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Abstract
We present the first comprehensive theory of fairness that conceives of fairness as having
two dimensions: a comparative and an absolute one. The comparative dimension of
fairness has traditionally been the main interest of Broomean fairness theories. It has been
analysed as satisfying competing individual claims in proportion to their respective strengths.
And yet, many key contributors to Broomean fairness agree that ‘absolute’ fairness is
important as well. Wemake this concern precise by introducing the Fairness formula and the
absolute priority rule and analyse their implications for comparative fairness.

Keywords: Absolute fairness; comparative fairness; claims; proportionality; John Broome

1. Introduction
John Broome (1984, 1988, 1990) has developed an influential theory of fairness,
which has generated a thriving debate about the nature of fairness. Although
Broome’s key contribution dates back a few decades, the Broomean fairness
literature has taken off more recently than that.1

Broome’s theory applies when some good has to be divided amongst people who
have claims to the good and is compactly described by the following formula:

Broomean formula. Fairness requires that claims should be satisfied in
proportion to their strength.

Claims are a specific type of reason as to why a person should receive a good.
They are ‘duties owed to the person herself’, as Broome puts it. Agents may have
claims to a divisible good, such as in Owing Money:
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Owing Money. Romeo owes 20 to Abram and 60 to Benvolio but has only 40 left.
How, in order to be fair, should Romeo divide the 40?

Intuitively, it is fair that Romeo gives 10 to Abram and 30 to Benvolio. Now,
although the allocation 10; 30� � is fair according to Broome’s theory,2 it is not the
only such allocation. As fairness is, according to Broome, strictly comparative, any
allocation in which Benvolio receives three times as much as Abram is perfectly fair.
For instance, 5; 15� � is just as fair as 10; 30� �. It may very well be that, all things
considered, Romeo should exhaust the good and realize 10; 30� �. Doing so,
however, is not required by fairness. Or so one must accept, were one to base fairness
judgements exclusively on the Broomean formula.

However, many contributors to the Broomean fairness literature have expressed
that a concern for exhausting the good is a natural requirement. First, Broome
himself addresses the concern, albeit outside of his fairness theory: claims should be
satisfied, but not as a matter of fairness. That is, fairness only requires the
proportional satisfaction of claims, not their satisfaction as such. As Piller (2017:
218) puts it, ‘Claims ought to be satisfied. This requirement belongs to Broome’s
general moral theory; it is not part of his theory of fairness’. That is the first
perspective on the concern for good-exhaustion: to accommodate these concerns
outside of the theory of fairness.

Second, the concern for exhausting the good can also be treated as a matter of
fairness itself: on this second perspective, fairness is not strictly comparative but also
has an absolute dimension. It is this latter, absolute, dimension which grounds the
good-exhaustion concern as a fairness concern. Key contributors advocate for this
position (e.g. Hooker 2005; Saunders 2010; Lazenby 2014; Curtis 2014; Vong 2018).
For instance, Hooker (2005: 341) remarks that ‘fairness requires the greatest
possible proportionate satisfaction of claims’. Others, such as Saunders (2010: 47),
who refers to exhausting the good to be distributed as ‘efficiency’, and Lazenby
(2014: 332f.) mention the absolute fairness issue in passing. Finally, Vong (2018: 74)
devotes his analysis to an absolute notion of fairness – which he calls ‘individual’
fairness. On his account, it is a matter of fairness to the agent that their claims are
satisfied. However, neither Vong nor any of the other contributors analyse the
relations between comparative and absolute fairness in any depth.

In this article, we also take the second perspective: fairness itself has an absolute
dimension.3 More importantly, we fully work out how the concern for absolute
fairness can be accommodated within a comparative Broomean theory of fairness.
In short, we present a theory of absolute and comparative fairness. We develop the
theory in three steps. In a first step, we give a sophisticated analysis of the notion of
‘claims’ in Broomean theories of fairness, by introducing the notions of claim

2For, as discussed in detail below, the claims of Abram and Benvolio are equally strong so that fairness,
according to Broome’s theory, requires that these claims receive equal satisfaction.

3In this article, we assume (rather than argue for) that fairness itself has an absolute dimension. As
discussed, this position is prevalent in the recent Broomean fairness literature, yet has not been analysed.
Our article thus contributes by working out the implications of this widely endorsed assumption. As we will
go on to demonstrate in detail in our article ‘How to be absolutely fair, Part II: philosophy meets economics’,
the relevance of absolute fairness also carries over to economics. In particular, we show how the concern for
absolute fairness can motivate the routine stipulation of efficient division rules in the economic literature.
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strength and claim amount, of notional and absolute claims, and of individual and
group claims. Providing clear definitions of these notions is also of independent
merit: they make precise conceptual distinctions which have been implicitly present
in the Broomean fairness literature. In a second step, we introduce a ‘fairness
formula’ that uses the aforementioned claim notions to analyse the comparative and
absolute dimension of fairness, and – importantly – how these interact. Our fairness
theory can be summarized with this slogan.

Fairness formula (FF). Fairness requires one: (i) to satisfy absolute claims (of
individuals and groups) to as large an extent as possible, subject to the constraint
that no one receives more than they have a claim to; (ii) to satisfy (absolute and
notional) individual claims in proportion to their strength; (iii) to prioritize
requirement (i) over (ii) whenever these two conflict, but in such a way that one
does as much as possible to respect (ii).

In a third step, we develop the implications of the Fairness formula and, in
particular, we will study how to handle cases in which there is a conflict between
satisfying the requirements of (i) absolute and (ii) comparative fairness. We show
that the prima facie plausible weighted proportional rule cannot handle such cases
and introduce and justify the absolute priority rule that can provide a definite answer
for them.4

Our new theory capitalizes on and extends three main advantages of Broomean
fairness theories. First, the Broomean fairness literature does something unique: it
focuses on analysing the concept of fairness itself and for its own sake (as opposed to
formulate a concept of fairness as a means to theorize about something else). Here,
our extension enhances the conceptual reach of the Broomean fairness literature. It
makes precise the popular ‘absolute’ fairness concern and shows how it interacts
with comparative fairness. Our fairness theory is thus capable of a more
comprehensive conceptual analysis of fairness. Second, the focus on fair division
problems such as Owing Money in the Broomean fairness literature gives it great
potential for practical application. Our clarification of the claims notion, and in
particular our development of the notions of individual and group claims,
significantly extends the practical reach of Broomean fairness theories. As we will
show, our theory allows us to analyse a greater variety of fairness cases. This, in turn,
increases the practical relevance of Broomean fairness theories. Third, Broomean
fairness theories have interdisciplinary potential, owing to the close kinship with the
‘bankruptcy’ literature in economic theory (e.g. Aumann and Maschler 1985;
Thomson 2003, 2019). However, this close kinship has hitherto been almost ignored
by the Broomean fairness literature in philosophy. Partly, this is due to the
mathematical nature of the economic theories. Partly, this is due to subtly differing
assumptions in both fields. Our theory, owing to the claims distinctions we will

4One restriction of the present analysis is that we will only study and apply the Fairness formula with
respect to problems with ‘divisible good’, such as in Owing Money. We have dealt with the allocation of
‘indivisible goods’ (such as horses, or seats in a parliament) from a Broomean perspective in earlier work
(Wintein and Heilmann 2018). The Fairness formula can in principle be applied to such indivisible cases,
and we will take up this issue in future work.
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introduce, allows us to easily translate between both literatures. We will also
introduce a general framework of ‘modelling’ fair division problems that captures
how and where different fairness theories are similar and where they differ. Our
contribution thus opens up the potential for Broomean fairness informing economic
fairness theories and vice versa. In the article ‘How to be absolutely fair, part II:
philosophy meets economics’, we provide a detailed demonstration of this latter
advantage of building bridges between Broomean fairness theories in philosophy
and the ‘bankruptcy’ fairness literature in economics.5

We proceed as follows. Section 2 formulates a notion of claims fit for absolute
and comparative fairness, by introducing the notions of claim strengths and claim
amounts, of notional and absolute claims, and of individual and group claims.
Section 3 presents the fairness formula which accommodates absolute fairness as a
matter of priority over comparative fairness. It also shows how to generally model
and analyse fair division problems, and justifies the absolute priority rule. Section 4
discusses the two-dimensional nature of fairness, and in particular how the
comparative and absolute dimension interact. It also illustrates the advantages of
our theory over other accounts in the literature. Section 5 concludes.

