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Turbulent boundary-layer flow beneath a vortex.
Part 1. Turbulent Bödewadt flow
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The equations governing the mean fluid motions within a turbulent boundary layer
adjoining a stationary plane beneath an axisymmetric circumferential flow v∞(r),
where r is cylindrical radius, are solved by assuming the eddy diffusivity is
proportional to v∞ times a diffusivity function L(r, z), where z is axial distance
from the plane. The boundary-layer shape and structure depend on the dimensionless
vorticity θ = d(rv∞)/2v∞ dr, but are independent of the strength of the circumferential
flow. This problem has been solved using a spectral method in the case of rigid-body
motion (θ = 1 and v∞∼ r) for two models of L: L constant (model A) and L constant
within a rough layer of thickness z0 adjoining the boundary and increasing linearly
with z outside that layer (model B). The influence of the rough layer is quantified
by the dimensionless radial coordinate ρ = εr/z0, where ε � 1. The boundary-layer
thickness varies parabolically with r for model A and nearly linearly with r for
model B. Inertial stability of the outer flow causes the velocity components to
decay with axial distance as exponentially damped oscillations, with the radial
flow consisting of a sequence of jets. Axial flow is positive (flowing out of the
boundary layer). Outflow from the layer, velocity gradients at the bounding plane,
meridional-plane circulation and oscillations all increase as radius decreases.

Key words: boundary layer structure, atmospheric flows, vortex dynamics

1. Introduction
Rotating fluid flows have long been of intense theoretical and practical interest. On

the theoretical side, the classic von Kármán and Bödewadt flows (von Kármán (1921),
Bödewadt (1940), see §§ V.11 (pp. 93–99) and XI.1 (pp. 213–218) of Schlichting
(1968)) represent exact solutions of the Navier–Stokes equations that provide valuable
insights into the inner workings of rotating boundary layers. On the practical side,
atmospheric vortices, particularly tornadoes, regularly threaten life, limb and property,
and also provide stunning videos for evening news broadcasts. The relevance of these
classic solutions to atmospheric vortices is limited by the assumption of laminar flow
and by the simple motion of the outer fluid (far from the boundary). This paper begins
an attempt to develop and solve a more practically relevant model of the mean fluid
motions in a turbulent boundary layer beneath an axisymmetric vortex.

† Email address for correspondence: loper@fsu.edu
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892 A16-2 D. E. Loper

This paper takes two steps in the development of a useful model of turbulent
boundary-layer flow. First, the equations governing the boundary layer beneath an
axisymmetric swirling flow are formulated under the assumption that turbulence within
the layer is local, so that the eddy diffusivity is linearly proportional to the velocity
difference across the layer. Second, the utility of this model is investigated in the
case that the outer flow is rigid-body motion. The nature of the boundary-layer flow
under a general axisymmetric swirl and affected by Earth’s rotation is investigated in
Part 2 (Loper 2020).

The present pair of papers is complementary to another recent pair (Oruba,
Davidson & Dormy 2017, 2018) that seeks to answer the same question. The present
pair of studies seeks to answer this question for smaller-scale flows (tornadoes,
water spouts and dust devils having radius 61 km) that can be modelled with a
homogeneous fluid, while the other pair of papers focuses on larger-scale flows
(tropical cyclones and polar vortices having radius ∼100 km) that are maintained by
buoyancy forces.

1.1. Discussion of rotating boundary-layer structure
Laminar von Kármán flow is generated in an otherwise stationary body of fluid by
the rotation of a smooth bounding plane. Viscous diffusion imparts a circumferential
motion to the fluid near the plane and the accompanying centrifugal force drives a
radial outflow near the plane that is compensated by an axial inflow (i.e. vertically
downward) toward the boundary. Diffusive thickening of the boundary layer is
balanced by axial advection and the velocity components vary monotonically with
axial distance from the bounding plane. The axial flow outside the boundary layer is
independent of radial distance from the centre of rotation.

