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1. INTRODUCTION

Distributional as well as dependence properties of conditional ordered random
variables have been studied with great interest in the last three decades; see, for exam-
ple, Langberg, Leon, and Proschan [22], Belzunce, Franco and Ruiz [7], and Belzunce,
Lillo, Ruiz, and Shaked [8]. Given a set of order statistics X1:n, . . . , Xn:n from n indepen-
dent and identically random variables, X1, . . . , Xn, these authors have discussed various
properties of the conditional random variables [Xs:n − t|Xs−1:n = t] for 1 < s ≤ n. Fur-
ther results in this direction can be found in the recent works of Li and Zuo [26], Li and
Chen [23], and Li and Zhao [24,25]. Some other forms of conditioning have also been
considered recently; for example, Asadi and Bairamov [2], Asadi [1], Khaledi and
Shaked [19], Li and Zhao [25], and Sadegh [30] have studied properties of the condi-
tional random variables [Xs:n − t|Xr:n > t] and [t − Xr:n|Xs:n ≤ t] for 1 ≤ r ≤ s ≤ n.
In the case of independent and nonidentically distributed random variables, Zhao, Li,
and Balakrishnan [37] established some results for [Xs:n − t|Xr:n ≤ t < Xr+1:n] for 1 ≤
r < s ≤ n. Extensions of some of these results to the case of record values have been
discussed by Khaledi and Shojaei [20] and Khaledi, Amiripour, Hu, and Shojaei [17].

Here, we seek some generalized results in the context of generalized order statis-
tics (GOSs). For the special case of m-GOSs, Hu, Jin, and Khaledi [11], Xie and Hu
[34], and Zhao and Balakrishnan [36] have discussed stochastic comparisons in the
likelihood ratio order of the above conditional random variables replacing the usual
order statistics by m-GOSs. The purpose of this article is twofold: first, to present
new results and extend some of the known results to the case of GOSs and, second,
to provide a new proof for these results in a unified and easy manner.

The rest of this article is organized as follows. In Section 2 we first recall some
definitions and preliminary results that are needed for the main results to be established
in Section 3. In Section 4 we describe some applications of these results. Throughout
the article, the survival function associated with a distribution function F(x) will be
denoted by F(x) ≡ 1 − F(x).

2. DEFINITIONS AND KNOWN RESULTS

Order statistics and record values have found important applications in several fields of
science and engineering, as is evident from the volumes of Balakrishnan and Rao [5,6].
Due to the close similarity among some distributional, structural, and dependence
properties of order statistics and record values, Kamps [14,15] introduced the model
of generalized order statistics, which includes, as particular cases, random vectors of
order statistics and record values and some other models of interest such as sequential
order statistics and progressively censored order statistics.

We now present the definition of generalized order statistics, due to Kamps
[14,15].

Definition 2.1: Let n ∈ N, k ≥ 1, m1, . . . , mn−1 ∈ R, Mr = ∑n−1
j=r mj, 1 ≤ r ≤ n − 1,

be parameters such that γr = k + n − r + Mr ≥ 1 for all r ∈ {1, . . . , n − 1}, and
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let m̃ = (m1, . . . , mn−1) if n ≥ 2 (m̃ ∈ R arbitrary, if n = 1). The random vector
(U(1,n,m̃,k), . . . , U(n,n,m̃,k)) with joint density function

h(u1, . . . , un) = k

⎛
⎝n−1∏

j=1

γj

⎞
⎠

⎛
⎝n−1∏

j=1

(1 − uj)
mj

⎞
⎠ (1 − un)

k−1,

defined over the cone 0 ≤ u1 ≤ · · · ≤ un ≤ 1, is called the uniform generalized order
statistics. Now, for a given distribution function F, the random vector

(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) ≡ (
F−1(U(1,n,m̃,k)), . . . , F−1(U(n,n,m̃,k))

)
is called the generalized order statistics (GOSs) based on the distribution F.

In the special case when m1 = · · · = mn−1 = m, the variables (X(1,n,m̃,k), . . . ,
X(n,n,m̃,k)) are called m-GOSs and are denoted by (X(1,n,m,k), . . . , X(n,n,m,k)).

