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Completion versus removal of redundancy
by perturbation

Ole Christensen and Marzieh Hasannasab

Abstract. A sequence {g;};-, in a Hilbert space J{ has the expansion property if each f e
span {gx } ro; has a representation f = Y2° cxgr for some scalar coefficients cx. In this paper,
we analyze the question whether there exist small norm-perturbations of {gx} >, which allow to
represent all f € 3(; the answer turns out to be yes for frame sequences and Riesz sequences, but no
for general basic sequences. The insight gained from the analysis is used to address a somewhat dual
question, namely, whether it is possible to remove redundancy from a sequence with the expansion
property via small norm-perturbations; we prove that the answer is yes for frames {gx } o=, such that
gk — 0 as k — oo, as well as for frames with finite excess. This particular question is motivated by
recent progress in dynamical sampling.

1 Introduction

Let H denote a separable infinite-dimensional Hilbert space, and suppose that a given
sequence {gx } -, in I has the expansion property, i.e., that each f € span {gx } ., has
a representation

(1.1) f = i Ck 8k
k=1

for certain coeflicients ¢j € C. Our goal is to address the following question: when and
how can we perform small norm-perturbations on the sequence { gy}, and hereby
obtain a sequence {y } 72, such that arbitrary elements f € J{ have an expansion f =
> req kW for certain coefficients ¢ € C?

Formulated as above, the question is clearly a completion problem. We will show
that the completion problem has an affirmative answer for the so-called Riesz
sequences and frame sequences, but not for general basic sequences; along the way, we
also consider a number of other completion problems. Interestingly, the insight gained
from the above analysis can be used to address a somewhat dual question: when and
how can a redundant system {g},, be turned into a complete but nonredundant
system {yy } 72, by small norm-perturbations? We will provide a positive answer to
this question for a number of frames, in particular, for the so-called near-Riesz bases
introduced by Holub in [13]. Additional motivation for this particular question will
be provided at the end of the paper.
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Completion versus removal of redundancy by perturbation 457

The paper is organized as follows. In the rest of the introduction, we set the stage
by providing a number of definitions and results from the literature. In Section 2,
we present the results about the completion problem; the dual problem concerning
removal of redundancy is considered in Section 3.

A sequence {gi},., in the Hilbert space I is called a frame for 3 if there exist
constants A, B > 0 such that

(12) A||f||2S}(Zl(ﬂgk”zSBHsz) VfedG
=1

suitable numbers A, B are called lower, resp. upper frame bounds. The sequence
{gk} 1o, is called a Bessel sequence if at least the right-hand inequality in (1.2) holds.
A frame which is at the same time a basis is called a Riesz basis. Note that several other
characterizations of frames and Riesz bases exist, e.g., in terms of operator theory. For
example, if {ex}72, is a given orthonormal basis for H, frames for H are precisely
the sequences { Ve }z, where V : J{ — H is a bounded surjective operator; Riesz
bases correspond precisely to the case where the operator V also is injective. Finally,
a sequence {g } ., which is a frame for the (sub)space K := span { gy } -, is called a
frame sequence; Riesz sequences are defined in the analogue way.

One of the key reasons for the interest in frames is that a frame has the expansion
property: in fact, given any frame { gy } -, , there exists a so-called dual frame { fi } 2,
such that

f- §<f,fk>gk, Vf et

In general, the dual frame {f; }3°, is not unique: indeed, the case where {gi },-, is
a Riesz basis is characterized precisely by the existence of a unique dual. We refer to
[9] for more information about frames and Riesz bases, also about their history and
applications.

The following lemma collects a number of well-known results concerning norm-
perturbations of various sequences with the expansion property.

Lemmal.l Consider two sequences {gx } 1, {hx } 22, in 3, satisfying that

Yollgk = hell? < A,
k=1

for a value of A as specified below. Then, the following holds:

(1) (71 If {gk} rey is a frame for H with lower bound A, then {hy}2, is a frame
for IH.

(ii) [8] If {g«}1, is a Riesz sequence with lower bound A, then {hy}?2, is a Riesz
sequence; furthermore, codim(span{gi},.,) = codim(span{hi};2,).

Alternative norm-perturbation conditions are formulated in [6]; however, they
need that we have access to information about a dual frame, which is not the case in the
current paper. Note also that a number of classical results about norm-perturbation
(typically for orthonormal sequences) are collected in [17]. Observe that more general
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perturbation results are available in the literature, typically formulated in terms of
certain operators rather than norm-perturbations (see, e.g., [9] and the references
therein).

