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Completion versus removal of redundancy
by perturbation
Ole Christensen and Marzieh Hasannasab

Abstract. A sequence {gk}
∞

k=1 in a Hilbert space H has the expansion property if each f ∈
span{gk}

∞

k=1 has a representation f = ∑∞k=1 ck gk for some scalar coefficients ck . In this paper,
we analyze the question whether there exist small norm-perturbations of {gk}

∞

k=1 which allow to
represent all f ∈H; the answer turns out to be yes for frame sequences and Riesz sequences, but no
for general basic sequences. The insight gained from the analysis is used to address a somewhat dual
question, namely, whether it is possible to remove redundancy from a sequence with the expansion
property via small norm-perturbations; we prove that the answer is yes for frames {gk}

∞

k=1 such that
gk → 0 as k →∞, as well as for frames with finite excess. This particular question is motivated by
recent progress in dynamical sampling.

1 Introduction

LetH denote a separable infinite-dimensional Hilbert space, and suppose that a given
sequence {gk}∞k=1 in H has the expansion property, i.e., that each f ∈ span{gk}∞k=1 has
a representation

f =
∞

∑
k=1

ck gk(1.1)

for certain coefficients ck ∈ C. Our goal is to address the following question: when and
how can we perform small norm-perturbations on the sequence {gk}∞k=1 and hereby
obtain a sequence {ψk}∞k=1 such that arbitrary elements f ∈ H have an expansion f =
∑∞k=1 ckψk for certain coefficients ck ∈ C?

Formulated as above, the question is clearly a completion problem. We will show
that the completion problem has an affirmative answer for the so-called Riesz
sequences and frame sequences, but not for general basic sequences; along the way, we
also consider a number of other completion problems. Interestingly, the insight gained
from the above analysis can be used to address a somewhat dual question: when and
how can a redundant system {gk}∞k=1 be turned into a complete but nonredundant
system {ψk}∞k=1 by small norm-perturbations? We will provide a positive answer to
this question for a number of frames, in particular, for the so-called near-Riesz bases
introduced by Holub in [13]. Additional motivation for this particular question will
be provided at the end of the paper.
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Completion versus removal of redundancy by perturbation 457

The paper is organized as follows. In the rest of the introduction, we set the stage
by providing a number of definitions and results from the literature. In Section 2,
we present the results about the completion problem; the dual problem concerning
removal of redundancy is considered in Section 3.

A sequence {gk}∞k=1 in the Hilbert space H is called a frame for H if there exist
constants A, B > 0 such that

A ∣∣ f ∣∣2 ≤
∞

∑
k=1

∣⟨ f , gk⟩∣2 ≤ B ∣∣ f ∣∣2 , ∀ f ∈ H;(1.2)

suitable numbers A, B are called lower, resp. upper frame bounds. The sequence
{gk}∞k=1 is called a Bessel sequence if at least the right-hand inequality in (1.2) holds.
A frame which is at the same time a basis is called a Riesz basis. Note that several other
characterizations of frames and Riesz bases exist, e.g., in terms of operator theory. For
example, if {ek}∞k=1 is a given orthonormal basis for H, frames for H are precisely
the sequences {Vek}∞k=1 where V ∶ H → H is a bounded surjective operator; Riesz
bases correspond precisely to the case where the operator V also is injective. Finally,
a sequence {gk}∞k=1 which is a frame for the (sub)space K ∶= span{gk}∞k=1 is called a
frame sequence; Riesz sequences are defined in the analogue way.

One of the key reasons for the interest in frames is that a frame has the expansion
property: in fact, given any frame {gk}∞k=1 , there exists a so-called dual frame { fk}∞k=1
such that

f =
∞

∑
k=1

⟨ f , fk⟩gk , ∀ f ∈ H.

In general, the dual frame { fk}∞k=1 is not unique: indeed, the case where {gk}∞k=1 is
a Riesz basis is characterized precisely by the existence of a unique dual. We refer to
[9] for more information about frames and Riesz bases, also about their history and
applications.

The following lemma collects a number of well-known results concerning norm-
perturbations of various sequences with the expansion property.

Lemma 1.1 Consider two sequences {gk}∞k=1 , {hk}∞k=1 in H, satisfying that
∞

∑
k=1

∣∣gk − hk ∣∣2 < A,

for a value of A as specified below. Then, the following holds:
(i) [7] If {gk}∞k=1 is a frame for H with lower bound A, then {hk}∞k=1 is a frame

for H.
(ii) [8] If {gk}∞k=1 is a Riesz sequence with lower bound A, then {hk}∞k=1 is a Riesz

sequence; furthermore, codim(span{gk}∞k=1) = codim(span{hk}∞k=1).