Stochastic comparisons of GOSs have been discussed rather extensively by
Franco, Ruiz, and Ruiz [10], Belzunce, Mercade, and Ruiz [9], Khaledi [16], Hu
and Zhuang [12,13], Khaledi and Kochar [18], Qiu and Wu [29], and Xie and Hu [35].
The stochastic comparison of conditional generalized order statistics has also been
considered as a natural extension of the corresponding results on conditional order
statistics and record values. Most of these results are on the likelihood ratio order that
we describe; one can refer to Shaked and Shanthikumar [32] for pertinent details.

Let X and Y be two n-dimensional random vectors with density functions fX and
fY, respectively. We say that X is less than Y in the multivariate likelihood ratio order,
denoted by X ≤lr Y, if

fX(x1, x2, . . . , xn)fY(y1, y2, . . . , yn)

≤ fX(x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn)fY(x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn)

for all (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in R
n, where ∧ and ∨ denote the minimum

and maximum operations, respectively.
The likelihood ratio order can be used to define the MTP2 (multivariate totally

positive of order 2) dependence notion. Given a random vector X with density function
fX, we say that X or fX is MTP2 if X ≤lr X.

In the univariate case, given two random variables X and Y with density functions
f and g, respectively, we say that X is less than Y in the likelihood ratio order, denoted
by X ≤lr Y , if f (t)g(s) ≤ f (s)g(t) for all s < t ∈ R. The likelihood ratio order is
related to the hazard rate order. Given two variables X and Y with survival functions
F and G, respectively, we say that X is less than Y in the hazard rate order, denoted
by X ≤hr Y , if F(t)G(s) ≤ F(s)G(t) for all s < t ∈ R. It is known that

X ≤lr Y ⇒ X ≤hr Y . (2.1)

We now recall some properties of the likelihood ratio order that are useful in the
subsequent developments. These properties include the preservation under monotone
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transformations, marginalization, and conditioning on sublattices. A subset L ⊆ R
n

is called a sublattice if x, y ∈ L implies x ∧ y ∈ L and x ∨ y ∈ L.

Theorem 2.2 (Theorem 1.C.18 of Shaked and Shanthikumar [32]): Given two ran-
dom variables X and Y, if X ≤lr Y and φ is any increasing (decreasing) function,
then φ(X) ≤lr (≥lr) φ(Y).

Theorem 2.3: Let X and Y be two n-dimensional random vectors such that X ≤lr Y.
Then we have the following:

(i) XI ≤lr YI for all subsets I ⊆ {1, 2, . . . , n}, where XI and YI are the vectors
of components of X and Y with index in I (Theorem 6.E.4 of Shaked and
Shanthikumar [32]).

(ii) [X|X ∈ L] ≤lr [Y|Y ∈ L] for all sublattices L ⊆ R
n (Theorem 3.11.4 of Müller

and Stoyan [27]).

For example, given two distributions F and G and m-GOSs based on F and G,
given by (X(1,n,m,k), . . . , X(n,n,m,k)) and (Y(1,n,m,k), . . . , Y(n,n,m,k)), respectively, Zhao and
Balakrishnan [36] presented conditions for

[X(s,n,m,k) − t|X(r,n,m,k) > t] ≤lr [Y(s,n,m,k) − t|Y(r,n,m,k) > t]
for 1 ≤ r ≤ s ≤ n, m ≥ −1 and any t ∈ R. One of the goals of this article is to provide
similar results on the likelihood ratio order more generally for conditional GOSs, thus
generalizing those for the m-GOSs.

Some other results have also been established for conditional m-GOSs in the same
vector. For example, we recall the following result.

Theorem 2.4 (Theorem 3.2 of Hu et al. [11]): Given a random vector (X(1,n,m,k), . . . ,
X(n,n,m,k)) of m-GOSs from an absolutely continuous distribution, we have

[X(s,n,m,k) − t|X(r,n,m,k) > t] ≤lr [X(s′,n′,m,k) − t|X(r′,n′,m,k) > t]
for s > r and s′ − s = r′ − r ≥ max{0, n′ − n} and any t ∈ R.

We now present some technical results that are useful for establishing the main
results in the next section.

Lemma 2.5 (Lemma 2.5 of Zhao and Balakrishnan [36]): Given random variables X
and Y with distribution functions F and G and hazard rate functions rF and rG,
respectively, if either

(i) X ≤lr Y and m ≥ 0 or

(ii) X ≤hr Y, rG(x)/rF(x) is increasing in x and −1 ≤ m < 0,

then
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(a) hm(G(x))/hm(F(x)) is increasing in x ∈ R, and

(b) the function

φ(x, u) = hm(G(x)) − hm(G(u))

hm(F(x)) − hm(F(u))

is increasing in (x, u) ∈ R, where

hm(x) =

⎧⎪⎨
⎪⎩

1

m + 1
(1 − (1 − x)m+1), m �= −1

− log(1 − x), m = −1.