2. Claims for Absolute and Comparative Fairness
We concur with Piller (2017) that one can understand the notion of a (Broomean)
claim as a ‘duty owed to the agent’ intuitively, and we will by and large rely on this
understanding.6 We will not present an account of, for instance, the sources of
claims or of how claims work in moral deliberation.7 We will, however, introduce and
discuss various notions that are associated with this intuitive understanding of the
notion of a claim. First, wemake explicit the notion of a claim ‘amount’ that is implicit
in Broome’s account. Second, we introduce a distinction between notional and
absolute claims. Third, we extend the Broomean claims to cover both individuals and
groups. All three precisifications of the Broomean claim concept make it fit to deal
with absolute and comparative fairness. Finally, we make explicit the notion of claim
satisfaction that we adopt in this article andmake precise: (a) what it means to say that
one allocation satisfies claims to a larger extent than another, and (b) what it means to
say that an allocation satisfies claims in proportion to their strength.

2.1. Claim strength and claim amounts

According to the Broomean formula, claims should be satisfied in proportion to
their strength. Besides a strength, each claim has an amount. Although the

5Our article thus focuses on improving the internal coherence and the capacities of Broomean fairness
theories, and we also join forces with the economic literature. The question of how our fairness theory finds
its place in the broader moral landscape, in particular how it relates the value of fairness to other moral
values, we will take up elsewhere.

6Broome contrasts claims with teleological reasons and side-constraints but does not offer a detailed
account of the nature of claims. Hence, in this sense his theory of fairness is incomplete. However, as Piller
(2017: 216) observes, ‘this incompleteness might not matter : : : because we understand talk of claims pre-
theoretically’.

7See Hooker (2005) and Kirkpatrick and Eastwood (2015) for discussing these aspects.
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Broomean formula does not explicitly mention the amount of a claim, the notion is
presupposed by the notion of satisfaction, which is explicitly mentioned by the
formula. For the extent to which a claim is satisfied depends on the good received
and the amount of the claim: amounts are needed to determine satisfaction.

As an example, consider Owing Money (cf. section 1). Romeo is the distributor in
Owing Money. He owes it to Abram to repay his debt: Abram has a claim to be
reimbursed by Romeo. As it takes 20 to reimburse Abram, the claim of Abram has
an amount of 20. If Abram receives 10, his claim to reimbursement is satisfied
for 10

20 � 100% � 50%.
Besides an amount, each claim has a strength. The strength of a claim specifies

how strong the reason is, as compared with the reasons for satisfying the claims of
other agents, for satisfying that particular claim. That is, claim strength is a strictly
comparative notion. To illustrate this, consider Owing Money once more. Romeo
has just as much reason to reimburse Abram as he has to reimburse Benvolio: both
have been promised to be paid back. That is, the claims of Abram and Benvolio – to
get reimbursed by Romeo – are equally strong. Thus, Abram and Benvolio have
equally strong claims, with amounts of 20 and 60 respectively.

In Owing Money the claims are equally strong. But claims are not always equally
strong, as the next example illustrates.

Investing Time. Anna and Beta have invested time in realizing a joint project.
For a certain period of time, Anna has spent one day a week on the project, whereas
Beta has spent three days a week on it. After some time, the value of their project is
20. Anna and Beta split apart and their fiduciary, Rachel, is responsible for the
division of the 20. How, in order to be fair, should Rachel divide the 20?

As Anna has contributed to realizing the joint project, Rachel the distributor in
Investing Time, owes it to Anna to give her a share of its value. That is, Anna has a
claim to (a share) of the project’s value. Similarly, Beta has a claim to (a share of) the
project’s value. As the value of their joint project is 20, we say that the amount of the
respective claims of Anna and Beta is 20. So Anna and Beta have claims with equal
amounts but clearly, Beta’s claim is stronger. Indeed, (all else being equal) it is
natural to say that Beta’s claim is three times as strong as Anna’s claim, in virtue of
Beta’s time commitment that is three times as large. We will compactly summarize
the claims-lesson of this subsection in a bullet-point and we will continue this
practice in further subsections.

• A claim has both an amount and strength.

This seemingly simple observation is not only important, but ignoring or not
fully analysing it has the potential to hamper fairness discussions, as we will
illustrate in section 4 of this article.

2.2. Notional and absolute claims

Investing Time illustrates that claims may come in different strengths. But, when
compared with Owing Money, it also illustrates a further important distinction: that
between absolute and notional claims.
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To illustrate the difference between what we will call absolute claims and notional
claims, compare the following true statements about (1) Owing Money and (2)
Investing Time respectively:

(1) Abram has a claim to 20 that is equally strong as Benvolio’s claim to 60.
(2) Anna has a claim to 20 that is 1

3 times as strong as Beta’s claim to 20.

Whereas Abram and Anna both have claims with an amount of 20, these claims are
claims of different types. To see this, let’s discuss the claims of Abram and Anna in
turn. Abram’s claim to be reimbursed by Romeo is not determined by comparisons
with any other claimant’s claims or how others are treated. We call Abram’s claim
absolute. As Hooker (2005) puts it:

We might say that what Broome’s theory demands is that I treat each of [the
agents] fairly in comparison with how I treat the other of them. This is
comparative fairness. But if individual or absolute fairness towards anyone is a
matter of whether I give him or her the response owed him or her, never mind
how others have been treated, then I have not treated either fairly. (Hooker
2005: 340)

Gerard Vong (2018) agrees and proposes to distinguish between different types
of claims:

[Absolute]8 claims are a subset of all claims, namely those claims that are
determined without comparison with the treatment or claims of one or more
others. (Vong 2018: 68)

Absolute claims require full satisfaction. When they are not completely satisfied, the
claimant does not get all they should get. For instance, when Romeo realizes allocation
10; 30� � he fulfils the requirements of the Broomean formula. And one might say that
he has done all for promoting fairness that he was able to, given what Owing Money
describes about the situation at hand: all he had left was 40. However, as Abram’s
absolute claim does not receive full satisfaction, something is wrong. What is wrong is
that it is non-comparatively, i.e. absolutely, unfair to Abram that he remains 10 short.
Absolute claims are, as a subset of all claims, duties owed to the agent. In particular:

• Agent A has an absolute claim with an amount a if the distributor owes it to A
to allot her all of a, irrespective of what claims other agents may have.

Absolute claims are a subset of all claims. Any claim that is not absolute we call a
notional claim. In Investing Time, Anna contributed to the realization of the joint
project, in virtue of which she has a claim to its value of 20. Anna’s claim is not
absolute and hence notional. To see this, note that when Anna does not get the full
20 it does not follow that something is wrong. In particular, nothing is wrong with
Anna receiving 5 which, intuitively, is her ‘fair share’.