2 Completion via norm-perturbation

Our main interest is to consider the completion problem for sequences {g},.,
having the expansion property. However, we first state a number of other completion
properties, some of which will be needed in latter proofs. Given any sequence { g } -,
in 3, we define its excess €({gk } v, ) as the maximal number of elements that can be
removed without changing the spanned space, i.e.,

2.1 E({&i}i) = max{J © N|span{gi}ervss = 5pan {gi}iy -

Furthermore, we will use the standard convention and say that a sequence {g } -,
in J is norm-bounded below if there exists a constant C > 0 such that ||g¢|| > C for all
keN.

Proposition 2.1 Let {gx } 1., be a sequence in H(. Then, the following hold:

() If{gk}r, is not norm-bounded below, there exists a complete sequence {yy }32,
in 3 such that
(2.2) llgx — vkl = 0as k — oo;

(i) If&({gk}sey) > codim(span{gi}i.,), there exists a complete sequence {y; } 2,
in H such that (2.2) holds.

(iii) If{gk} e, is convergent, there exists a complete sequence {yy } 22, in H such that
(2.2) holds; in particular, {yy } 2, converges to the same limit as {gi } ., -

In all the stated cases, given any 8 > 0, the sequence {yy }o, can be chosen such that

additionally ||gx — yk|| < & forall k e N.

Proof  For the proof of (i), given & > 0, choose a frame { fi } 2, for J such that

|| fil| < é forall k € Nand || fi|| - 0 as k — oo; for example, letting { ey } 72, denote any
orthonormal basis, we can take

(e _{56 0,0, 0, 98, 9, }
kS k=1 11\/5 21\/5 21\/§ 3$\/§ 3> 3 3500 (-
Denote the lower frame bound for the frame { f; } ;2, by A. Choose now a subsequence
{gr, o2, of {gi} e, such that ||gg,||> < 345, n € N; then,

S wat
S 2 S 2 A
2 = (ot gr) 1P = 2 llgall® < -
n=1 n=1

Using Lemma 1.1(i), this implies that {f, + gk, } 1o, is a frame for 3 and hence
complete. Thus, the sequence {yy } 32, formed from { gy } -, by replacing the elements
{gk, 152, by {fu + gk, } o2, will satisfy the requirements.

For the proof of (ii), we first assume additionally that M := codim(span {g },-,)
is finite. Without loss of generality and only for notational convenience, assume that
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the sequence {gi };-, is ordered such that gi,..., gy € Span{ gy} 2 ,,,,> and take an
orthonormal basis {e, }2., for the orthogonal complement (5pan {g},.,)*. Then,
the sequence

o ) 1)
{ka}k=1 = {gl +0e, o + 5 €2,....8M + MBM’gM+1:gM+2, .. }

satisfies the requirements. The case where & ({gx };-,) = codim(span {gx };,) = o0 is
similar and only requires minor notational modifications.

For the proof of (iii), assume that the sequence {gi},., converges to f € J{.
Given 8 > 0, choose K € N such that ||f — gi|| < §/2 for k > K. Let {e} 2, denote
an orthonormal basis for J, and define {y; } 22, by

8> ifk=1...,K-1
lllk = f, if k= K;
f+ Zk%ek,K, if k> K.
Then, span{ey }z2, € span{yy } ro;» s0 span{yy } ro, is clearly complete. Furthermore,
for k > K,
gk = vl <llge = fIl+11f =il <6,
and ||gx — yk|| = 0 as k — oco. |

We are now ready to consider the completion problem for Riesz sequences and
frame sequences. The proofs rely on an interesting result proved recently by Olevskii.

Lemma 2.2 [15, 16]  If {ex}z2, is an orthonormal sequence in I, there exists an
orthonormal basis { yx } 12, for H such that

llex = xk|l > 0as k - oo.
In addition, given any § > 0, the sequence { xi } v, can be chosen such that ||ex — x| < &

forall k e N.

Theorem 2.3  Let {gi } 1., be a sequence in J. Then, the following hold:
(1) If{gk}r, is a Riesz sequence, there exists a Riesz basis {yy } 72, for H such that

(2.3) lgk — wkll = 0as k — oo.

(i)  If{gk} e, is a frame sequence, there exists a frame {yy } 22, for H such that (2.3)
holds.

(iif) If {gx}y, is a Bessel sequence, there exists a complete Bessel sequence {yj }32,
such that (2.3) holds.