(2.2)

We end this section by presenting the expression for the joint density function of
any subset of m-GOSs.

Lemma 2.6: Given a random vector (X(1,n,m,k), . . . , X(n,n,m,k)) of m-GOSs from
an absolutely distribution F and density function f , the joint density of
(X(r1,n,m,k), X(r2,n,m,k), . . . , X(ri ,n,m,k)), for r1 < r2 < · · · < ri and {r1, r2, . . . , ri} ⊂
{1, 2, 3, . . . , n}, is given by

f(r1,r2,...,ri)(xr1 , xr2 , . . . , xri) = cri−1

(r1 − 1)! ∏i−1
j=1(rj+1 − rj)!

× (F(xri))
k+n−ri+Mri −1f (xri)h

r1−1
m (F(xr1))

×
i−1∏
j=1

(F(xrj ))
m[hm(F(xrj+1)) − hm(F(xrj ))]rj+1−rj f (xrj ),

(2.3)

for xr1 < xr2 < · · · < xri , where cri−1 = ∏ri
i=1 γi and hm is as given in 2.2.

Proof: The joint density of (X(r1,n,m,k), X(r2,n,m,k), . . . , X(ri ,n,m,k)), for r1 < r2 < · · · <

ri, follows from the joint density of uniform generalized order statistics

(U(r1,n,m,k), U(r2,n,m,k), . . . , U(ri ,n,m,k)).

Taking into account that U(1,n,m,k) ≤ U(2,n,m,k) ≤ · · · ≤ U(ri ,n,m,k), and denoting by
h(u1,u2,...,uri )

the joint density of (U(1,n,m,k), U(2,n,m,k), . . . , U(ri ,n,m,k)), the joint density of

(U(r1,n,m,k), U(r2,n,m,k), . . . , U(ri ,n,m,k))

can be derived as follows:

h(r1,r2,...,ri)(ur1 , ur2 , . . . , uri)

=
∫ ur1

0

∫ ur1

u1

· · ·
∫ ur1

ur1−2

∫ ur2

ur1

∫ ur2

ur1 +1
· · ·

∫ ur2

ur2 −2
· · ·

∫ uri−1

uri−1−2

∫ uri

uri−1

∫ uri

uri−1+1

· · ·
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×
∫ uri

uri −3

∫ uri

uri−2

h(u1, u2 . . . , uri) duri−1 duri−2 . . . duri−1+2 duri−1+1 duri−1−1 . . .

× dur2−1 · · · dur1+2 dur1+1 dur1−1 · · · du2 du1

=
∫ ur1

0

∫ ur1

u1

· · ·
∫ ur1

ur1−2

∫ ur2

ur1

∫ ur2

ur1 +1
· · ·

∫ ur2

ur2 −2
· · ·

∫ uri−1

uri−1−2

∫ uri

uri−1

∫ uri

uri−1+1

· · ·

×
∫ uri

uri −3

∫ uri

uri−2

cri−1(1 − uri)
k+n−ri+Mri −1

r1−1∏
j=1

h′
m(uj)(1 − ur1)

m

×
r2−1∏

j=r1+1

h′
m(uj)(1 − ur2)

m
r3−1∏

j=r2+1

h′
m(uj) · · · (1 − uri−1)

m

×
ri−1∏

j=ri−1+1

h′
m(uj)duri−1 duri−2 · · · duri−1+2 duri−1+1 duri−1−1 · · ·

× dur2−1 · · · dur1+2 dur1+1 dur1−1 · · · du2 du1

= cri−1(1 − uri)
k+n−ri+Mri −1

∫ ur1

0

∫ ur1

u1

· · ·
∫ ur1

ur1−2

r1−1∏
j=1

h′
m(uj)(1 − ur1)

m · · ·

×
∫ ur2

ur1

∫ ur2

ur1 +1
· · ·

∫ ur2

ur2−2

r2−1∏
j=r1+1

h′
m(uj)(1 − ur2)

m · · ·

×
∫ uri−1

uri−1−2

∫ uri

uri−1

∫ uri

uri−1+1

· · ·
∫ uri

uri−3

∫ uri

uri−2

ri−1∏
j=ri−1+1

h′
m(uj)(1 − uri−1)