8Vong uses ‘individual’ for what we label ‘absolute’. Since our theory also covers fairness for groups, we
reserve the label ‘individual’ for clearly distinguishing between individual and group fairness.
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So, Abram has an absolute claim to 20: he should get all of the 20, irrespective of
which other claimants are around and irrespective of how much money Romeo has
left. Anna’s claim to 20 is notional: she should get a part of the 20, a part which is
determined by comparing her claim with that of others. More generally:

• Agent A has a notional claim with an amount a if the distributor owes it to A to
allot her a part of a, a part which is determined by comparing her claim with
that of others.

So whether an agent has an absolute or notional claim with amount a, the
distributor never has the duty to allot more than a to the agent. Our distinction
between notional and absolute claims is similar to Vong (2018) and others (e.g.
Hooker 2005; Saunders 2010; Lazenby 2014; Curtis 2014). Indeed, it records, in
precise fashion, a long-standing concern for analysing absolute fairness that is
present in the Broomean fairness literature.

Next, we turn to the distinction between individual and group claims.

2.3. Individual and group claims

In Investing Time, the individuals Anna and Beta both have notional claims, with an
amount of 20, grounded in the joint realization of their project.

However, Investing Time also involves an absolute claim. For, as Anna and Beta
jointly realized the value of 20, Rachel owes it to Anna and Beta together to allot the
20, and all of the 20, to them. That is, the group consisting of Anna and Beta has a
claim to 20 that requires full satisfaction: the group consisting of Anna and Beta has
an absolute claim with an amount of 20.

We concur with Broome that a claim is ‘a duty owed to the agent’ herself, as is
also apparent from our account of absolute and notional claims. But we add that
it is important to distinguish between individual and group claims. Individual claims
are duties owed to individual (receiving) agents. Group claims are duties owed to
groups of individual (receiving) agents. As we will see later, this extension will
significantly increase the conceptual reach and interdisciplinary potential of
Broomean fairness.

• A claim is a duty owed to an agent, which can either be an (receiving)
individual or a group of (receiving) individuals.

Next we discuss a few salient notions related to claim satisfaction.

2.4. Claim satisfaction: constrained

In Owing Money, Abram has a claim with an amount of 20. Suppose that Abram is
allotted 30 by Romeo. Thus, Abram’s claim to 20 is fully satisfied and he receives ‘a
gift on top of that’ equal to 10. As a receipt of 20 fully satisfies his claim, we say that,
although 30 amounts to 150% of Abram’s claim amount, by receiving 30 the
satisfaction of his claim of 20 is (only) 100%. More generally, when an agent has a
claim with an amount a, that claim is fully satisfied when the agent receives a (or
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more). No doubt, Abram may prefer to receive more than the amount of his claim.
But whereas receipts that exceed 20 may satisfy Abram’s preferences, they do not
count towards the satisfaction of his claim. That is, we take it that, in virtue of the
very meaning of claim satisfaction, claim satisfaction is constrained:

• The satisfaction of a claim is constrained by its amount a : it has a maximum of
100%, realized by receiving any amount that is greater-than or-equal-to a.

When Abram receives 10, in Owing Money, his claim of 20 receives
10
20 � 100% � 50% satisfaction. For short, we write: Sat 10; 20� � � 50%. Likewise
when, in Investing Time, Anna and Beta receive 10, their claims of 20 receive 50%
satisfaction but in addition, the group consisting of Anna and Beta together receives
10� 10 � 20 so that its (absolute) group claim of 20 receives 10�10

20 � 100% � 100%
satisfaction, or Sat 20; 20� � � 100%.9

2.5. Claim satisfaction: comparing allocations

When Abram is allotted 10 in Owing Money, his claim with an amount of 20 is
satisfied to a larger extent than when he is allotted only 5 : indeed, Sat 10; 20� � is
strictly greater than Sat 5; 20� �. What we are interested in, however, is comparing
allocations in terms of the extent to which they satisfy claims: does allocation
10; 15� �, in which Abram receives 10 and Benvolio receives 15, satisfy claims to a
larger extent than allocation 9; 15� �? In order to answer that question and, more
generally, to compare allocations in terms of the extent to which they satisfy claims,
we will rely on the following criteria for individual and groups claims respectively.

• Allocation x satisfies the claims of the individuals to a larger extent than
allocation y when the satisfaction afforded by x to each of the individuals is
greater than or equal to that afforded by y and strictly greater for at least one
individual.10

• Allocation x satisfies the claim of a group of individuals to a larger extent than
y when the sum-total allotted to these individuals by x satisfies their group
claim to a larger extent than the sum-total allotted to them by y.11

9In both Owing Money and Investing Time, claim satisfaction is linear. While in this article, we only
consider fair division problems in which claim satisfaction is linear, we do not commit to the view that claim
satisfaction is linear tout court, i.e. that claim satisfaction is linear in all fair division problems. To see why
not, suppose that Luc needs 20 milligrams of a medicine in order to avoid that he becomes paralysed. Also,
suppose that any intake of medicine less than 20 milligrams is fully ineffective. We owe it to Luc to save him
from becoming paralysed so that Luc has a claim to be saved, for which we need 20 milligrams of medicine.
Luc’s (absolute) claim then, is conveniently represented as a claim with an amount of 20. But when Luc
receives 10 milligrams, his claim to be saved is not satisfied at all so that, on the proposed representation of
this situation, claim satisfaction is not linear. For more discussion of such cases, see also Hausman (2023:
134ff.).

10That is: Sat xi; ai� � ≥ Sat yi; ai
� �

for all i and Sat xi; ai� � > Sat yi; ai
� �

for some i in N .
11So when group N has a claim with amount E the condition is that Sat

P
i2N xi; E

� �
> Sat

P
i2N yi;E

� �
.
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Note that our criteria of comparison is rather minimal: we compare allocations by
comparing claim satisfaction in an ordinal and component-wise manner. For sure,
in 10; 20� � for Owing Money, claims are satisfied to a larger extent than in 9; 20� �.
And, as satisfaction is constrained, in 20; 20� � claims are satisfied to a larger extent
than in 25; 15� �: in both allocations Abram’s claim receives 100% satisfaction,
whereas Benvolio’s claim receives more satisfaction in the first allocation than in the
latter. For Investing Time, the absolute claim of the group of Anna and Beta is
satisfied to a larger extent by one allocation than another just in case the total sum
that is allotted by the former is larger than that of the latter.

For quite a few allocations, though, our criteria do not declare one of them as
satisfying claims to a larger extent than the other. For example, in 5; 2� �Abram’s claim
is satisfied to a larger extent than in 4; 30� �, but for Benvolio it is just the other way
around. Hence, in 5; 2� � claims are not satisfied to a larger extent than in 4; 30� � but
neither are claims satisfied to a larger extent in 4; 30� � than in 5; 2� �. Should we then
say that, in 5; 2� � and 4; 30� �, claims are satisfied to the same extent? Or should we
say that 5; 2� � and 4; 30� � are incomparable with respect to the extent to which they
satisfy claims? For the purposes of this article, we need not and will not answer this
question: it will suffice to compare allocations by the extent to which they satisfy claims
on the basis of the above, ordinal, criteria only. In particular, our criteria suffice to
specify the notion of an allocation which satisfies claims to as large an extent as possible.