In all the stated cases, given any & > 0, the sequence {y };2, can be chosen such that
llgk — wi|| < 8 for all k € N.

Proof  We first prove (iii). Thus, let { gx } ;- be a Bessel sequence in 3(, and let X :=

span { gk } r, ; we can assume that K* # {0}. Furthermore, if  is finite-dimensional,
clearly €({gx};.,) = 00, and thus the results follow from Proposition 2.1(ii).
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Therefore, we now assume that X is infinite-dimensional. Now, by the standard
properties of a Bessel sequence [9], choose an orthonormal basis {ej}z2, for X
and a bounded operator U : KX — X such that g; = Uey, k € N. Associated with the
orthonormal sequence {ex}72,, choose the orthonormal basis { y };2, for H as in
Lemma 2.2, and define a bounded operator V : 7{ — 3 by

(2.4) V=UonXk, V=IonX".

Because the range of the operator U contains the vectors { gk}zil , it is dense in
XK. Thus, the range of the operator V is dense in J; this implies that the sequence
{witee, = {Vxr )t is complete in H. A direct calculation reveals that {yy };2, isa
Bessel sequence. Furthermore, for all k € N,

gk = will = [[Uex = Vixell = [[Ver = Vxull < [[ V[ llex = xxll

Because the operator V only depends on the sequence {gy } ., (and the fixed choice
of {ex }32,), this proves (iii). This also gives the proof of (i) and (ii). Indeed, if { gx } ;-
is a frame sequence, the range of the operator U equals K, which implies that the
range of the operator V equals H, and hence {yy } 2, is a frame for I and if { fi } 72,
is a Riesz sequence, the operator U : KX — X is bijective, implying that V : 7{ — H is
bijective, and hence that {yy } 32, is a Riesz sequence. [

Remark 2.4  Despite the fact that § > 0 can be chosen arbitrarily small in Theorem
2.3, there is a restriction on how “close” the sequence {y } 2, can be to the sequence
{gk} 1o, Indeed, if {gk } -, is a (noncomplete) Riesz sequence with lower bound A4,
then the sequence {y } z2, in Theorem 2.3(i) must satisfy that

(2.5) > llgk = will® > A;
Pt

otherwise, Lemma 1.1(ii) would imply that {y; } 3, is noncomplete as well. A similar
result holds for frame sequences, although the lower bound on the infinite sum in
(2.5) will involve the gap between two particular subspaces of J (see [8, 10] for more
detailed information).

Theorem 2.3 makes it natural to ask whether a basic sequence (i.e., a Schauder
basis for a subspace) also can be extended to a Schauder basis for H{ by small norm-
perturbations of the elements. The following example shows that the answer is no, in
general, unless additional assumptions are added.

Example 2.5 Let {e;}2, denote an orthonormal basis for J(, and consider the
sequence

{gk};il ={2e;,4e4,6¢5,... } = {2kes }roy-

Clearly, {gx}r., is a basic sequence. Now, given any & €]0,2\/677'[, consider a
sequence {y } 72, in H such that ||gx — yi|| < 8 for all k € N. Then,
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oo 1 5 oo 1 5 7_[262
er — — =3 —lgk - < <l
];H 2k = 5 Vil k§=1: a2 18 = vl

Because {eyi}4o, forms a Riesz sequence with lower bound A =1, Lemma 1.1(ii)
implies that {(2k) "y, } 2, also forms a Riesz sequence, spanning a space of the same
codimension as {e, } ;2 ; in particular, {yy } zo; cannot be complete in J(, and hence
is not a Schauder basis for J.

3 Removal of redundancy via norm-perturbations

In this section, the focus is on sequences {gj } ., having the expansion property on
the entire underlying Hilbert space J{. Such expansions might be redundant, i.e., a
given f € H might have expansions f = Y7, cxgx for more than one choice of the
scalar coefficients {ci}52,. A typical example of a redundant sequence is a frame
{8k} ro, which is not a Riesz basis. Our goal is to show that for certain frames { gk } 1,
the redundancy can be removed via small norm-perturbations of the vectors gi.

Our first observation, stated next, does not even need the frame assumption or any
other expansion property.

Theorem 3.1  Consider any sequence { gk } ., in 3 such that gy — 0 as k — oo. Then,
given any 8§ > 0, there exists a Riesz basis {yy } v for 3 such that

llgk — wil| < 8, Yk e N.