m

× duri−1 duri−2 · · · duri−1+2 duri−1+1

× duri−1−1 · · · dur2−1 · · · dur1+2 dur1+1

× dur1−1 · · · du2 du1

= cri−1

(ri − ri−1 − 1)!(ri−1 − ri−2 − 1)! · · · (r2 − r1 − 1)!(r1 − 1)!
× (1 − uri)

k+n−ri+Mri −1(1 − uri−1)
m · · · (1 − ur1)

m

× [hm(uri) − hm(uri−1)]ri−ri−1−1[hm(uri−1) − hm(uri−2)]ri−1−ri−2−1 · · ·
[hm(ur2) − hm(ur1)]r2−r1−1gr1−1

m (ur1)

= cri−1

(r1 − 1)! ∏i−1
j=1(rj+1 − rj)!

(1 − uri)
k+n−ri+Mri −1gr1−1

m (ur1)

×
i−1∏
j=1

(1 − urj ))
m[hm(urj+1) − hm(urj )]rj+1−rj . (2.4)

The result in (2.3) follows readily from the expression in (2.4). �
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3. NEW RESULTS AND GENERALIZATIONS

First, we present a result on the likelihood ratio order of conditional GOSs under
different forms of conditioning.

Theorem 3.7: Let X and Y be absolutely continuous variables with distribu-
tion functions F and G and hazard rates rF and rG, respectively. Let X =
(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) and Y = (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)) be random vectors of gen-
eralized order statistics based on F and G, respectively. If either

(i) X ≤lr Y and mi ≥ 0 for all i, or

(ii) X ≤hr Y, rG(x)/rF(x) is increasing, and mi ≥ −1 for all i,

then

[X(s,n,m̃,k)|X ∈ L] ≤lr [Y(s,n,m̃,k)|Y ∈ L]
for all sublattices L ⊆ R

n.

Proof: First, we mention that under conditions (i) and (ii), Belzunce et al. [9] proved
that (X(1,n,m̃,k), . . . , X(n,n,m̃,k)) ≤lr (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)). Now, upon applying parts
(ii) and (i) in Theorem 2.3, we obtain the result. �

Although this result is easy to prove from properties of the likelihood ratio order,
there are numerous applications of this result, given the different sublattices that we
can choose. We now list several examples of this result.

Example 3.8: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice L =
[(x(1), . . . , x(n)) ∈ R

n|x(r) > t]. Then, from Theorems 3.7 and 2.2, we have, for r ≤ s
and any t ∈ R, and under conditions (i) and (ii) in Theorem 3.7, that

[X(s,n,m̃,k) − t|X(r,n,m̃,k) > t] ≤lr [Y(s,n,m̃,k) − t|Y(r,n,m̃,k) > t].
This result extends Theorem 3.1 of Zhao and Balakrishnan [36] and Theorem 2.2 of
Khaledi et al. [17] to the case of GOSs.

Example 3.9: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice L =
[(x(1), . . . , x(n)) ∈ R

n|x(s) ≤ t]. Then, from Theorems 3.7 and 2.2, we have, for r < s
and any t ∈ R, and under conditions (i) and (ii) in Theorem 3.7, that

[t − X(r,n,m̃,k)|X(s,n,m̃,k) ≤ t] ≥lr [t − Y(r,n,m̃,k)|Y(s,n,m̃,k) ≤ t].
This result extends Theorem 3.2 in Zhao and Balakrishnan [36] and Theorem 3.3 (b)
in Khaledi et al. [17] to the case of GOSs.
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Example 3.10: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice L =
[(x(1), . . . , x(n)) ∈ R

n|t1 < x(r) ≤ t2]. Then, from Theorems 3.7 and 2.2, we have, for
r ≤ s and any t1 < t2 ∈ R, and under conditions (i) and (ii) in Theorem 3.7, that

[X(s,n,m̃,k) − t1|t1 < X(r,n,m̃,k) ≤ t2] ≤lr [Y(s,n,m̃,k) − t1|t1 < Y(r,n,m̃,k) ≤ t2].