• Allocation x satisfies claims to as large an extent as possible just in case there is
no allocation y available which satisfies claims to a larger extent than x does.

For Owing Money, e.g. allocations 0; 40� �, 10; 30� � and 20; 20� � all satisfy the
absolute individual claims to as large an extent as possible. But allocation 25; 15� �
does not as e.g. allocation 20; 20� � satisfies claims to a larger extent than 25; 15� �
does. For Investing Time, any allocation that allots 20 in total satisfies the absolute
group claim to as large an extent as possible.

2.6. Claim satisfaction: proportional to strength

The last notion that we discuss is that of an allocation in which individual claims are
satisfied in proportion to their strength. For Owing Money, individual claims are
satisfied in proportion to their strength in e.g. allocation 10; 30� �. For, in this
allocation, the equally strong claims of Abram and Benvolio receive equal satisfaction
(both 50%). But also in 5; 15� � are claims satisfied in proportion to their strength: for
here, the equally strong claims also receive equal satisfaction (both 25%). For
Investing Time, individual claims are satisfied in proportion to their strength in e.g.
5; 15� � or 1; 5� � : in these allocations, Beta’s claim, which is three times as strong as
Anna’s claim, receives three times as much satisfaction. More generally, we say that:

• In allocation x individual claims are satisfied in proportion to their strength just
in case, for any two individual agents i and j, the following holds. If i ’s claim is
σ times as strong as j ’s claim then, in allocation x, the satisfaction of i ’s claim is
σ times the satisfaction of j ’s claim, i.e. Sat xi; ai� � � σ� Sat xj; aj

� �
.
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We have put forward a criterion which specifies whether or not an allocation satisfies
claims in proportion to their strength. For the purposes of this article, we need not
and will not define a measure which allows us to compare allocations in terms of the
extent to which they satisfy claims in proportion to their strength.

3. Modelling Fairness
We now turn to the key elements of our fairness theory. We first present some
general desiderata for fairness theories put forward in Wintein and Heilmann
(2020). Building on this approach, we explain what is implicitly involved in any
effort to analyse fair division problems and make recommendations for their
resolution. We then make the notion of a ‘Broomean problem’ precise and
introduce the Fairness formula. Thereafter, we introduce the weighted proportional
rule and the absolute priority rule. Only the latter rule realizes the Fairness formula
in all fair division cases, in particular in those in which the requirements of
comparative and absolute fairness conflict.

3.1. Modelling fair division: fairness structures and functions

Consider the fair division problems Owing Money and Investing Time from the
previous sections. Their description has been purely verbal. For analysing them, it is
important to make explicit how the information in these descriptions is understood.
This step in the analysis of fair division problems we call modelling a fair division
problem. Importantly, this step is implicit in all and any fairness analysis. The
following discussion makes precise how the description of a given fair division
problem is used in the fairness analysis.

In a nutshell, to solve a fair division problem is to (1) model (represent) the
problem as a fairness structure and to (2) recommend an allocation for the problem
by applying a fairness function to that structure. The two-stage process of solving a
fair division problem is summarized by Figure 1.

A fairness structure is a formal structure which is interpreted in terms of
theoretical fairness notions and on the basis of which, by applying a fairness function
to it, fair divisions are obtained:

By a [ fairness function], we mean a function that assigns an allocation of the
good-to-be-divided for each fairness structure that is within its domain. A
fairness structure is obtained by modelling a fair division problem, that is by
extracting the characteristics of the problem on the basis of which, according to
the model, fair division should proceed. (Wintein and Heilmann 2020: 722)

Fair division
problem

Fairness
structure

Fairness
function

represent as

allocation for

specify a

apply to

Figure 1. Solving a fair division problem.
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The fairness structure we use in this article are what we call Broomean problems,
introduced in the next section.12 The fairness functions associated with Broomean
problems we call division rules. Many division rules exist but we will motivate the
use of one specific division rule.

3.2. Broomean problems

We introduce Broomean problems, which are formal representations of fair division
problems. A Broomean problem is a structure

B � E;N; a; s� �;
where the estate E > 0 specifies the amount of the good-to-be-divided amongst the
individuals in N � 1; . . . nf g. An individual i 2 N has a claim ai; si� � with amount
ai ≥ 0 and strength si > 0, as specified by amounts-vector a and strengths-vector s.13

Fair division problems Owing Money and Investing Time can be represented as
Broomean problems, augmented with information about the type of claims involved, as
follows.14

The two representations O and I record the estate (good to be divided), the
individuals involved, the respective amounts they have a claim to, and the respective
strength of their claims.15 For simple fair division problems like Owing Money and
Investing Time, it is straightforward (and uncontroversial) how to represent them as
Broomean problems. However, as we will see, some fair division problems may be
plausibly represented by more than one Broomean problem. And so, what fairness
requires in a given fair division problem crucially depends on its representation as a
fairness structure.

Table 1. Owing Money, Investing Time and their representations O and I

Broomean problem Individuals claims Group claim

O � 40; A;Bf g; 20; 60� �; 1
2 ;

1
2

� �� �
absolute none

I � 20; A;Bf g; 20; 20� �; 1
4 ;

3
4

� �� �
notional absolute

12Other examples of fairness structures include apportionment problems (cf. Balinski and Young 2001;
Wintein and Heilmann 2018), cooperative games (cf. Aumann and Maschler 1985; Wintein and Heilmann
2020) and weighted bankruptcy problems (cf. Casas-Méndez et al. 2011). Weighted bankruptcy problems
will be discussed in detail in the article ‘How to be absolutely fair, Part II: philosophy meets economics’.

13As claim-strengths are strictly comparative, they are only determined up to an arbitrary positive
multiplicative constant ρ : if s � ρ � �s0 then vectors s and s0 determine the same claim-strengths. However,
for ease of exposition and analysis we will normalize claim strengths and assume that

P
i2N si � 1.

14Note that a Broomean problem B � E;N; a; s� � as such does not contain information about whether
claims are absolute or notional and about whether or not group claims are involved. For sake of
convenience, we have chosen not to represent this information in B but rather to display it separately, as in
Table 1. As such, a Broomean problem captures, strictly speaking, only part of the salient fairness structure.

15For Investing Time, the group A;Bf g has a claim to 20.
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3.3. The Fairness formula

The essence of our theory of absolute and comparative fairness can be summarized
by the following Fairness formula, which exploits all the notions that we defined and
discussed in the previous section. The Fairness formula accommodates absolute
fairness as a matter of priority over comparative fairness.

Fairness formula (FF). Fairness requires one: (i) to satisfy absolute claims (of
individuals and groups) to as large an extent as possible, subject to the constraint
that no one receives more than they have a claim to; (ii) to satisfy (absolute and
notional) individual claims in proportion to their strength; (iii) to prioritize
requirement (i) over (ii) whenever these two conflict, but in such a way that one
does as much as possible to respect (ii).

The Fairness formula offers guidance for realizing fair divisions. How? In a nutshell,
by modelling fair division problems as Broomean problems and applying the only
division rule that is justified by the Fairness formula: the absolute priority rule. The
absolute priority rule is a refinement of the so-called weighted proportional rule
and it is instructive to consider the latter first, before introducing the absolute
priority rule.