Proof  First, given any & > 0, choose K € N such that ||gk|| < §/2 for k > K. We
will now construct {yy };2, recursively, of the form vy := g + @i with the vectors
¢k chosen as described next. First, take ¢; € H such that ||¢;|| < § and y; # 0. Then,
choose ¢, € H such that ||@,|| < § and {y1, y»} is linearly independent. Continuing
recursively, we finally choose ¢k € H such that ||pk|| < 8 and {y1,vs, ..., ¥k} is
linearly independent. Then, {1, >, ..., ¥k} is a Riesz basis for the subspace V :=

span{y1, Y2, ..., ¥k }. Now, choose an orthonormal basis {ex } 32, for V* and define
yy for k > K by yi := Zey. Then, {yy} 2, is a Riesz basis for H and ||gi — y|| < & for
all k e N. [

The result in Theorem 3.1 immediately applies to a number of well-known frames
in the literature.

Example 3.2 We state a number of examples of frames {gy } ., such that g — 0 as
k — oo:

(i)  Given any orthonormal basis {e } z, for I, the family

{ }oo 1 1 1 1 1
=46, —=¢€, —=€,——=€3, —= €3, —=€3,...
8k S k=1 1\/§2ﬂ2\/§3\/§3\/§3

is a frame for J(. Clearly, g — 0 as k — oco. Note that this particular frame was
used in the proof of Proposition 2.1.
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(i) Letagain {e;}}2, bean orthonormal basis for H, and fix any « €]0,1[. Let A, :=
1-a~* for £ € N, and define the vectors

gk = Z)Léf\/l—/\%eg, keN.
£=1

Then, {gk},., is a frame (the so-called Carleson frame), a result proved by
Aldroubi et al. in [1, 2]. It is easy to see that gy — 0 as k - co. Note that
{8k} o, is heavily redundant: it can be proved that for any N € N, any subfamily
{gnk}ken of {gk},-, is a redundant frame as well. From this point of view, it
is surprising that {gx},., can be approximated by a Riesz basis, as stated in
Theorem 3.1.

(iif) More generally than (ii), it was proved in [12] that any redundant frame that can
be represented as an operator orbit {gx } -, = { T*¢}$2, for abounded operator
T : 7 - H and some ¢ € J{ will have the property that gy — 0 as k - oo.

In order to reach the next result, we need the following lemma. Recall that the
deficit of a sequence {gi};., is defined as the codimension of the vector space

span {g}¢; -

Lemma3.3 Let{ex};2, be an orthonormal basis for H. Given any § > 0 and any N €
N, there exists an orthonormal system { i } 12, with deficit N such that ||y — e|| < J for
all k e N.

Proof Take any orthonormal system {¢};2, with deficit N, and choose via
Lemma 2.2 an orthonormal basis { xx } 3=, for 3 such that ||@x — xx|| < 6 forall k e N.
Then, choose the unitary operator U : H{ — H such that e; = Uy, and let g :=
U@y, k € N. Then, {& } 2, is an orthonormal system with deficit N, and ||ex — k|| =
NUxk — Upkll = |lxx — @«|| < 6 for all k € N, as desired. |

Theorem 3.4  Consider a frame of the form {gi}1-, = {8k} rey U {8k} tonsr> Where
N e Nand {gi} 32 n., is a Riesz basis for 3. Then, given any § > 0, there exists a Riesz
basis {yy } vo, such that ||gi — y|| < O forall k e N.

Proof First, consider an orthonormal basis for H indexed as {ek};‘; N+p» and
choose the bounded bijective operator V : H{ — H such that g; = Ve, for k=N +
I, N +2,.... Using Lemma 3.3, choose an orthonormal system { & } z2 ,; with deficit
N such that ||e — ek|| < 8/||V]| for k= N +1,N +2,.... Then, letting v := Veg, k =
N +1,N +2,..., the family {y } 32 v, is a Riesz sequence with deficit N, and ||g; -
Wil =||Vexr — Ve[ < Sfork=N+1,N+2,....

Now, consider the vector gn. If gn ¢ span{yi } 12y let Yy = gns then, {yi} 2y
is a Riesz sequence with deficit N —1. On the other hand, if gy € Span{yx }72y. ;>
choose any normalized vector @y ¢ span{yy } 2y, and let yy := g + d¢n; then,
again {yy } t v isa Riesz sequence with deficit N — 1,and ||gx — yi|| < 6 fork = N, N +
I, N +2,.... Applying now the same procedure on gx_1, gn-2, - - - » g1, we arrive at the
desired Riesz basis {y } z, in a finite number of steps. ]
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Interestingly, frames of the type considered in Theorem 3.4 were called near-Riesz
bases by Holub in the paper [13]; the above result provides an additional reason for
this name being very appropriate.