Example 3.11: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice L =
[(x(1), . . . , x(n)) ∈ R

n|x(r) ≤ t < x(r+1)]. Then, from Theorems 3.7 and 2.2, we have,
for r < s and any t ∈ R, and under conditions (i) and (ii) in Theorem 3.7, that

[X(s,n,m̃,k) − t|X(r,n,m̃,k) ≤ t < X(r+1,n,m̃,k)]
≤lr [Y(s,n,m̃,k) − t|Y(r,n,m̃,k) ≤ t < Y(r+1,n,m̃,k)].

Example 3.12: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice L =
[(x(1), . . . , x(n)) ∈ R

n|x(r) = t]. Then, from Theorems 3.7 and 2.2, we have, for r < s
and any t ∈ R, and under conditions (i) and (ii) in Theorem 3.7, that

[X(s,n,m̃,k) − t|X(r,n,m̃,k) = t] ≤lr [Y(s,n,m̃,k) − t|Y(r,n,m̃,k) = t].

Example 3.13: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice
L = [(x(1), . . . , x(n)) ∈ R

n|t1 < x(r), x(s) ≤ t2]. Then, from Theorems 3.7 and 2.2, we
have, that for r ≤ p ≤ s and any t1 < t2 ∈ R, and under conditions (i) and (ii) in
Theorem 3.7, that

[X(p,n,m̃,k) − t1|t1 < X(r,n,m̃,k), X(s,n,m̃,k) ≤ t2]
≤lr [Y(p,n,m̃,k) − t1|t1 < Y(r,n,m̃,k), Y(s,n,m̃,k) ≤ t2].

Example 3.14: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice
L = [(x(1), . . . , x(n)) ∈ R

n|x(r) ≤ t1, x(s) > t2]. Then, from Theorems 3.7 and 2.2, we
have, that for r < p < s and any t1 < t2 ∈ R, and under conditions (i) and (ii) in
Theorem 3.7, that

[X(p,n,m̃,k) − t1|X(r,n,m̃,k) ≤ t1, X(s,n,m̃,k) > t2] ≤lr [Y(p,n,m̃,k) − t1|Y(r,n,m̃,k)

≤ t1, Y(s,n,m̃,k) > t2].

Example 3.15: Let (x(1) ≤ · · · ≤ x(n)) denote a nondecreasing arrangement of the
components of a vector (x1, . . . , xn) ∈ R

n. Now, let us consider the sublattice
L = [(x(1), . . . , x(n)) ∈ R

n|x(r) < t1 ≤ x(r+1), t2 ≤ xs]. Then, from Theorems 3.7 and
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2.2, we have, for r < s and any t1 < t2 ∈ R, and under conditions (i) and (ii) in
Theorem 3.7, that

[X(s,n,m̃,k) − t2|X(r,n,m̃,k) < t1 < X(r+1,n,m̃,k), t2 ≤ X(s,n,m̃,k)]
≤lr [Y(s,n,m̃,k) − t2|Y(r,n,m̃,k) < t1 ≤ Y(r+1,n,m̃,k), t2 ≤ Y(s,n,m̃,k)].

Observe that Theorem 3.7 compares conditional GOSs based on two different
distributions but with the same set of parameters. Next, we establish a similar result
for GOSs based on the same distribution but with different parameters.

Theorem 3.16: Let X = (X(1,n,m̃,k), . . . , X(n,n,m̃,k)) and X′ = (X(1,n,m̃′,k′), . . . ,
X(1,n,m̃′,k′)) be random vectors of GOSs based on the same distribution F and with
parameters k, mi, i = 1, . . . , n − 1 and k′, m′

i, i = 1, . . . , n − 1, respectively. If k ≥ k′
and mi ≥ m′

i, for all i = 1, . . . , n − 1, then

[X(s,n,m̃,k)|X ∈ L] ≤lr [X(s,n,m̃′,k′)|X′ ∈ L]
for all sublattices L ⊆ R

n.

Proof: In this case, from a result of Belzunce et al. [9], we have (X(1,n,m̃,k), . . . ,
X(n,n,m̃,k)) ≤lr (X(1,n,m̃′,k′), . . . , X(n,n,m̃′,k′)), and the result then follows along the same
lines as in Theorem 3.7. �

A combination of Theorems 3.7 and 3.16 will provide new results for the like-
lihood ratio order of conditional GOSs from different populations with different
parameters. For example, we can obtain the following result.

