j − (ωn

i j )
∗(ψn

i j )
2/2

−
I∑
i=1

xT
i
Σ−1x xi

2
−

J∑
j=1

Kj−1∑
n=1

(βn
j
)T Σ−1

β
(βn

j
)

2
−

J∑
j=1

Kj−1∑
n=1

(κn
j
)2

2Σκ
(11)

(ωn
i j )
∗ = �[ωn

i j �yi j , θ
(t−1)]; ψn

i j = κnj + βn
j xi .

As Dempster, Laird, and Rubin (1977) show, if one iteratively updates the Q function using an

E (Expectation) andM (Maximization) step, this procedure obtains an estimate of θ. The E -step

takes the conditional expectation of each ωn
i j
given the previous values of the parameters θ (t−1),

denote this by (ωn
i j
)∗. Using further results in Polson, Scott, andWindle (2013), it can be shown that

each ωn
i j
conditional on the current updates of the parameters is PG (1,ψn

i j
). Thus, its expectation

is defined below:

(ωn
i j )
∗ = �[ωn

i j �yi j , θ
(t−1)] =

1

2[ψn
i j
](t−1)

tanh([ψn
i j ]
(t−1)/2); [ψn

i j ]
(t−1) = (κni j )

(t−1) + (βn
j )
(t−1)x (t−1)

i
.

TheM -step finds the next update forθ, i.e.,θ (t ), bymaximizing theQ functionwith respect toθ

given θ (t−1) via the results from the associated E -step: θ (t ) = maxθ Q (θ, θ
(t−1)). This is most easily

done using a conditional EM algorithm (Meng and Rubin 1993), e.g., maximizingQ with respect to

one block of parameters whilst holding the others constant. Once the first block of parameters is

updated, those new values are plugged into theQ function and then the next block of parameters

is updated. Thus, when applying theM -steps below, the relevant components of θ (t−1) would be
replaced with the θ (t ) updates found in the previous conditional M -step. The M -steps can be

derived simply given the quadratic nature of the Q function. For completeness, I write out the

multinomialM -steps for a multidimensional model assuming the order of iteration is the xi , the

βn
j
and then the κn

j
.

x
(t )
i

=
���
�
Σ−1x +

J∑
j=1

y ′
i j∑

n=1

(ωn
i j )
∗[(βn

j )
(t−1)]T (βn

j )
(t−1)���

�

−1

× ���
�
Σ−1x μx +

J∑
j=1

y ′
i j∑

n=1

sni j (β
n
j )
(t−1) − (ωn

i j )
∗(κnj )

(t−1)(βn
j )
(t−1)���

�
(12)

(βn
j )
(t ) = �

�
Σ−1β +

I∑
i=1

(ωn
i j )
∗[x (t )

i
]T x (t )

i
�
�

−1
�
�
Σ−1β μβ +

I∑
i=1

sni j x
(t )
i
− (ωn

i j )
∗(κnj )

(t−1)x (t )
i
�
�

(13)

(κnj )
(t ) = �

�
Σ−1κ +

I∑
i=1

(ωn
i j )
∗�
�

−1
�
�
Σ−1κ μκ +

I∑
i=1

sni j − (ωn
i j )
∗[(βn

j )
(t )]T x (t )

i
�
�
. (14)

Thus, by cycling through the E -step, and the conditionalM steps, one can rapidly and exactly

estimatemultinomialmodels with a logistic link using the Pólya-Gammadata augmentation. This

demonstrates that for a wide class of model that are specified with someψn
i j
, the mIRTwill admit
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a simple E -step and thus as long as theM -step is tractable, the models can be estimated using a

fast EM algorithm instead of time-consuming MCMCmethods.

When choosing priors for this model, I follow convention and place independent standard

normal priors on each xi and independent normal N (0, 25) priors on β
n
j
. For the priors on the cut

points,mydefault choice of prior is basedon the observed stick-breaking frequencies; for each κn
j
,

I calculate what the implied empirical stick-breaking probability is for the category and use that

as the mean for a diffuse normal prior, i.e., with variance 25.18

4 Extensions of the General Model

Beyond the model shown above, the mIRT is extremely flexible in that one can include many
different formulations for the ψn

i j
(the latent utility of a choice) whilst maintaining the ability

to estimate the model exactly using the fast EM algorithm shown above. Indeed, as long as

ψn
i j
remains some function of parameters and observed data, the mIRT’s E -step will remain

unchanged although its M -step must differ to address the particular functional form imposed.