Alternative norm-perturbation conditions are formulated in [6]; however, they
need that we have access to information about a dual frame, which is not the case in the
current paper. Note also that a number of classical results about norm-perturbation
(typically for orthonormal sequences) are collected in [17]. Observe that more general
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458 O. Christensen and M. Hasannasab

perturbation results are available in the literature, typically formulated in terms of
certain operators rather than norm-perturbations (see, e.g., [9] and the references
therein).

2 Completion via norm-perturbation

Our main interest is to consider the completion problem for sequences {gk}∞k=1
having the expansion property. However, we first state a number of other completion
properties, some of which will be needed in latter proofs. Given any sequence {gk}∞k=1
in H, we define its excess E({gk}∞k=1) as the maximal number of elements that can be
removed without changing the spanned space, i.e.,

E({gk}∞k=1) ∶= max ♯{J ⊂ N ∣ span{gk}k∈N∖J = span{gk}∞k=1}.(2.1)

Furthermore, we will use the standard convention and say that a sequence {gk}∞k=1
in H is norm-bounded below if there exists a constant C > 0 such that ∣∣gk ∣∣ ≥ C for all
k ∈ N.

Proposition 2.1 Let {gk}∞k=1 be a sequence in H. Then, the following hold:
(i) If {gk}∞k=1 is not norm-bounded below, there exists a complete sequence {ψk}∞k=1

in H such that

∣∣gk − ψk ∣∣ → 0 as k → ∞;(2.2)

(ii) If E({gk}∞k=1) ≥ codim(span{gk}∞k=1), there exists a complete sequence {ψk}∞k=1
in H such that (2.2) holds.

(iii) If {gk}∞k=1 is convergent, there exists a complete sequence {ψk}∞k=1 in H such that
(2.2) holds; in particular, {ψk}∞k=1 converges to the same limit as {gk}∞k=1 .

In all the stated cases, given any δ > 0, the sequence {ψk}∞k=1 can be chosen such that
additionally ∣∣gk − ψk ∣∣ ≤ δ for all k ∈ N.

Proof For the proof of (i), given δ > 0, choose a frame { fk}∞k=1 for H such that
∣∣ fk ∣∣ ≤ δ for all k ∈ N and ∣∣ fk ∣∣ → 0 as k → ∞; for example, letting {ek}∞k=1 denote any
orthonormal basis, we can take

{ fk}∞k=1 = {δ e1 , δ√
2

e2 , δ√
2

e2 , δ√
3

e3 , δ√
3

e3 , δ√
3

e3 , . . . } .

Denote the lower frame bound for the frame { fk}∞k=1 by A. Choose now a subsequence
{gkn}∞n=1 of {gk}∞k=1 such that ∣∣gkn ∣∣2 ≤ 3A

π2 n2 , n ∈ N; then,
∞

∑
n=1

∣∣ fn − ( fn + gkn) ∣∣2 =
∞

∑
n=1

∣∣gkn ∣∣2 ≤ A
2

.

Using Lemma 1.1(i), this implies that { fn + gkn}∞n=1 is a frame for H and hence
complete. Thus, the sequence {ψk}∞k=1 formed from {gk}∞k=1 by replacing the elements
{gkn}∞n=1 by { fn + gkn}∞n=1 will satisfy the requirements.

For the proof of (ii), we first assume additionally that M ∶= codim(span{gk}∞k=1)
is finite. Without loss of generality and only for notational convenience, assume that
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the sequence {gk}∞k=1 is ordered such that g1 , . . . , gM ∈ span{gk}∞k=M+1 , and take an
orthonormal basis {ek}M

k=1 for the orthogonal complement (span{gk}∞k=1)� . Then,
the sequence

{ψk}∞k=1 = {g1 + δe1 , g2 + δ
2

e2 , . . . , gM + δ
M

eM , gM+1 , gM+2 , . . . }

satisfies the requirements. The case where E({gk}∞k=1) = codim(span{gk}∞k=1) = ∞ is
similar and only requires minor notational modifications.

For the proof of (iii), assume that the sequence {gk}∞k=1 converges to f ∈ H.
Given δ > 0, choose K ∈ N such that ∣∣ f − gk ∣∣ ≤ δ/2 for k ≥ K . Let {ek}∞k=1 denote
an orthonormal basis for H, and define {ψk}∞k=1 by

ψk ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gk , if k = 1, . . . , K − 1;
f , if k = K;
f + δ

2k−K ek−K , if k > K .