Theorem 3.17: Let X and Y be absolutely continuous variables with distribu-
tion functions F and G and hazard rates rF and rG, respectively. Let X =
(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) and Y = (Y(1,n,m̃′,k′), . . . , Y(n,n,m̃′,k′)) be random vectors of
GOSs based on F and G and with parameters k and mi, i = 1, . . . , n − 1 and k′,
m′

i, i = 1, . . . , n − 1, respectively. If k ≥ k′ and mi ≥ m′
i for all i = 1, . . . , n − 1, and

if either

(i) X ≤lr Y and mi ≥ 0 for all i or m′
i ≥ 0 for all i, or

(ii) X ≤hr Y, rG(x)/rF(x) is increasing, and mi ≥ −1 for all i or m′
i ≥ −1 for all i,

then

[X(s,n,m̃,k) − t|X(r,n,m̃,k) > t] ≤lr [Y(s,n,m̃′,k′) − t|Y(r,n,m̃′,k′) > t]
for r < s and any t ∈ R.

This result extends Theorem 3.3 of Zhao and Balakrishnan [36] to the case of
GOSs. We can also combine the above results with Theorem 2.4. For example, if we
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consider the sublattice in Example 3.8 and the result in Theorem 2.4, then we obtain
the following result.

Theorem 3.18: Let X and Y be absolutely continuous variables with distribu-
tion functions F and G and hazard rates rF and rG, respectively. Let X =
(X(1,n,m,k), . . . , X(n,n,m,k)) and Y = (Y(1,n,m,k), . . . , Y(n,n,m,k)) be random vectors of m-
GOSs based on F and G, respectively. For r ≤ s ≤ n, s′ − s = r′ − r ≥ max{0, n′ −
n}, and any t ∈ R, if either

(i) X ≤lr Y and m ≥ 0, or

(ii) X ≤hr Y, rG(x)/rF(x) is increasing in x, and −1 ≤ m < 0,

then

[X(s,n,m,k) − t|X(r,n,m,k) > t] ≤lr [Y(s′,n′,m,k) − t|Y(r′,n′,m,k) > t].

Next, we establish a multivariate likelihood ratio ordering result for subsets of
m-GOSs.

Theorem 3.19: Let X and Y be absolutely continuous variables with distribution
functions F and G, densities f and g, and hazard rates rF and rg, respectively. Let X =
(X(1,n,m,k), . . . , X(n,n,m,k)) and Y = (Y(1,n′,m,k), . . . , Y(n′,n′,m,k)) be random vectors of m-
GOSs based on distributions F and G, respectively. For r1 ≤ r2 ≤ · · · ≤ ri ≤ n, r′

1 ≤
r′

2 ≤ · · · ≤ r′
i ≤ n′, r′

1 − r1 = r′
2 − r2 = · · · = r′

i − ri ≥ max{0, n′ − n}, if either

(i) X ≤lr Y and m ≥ 0, or

(ii) X ≤hr Y, rG(x)/rF(x) is increasing in x, and −1 ≤ m < 0,

then

(X(r1,n,m,k), X(r2,n,m,k), . . . , X(ri ,n,m,k)) ≤lr (Y(r′
1,n′,m,k), Y(r′

2,n′,m,k), . . . , Y(r′
i ,n

′,m,k)).

Proof: Let us use fr1,r2,...,ri(x1, x2, . . . , xi) and gr′
1,r′

2,...,r′
i
(x1, x2, . . . , xi) to denote

the joint density of (X(r1,n,m,k), X(r2,n,m,k), . . . , X(ri ,n,m,k)) and (Y(r′
1,n′,m,k), Y(r′

2,n′,m,k), . . . ,
Y(r′

1,n′,m,k)), respectively. Following Kochar [21] and Spizzichino [33, p. 109], if

gr′
1,r′

2,...,r′
i
(x1, x2, . . . , xi)

fr1,r2,...,ri(x1, x2, . . . , xi)
is increasing in (x1 < x2 < · · · < xi) ∈ R

i (3.1)

and (X(r1,n,m,k), X(r2,n,m,k), . . . , X(ri ,n,m,k)) or (Y(r′
1,n′,m,k), Y(r′

2,n′,m,k), . . . , Y(r′
1,n′,m,k)) or both

are MTP2, then

(X(r1,n,m,k), X(r2,n,m,k), . . . , X(ri ,n,m,k)) ≤lr (Y(r′
1,n′,m,k), Y(r′

2,n′,m,k), . . . , Y(r′
1,n′,m,k)).