3.4. The weighted proportional rule

In Owing Money and Investing Time, there is not enough to go around: the sum of
claim amounts exceeds the estate. Although that is typically the case in a fair division
problem, it will be instructive to discuss, in section 4, cases of abundant good, i.e. cases
in which the estate exceeds the sum of claims. That is why it is helpful to introduce the
notion of a so-called truncated estate E, which cannot be larger than the sum of all
claim amounts. Formally, E is equal to either the estate E or the sum of claim amounts,
whichever is smaller. So for cases such as Owing Money and Investing Time, where
there is not enough to go around, the truncated estate E equals the estate E.

The weighted proportional rule P proposes to divide the truncated estate in a
Broomean problem B proportional to the strength-weighted claim amounts of the
individuals, so that each individual i receives:

P�B�i �
si � aiP
j2N sj � aj

� E (1)

For Owing Money and Investing Time, the recommendations of the weighted
priority rule, P O� � � 10; 30� � and P I� � � 5; 15� �, are consistent with the Fairness
formula, as we will explain below.

For Owing Money, the Fairness formula demands the realization of allocation
10; 30� �. For in 10; 30� �, the equally strong (individual) claims of Abram and
Benvolio receive equal satisfaction (of 50% each) so that realizing this allocation
meets the requirements of comparative fairness. But also, in 10; 30� � no individual
receives more than his claim amount and there is no other allocation of the estate of
40 in which the absolute claims of Abram and Benvolio are satisfied to a larger
extent than in 10; 30� �. Hence, by realizing 10; 30� � Romeo meets the requirements
of absolute fairness as well. So, by realizing 10; 30� � Romeo lives up to the
requirements of both absolute and comparative fairness.
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For Investing Time, the Fairness formula demands the realization of allocation
5; 15� �, in which Beta’s (individual) claim, which is three times as strong as that of
Anna, receives three times as much satisfaction: realizing 5; 15� � meets the
requirements of comparative fairness. But also, in 5; 15� � no individual receives
more than their claim amount and there is no other allocation of the estate of 20 in
which the absolute claim of the group consisting of Anna and Beta together is
satisfied to a larger extent than in 5; 15� �. Hence, by realizing 5; 15� � Rachel meets
the requirements of absolute fairness as well. So, by realizing 5; 15� �, Rachel lives up
to the requirements of both absolute and comparative fairness.

The recommendation of the weighted proportional rule, P B� �, does not depend
on whether the (individual or group) claims in the B roomean problem to which P is
applied are absolute or notional. However, the justification of that recommendation
in terms of the Fairness formula does depend on whether we are dealing with
individual claims that are notional or absolute, and whether there are group claims:
for Owing Money, absolute fairness requires that the absolute individual claims
receive maximal satisfaction whereas for Investing Time, it is the absolute group
claim that should receive maximal satisfaction as a matter of absolute fairness. More
generally, it readily follows that for any Broomean problem with claim types as in
Owing Money or Investing Time, absolute fairness requires to allot as much of the
(truncated) estate as possible in such a way that no individual receives more than
they have a claim to. For Owing Money and Investing Time, this requirement of
absolute fairness can be realized conjointly with the requirement of comparative
fairness. However, as we will see in section 3.5, the joint realization of both
requirements of fairness is not possible for all Broomean problems. The next
proposition precisely delineates the Broomean problems for which this is possible.

Proposition 1. For any Broomean problem B � E;N; a; s� � : it is possible to
respect the requirements of both (i) absolute and (ii) comparative fairness as
articulated by the Fairness formula if and only if P�B�i ≤ ai for each individual i. In
that case, P B� � respects both (i) and (ii).

Proof: See the article ‘How to be absolutely fair, Part II: philosophy meets
economics’, section 3.1. □

So, the Fairness formula recommends to realize P B� � whenever P�B�i ≤ ai for
each individual i as for these cases, P B� � respects the requirements of absolute and
comparative fairness. However, when P�B�i > ai for some individual, it is simply
not possible to be both absolutely and comparatively fair. For such cases, the
Fairness formula prioritizes absolute fairness. Next, we will illustrate this proposal
and explain that it demands that we trade in the weighted proportional rule P for the
absolute priority rule Py. Indeed, the absolute priority rule captures and
operationalizes the content of the Fairness formula.

3.5. The absolute priority rule

Consider the following fair division problem.
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Needing Owed Money. Romeo owes 20 to Abram and 60 to Benvolio and has 80
left. Abram needs his money twice as strongly as Benvolio. Romeo is bound to care
for the needs of Abram and Benvolio, such that Romeo’s reason for reimbursing
Abram is twice as strong as his reason for repaying Benvolio. How, in order to be
fair, should Romeo divide the 80?

Needing Owed Money is naturally represented as:

The weighted proportional rule P recommends allocation P N� � � 32; 48� � for
N eeding Owed Money, which is neither absolutely nor comparatively fair.
Moreover, it follows from Proposition 1 that there is no allocation for N eeding
Owed Money which satisfies the requirements of both absolute and comparative
fairness. What to do?

The response to Needing Owed Money seems straightforward: in order to be fair,
Romeo just needs to fully reimburse Abram and Benvolio, i.e. he must realize
allocation 20; 60� �. We concur that this is, indeed, what fairness requires. But note
that this judgement comes down to prioritising absolute fairness over comparative
fairness.

For, as Romeo’s reason for reimbursing Abram is twice as strong as it is for
reimbursing Benvolio, Abram’s claim with an amount of 20 is twice as strong as
Benvolio’s claim with an amount of 60. Comparative fairness, which requires that
individual claims are satisfied in proportion to their strength, then requires that
Abram’s claim receives twice as much satisfaction as the claim of Benvolio. To
ensure this, Romeo can realize, for instance, allocation 20; 30� �where Abram’s claim
receives 100% and where Benvolio’s claim receives 50% satisfaction. Should Romeo
then realize 20; 30� �? No, as it just seems absurd to disrespect Benvolio’s absolute
claim in order to ensure that the claims of Abram and Benvolio are satisfied in
proportion to their strength: fairness should not demand to level down.

In 20; 60� �, the absolute claims of Abram and Benvolio are satisfied to as large an
extent as possible and neither Abram nor Benvolio receives more than they have a
claim to: realizing 20; 60� � fulfils the requirements of absolute fairness. Moreover,
20; 60� � is the only allocation which fulfils the requirements of absolute fairness.
However, as the claims of Abram and Benvolio receive the same satisfaction in
20; 60� �, their claims are not satisfied in proportion to their strength. Indeed, to say
that fairness requires that Romeo realizes 20; 60� � is to prioritize the absolute
dimension of fairness over the comparative one.

Whereas Needing Owed Money illustrates that the Fairness formula prioritizes
absolute fairness, the example does not aptly illustrate what it means to do so while
one does ‘as much as one can to satisfy claims in proportion to their strength’. To
illustrate the latter feature, consider:

More Needed Money. Romeo owes 20 to Abram, 60 to Benvolio, 40 to Capulet
and has 80 left. Abram needs his money twice as strongly as both Benvolio and
Capulet do. How, in order to be fair, should Romeo divide the 80?

Broomean problem Individual claims Group claim

N � 80; A;Bf g; 20; 60� �; 2
3 ;

1
3

� �� �
absolute none
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More Needed Money is naturally represented as:

The weighted proportional rule P recommends allocation 22:86; 34:29; 22:86� �
for More Needed Money, which is neither absolutely nor comparatively fair.