Then, span{ek}∞k=1 ⊆ span{ψk}∞k=1 , so span{ψk}∞k=1 is clearly complete. Furthermore,
for k ≥ K ,

∣∣gk − ψk ∣∣ ≤ ∣∣gk − f ∣∣ + ∣∣ f − ψk ∣∣ ≤ δ,

and ∣∣gk − ψk ∣∣ → 0 as k → ∞. ∎

We are now ready to consider the completion problem for Riesz sequences and
frame sequences. The proofs rely on an interesting result proved recently by Olevskii.

Lemma 2.2 [15, 16] If {ek}∞k=1 is an orthonormal sequence in H, there exists an
orthonormal basis {χk}∞k=1 for H such that

∣∣ek − χk ∣∣ → 0 as k → ∞.

In addition, given any δ > 0, the sequence {χk}∞k=1 can be chosen such that ∣∣ek − χk ∣∣ ≤ δ
for all k ∈ N.

Theorem 2.3 Let {gk}∞k=1 be a sequence in H. Then, the following hold:
(i) If {gk}∞k=1 is a Riesz sequence, there exists a Riesz basis {ψk}∞k=1 for H such that

∣∣gk − ψk ∣∣ → 0 as k → ∞.(2.3)

(ii) If {gk}∞k=1 is a frame sequence, there exists a frame {ψk}∞k=1 for H such that (2.3)
holds.

(iii) If {gk}∞k=1 is a Bessel sequence, there exists a complete Bessel sequence {ψk}∞k=1
such that (2.3) holds.

In all the stated cases, given any δ > 0, the sequence {ψk}∞k=1 can be chosen such that
∣∣gk − ψk ∣∣ ≤ δ for all k ∈ N.

Proof We first prove (iii). Thus, let {gk}∞k=1 be a Bessel sequence in H, and let K ∶=
span{gk}∞k=1 ; we can assume that K� ≠ {0}. Furthermore, if K is finite-dimensional,
clearly E({gk}∞k=1) = ∞, and thus the results follow from Proposition 2.1(ii).
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Therefore, we now assume that K is infinite-dimensional. Now, by the standard
properties of a Bessel sequence [9], choose an orthonormal basis {ek}∞k=1 for K

and a bounded operator U ∶ K → K such that gk = Uek , k ∈ N. Associated with the
orthonormal sequence {ek}∞k=1, choose the orthonormal basis {χk}∞k=1 for H as in
Lemma 2.2, and define a bounded operator V ∶ H → H by

V = U on K, V = I on K� .(2.4)

Because the range of the operator U contains the vectors {gk}∞k=1 , it is dense in
K. Thus, the range of the operator V is dense in H; this implies that the sequence
{ψk}∞k=1 ∶= {V χk}∞k=1 is complete in H. A direct calculation reveals that {ψk}∞k=1 is a
Bessel sequence. Furthermore, for all k ∈ N,

∣∣gk − ψk ∣∣ = ∣∣Uek − V χk ∣∣ = ∣∣Vek − V χk ∣∣ ≤ ∣∣V ∣∣ ∣∣ek − χk ∣∣.

Because the operator V only depends on the sequence {gk}∞k=1 (and the fixed choice
of {ek}∞k=1), this proves (iii). This also gives the proof of (i) and (ii). Indeed, if {gk}∞k=1
is a frame sequence, the range of the operator U equals K, which implies that the
range of the operator V equals H, and hence {ψk}∞k=1 is a frame for H; and if { fk}∞k=1
is a Riesz sequence, the operator U ∶ K → K is bijective, implying that V ∶ H → H is
bijective, and hence that {ψk}∞k=1 is a Riesz sequence. ∎

Remark 2.4 Despite the fact that δ > 0 can be chosen arbitrarily small in Theorem
2.3, there is a restriction on how “close” the sequence {ψk}∞k=1 can be to the sequence
{gk}∞k=1. Indeed, if {gk}∞k=1 is a (noncomplete) Riesz sequence with lower bound A,
then the sequence {ψk}∞k=1 in Theorem 2.3(i) must satisfy that

∞

∑
k=1

∣∣gk − ψk ∣∣2 ≥ A;(2.5)

otherwise, Lemma 1.1(ii) would imply that {ψk}∞k=1 is noncomplete as well. A similar
result holds for frame sequences, although the lower bound on the infinite sum in
(2.5) will involve the gap between two particular subspaces of H (see [8, 10] for more
detailed information).