Belzunce et al. [9] showed that any vector of GOSs is MTP2, and
given that the MTP2 property is preserved under marginalization, we have
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(X(r1,n,m,k), X(r2,n,m,k), . . . , X(ri ,n,m,k)) and (Y(r′
1,n′,m,k), Y(r′

2,n′,m,k), . . . , Y(r′
1,n′,m,k)) to be

MTP2.
Let us now prove (3.1). First, let us assume the conditions in (i). In this case, we

have from (2.2), for (x1 < x2 < · · · < xi), that

gr′
1,r′

2,...,r′
i
(x1, x2, . . . , xi)

fr1,r2,...,ri(x1, x2, . . . , xi)

∝ g(xi)

f (xi)

(
G(xi)

F(xi)

)k−1+(m+1)(n′−r′
i ) i−1∏

j=1

(
G(xj)

F(xj)

)m
g(xj)

f (xj)

×
(

hm(G(x1))

hm(F(x1)

)r1−1 i−1∏
j=1

(
hm(G(xj+1)) − hm(G(xj))

hm(F(xj+1)) − hm(F(xj))

)r′
j+1−r′

j−1

× (hm(G(x1))
r′

1−r1

(F(xi))
(m+1)(n−ri−n′+r′

i )
.

Given that m ≥ 0 and (k − 1) + (m + 1)(n′ − r′
i) ≥ 0, we have g(xi)/f (xi),

(G(xi)/F(xi))
k−1+(m+1)(n′−r′

i ), (G(xj)/F(xj))
m, and g(xj)/f (xj) all to be increasing

functions in xi, xj ∈ R, respectively.
From Lemma 2.5, we also have ((hm(G(xj+1)) − hm(G(xj)))/(hm(F(xj+1)) −

hm(F(xj))))
r′

j+1−r′
j−1 and (hm(G(x1))/hm(F(x1))

r1−1 to be increasing functions in
(xj, xj+1) ∈ R

2 and x1 ∈ R, respectively.
Finally, given that n − ri ≥ n′ − r′

i , we have 1/(F(xi))
(m+1)(n−ri−n′+r′

i ) to be
increasing in xi ∈ R, and given that r′

1 − r1 ≥ 0, (hm(G(x1))
r′

1−r1 is also increasing
in x1 ∈ R.

If we assume the conditions in (ii), then, for (x1 < x2 < · · · < xi), we have

gr′
1,r′

2,...,r′
i
(x1, x2, . . . , xi)

fr1,r2,...,ri(x1, x2, . . . , xi)

∝ g(xi)

f (xi)

(
G(xi)

F(xi)

)k−1+(m+1)(n′−r′
i ) i−1∏

j=1

(
G(xj)

F(xj)

)m+1
rG(xj)

rF(xj)

×
(

hm(G(x1))

hm(F(x1)

)r1−1 i−1∏
j=1

(
hm(G(xj+1)) − hm(G(xj))

hm(F(xj+1)) − hm(F(xj))

)r′
j+1−r′

j−1

× (hm(G(x1))
r′

1−r1

(F(xi))
(m+1)(n−ri−n′+r′

i )
.

and the proof in this case follows using similar arguments similar to those used
above. �
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Remark 3.20: It is important to note that Theorem 3.19 has established, the likelihood
ratio order property for joint distributions of subvectors of m-GOSs from which many
results can be obtained readily upon the same arguments that in Theorem 3.7.

For example, upon using the closure property under conditioning, the following
results follow immediately, and more results of these forms can be deduced in a similar
manner.

Corollary 3.21: Let X and Y be absolutely continuous variables with distri-
bution functions F and G and hazard rates rF and rG, respectively. Let X =
(X(1,n,m,k), . . . , X(n,n,m,k)) and Y = (Y(1,n′,m,k), . . . , Y(n′,n′,m,k)) be random vectors of m-
GOSs based on F and G, respectively. For r ≤ s ≤ n, s′ − s = r′ − r ≥ max{0, n′ −
n}, and any t1 < t2 ∈ R, if either

(i) X ≤lr Y and m ≥ 0, or

(ii) X ≤hr Y, rG(x)/rF(x) is increasing in x, and −1 ≤ m < 0,

then

[X(s,n,m,k) − t1
∣∣t1 < X(r,n,m,k) ≤ t2] ≤lr [Y(s′,n′,m,k) − t1

∣∣t1 < Y(r′,n′,m,k) ≤ t2].