A different extension of the mIRT involves changing the priors on the parameters to capture
other generative processes. Themost commonextension—dynamic smoothing (Martin andQuinn

2002)—can be done with ease. This section briefly sketches how three extensions (covariates,

network effects, dynamic smoothing) can be easily implemented in this model.

4.1 Covariates
Some authors, e.g., Bailey and Maltzman (2011), suggest that adding observed covariates to ideal

pointsmay improve inferences as well as allow us to understand other salient features of the data

generating process. Define somevector of covariates zi j observed for an individual i onquestion j .

A simple way to add this to the generative process would be to defineψn
i j
as follows:

ψn
i j = κnj + βn

j xi + τnj zi j .

Since zi j is observed, this adds a set of τ
n
j
coefficients to be estimated in the M -step. These

updates will have a similar form to that of βn
j
and do not change the underlying procedure for the

E andM steps in any materially difficult fashion.

4.2 Network models
A new frontier in ideal point models recognizes that network effects may govern behavior (e.g.,

Barberá2015); themost classic example involves seeingabinary yi j aseither a “link”or “no link.” A

multinomial interpretationmight be for “strong friend,” “friend,” or “not friend.” This relationship

can bemodeled simply in the mIRTby again changing the definition ofψn
i j
. Following Imai, Lo, and

Olmsted (2016)’s presentation in one dimension for simplicity, one could define a ψn
i j
to capture

this effect as

ψn
i j = αi + βj − (xi − xj )2.

This model can again be estimated with a nearly identical E -step. The M -step is more

complicated but can be done exactly by solving the implied cubic equation in the first-order

condition for the xi ideal points.
19

18 This allows me to roughly anchor the categories correctly whilst also imposing too strong prior information. This is also

the prior that corresponds to amodel where all βn
j
are zerowhich is consistent with the prior imposed on the βn

j
. A prior of

N (0, 25) implies something quite particular, as one would expect categories with fewer observations to have a smaller cut
point, though in practice using this prior tends to give fairly similar results. Asmost estimated cut points in the applications

here are no smaller than around -6 or -7, a variance of 25 giveswide enough coverage to not be especially informative even

if it is centered around zero. As the number of categories increases and categories become more sparsely populated, the

data-focused prior on κn
j
is more useful in stabilizing the model.

19 Alternatively, one could rely on an approximation like that used in Imai, Lo, and Olmsted (2016).
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4.3 Dynamic smoothing
A common extension of ideal point models links periods with the same respondents by using a

“dynamic idealpoint” framework (MartinandQuinn2002). Thismodel inducespersistence in ideal

points in apersonover timeby specifyingaprior thatdependson the ideal point of the respondent

in thepreviousperiod; specifically, that theprior of the ideal point of x
(g )

i
where i now indexes time

and g indexes individuals (e.g., John Kerry g in the 107th Congress i ):

N (x
(g )

i−1,Δ).

The intuitive interpretation of this specification is that our prior for aMP’s ideal point at time i is

their prior ideal point at time i−1plusnoise.Δ, fixedby the researcher inMartin andQuinn (2002)’s
approach, defines the variance of the “noise” and as it tends to infinity, this becomes equivalent to

estimating different ideal points in eachperiodwhilstΔ tending to zero implies a single ideal point

for each MP across all periods. This allows for a “smoothing” of ideal points across time whilst

sometimes allowing discontinuous change. This extension is computationally simple to include

in the unified IRT framework for any of the above data types as it simply involves changing the

prior and thus will not affect the E -step. TheM -step is derived in Appendix C.