Theorem 2.3 makes it natural to ask whether a basic sequence (i.e., a Schauder
basis for a subspace) also can be extended to a Schauder basis for H by small norm-
perturbations of the elements. The following example shows that the answer is no, in
general, unless additional assumptions are added.

Example 2.5 Let {ek}∞k=1 denote an orthonormal basis for H, and consider the
sequence

{gk}∞k=1 = {2e2 , 4e4 , 6e6 , . . . } = {2ke2k}∞k=1 .

Clearly, {gk}∞k=1 is a basic sequence. Now, given any δ ∈]0, 2
√

6π−1[, consider a
sequence {ψk}∞k=1 in H such that ∣∣gk − ψk ∣∣ ≤ δ for all k ∈ N. Then,

https://doi.org/10.4153/S0008439521000412 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000412


Completion versus removal of redundancy by perturbation 461

∞

∑
k=1

∣∣e2k − 1
2k

ψk ∣∣2 =
∞

∑
k=1

1
4k2 ∣∣gk − ψk ∣∣2 ≤ π2δ2

24
< 1.

Because {e2k}∞k=1 forms a Riesz sequence with lower bound A = 1, Lemma 1.1(ii)
implies that {(2k)−1ψk}∞k=1 also forms a Riesz sequence, spanning a space of the same
codimension as {e2k}∞k=1; in particular, {ψk}∞k=1 cannot be complete in H, and hence
is not a Schauder basis for H.

3 Removal of redundancy via norm-perturbations

In this section, the focus is on sequences {gk}∞k=1 having the expansion property on
the entire underlying Hilbert space H. Such expansions might be redundant, i.e., a
given f ∈ H might have expansions f = ∑∞k=1 ck gk for more than one choice of the
scalar coefficients {ck}∞k=1 . A typical example of a redundant sequence is a frame
{gk}∞k=1 which is not a Riesz basis. Our goal is to show that for certain frames {gk}∞k=1,
the redundancy can be removed via small norm-perturbations of the vectors gk .

Our first observation, stated next, does not even need the frame assumption or any
other expansion property.

Theorem 3.1 Consider any sequence {gk}∞k=1 in H such that gk → 0 as k → ∞. Then,
given any δ > 0, there exists a Riesz basis {ψk}∞k=1 for H such that

∣∣gk − ψk ∣∣ ≤ δ, ∀k ∈ N.

Proof First, given any δ > 0, choose K ∈ N such that ∣∣gk ∣∣ < δ/2 for k ≥ K . We
will now construct {ψk}∞k=1 recursively, of the form ψk ∶= gk + φk with the vectors
φk chosen as described next. First, take φ1 ∈ H such that ∣∣φ1∣∣ ≤ δ and ψ1 ≠ 0. Then,
choose φ2 ∈ H such that ∣∣φ2∣∣ ≤ δ and {ψ1 , ψ2} is linearly independent. Continuing
recursively, we finally choose φK ∈ H such that ∣∣φK ∣∣ ≤ δ and {ψ1 , ψ2 , . . . , ψK} is
linearly independent. Then, {ψ1 , ψ2 , . . . , ψK} is a Riesz basis for the subspace V ∶=
span{ψ1 , ψ2 , . . . , ψK}. Now, choose an orthonormal basis {ek}∞k=1 for V� and define
ψk for k > K by ψk ∶= δ

2 ek . Then, {ψk}∞k=1 is a Riesz basis for H and ∣∣gk − ψk ∣∣ ≤ δ for
all k ∈ N. ∎

The result in Theorem 3.1 immediately applies to a number of well-known frames
in the literature.

Example 3.2 We state a number of examples of frames {gk}∞k=1 such that gk → 0 as
k → ∞:
(i) Given any orthonormal basis {ek}∞k=1 for H, the family

{gk}∞k=1 ∶= {e1 , 1√
2

e2 , 1√
2

e2 , 1√
3

e3 , 1√
3

e3 , 1√
3

e3 , . . . }

is a frame for H. Clearly, gk → 0 as k → ∞. Note that this particular frame was
used in the proof of Proposition 2.1.
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(ii) Let again {ek}∞k=1 be an orthonormal basis forH, and fix any α ∈]0, 1[. Let λ� ∶=
1 − α−� for � ∈ N, and define the vectors

gk ∶=
∞

∑
�=1

λk
�

√
1 − λ2

�e� , k ∈ N.