The absolute priority rule does better. We first discuss the example and then
define the rule. According to the absolute priority rule Py, we need to reimburse
Abram, by allotting him 20, as his weighted proportional share of 22:86 exceeds his
claim amount of 20. After reimbursing Abram, the remaining estate is 60 which,
according to the absolute priority rule, has to be divided amongst the remaining
individuals Benvolio and Capulet in accordance with the weighted proportional
rule. Doing so yields 36 for Benvolio and 24 for Capulet so that Py recommends
20; 36; 24� � for More Needed Money. In this allocation, Abram gets all of his claim
reimbursed whereas the claims of Benvolio and Capulet are, as the reader may care
to verify, satisfied in proportion to their strength.

So when there is no allocation that satisfies the requirements of both absolute and
comparative fairness, the absolute priority rule Py realizes an allocation that respects
the requirements of absolute fairness while ‘it does as much as possible to promote
comparative fairness’ by consecutive applications of the weighted priority rule P that
reimburse all individuals whose weighted proportional share exceeds their claim
amounts. More generally, and precisely, for any Broomean problem
B � E;N; a; s� �, the absolute priority rule Py recommends an allocation for B by
applying the following steps:

The absolute priority rule Py.

(0) Let ER denote the remaining estate, i.e. that part of the truncated estate which
has not been used for reimbursement thus far, and let NR denote the set of
remaining individuals, i.e. the individuals who have not been reimbursed
thus far.
Initially, set ER � E and NR � N .

(1) Use the weighted proportional rule to divide the remaining estate ER
amongst the individuals in NR and let x denote the resulting allocation.
If there is no individual for which xi > ai, allot xi to each i in NR.
Otherwise, move to step (2).

(2) Reimburse each individual for which xi > ai by allotting them their claim
amount ai, update ER and NR accordingly, and revisit step (1).

When we apply Py to Owing Money or Investing Time, we get that
Py O� � � 10; 30� � and Py I� � � 5; 15� � without visiting step (2) of Py ’s definition.
Applying Py to More Needed Money yields Py M� � � 20; 36; 24� �, for which we

Broomean problem Individual claims Group claim

M � 80; A;B; Cf g; 20; 60; 40� �; 1
2 ;

1
4 ;

1
4

� �� �
absolute none
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need to visit step (2) once. To see that it may be necessary to visit step (2) more than
once, consider a variant of More Needed Money which can be represented as
Broomean problem X :

X � 50; A;B;Cf g; 20; 10; 30� �; 1
2
;
2
6
;
1
6

� �� �

When we apply the weighted proportional rule to X , we find that
P X� � � 27:27; 9:09; 13:64� � so that only Abram’s weighted proportional share
exceeds his claim amount. So we need to reimburse Abram and divide the
remaining 30 amongst Benvolio and Capulet in accordance with the weighted
proportional rule. Doing so yields 12 for Benvolio and 18 for Capulet so that
Benvolio’s weighted proportional share exceeds his claim amount. Hence, we also
need to reimburse Benvolio so that, after two rounds of reimbursement, the absolute
priority rule recommends 20; 10; 20� � for X .

4. Two-dimensional Considerations
In this section we further motivate and illustrate the two-dimensional conception of
fairness that is articulated by the Fairness formula and substantiated by the absolute
priority rule. Although the three specific topics that we will discuss in this section
are more or less independent from one another, it is apparent from all three
discussions that modelling is a crucial, and often neglected, step in any fairness
analysis. More specifically, in this section we will discuss the following topics.

In section 4.1 we discuss the constraint that ‘no one receives more than they have
a claim to’ that is part of the requirement of absolute fairness as articulated by the
Fairness formula. As claim satisfaction can never exceed 100%, one may wonder
whether this constraint is not in fact redundant. In section 4.1 we explain that
it is not: sometimes the constraint plays a crucial role in determining the
recommendations that follow from the Fairness formula.

In section 4.2 the distinction between claim strengths and amounts takes centre
stage. We explain that previous authors have either (1) neglected the distinction
between claims strengths and amounts altogether, such as Curtis (2014) or (2) failed
to properly conceptualize the strength-amount distinction, such as Morrow (2017).
As a consequence, the corresponding accounts of fairness are (1) of limited scope or
(2) solve fair division problems in a way that cannot be properly justified by
appealing to fairness. Our theory of fairness improves upon both (1) and (2).

In section 4.3 we turn to cases of abundant good and explain how Saunders
(2010) suggests that these cases ought to be analysed by a Broomean theory of
fairness. We first distinguish between fairness and subjective equity (which is defined
in terms of preferences and for which no-envy is key). We then carefully distinguish
between different types of Broomean problems. We use both distinctions to provide a
normative motivation that can underpin Saunders’s intuitive suggestions.

More generally, we demonstrate the fruitfulness of the claims-based notions and
the two-dimensional conception of fairness that we have introduced in this article.
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4.1. The constraint of absolute fairness

Consider the following fair division problem.

Combi-Deal. Anton sells pizzas for 10 per piece and Bernard sells ice-creams for
6 per piece. They decide to join forces and set up a combi-deal: for 14 customers can
buy a ticket, either at Anton’s or Bernard’s shop, which gets them a pizza at Anton’s
and an ice-cream at Bernard’s. Anton sells twice as many tickets for the combi-deal
as Bernard. How to fairly divide the joint revenues of 14 per combi-deal amongst
Anton and Bernard?

The question of what fair division amounts to in Combi-Deal has a less clear-cut
answer than in the previous problems that we considered.

What is clear-cut is that Anton and Bernard together have an absolute group
claim with an amount of 14. For, as it is their joint combi-deal, the associated
revenues of 14, and all of the 14, are owed to them. Also, it is clear that the individual
claims of Anton and Bernard are notional. What is less clear, however, is how to
represent the amounts and strengths of these individual claims. More than one way
of doing so suggests itself, including:

The rationale of representing Combi-deal as C1 is as follows.
Rationale of C1. Anton and Bernard have a claim to receive a part of the price of

the combi-deal ticket. Thus, the amount of their (notional) claims is 14. The
strength of their respective claims is a function of the price of their individual
product and the fraction of combi-deal tickets that they sold. A plausible candidate
for this function is the product function: the strength of Anton’s claim is 10 � 23 as the
price of a pizza is 10 and as Anton sold 2

3 of the tickets. Similarly, the strength of
Bernard’s claim is 6 � 13. Normalising the claims strength yields a strength of 10

13 for
Anton and of 3

13 for Bernard
16.

To be sure, we are not suggesting that one should represent Combi-Deal as C1. All
we suggest is that it is not, at least not prima facie, implausible to represent it as such.
When Combi-Deal is represented as C1, fairness requires that allocation
10:77; 3:23� � is realized. For, 10:77; 3:23� � satisfies the absolute group claim of
Anton and Bernard to as large extent as possible while it does not allot more to the
agents than their individual claim amount of 14. But also, in 10:77; 3:23� � the
claims of Anton and Bernard are satisfied in proportion to their strength. Hence,
10:77; 3:23� � satisfies the requirements of both absolute and comparative fairness.
Still, one might argue that something is wrong with recommending 10:77; 3:23� �

for Combi-Deal. For in this allocation, Anton receives more from selling a pizza via
the combi-deal (10:77) than from just selling a pizza (10). And this, so one may

Broomean problem Individual claims Group claim

C1 � 14; A;Bf g; 14; 14� �; 10
13 ;

3
13

� �� �
notional absolute

C2 � 14; A;Bf g; 10; 6� �; 2
3 ;

1
3

� �� �
notional absolute

16See footnote 3.2: a Broomean problem records normalized claim strengths. Here Anton and Bernard’s
normalized strengths are, respectively, 20=326=3 � 10

13 and
6=3
26=3 � 3

13.