5 Validation of the Model

To show that the mIRTmodel generates plausible results given its stick-breaking representation,
this section performs two series of tests. First, I run simulations to show the mIRT successfully
recovers the underlying ideal points, although I note some important caveats about categories

with fewobservations. Next, I show that on four canonical datasets, the mIRT recovers ideal points
that are highly correlatedwith those from themajor alternative EM estimation framework—emIRT
(Imai, Lo, and Olmsted 2016)—as well as results fromMCMC estimation procedures.20

5.1 Simulated data
As no existing framework for ideal point estimation has implemented multinomial outcomes

using a stick-breaking representation in conjunction with an EM algorithm, I examine how my

method fares using simulated data. I generate simulated data with 2000 individuals and 100

questions using the data generating process described above. Each question j has some number

of outcomes Kj drawn randomly from the set {2, . . . ,M }whereM ∈ {3, 5, 10, 15, 20}.21 The mIRT
method converges quickly and Figure 1 compares the estimates with the truth. It shows that the

ideal points are strongly correlated with the truth across allM .

However, when analyzing multinomial data, there is an important further caveat that

researchers should examine; if certain categories contain few observations, the question

parametersmay be imprecisely estimated and/or the datawill not dominate the prior. To examine

this, I plot the correlation of βn
j
with the true values. Figure 2 again shows the correlations are

high, though it decreases asM increases.

I examine this further in Table 1; I split the βn
j
into three groups based on how many votes are

recorded in the corresponding category, i.e., for howmany i does yi j = n . I look at the correlation

of theβn
j
with the truevalues in the lowerquartile, themiddle twoquartiles, and theupperquartile

of observations. Thiswill tell uswhether in categorieswith fairly fewobservations, there is a cause

for concern about whether the βn
j
are accurately recovered.

20 Replication data (Goplerud 2018) can be found at http://dx.doi.org/10.7910/DVN/LD0ITE.

21 Formultinomialdata, the “true”βj are simulated in the following form; first, generate someprobabilitydistributionand the

associated stick-breaking probabilities b over the outcomes by runningKj i.i.d. draws from a uniformdistribution through

a softmax function. Then generate some other probability distribution s through the same procedure. Use b to define the

κj , i.e., the probabilities if xi = 0, and then s − b to define the βj .
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Figure 1. Simulatedmultinomial data: ideal points.Note: Each panel indicates theM , i.e., that each question

j is sampled from Kj ∈ {2, . . . ,M }. The correlation between the estimates and the truth is shown on each
plot.

There is a decline in the correlation in the lowest quartile which makes sense given that there

are fewer than 40 observations (out of 2000 for each question) in the lower quartile of responses

categories when M = 20. Yet, despite the weaker correlations for the βn
j
in that category, it

is reassuring that this does not contaminate the estimates of the ideal points when pooling

across all questions. The key point of this analysis is that researchers should be cautious about

including categorieswith very few responses and, if possible, attempt to collapse those categories

to estimate the βn
j
more precisely. Further, if one wishes to make claims based on the question

parameters (e.g., generate predicted probabilities of choosing categories across options), using

Table 1. Correlation of multinomial question parameters.

Correlation by Quartiles Observations by Quartile

M 1st 2nd–3rd 4th 1st 4th

3 0.986 0.995 0.99 440.5 981

5 0.967 0.99 0.994 198 516

10 0.916 0.977 0.994 90 242.75

12 0.926 0.972 0.99 73 203

15 0.907 0.963 0.986 57 159

20 0.818 0.953 0.984 40 121.25
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Figure 2. Simulated multinomial data: discrimination parameters. Note: Each panel indicates the M , i.e.,

that each question j is sampled from Kj ∈ {2, . . . ,M }. The correlation between the estimates and the truth
is shown on each plot.

the parametric bootstrap or draws from the posterior is advisable insofar as this will capture the

uncertainty of those less-used categories.

5.2 Empirical data
Steppingback into the simple caseof binarydata, I briefly show that themIRT recovers very similar
results to existing models on canonical datasets. This is to be expected for binary data insofar

as the only difference is the use of a logistic versus probit link function, although this confirms

that the EM algorithm using the Pólya-Gamma augmentation “works” to return similar results.