Then, {gk}∞k=1 is a frame (the so-called Carleson frame), a result proved by
Aldroubi et al. in [1, 2]. It is easy to see that gk → 0 as k → ∞. Note that
{gk}∞k=1 is heavily redundant: it can be proved that for any N ∈ N, any subfamily
{gN k}k∈N of {gk}∞k=1 is a redundant frame as well. From this point of view, it
is surprising that {gk}∞k=1 can be approximated by a Riesz basis, as stated in
Theorem 3.1.

(iii) More generally than (ii), it was proved in [12] that any redundant frame that can
be represented as an operator orbit {gk}∞k=1 = {T k φ}∞k=1 for a bounded operator
T ∶ H → H and some φ ∈ H will have the property that gk → 0 as k → ∞.

In order to reach the next result, we need the following lemma. Recall that the
deficit of a sequence {gk}∞k=1 is defined as the codimension of the vector space
span{gk}∞k=1 .

Lemma 3.3 Let {ek}∞k=1 be an orthonormal basis for H. Given any δ > 0 and any N ∈
N, there exists an orthonormal system {εk}∞k=1 with deficit N such that ∣∣ek − εk ∣∣ ≤ δ for
all k ∈ N.

Proof Take any orthonormal system {φk}∞k=1 with deficit N , and choose via
Lemma 2.2 an orthonormal basis {χk}∞k=1 for H such that ∣∣φk − χk ∣∣ ≤ δ for all k ∈ N.
Then, choose the unitary operator U ∶ H → H such that ek = U χk , and let εk ∶=
Uφk , k ∈ N. Then, {εk}∞k=1 is an orthonormal system with deficit N , and ∣∣ek − εk ∣∣ =
∣∣U χk − Uφk ∣∣ = ∣∣χk − φk ∣∣ ≤ δ for all k ∈ N, as desired. ∎

Theorem 3.4 Consider a frame of the form {gk}∞k=1 = {gk}N
k=1 ∪ {gk}∞k=N+1 , where

N ∈ N and {gk}∞k=N+1 is a Riesz basis for H. Then, given any δ > 0, there exists a Riesz
basis {ψk}∞k=1 such that ∣∣gk − ψk ∣∣ ≤ δ for all k ∈ N.

Proof First, consider an orthonormal basis for H indexed as {ek}∞k=N+1, and
choose the bounded bijective operator V ∶ H → H such that gk = Vek for k = N +
1, N + 2, . . . . Using Lemma 3.3, choose an orthonormal system {εk}∞k=N+1 with deficit
N such that ∣∣ek − εk ∣∣ ≤ δ/∣∣V ∣∣ for k = N + 1, N + 2, . . . . Then, letting ψk ∶= V εk , k =
N + 1, N + 2, . . . , the family {ψk}∞k=N+1 is a Riesz sequence with deficit N , and ∣∣gk −
ψk ∣∣ = ∣∣Vek − V εk ∣∣ ≤ δ for k = N + 1, N + 2, . . . .

Now, consider the vector gN . If gN ∉ span{ψk}∞k=N+1 , let ψN ∶= gN ; then, {ψk}∞k=N
is a Riesz sequence with deficit N − 1. On the other hand, if gN ∈ span{ψk}∞k=N+1 ,
choose any normalized vector φN ∉ span{ψk}∞k=N+1 , and let ψN ∶= gN + δφN ; then,
again {ψk}∞k=N is a Riesz sequence with deficit N − 1, and ∣∣gk − ψk ∣∣ ≤ δ for k = N , N +
1, N + 2, . . . . Applying now the same procedure on gN−1 , gN−2 , . . . , g1 , we arrive at the
desired Riesz basis {ψk}∞k=1 in a finite number of steps. ∎
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Interestingly, frames of the type considered in Theorem 3.4 were called near-Riesz
bases by Holub in the paper [13]; the above result provides an additional reason for
this name being very appropriate.

Remark 3.5 Despite the fact that δ > 0 can be chosen arbitrarily small in Theorem
3.4, the Riesz basis {ψk}∞k=1 must satisfy that∑∞k=1 ∣∣gk − ψk ∣∣2 ≥ A, where A is the lower
frame bound for {gk}∞k=1 ; otherwise, the results in [5] show that {ψk}∞k=1 would be a
frame with the same excess as {gk}∞k=1 .