Corollary 3.22: Let X and Y be absolutely continuous variables with distri-
bution functions F and G and hazard rates rF and rG, respectively. Let X =
(X(1,n,m,k), . . . , X(n,n,m,k)) and Y = (Y(1,n′,m,k), . . . , Y(n′,n′,m,k)) be random vectors of m-
GOSs based on F and G, respectively. For r ≤ p ≤ s ≤ n, s′ − s = p′ − p = r′ − r ≥
max{0, n′ − n}, and any t1 < t2 ∈ R, if either

(i) X ≤lr Y and m ≥ 0, or

(ii) X ≤hr Y, rG(x)/rF(x) is increasing in x, and −1 ≤ m < 0,

then

[X(p,n,m,k) − t1
∣∣X(r,n,m,k) > t1, X(s,n,m,k) ≤ t2]

≤lr [Y(p′,n′,m,k) − t1
∣∣Y(r′,n′,m,k) > t1, Y(s′,n′,m,k) ≤ t2].

4. APPLICATIONS

In this section we present some applications of the results established in the last
section in some special cases of GOSs. For a detailed description of these special
cases, interested readers may refer to Kamps [14,15], Balakrishnan and Aggarwala
[4], Belzunce et al. [9], and Balakrishnan [3].
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4.1. Order Statistics, Record Values, k-Record Values, and Progressively
Type-II Censored Orders Statistics

As mentioned earlier in Section 1, several models of ordered data are special cases of
GOSs through an appropriate selection of the parameters. Order statistics from a sam-
ple of independent and identically distributed random variables are a particular case
of GOSs when k = 1 and mi = 0 for all i = 1, . . . , n − 1. When k = 1 and mi = −1
for all i = 1, . . . , n − 1, we obtain the random vector of the first n record values or the
first n epoch times of a nonhomogeneous Poisson process. A generalization of record
values is the case in which k ∈ N, obtaining what are called k-records. A life-testing
experiment of interest in reliability studies involves N independent and identically
distributed random variables placed simultaneously on test and, at the time of the mth
failure, Ri surviving unites are randomly censored from the test. The progressively
Type-II censored order statistics arising from such a reliability experiment can be
obtained from the model of GOSs by setting n = m, mi = Ri, and k = Rm + 1.

In these models, the components might represent times at which some event
occurs. For example, they might be the times at which some failures occur. Hence,
the results established in the last section are comparing the failure times under two
different populations based on some information on previous failures or future failures.
Let us consider, for example, the sublattice in Example 3.15. In this case, we are
comparing the failure times of the sth component under a double monitoring scheme,
as discussed recently by Poursaeed and Nematollahi [28].

Another interesting sublattice in the case of random vectors with ordered com-
ponents is ht = {(x1, . . . , xn) ∈ R

n|x1 = t1 < · · · < xr = tr < t, xi > t for all i = r +
1, . . . , n}, which describes the history of failure times of the first r failed components
while the remaining components are all still alive at time t. For a description of the
notion of history, one can refer to Shaked and Shanthikumar [32].

4.2. Order Statistics Under Multivariate Imperfect repair

An interesting model contained in the model of generalized order statistics is that
of order statistics under multivariate imperfect repair; see Shaked and Shanthikumar
[31]. Suppose n items start to function at the same time 0. Upon failure, an item
undergoes a repair. If i items (i = 0, 1, . . . , n − 1) have already been scrapped, then,
with probability pi+1, the repair is unsuccessful and the item is scrapped, and with
probability 1 − pi+1, the repair is successful and minimal.

Let us now consider n items with independent and identically distributed ran-
dom lifetimes X1, . . . , Xn, with the same distribution F and density function f . Let
(X(1), . . . , X(n)) be the ordered random lifetimes resulting from X1, . . . , Xn under
such a minimal repair policy. Then, the joint density function of (X(1), . . . , X(n)) is
given by

f (t1, . . . , tn) = n!
n∏

j=1

pjf (tj)(F(tj))
(n−j+1)pj−(n−j)pj+1−1 for 0 ≤ t1 ≤ · · · ≤ tn.
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It is evident that this is a particular case of the joint density function of generalized order
statistics based on F for the choice of parameters k = pn and mj = (n − j + 1)pj −
(n − j)pj+1 − 1. The results established in the preceding section can also be applied in
this case. We can also combine Theorems 3.7 and 3.16 for comparing different models,
for example, conditional order statistics from independent and identically distributed
random variables and conditional order statistics under multivariate imperfect repair.
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