The situation is reversed in laminar Bödewadt flow, which is generated near
a smooth stationary plane bounding a fluid in rigid-body rotation. This rotation
affects the flow in two ways. First, centripetal acceleration of the circumferential
flow outside the boundary layer is balanced by a positive radial pressure gradient.
Viscous drag inhibits circumferential flow near the plane and the unbalanced pressure
drives a radial inflow near the plane that is compensated by an axial outflow away
from the boundary. Now viscous diffusion and axial advection of circumferential
momentum act in concert to thicken the layer; both are balanced by radial advection
of circumferential momentum. The axial flow outside the boundary layer is again
independent of radial distance from the centre of rotation.

The second effect of rotation, or more specifically the radial distribution of angular
momentum, is to endow the fluid with the ability to sustain inertial waves (e.g. see
appendix F.7 of Loper (2017)). In axisymmetric flow, this distribution is quantified
by the axial vorticity; see (3.15). In Bödewadt flow, the effect of rotation is seen as a
damped oscillation of the velocity components with axial distance. These oscillations
do not occur in von Kármán flow because the outer fluid has no angular momentum.
Normally one thinks of waves as time dependent, but when the fluid is flowing these
may be stationary (i.e. standing waves). The flow oscillations are simply standing
inertial waves, and the boundary layer may be considered to be a damped standing
inertial wave. These oscillations are a fundamental and ubiquitous feature of boundary
layers beneath rotating flow – with the singular exception of a potential vortex,
which has a radially uniform distribution of angular momentum. It was speculated
(Stewartson 1953) that these axial oscillations made the flow unstable, but it is now
known that this is not the case (e.g. see Zandbergen & Dijkstra (1987)); laminar
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Turbulent Bödewadt flow 892 A16-3

Bödewadt flow is stable. The structure of the turbulent boundary layer beneath an
axisymmetric vortex is expected to be qualitatively the same as that for Bödewadt
flow (oscillations of flow within the layer and an axial outflow everywhere), except
that the boundary-layer thickness and axial outflow are likely to vary with radial
distance.

Radial flow may be characterized as a sequence of jets, the strongest of which (the
primary jet) is closest to the boundary and directed radially inward. The orientations of
these radial jets alternate and their strengths diminish with distance from the boundary.
Continuity dictates that the radial variation of volume flux within each jet be balanced
by an axial flow. In this article attention is focused on the shape of the boundary
layer, the magnitude of the axial oscillations within the boundary layer and the radial
variation of the axial outflow.

This paper is organized as follows. The boundary-layer problem for flow beneath
a general axisymmetric circumferential swirl is formulated in § 2 and the eddy
diffusivity is modelled as the product of the outer flow speed times a diffusivity
function in § 2.1. This problem is restructured and non-dimensionalized in § 3 – using
dimensionless independent variables that are non-orthogonal. Two simple models
of the axial structure of the eddy diffusivity are introduced in § 4; model A has
the diffusivity function constant (independent of axial distance z), while model B
has it increasing linearly with z outside a rough layer of constant thickness. (With
model A, the restructuring introduced in § 3 is in fact a similarity transform with the
dimensionless governing equations being ordinary differential equations.) The problem
has been solved by means of a spectral-iterative procedure described in appendix B
for both model A and model B in the case that the far fluid is in rigid-body motion.
The results of calculations employing model A are presented and discussed in § 5,
while those employing model B are presented and discussed in § 6. The results are
discussed in § 7 and insights gleaned from this solution are summarized in § 8. These
analyses are supplemented by three appendices; appendix A contains a derivation of
the continuity equation using a control-volume approach, appendix B describes the
spectral-iterative solution procedure in some detail and this procedure is applied to the
classic Bödewadt problem and compared with the solution presented in Schlichting
(1968) in appendix C.

The analyses of this paper, which focuses on rigid-body outer flow, are generalized
in Part 2 (Loper 2020) to the case that the outer flow is a power-law swirl.