Figure 3 shows the results from four canonical datasets. I show results from the mIRT, the emIRT
that uses variational approximations and an EM algorithm (Imai, Lo, and Olmsted 2016), as well

as the non-EM based canonical method (NOMINATE in the case of Congress and MCMC methods

for the other examples). The correlation coefficient is printed in the upper left corner of each

plot. First, using a binary model on the 82nd Congress, I compare the mIRT against the emIRT
implementation and NOMINATE (Poole and Rosenthal 1997). Next, I run a dynamic binary model

US Supreme Court from 1946 and again report the mIRT’s results alongside the emIRT and MCMC
results from Martin and Quinn (2002).22 Third, I examine a dynamic ordinal (multinomial in the

mIRT) for analyzing votes in the United Nations compared against the MCMC estimation in Bailey,
Strezhnev, and Voeten (2017). Finally, I run a multinomial model on the (large) Ashai Todai voter

22 Please see Appendix C for a discussion of how this model is estimated and about the fragility of the bridging assumptions.
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Figure 3. Empirical tests of the mIRT. Note: emIRT represents the implementation of the model in Imai, Lo,
and Olmsted (2016). The baseline results are NOMINATE in (a) and MCMC procedures for the Supreme Court

(Martin andQuinn 2002), theUnitedNations (Bailey, Strezhnev, and Voeten 2017), and the Ashai Todai survey

(Imai, Lo, and Olmsted (2016)’s hand coded MCMC estimation).

survey used in Imai, Lo, and Olmsted (2016) and show results against both emIRT results and an
MCMC estimation reported in the same paper.23

ThemIRT returnshighly correlated resultswithother estimationmethods in all cases. The slight
differences that appear are perhaps due to a conjunction of various factors: (i) the difference in tail

behavior between logistic and probit links; (ii) the use of amultinomial framework for the UN and

Ashai Todai data; (iii) the variational approximations used in Imai, Lo, and Olmsted (2016); (iv) the

23 I am unable to compare the Ashai Todai estimates via MCMC with five categories against the mIRT results using the
uncollapseddata as thiswasnot provided in theemIRTpackagedocumentationas theirmodel only runswith three-valued
categories.

These datasets contain missing data, i.e., individuals who do not provide a response to a particular question j . This

missing data is assumed to occur at random, and the dominant approach is to impute their values, i.e., treat them as

unobserved parameters that are included in the E -step of the algorithm. Appendix D outlines the updated E -step in the

presence of missing outcomes yi j . This problem is particularly prominent in the Ashai Todai survey.
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stick-breaking functional form of the mIRT; (v) the fact that MCMC methods typically report the
posterior mean whereas the EM approaches target the posterior mode.

6 Multinomial Data in Survey Responses: Dealing with Nonresponse

Turning from the legislative domain to that of survey responses, most social science surveys

ask questions with binary, ordinal, or multinomial choices. Existing scaling methods can easily

accommodate binary data; for ordinal data, themost common practice is to treat it as continuous

(either implicitly or explicitly), perhaps after applying some transformation. However, existing

methods almost never includemultinomial outcomeswhen constructing the latent scale as there

is simply not a way to credibly pretend they are continuous. Besides leaving out questions that

could help us more precisely estimate the underlying latent scale, it also means that researchers

are unable to see how these questions load onto the underlying latent dimension.

More worryingly, one could also think of binary and ordinal survey questions as, in fact,

always being inherently multinomial because of nonresponse. The fact that respondents can

deliberately chose to not respond to a question (or are sometimes even prompted to “skip” if

they “don’t know”) means that they are introducing a category of “nonresponse” that cannot be

easily compared to the other outcomes. Traditionalmethods assume that these nonresponses are

missing at random and thus are either dropped from the estimation or, more commonly, imputed

using some procedure. Yet, as existing research that directly analyzes nonresponse shows, these

individuals are systematically different on observable characteristics (Berinsky 1999, 2002) and

thus the missing at random imputation assumptions may not be credible.

Thus, a more principled solution to nonresponse is to treat them as a valid category that is

scaled alongside the “intended” responses as part of the generative model. The mIRT provides
exactly the framework todoso; I beginbyapplying it toa scaleof “moral values” formedbypooling

together approximately 25 questions from the 2008 ANES.24 The questions used in the scale are

highly typical of survey response items; most are typically viewed as “ordinal” questions where

respondents are asked to pick from a moderate number of choices (four to seven) in response to

somequestion.25 Whilst someare classically “ordinal,” others aremore complicated; they provide

a series of options that the survey designers believed were ordinal but are more qualitative. For

example, consider the question of abortion. It asks respondents to pick from one of the four

choices:26

1. By law, abortion should never be permitted.

2. The law should permit abortion ONLY in case of rape, incest or when the woman’s life is in

danger.