Remark 3.5 Despite the fact that § > 0 can be chosen arbitrarily small in Theorem
3.4, the Riesz basis {y } 7, must satisfy that 332, ||gk — y||* > A, where A is the lower
frame bound for {gi },-,; otherwise, the results in [5] show that {y; }32, would be a
frame with the same excess as {gk } ., -

We want to point out that the proof of Theorem 3.4 somewhat hides the fact that
it is highly nontrivial to get direct access to the Riesz basis {y } z2,, especially due to
the intriguing and deep construction by Olevskii playing a key role in the argument.
The next example illustrates this by a concrete construction.

Example 3.6  Let again {e };>, be an orthonormal basis for H(, and consider the
frame

{gk}]til = {ela €1, €2,€3,€4,... }a

consisting of the orthonormal basis and a single extra element. A natural way to try
to remove the redundancy would be to fix a small € > 0 and let y; := ¢; and for k >
L yk == Jex-1 + (3 + €)ex. Then, for any finite sequence {cx}72,,

ch((f-i-S) ek—l//k) chek_l *Z Ck|2.
k=2 2 k=2 42
Observe that {e;} U {(3 + €) e } 2, is a Riesz basis with lower bound 1 + ¢. Consid-

ering {yy } z2, as a perturbation of this Riesz basis, it now follows from the results in
[5] that {yy }72, is a Riesz basis for J(. Note that

lae vl =/ (2 o)

- /- +|=+¢);
8k — Yk 2\
however, this construction does not allow us to obtain ||gx — || <  when § < 272 »
0.7.Infact, in order to obtain the result in Theorem 3.4 for smaller values of §, it would
be necessary to consider much more complicated perturbations {yy }72, of {gk},_; >
making it highly nontrivial to do this in practice.

Remark 3.7 'The question of removal of redundancy is partly motivated by the
research topic dynamical sampling, introduced in the papers [2, 3]. One of the key
issues in dynamical sampling is the construction of frames as orbits {T*¢}$° of a
bounded operator T : I — H, for some eqe f]-f we encountered such frames already
the only concrete examples available in the literature are indeed Riesz bases [11] and
the Carleson frame [2] considered in Example 3.2(ii). Furthermore, it was proved in
[11] that a near-Riesz basis never has this property. This raises the natural question
whether a near-Riesz basis can be approximated by a Riesz basis, and hence by an
orbit of a bounded operator; Theorem 3.4 confirms that this indeed is possible. We
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will phrase this consequence of Theorem 3.4 as a separate result, where we index the
given near-Riesz basis by { g } 32, for notational convenience.

Corollary 3.8  Consider any near-Riesz basis {gi }1~,. Then, given any § > 0, there
exists ¢ € H and a bounded operator T : H — H such that

llgk — T*g|| < 8, Vk e No.

The results in Theorems 3.1 and 3.4 do not cover the standard (regular) redundant
Gabor frames and wavelet frames: they consist of vectors with equal norm, and they
have infinite excess [4]. Due to the complications discussed in Example 3.1 and the
preceding text, it seems to be very difficult to answer the question whether all frames
indeed can be approximated by a Riesz basis. At least for Gabor frames and wavelet
frames, we can apply the following adaption of the Feichtinger theorem (finally proved
in one of its equivalent formulations in [14]), showing that any frame which is norm-
bounded below can be approximated by a finite collection of Riesz bases.

Theorem 3.9 Let {gy},-, be a frame which is norm-bounded below. Then, there exists
a finite partition {gx} o, = Uﬁzl{gk}kd}. with the property that for each § > 0, there
exist Riesz bases {Yy }ker;» j=1,..., ], for 3 such that ||gx — wi|| < & for all k € N.

Proof Choose according to the Feichtinger theorem a finite partition {gi};., =
U§=1{gk } ker; such that each sequence {gi }ker;» j = 1. .., J, is a Riesz sequence; using
Theorem 2.1 in [11], we can shuffle the elements around to ensure that each of the
index sets I; is infinite. Now, the result follows directly from Theorem 2.3(i). [ ]

The result in Theorem 3.9 can be formulated as an operator-theoretic result,
similarly to Corollary 3.8; we leave the precise formulation to the interested reader.
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