2. The boundary-layer problem

The boundary-layer problem consists of a set of coupled nonlinear partial
differential equations and associated boundary conditions governing the mean
flow within a turbulent boundary layer beneath a fluid in arbitrary axisymmetric
circumferential (swirling) motion, together with parameterization of the eddy
diffusivity.

In this formulation the Navier–Stokes and continuity equations are simplified
assuming:

(i) hydrostatic balance (so that the vertical component of the momentum equation is
unimportant); e.g. see Kuo (1971) for justification;

(ii) radial viscous terms are negligibly small;
(iii) steady axisymmetric flow of a constant-density fluid;
(iv) the outer circumferential speed v∞ varies arbitrarily with cylindrical radius r; and
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892 A16-4 D. E. Loper

(v) the outer flow is in gradient-wind balance (see § 28.4.3 of Loper 2017), with

1
ρ0

∂p
∂r
=

1
r
v2
∞
, (2.1)

where ρ0 is the (constant) fluid density and p is the pressure. This balance implies
that the frame of reference is not rotating (no Coriolis force) and that the radial
velocity outside the boundary layer is negligibly small. The first two of these
simplifying assumptions are fundamental to the boundary-layer approximation;
see § 3.2.1.

Using a cylindrical coordinate system {r, φ, z} with the line r= 0 being the axis of
symmetry and z being axial distance from the boundary, the fluid velocity vector may
be expressed as

v = u1r + v1φ +w1z, (2.2)

where 1x is a unit vector pointing in the direction of increasing coordinate x={r, φ, z}
and the components u, v and w are functions of r and z. The boundary-layer equations
governing this mean flow are the horizontal components of the momentum equation,
with the pressure eliminated using (2.1), plus continuity

u
∂u
∂r
+w

∂u
∂z
+
v2
∞

r
−
v2

r
=
∂

∂z

(
ν
∂u
∂z

)
, (2.3)

u
∂v

∂r
+w

∂v

∂z
+

uv
r
=
∂

∂z

(
ν
∂v

∂z

)
(2.4)

and
∂(ru)
∂r
+
∂(rw)
∂z
= 0, (2.5)

where the eddy diffusivity ν, which parameterizes the effect of small-scale turbulent
motions, is a function of r and z.

Equations (2.3)–(2.5) are to be solved in the domain 0 < r <∞ and 0 < z <∞
subject to the following boundary conditions. The velocity far from the boundary is
predominantly circumferential

as z→∞: u→ 0 and v→ v∞. (2.6a,b)

At the rigid boundary the velocity satisfies the usual no-slip and no-normal-flow
conditions

at z= 0 : u= v =w= 0. (2.7)

The no-slip condition may be imposed provided the parameterized eddy diffusivity
is non-zero at z = 0; see § 4.2.1. The momentum equations contain a single radial
derivative, implying that a radial boundary condition, such as u = v = 0 at r = 0,
may be prescribed. However, as will be seen, the boundary-layer balance is local and
the structure of the layer at a specified value of r may be completely determined,
independent of any radial boundary condition.
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Turbulent Bödewadt flow 892 A16-5

2.1. Structure of eddy diffusivity
When fluid motions are turbulent, it is common practice to divide the velocity into
mean and fluctuating parts, and consider a set of equations governing the spatial
structure of the mean flow, with the effect of small-scale motions parameterized in
some manner. A simple and reasonably effective approximation is to quantify the
effect of small-scale motions using an eddy diffusivity, ν, e.g. see § 23.5.2 of Loper
(2017). Of course, the effectiveness of this approach depends on the manner in which
ν is parameterized.