We want to point out that the proof of Theorem 3.4 somewhat hides the fact that
it is highly nontrivial to get direct access to the Riesz basis {ψk}∞k=1 , especially due to
the intriguing and deep construction by Olevskii playing a key role in the argument.
The next example illustrates this by a concrete construction.

Example 3.6 Let again {ek}∞k=1 be an orthonormal basis for H, and consider the
frame

{gk}∞k=1 ∶= {e1 , e1 , e2 , e3 , e4 , . . . },

consisting of the orthonormal basis and a single extra element. A natural way to try
to remove the redundancy would be to fix a small ε > 0 and let ψ1 ∶= e1 and for k >
1, ψk ∶= 1

2 ek−1 + ( 1
2 + ε)ek . Then, for any finite sequence {ck}∞k=2 ,

∣∣
∞

∑
k=2

ck ((
1
2
+ ε) ek − ψk)∣∣ 2 = 1

4
∣∣
∞

∑
k=2

ck ek−1∣∣ 2 = 1
4

∞

∑
k=2

∣ck ∣2 .

Observe that {e1} ∪ {( 1
2 + ε)ek}∞k=2 is a Riesz basis with lower bound 1

2 + ε. Consid-
ering {ψk}∞k=1 as a perturbation of this Riesz basis, it now follows from the results in
[5] that {ψk}∞k=1 is a Riesz basis for H. Note that

∣∣gk − ψk ∣∣ =
√

1
4
+ ( 1

2
+ ε)

2
;

however, this construction does not allow us to obtain ∣∣gk − ψk ∣∣ ≤ δ when δ < 2−1/2 ≈
0.7. In fact, in order to obtain the result in Theorem 3.4 for smaller values of δ, it would
be necessary to consider much more complicated perturbations {ψk}∞k=1 of {gk}∞k=1 ,
making it highly nontrivial to do this in practice.

Remark 3.7 The question of removal of redundancy is partly motivated by the
research topic dynamical sampling, introduced in the papers [2, 3]. One of the key
issues in dynamical sampling is the construction of frames as orbits {T k φ}∞k=0 of a
bounded operator T ∶ H → H, for some φ ∈ H; we encountered such frames already
in Example 3.2(ii,iii). Unfortunately, it is very difficult to construct such frames, and
the only concrete examples available in the literature are indeed Riesz bases [11] and
the Carleson frame [2] considered in Example 3.2(ii). Furthermore, it was proved in
[11] that a near-Riesz basis never has this property. This raises the natural question
whether a near-Riesz basis can be approximated by a Riesz basis, and hence by an
orbit of a bounded operator; Theorem 3.4 confirms that this indeed is possible. We
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will phrase this consequence of Theorem 3.4 as a separate result, where we index the
given near-Riesz basis by {gk}∞k=0 for notational convenience.

Corollary 3.8 Consider any near-Riesz basis {gk}∞k=0 . Then, given any δ > 0, there
exists φ ∈ H and a bounded operator T ∶ H → H such that

∣∣gk − T k φ∣∣ ≤ δ, ∀k ∈ N0 .

The results in Theorems 3.1 and 3.4 do not cover the standard (regular) redundant
Gabor frames and wavelet frames: they consist of vectors with equal norm, and they
have infinite excess [4]. Due to the complications discussed in Example 3.1 and the
preceding text, it seems to be very difficult to answer the question whether all frames
indeed can be approximated by a Riesz basis. At least for Gabor frames and wavelet
frames, we can apply the following adaption of the Feichtinger theorem (finally proved
in one of its equivalent formulations in [14]), showing that any frame which is norm-
bounded below can be approximated by a finite collection of Riesz bases.

Theorem 3.9 Let {gk}∞k=1 be a frame which is norm-bounded below. Then, there exists
a finite partition {gk}∞k=1 = ⋃J

j=1{gk}k∈I j with the property that for each δ > 0, there
exist Riesz bases {ψk}k∈I j , j = 1, . . . , J , for H such that ∣∣gk − ψk ∣∣ ≤ δ for all k ∈ N.

Proof Choose according to the Feichtinger theorem a finite partition {gk}∞k=1 =
⋃J

j=1{gk}k∈I j such that each sequence {gk}k∈I j , j = 1, . . . , J, is a Riesz sequence; using
Theorem 2.1 in [11], we can shuffle the elements around to ensure that each of the
index sets I j is infinite. Now, the result follows directly from Theorem 2.3(i). ∎

The result in Theorem 3.9 can be formulated as an operator-theoretic result,
similarly to Corollary 3.8; we leave the precise formulation to the interested reader.
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