642 Stefan Wintein and Conrad Heilmann

https://doi.org/10.1017/S0266267123000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267123000408


argue, is not how it should be. For by its nature, the combi-deal yields lower joint
revenues (14) from selling a pizza plus ice-cream than from selling these products
separately (10� 6 � 16). It seems reasonable that the lower joint revenues from
selling a combi-deal translate into associated lower revenues for the pizza and ice-
cream that are sold as part of the deal: any fair allocation of the 14 should be such
that Anton is allotted not more than 10 while Bernard is allotted not more than 6.
Recommending 10:77; 3:23� � for Combi-Deal is not fair! One may very well concur
with this argument and advocate the Fairness formula at the same time. Indeed, the
recommendation 10:77; 3:23� � depends as much on the Fairness formula as it does
on one’s representation of Combi-Deal as C1. For a proponent of the argument
against 10:77; 3:23� � just given, it is natural to represent Combi-Deal as C2, with the
following rationale.

Rationale of C2. Anton and Bernard have claims to receive a part of the regular
revenues of their individual products that are part of the combi-deal. Hence, the
amounts of the (notional) claims of Anton and Bernard are 10 and 6 respectively.
The strength of their respective claim is determined by the fraction of combi-deal
tickets that they sold so that Anton’s claim is 2 times as strong as Bernard’s claim.

Applying the Fairness formula to C2 yields recommendation 10; 4� �, as the
reader may care to verify. In 10; 4� � no agent receives more from selling their
product via the combi-deal than from only selling their own product: no agent
receives more than he has a claim to.

The constraint of absolute fairness that ‘no one receives more than they have a
claim to’ plays a crucial role in deriving recommendation 10; 4� � on the basis of C2.
Let’s suppose that we delete the constraint of absolute fairness from the Fairness
formula. In that case, the resulting formula would, on the basis of C2, recommend
allocation 11; 3� � in which Anton receives more than he has a claim to! To see this,
observe that in 11; 3� � the absolute claim of fAnton, Bernardg is satisfied to as large
an extent as possible (as it is in any allocation that allots 14 in total). But also, in
11; 3� � Anton’s claim with an amount of 10 is fully satisfied, and so receives 100%
satisfaction, whereas Bernard’s claim with an amount of 6 receives 50% satisfaction,
so that the individual claims of Anton and Bernard are satisfied in proportion to
their strength. Hence, representation C2 of Combi-Deal illustrates the need to
explicitly add the absolute constraint to the Fairness formula: without the
constraint, the formula may yield recommendations that allot more to an individual
than they have a claim to, which conflicts with the idea of a claim amount as an
upper-bound on the receipts of the claimant.

4.2. On claim strengths and amounts

The Broomean formula only explicitly mentions claim strengths, but not amounts.
Yet, as explained in section 2, the Broomean formula does mention the satisfaction
of claims explicitly, which in turn depends on the good received and the amount of
the claim: amounts are needed to determine satisfaction.

While there are some contributions that distinguish between claim strengths and
amounts (e.g. Wintein and Heilmann 2018; Hausman 2023), many contributors
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have neglected the distinction between claims strengths and amounts altogether,
such as Curtis (2014). He develops a Broomean theory of fairness that identifies claims
with their amounts. As a consequence, his theory is of limited scope and, in particular,
cannot be used to analyse problems such as Investing Time.17 Or take Lazenby (2014),
who discusses his Broomean account of fairness only in relation to problems where all
individuals have claims, of varying strengths, to the same (amount of) good.18 Indeed, a
problem like Owing Money cannot be dealt with by Lazenby’s account. Moreover, the
fair division problems in section 3 involve agents with claims of varying amounts and
strengths: these problems are outside the scope of Curtis’s, Lazenby’s and in fact any
theory of fairness that we are aware of. In short, neglecting the strength-amount
distinction restricts the scope of some accounts of fairness.

A second, more subtle and complex, issue is the failure to properly conceptualize the
strength-amount distinction in some fairness accounts. To appreciate what is at stake,
recall that the modelling of a fair division problem is a crucial step in solving it on the
basis of the Fairness formula. This is illustrated by the two different representations of
Combi-Deal just discussed, which lead to different recommendations. But it is also
illustrated by an alternative representation of Owing Money that is sometimes given in
the literature which, on our account, is flawed. This alternative representation has been
worded19 most explicitly by David Morrow (2017), who writes that:20

For instance, if Romeo owes Benvolio and Abram sixty ducats and twenty
ducats, respectively, but has only forty ducats with which to repay them,
[fairness requires] that Romeo should give thirty ducats to Benvolio and ten to
Abram, since Benvolio’s claim on Romeo’s money was three times as strong as
Abram’s. (Morrow 2017: 671)

Thus, on Morrow’s analysis, Abram and Benvolio have claims to Romeo’s
money, which is 40, with the strength of their claims depending on the amount of
money owed. In term of Broomean problems, Morrow proposes the following
alternative model of Owing Money:

Oalt � 40; A;Bf g; 40; 40� �; 1
4
;
3
4

� �� �

Morrow writes that ‘[fairness requires] that Romeo should give thirty ducats to
Benvolio and ten to Abram’, i.e. that Romeo should realize 10; 30� � on the basis of

17See Wintein and Heilmann (2018) for a detailed development of this critique.
18More generally, the part of the Broomean fairness literature that discusses the fairness of (weighted)

lotteries only seems to discuss problems where all individuals have claims to the same (amount of
indivisible) good.

19Besides Morrow, also Sharadin (2016) analyses cases such as Owing Money along the lines of Morrow.
Further, Saunders (2010) seems to advocate a similar analysis given that he writes that he is ‘assuming, as
Broome seems to, that the strength of the claim is simply dependent upon the amount of money owed’.

20In fact, Morrow writes that the ‘Proportional Claims account’, which he ascribes to Broome (1990),
Rescher (2002) and Hooker (2005), entails that Romeo should give 30 ducats to Benvolio and 10 to Abram.
As Broome (1990) understands fairness to be a strictly comparative notion, whereas Rescher (2002) and
Hooker (2005) do not, summarizing their conceptions of fairness under one account, as Morrow does, is
unhelpful. However, this need not distract us.
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Oalt . This recommendation coincides with that of the absolute priority
rule: Py Oalt

� � � 10; 30� �.
However, Morrow does not tell us why fairness requires that Romeo should

realize 10; 30� �. On our account, the representation of Owing Money as Oalt is at
odds with the recommendation that Romeo should realize 10; 30� �. For, as we will
demonstrate below, the Oalt representation fails to capture the absolute claims
correctly. Without those, however, the requirements of absolute fairness, which only
deals with absolute claims, cannot be invoked to argue that Romeo has to realize
10; 30� � rather than, say, 5; 15� �.
The individual claims ascribed to Abram and Bevolio byOalt are clearly notional

and not absolute: Romeo owes it to Abram and Benvolio to give them a part of 40,
and there’s nothing wrong with one of them receiving less than 40. Nor does it make
sense to say that the group fAbram, Benvoliog has an absolute claim to 40. Romeo
owes 20 to Abram and 60 to Benvolio, for sure. But from this it does not follow that
Romeo owes anything to the group consisting of Abram and Benvolio. Indeed,
Abram and Benvolio may have never met, never interacted and be unaware of one
another’s existence: they do not form a group in any substantive sense. In sharp
contrast, Anna and Beta jointly produced the value of 20 in Investing Time, so the
group consisting of Anna and Beta has an absolute claim to receive all of the jointly
produced 20. But in Owing Money, there is no such joint production and it does not
make sense to ascribe an absolute claim to fAbram, Benvoliog.