3. The law should permit abortion for reasons OTHER THAN rape, incest or danger to the

woman’s life, but only after the need for the abortion has been clearly established.

4. By law, awoman should alwaysbe able to obtain anabortion as amatter of personal choice.

Other available responses are an “other” (volunteered by the respondent) as well as a classic

“don’t know” response. Even though the four provided options seem to be ordered in roughly

24 The questions are discrimination against homosexuals in the workplace (V083211x), in the army (V083212x), homosexual

adoption (V083213), same-sex marriage (V083214), importance of religion (V083181), how often does the respondent

pray (V083183), views on the bible (V083184), attend religious service (V083186), a battery of feeling thermometers

(V085064[b,d,u], V085065[h,g]), questions on modern sexism (V085136-V085138; V085155, V08156), moral traditionalism

(V085139-V085142), the traditional question about views on abortion (V085086, V085087) asked to half the respondents

and a different battery asked to the other half (V085092x-V085098x).

25 Some questions are “thermometers” where individuals rank groups on a scale of 0–100. Inspection of these questions

reveals severe “heaping,” i.e., answering values that are multiples of ten, and thus I round these questions to the 10s to

reflect this; treating them as continuous seems to imply toomuch information from the responses that whilst superficially

continuous are better thought of as many-valued ordinal in their usage.

26 The 2008ANES split the sample andaskedhalf of the respondents thequestionusing this phrasing and theother half using

a phrasing that askedmultiple questions as to how they viewed each type of exemption.
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increasing restrictiveness, it is perhaps not something that researchers would be perfectly happy

to assume was true a priori. More importantly, even if the data are ordinal, the typical approach

for modeling ordinal data places strong assumptions on the nature of responses—that they are

“parallel regressions” leading to the famous “proportional odds” implication with a logistic link

discussed above. Treating the abortion question as multinomial allows us to have amore flexible

structure to let the data reveal itself and then researchers can examine the quantities of interest

ex post to see whether the recovered parameters do suggest an ordinal structure.

Second, note that the abortion question provides a “don’t know” option;many other questions

in this scale provide a similar option or even have a response category of “haven’t thought

much about it.” Indeed, some questions use a “full filter” and allow the respondent to “skip”

the question if they claim to lack knowledge about the issue. The feeling thermometers present

this option most clearly by providing a “I have not heard of this group” response. In general,

nonrespondents are likely to be different than those who do respond (Berinsky 1999, 2002), and

thus one might also conjecture that they hold different ideological positions on the underlying

moral values scale. Thus, by not modeling their “don’t know” or nonresponse more broadly

defined, researchers both lose information to help efficiently estimate the positions of these

individuals and risk creating scales that are biased for certain respondents, i.e., more extreme

individuals might appear more moderate because they skipped questions for which their true

beliefs were more extreme.

Given these concerns and the substantively interesting question of whether nonresponse has

an ideological slant on certain questions, I estimated a multinomial model where all questions

are treated as multinomial and questions with nontrivial levels of nonresponse (i.e., more than

1%) are modeled as a separate discrete category.

6.1 Different scalings of moral values
To begin, it is worth comparing the raw estimated ideal points from two models; first, a

factor analysis model similar to that in Ansolabehere, Rodden, and Snyder (2008);27 second, a

multinomial model that treats nonresponse as a separate category for analysis. Figure 4 plots

the results, with points that provided a nonresponse to at least one question colored using filled

circles. The results are quite similar which makes sense given that most questions see fairly low

levels of nonresponse, and there are sufficientlymany questions to construct reliable scales using

any of the standard approaches.

6.2 Question—specific analysis of nonresponse
Besides recovering ideal points based on a variety of more complex questions, I transformed

the estimated parameters (βn
j
, κn

j
) get predicted probabilities of answering Pr(yi j = k ) for

each question under consideration and therefore see how the underlying latent scale predicts

nonresponse. As multinomial models have parameters that are challenging to interpret, showing

predicted probabilities of particular questions as ideal points vary is a concise and visually

interpretable way of showing how the ideal points map onto outcome probabilities.

To get an estimate of uncertainty, Imai, Lo, and Olmsted (2016) suggest the parametric

bootstrap (Lewis and Poole 2004; Carroll et al. 2009), i.e., take the EM estimates as the truth

and generate some number of simulated datasets that are scaled using the original procedure.

They note, however, this sits somewhat uneasily with the Bayesian nature of the model as it

represents a measure of “sampling variability” rather than a true exploration of the posterior in

a fully Bayesian sense. Given the size of the data in question here, I adopt a different approach: I

use the EM estimates as the starting values for the Gibbs Sampler implementation of the mIRT. As
this means that the sampler starts at the posterior mode, one should expect rapid convergence.

27 Missing data is imputed by setting the missing value to the mean response for the question.
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Figure 4. Comparison of scaling methods for ANES moral values. Note: Individuals who did not respond to

at least one question (409 out of 2102 respondents) are indicated using filled (i.e., not hollow) circles. The

correlation between the methods is 0.898.

Thus, theGibbsSampler canbe run for a short periodof time (andmuch shorter than fromrandom

starting values) to approximate the uncertainty in the posterior, in the region of highest density.28

I can then calculate the predicted probabilities for each set of parameters across the ideal points

commonly observed.29 By taking the 95% credible interval, I can show the predicted probabilities

with an estimate of the associated uncertainty. To begin, I plot the predicted probabilities for two

questions of interest:

Same-Sex Marriage (083214): ‘Should same-sex couples be ALLOWED to marry, or should

they NOT BE ALLOWED tomarry?

1 Marriage: Should be allowed

3 No Marriage: Should not be allowed

5 Civil Unions: Should not be allowed to marry but should be allowed to legally form a civil

union

7 Other: This includes respondents who volunteered some other answer (32; 1.5%).

NA Refusal: This includes the respondents who did not provide a valid answer (55; 2.5%).

28 Iuseachainwith500observationsafteraburn-inof 100. Theusualposteriordiagnostics—aswell asavisual inspection—all

report surprisingly good convergence despite running the chain for such a short period of time. Of course, at some size

of dataset, the Gibbs Sampler approach would likely break down and leave us with only the parametric bootstrap as a

viable option. The results from theparametric bootstrap, available upon request, are generally similar to thoseof theGibbs

Sampler. Future work should compare the two procedures in more detail.

29 All posterior draws are normalized to have ideal points withmean zero and variance one to identify themodel and ensure

comparability of scales.
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Figure 5. Predicted probabilities for moral questions. Note: The category labels and question wordings are

outlined in themain text. The dashed lines indicate the 25 and 75th percentiles of the estimated ideal points.

Negative values indicate morally liberal responses. Uncertainty around the predicted probabilities is shown

using the 95% credible interval from posterior simulations.

Prayer (083183): “People practice their religion in different ways. Outside of attending

religious services, do you pray SEVERAL TIMES A DAY, ONCE A DAY, A FEW TIMES A WEEK,

ONCE AWEEK OR LESS, or NEVER?”

1 Several Times a Day

2 Once A Day

3 A Few Times A Week

4 Once A Week Or Less

5 Never

7 Other

NA Refusal: This lumps together 11 respondents who did not submit a valid response (all

volunteered some “other” response). As this category is nearly empty, I do not include

it as a category and treat the missing data as idiosyncratic and impute it using the data

augmentation approach described in Appendix D.

The results are in Figure 5. The leftpanel shows the results for same-sexmarriage. Theposterior

median of the predicted probabilities is shown in a solid black line. Negative values on this scale

represent those who are moral liberal and the positive values indicate moral conservatism. Note

that even though the “civil unions” option was listed last (coded as “5”), it in fact occurs in the

middle representing the preferred choice of moderates. Thus, even though the model specified

the wrong ordering (i.e., putting it third), the predicted probabilities are sensible. There is a small

bump for “refusals” on the morally conservative side: I return to this in the next section.