But then, on Morrow’s analysis, there are no absolute claims in Owing Money at
all: Oalt can neither be understood as capturing absolute claims by the individuals
nor by the group. Hence, absolute fairness has nothing to say about the allocation
that Romeo should realize for Owing Money and, in particular, cannot explain why
Romeo should realize 10; 30� � rather than 5; 15� �. Although Morrow asserts that
fairness requires that Romeo realizes 10; 30� � in Owing Money, he cannot justify
this assertion owing to his representation of Owing Money as Oalt . As such,
Morrow’s analysis of Owing Money is flawed. Or so we argue.

We have illustrated and motivated the Fairness formula in some detail. We have
done so exclusively for fair division problems in which there was not enough to go
around: the amount to be divided was less than the sum of claims. However, in the
literature we also find some discussions of what (Broomean) fairness requires in
cases of abundant good. To further illustrate the Fairness formula, we will now apply
it to such cases.

4.3. Fairness and abundant good

In Fairness between competing claims, Ben Saunders (2010) criticizes Broome’s idea
that fairness is strictly comparative. Saunders (2010: 45) does so by considering a
case where he owes ‘£20 on one friend and £10 to another’ and remarks that ‘if I
have the money that I promised to pay you, then it is unfair of me either to keep it or
burn it and to repay less than I can’, hinting at the absolute dimension of fairness.
With respect to his example, Saunders then further remarks the following.

I assume it would still be fair if I was to pay them £40 and £20, respectively,
thereby giving each twice what they had a claim to, though Broome is not
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explicit on this point. If we were dividing business profits proportionately to
initial investment, this is what we would do, though if I am merely giving my
friends a gift on top of repaying what I owe then perhaps I should give each an
equal amount extra. (Saunders 2010: 45)

So, Saunders speculates about what fairness requires in cases of abundant good.
In fact, he does so with respect to two different fair division problems.

Abundant Money. Marta owes £20 to Alice and £10 to Bob and has £60 in his
pocket. How, in order to be fair, should Marta divide her money?

Profit. Ali and Benji have invested respectively £20 and £10 in a joint project.
After some time, Ali and Benji want to split apart and the question arises how the
value of their joint project, £60, should be divided. How, in order to be fair, should
Ben divide the £60?

Abundant Money and Profit are represented as follows:

When applied to A, the absolute priority rule recommends 20; 10� � in which
both claims receive the maximal satisfaction of 100%. Hence, 20; 10� � satisfies
claims to as large an extent as possible and, as the claims are equally strong, in
proportion to their strength. Now, any allocation in which Alice and Bob receive the
full amount of their claim or more, such as 25; 15� � or 30; 30� �, satisfies claims to as
large an extent as possible and in proportion to their strength. But 20; 10� � is the
unique allocation which has these two features and in which no agent receives more
than he has a claim to: the absolute constraint also plays a crucial role in the
derivation of 20; 10� � from the Fairness formula on the basis of A.

For sure, fairness does not require that Marta allots more to Alice and Bob than
they have a claim to. But suppose that Marta decides to use all of her £60 in order to
give Alice and Bob a ‘gift on top of repaying what [he owes]’ (Saunders 2010: 45).
Saunders suggests that in such a situation, Marta should ‘give each an equal amount
extra’, i.e. realize allocation 20; 10� � � 15; 15� � � 35; 25� �. We concur. However,
this requirement is not grounded in fairness, but rather in what Nicholas Rescher
calls subjective equity. As Rescher (2002: ix) explains, fairness is based on claims so
that ‘fairness is therefore something quite different from subjective equity as based
on the personal evaluation of distributive goods by the claimants involved’. An
important criterion of subjective equity is that of no-envy: an allocation of goods is
called envy-free when no individual prefers the share of another individual over her
own share.21 Now, as Alice and Bob both prefer to receive more money over less, the
only division of the gift that is envy-free is the equal division. Hence, when Marta

Broomean problem Individual claims Group claim

A � �60; A;Bf g; 20; 10� �; 1
2 ;

1
2

� �
absolute none

P � �60; A;Bf g; 60; 60� �; 2
3 ;

1
3

� �
notional absolute

21See e.g. Tinbergen et al. (1930/2021), Varian (1975), Dworkin (1981a, 1981b), Brams and Taylor (1996),
Olson (2018, 2020), Heilmann and Wintein (2021) for different literatures in which the notion of envy-
freeness plays a prominent role.
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realizes 22; 38� �, or 40; 20� � for that matter, Alice can complain that the realized
allocation is not envy-free. So, we concur with Saunders that whenMarta decides to
use her £60 to provide a gift to Alice and Bob on top what she owes them, there is a
sense in which she ‘should give each an equal amount extra’, resulting in allocation
35; 25� �. However, we submit that this sense of ‘should’ is grounded in subjective
equity, and not in (claims-based) fairness. When all claims are fully reimbursed, the
requirements of fairness are fully met: as there are no claims on ‘gifts on top of full
reimbursement’ fairness offers, in contrast to subjective equity, no guidance in how
to allocate abundant good.

So, by distinguishing between fairness and subjective equity, we can provide a
normative underpinning for Saunders’s intuitive suggestion for problems such as
Abundant Money. Moreover, our conceptual framework allows us to account for
the different recommendations for Abundant Money and Profit that Saunders
alludes to. Indeed, Abundant Money gives rise to A, in which the individuals have
absolute claims, whereas Profit is naturally represented as P, with individual claims
being notional and invested money affecting the strength of the claims. With respect
to P, the absolute priority rule recommends allocation 40; 20� � which accords with
Saunders’s suggestion.

5. Conclusions
We have made three key contributions. First, we have provided a new theory of
fairness – summarized by the Fairness formula – that accommodates a concern for
both comparative and absolute fairness. This theory improves the conceptual and
practical reach of Broomean fairness theory. The conceptual distinctions we have
introduced to formulate the theory are also of independent merit. They make
explicit several conceptual concerns present in the preceding literature on
Broomean fairness. It is also worth pointing out that the Broomean formula and
the Fairness formula have an ancient ancestor:

Aristotelian formula. Fairness requires that equals should be treated equally,
and unequals unequally, in proportion to relevant similarities and differences.
(Aristotle 2009, Nicomachean Ethics)

On Aristotle’ s view, fairness is thus equal treatment of equals, as well as the
demand to take into account the ‘relevant’ similarities and differences in a
proportional way. The Broomean concept of a claim can thus be seen as a more
precise, and demanding, way to spell out the requirement in the Aristotelian
formula. Likewise, the Fairness formula is also a precisification of the Aristotelian
formula.

Second, we have justified the absolute priority rule that gives an algorithmic
solution to any fair division problem that can be suitably represented as a Broomean
problem. We have also used our Fairness formula and absolute priority rule to
critically engage with recent contributions in the Broomean fairness literature.

Third, and generally, we have introduced a framework of modelling fair division
with fairness structures and fairness functions which makes modelling choices in the
analysis of fair division problems explicit. This general perspective has motivated
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the Broomean problems we have employed to justify the absolute priority rule. What
is more, formulating our theory in terms of Broomean problems facilitates
translation and interaction between theories in economic theory and Broomean
fairness in philosophy. A full demonstration will be provided in the article ‘How to
be absolutely fair, Part II: philosophy meets economics’.
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