For the question onprayer, consider right panel. Even though there aremanyoptions provided,

they are scaled in the “correct” order using the mIRT. Moving from right to left, the probabilities of

being in a category of frequent prayer decrease. Themodes of the predicted probabilities also are

ordered in the expected fashion.

To show the nonresponse probabilities for all questions, Figure 6 shows the probability of

the nonresponse category across the ten questions where there was nonnegligible levels of

nonresponse. Recall that the left of the scale (negative ideal points) indicates moral liberalism.
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Figure 6. Probability of nonresponse.Note: Each panel shows the probability of nonresponse for a particular

question. The dashed lines indicate the 25 and 75th percentiles of the estimated ideal points. Negative values

indicate morally liberal responses. Uncertainty around the predicted probabilities is shown using the 95%

credible interval from posterior simulations and 95% quantiles from the parametric bootstrap.

The dashed vertical lines mark out the 25th and 75th percentiles. Credible intervals are shown

from the posterior draws with the posterior median indicated by a solid line.

This figure is striking in that it shows clear evidence for ideological “shyness” for certain types

of respondents. Especially when given feeling thermometers, moral conservatives have amodest

probability of refusing to answer the question (a predicted probability of around 0.10—which is

about the level of some of the lesser used “intermediate” categories on the feeling thermometer).

The questions where this occurs are especially interesting: When asked to evaluate homosexuals

(or LGBT individuals more generally when asked about same-sex marriage), there can see a quite

distinct pattern where moral conservatives are less willing to provide the consistent response of

a conservative attitude. A similar pattern appears when asked to evaluate feminists. This perhaps

suggests social desirability bias; moral conservatives are perhaps less willing to admit to a view

that they think interviewers would judge them for and thus take the option of nonresponse. Most

interestingly, there is a similar pattern for “Christian fundamentalists” (feeling thermometer). This

question is striking in that it has a very high level of “do not recognize this group” as well as

standard levels of other nonresponse. This suggests that moral conservatives may take umbrage
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at being asked to evaluate a group referred to by a fairly pejorative term and thus refuse to

answer the question either by refusing to acknowledge the legitimacy of the group label (“I do not

recognize this group”) or by skipping the question entirely. It is striking to compare this against

the feeling thermometer for “Christians” (sans fundamentalist) wheremoral conservatives report

highly positive feelings. There are very low levels of nonresponse and that they are not sharply

ideologically biased; thus,whenasked to rate their religion as awhole, the vastmajority ofmorally

conservative respondents do provide a (highly positive) answer, but refuse to do so when asked

to admit to being sympathetic toward a pejoratively defined group.

Yet, ideological nonresponse is not exclusively the domain of moral conservatives. On

questions regarding religion, especially views on the bible, liberals show nonresponse.

Specifically, the results suggest that moral liberals feel some cross-pressure to not adopt the

most extreme response on the question about the bible (“the Bible is the work of man and not

God”) and thuswill say “don’t know” to avoid the question. Again, social desirability is a plausible

explanation; even moral liberals may feel unconformable taking a fairly strong anti-Christian

stance in front of an interviewer.

Overall, this section has shown that there are gains to taking the “don’t know” and other

nonresponses seriously when estimating ideal point models. Whilst these results are preliminary,

they suggest an interesting direction of future research that tries to peer more deeply into

the nonresponse category in our standard social science surveys to see whether it is masking

ideological extremism. Further, as the results appear reasonably subtle as to which questions

show ideologicalnonresponse (and that thedirection isnotalwaysdrivenbymoral conservatives),

scaling nonresponse in a flexible way allows for these patterns to reveal themselves rather than

being imposed a priori by researchers.

The model outlined in this paper (mIRT) provides a novel way for doing so; existing Bayesian
implementations for ideal point models do not permit the tractable analysis of multinomial

outcomes and would have required either assuming ordinality and thus having to place

nonresponse at some point in the scale using prior information. Given the nuanced results

above, it is not implausible to think that researchers might have disagreement about the correct

placement of the nonresponse category in an ordinal framework and thus a method that avoids

the researcher having to take a strong stand before the analysis is desirable. Further, the mIRT
allowed the quick and flexible scaling of questions with different numbers of outcomes (from 5 to

10); it was not necessary to collapse questions down to three categories (as required by Imai, Lo,

and Olmsted (2016)) and, indeed, many of themoral questions analyzed here cannot be plausibly

so recoded.

Future extensions of this preliminary investigation into nonresponse could involve trying to

integrate themodels of predicting nonresponse using covariates (Berinsky 1999, 2002) thatwould

allow us to both flexibly model nonresponse but also scale our questions of interesting using

an “all-in-one” framework. In terms of survey design, this also should cause researchers to

consider the use of feeling thermometers and whether the ‘I do not know who this group is’ filter

should be applied. Especially when considering groups that are described in perhaps contested

or controversial ways (e.g., “Christian fundamentalists”), the possibility of nonresponse as a way

of dissenting against the description of the groupmight bias the results that are obtained.

7 Conclusion

This paper brought together two developments in Bayesian statistics (stick-breaking representat-

ion of multinomial choice; Pólya-Gamma data augmentation) and applied them to ideal points

for the first time. This allowed me to derive a conceptually simple and elegant representation

for flexibly modeling multinomial data. Estimation is similarly clean and can be done using an

exact EM algorithm to find the posterior mode or a Gibbs Sampler to recover the full posterior.
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This model, the mIRT, includes most of the canonical models in political science as special cases
as well as allowing the analysis of complex forms of survey data (e.g., many-valued ordinal and

multinomial responses) for the first time using an estimation procedure (the EM algorithm) that

also allows feasible scaling to large datasets.

The main contribution of the mIRT is its flexibility to allow researchers to modify the terms in
the “utility”of choices (theψn

i j
) to easily createmore theoretically richmodels toanalyzequestions

across awide variety of domains. As an example, I applied the mIRTmodel to scaling nonresponse
in the ANES. I demonstrate that the flexibility of this model allowed us to uncover patterns of

ideological nonresponse; for a sizeable number of questions on moral issues, nonresponse is not

missing at random: Rather, ideologically extreme individuals (particular conservatives) will skip

or not respond to questions that would require them to give an outcome that might be seen as

sociallyundesirable. For example, it seems thatmoral conservativesare somewhatmoreunwilling

to admit opposition to policies for legal remedies to discrimination against homosexuals, whilst

moral liberals tend to be shyer about admitting views on the bible that suggest it is “the work of

man.”

Beyond unifying core models and improving speed, the key benefit of the mIRT is that it
easily admits theoretically interesting extensions whilst staying in the same framework of a

stick-breakingmultinomial—with binary outcomes being an important special case. The fact that

estimation can be done not only via a clear MCMC framework but also via a simple EM algorithm

without the need for variational approximations means that sophisticated models generated

using the mIRT can be easily scaled up to estimatemodels based on large datasets without undue
computational demands. A caveat of the mIRT is the fact that it requires the researcher to impose
some ordering on the response categories; however, Appendix A shows in extensive detail that

in all scenarios considered in this paper, the estimated ideal points are very highly correlated

despite the choice of ordering—even if one chooses a deliberately bad choice of ordering. Whilst

preliminary, Appendix A also sketches a theoretical justification for why this is the case; it shows

that the stick-breakingmethod represents anapproximationof theclassicmultinomial framework

and thus, at least for the types ofmodels considered in this paper,may explainwhy the results are

so robust to choice of ordering. More theoretical work on this question and understanding exactly

when the choice of ordering becomes significant is an open area for future research. Preliminary

work suggests that then where are very many (e.g., one-hundred or more) categories and/or

categories that are sparsely populated, the ordering may becomemore important.

However, formanyapplications, the stick-breakingparameterizationhas importantbenefits for

inference (exact EM or simple Gibbs Samplers) and provides a flexible base on which to construct

more complicated ideal pointmodels that better reflect the interesting underlying structure of the

particular questions. Thus, with the caveats of the mIRT held in mind, the framework developed
in this paper will hopefully permit researchers to write and estimate more sophisticated models

to scalemany types of data aswell as reducing the reliance on “bespoke”models that are difficult

to translate into other domains.

Supplementarymaterial

For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2018.31.
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