The eddy diffusivity has dimensions of length squared divided by time, or
equivalently speed times length. Since ν encapsulates the effect of small-scale
turbulent motions induced by a velocity difference (quantified by v∞ in the present
case), it is reasonable to suppose that ν depends on v∞. Dimensional consistency
requires that this relation be linear, leading directly to the parameterization

ν(r, z)= v∞(r)L(r, z), (2.8)

where the diffusivity function L(r, z) has dimensions of length; see § 4.
Usually, within the context of mixing-length theory, the eddy diffusivity is expressed

as the product of a local velocity gradient times the square of the mixing length;
e.g. see § 5.3.3 of Holton (2004) or § 23.5 of Loper (2017). Since the local velocity
gradient is proportional to v∞, this gradient may be replaced by v∞ divided by a
gradient scale. The diffusivity function L is in effect a modified mixing length equal
to the square of the mixing length divided by that gradient scale. Equation (2.8)
is structurally identical to formula (19.9) of Schlichting (1968), except that here L
may be a function of r and z, whereas the corresponding factor (χ1b) is constant in
Schlichting’s version. It is shown in § 23.5.2 of Loper (2017) that L� z.

The dynamic balance within a boundary layer is between inertia and a viscous force
that may be directly due to molecular viscosity or may be a representation of small-
scale inertia. A consequence of formulation (2.8) is that the viscous force representing
small-scale inertia now has the same mathematical structure as the large-scale inertial
terms: both are quadratic in v∞. This similarity of structure underlies the versatility of
the formulation developed in § 3. There are many other, more sophisticated models of
eddy diffusivity (e.g. see Fiedler & Garfield (2010)), but they lack the elegant structure
of (2.8) that mimics the form of the inertial terms and thus permits development of
governing equations that are independent of the magnitude of v∞.

3. Non-dimensionalization
The problem is non-dimensionalized by expressing the velocity components as

{u(r, z), v(r, z),w(r, z)} = v∞{F,G, εH?
}, (3.1)

where F, G and H? are functions of the dimensionless variables

ρ = εr/z0 (3.2)

and
ζ =

z
√
εz0r
=

z?
√
ρ
, (3.3)

where
z? = z/z0 (3.4)
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892 A16-6 D. E. Loper

is the dimensionless axial distance from the bounding plane (that is, height), with z0

being a specified axial scale and ε being a small dimensionless parameter; see § 4.2.
Substituting (3.1)–(3.3) into (2.3)–(2.5), these equations become

(ΛFζ )ζ −HFζ − ρFFρ + (1− 2θ)F2
+G2

= 1, (3.5)
(ΛGζ )ζ −HGζ − ρFGρ − 2θFG= 0 (3.6)

and
Hζ +

(
2θ + 1

2

)
F+ ρFρ = 0, (3.7)

where subscripts denote differentiation,

H =
√
ρH?
−

1
2ζF (3.8)

is the velocity component normal to lines of constant ζ and

θ =
1

2v∞

d(rv∞)
dr

(3.9)

is the non-dimensionalized vorticity of the outer fluid (outside the boundary layer).
This parameter, which is identical to Kuo’s swirl parameter n (Kuo 1971), is scaled
such that θ = 1 for rigid-body rotation and θ = 0 for a potential vortex.

The function Λ is a re-scaled version of the diffusivity function L introduced
in (2.8)

Λ(ρ, ζ )=
1
εz0

L(z0ρ/ε, z0
√
ρζ ). (3.10)

Equations (3.5)–(3.7) are to be solved on the interval 0 < ζ <∞ subject to the
dimensionless version of conditions (2.6) and (2.7)

F(ρ, 0)=G(ρ, 0)=H(ρ, 0)= F(ρ,∞)=G(ρ,∞)− 1= 0. (3.11)

3.1. Complex formulation
As noted by Kuo (1971), the two momentum equations (3.5) and (3.6) have similar
structure and are readily combined into a single complex equation. Writing

V =G+ iF, (3.12)

these equations may be combined into

(ΛVζ )ζ −HVξ − ρFVρ + 2(1− θ)FV + iV2
= i. (3.13)

Note that, here and in the following, complex quantities (including the imaginary
unit i) are expressed using bold italic letters.

Conditions (3.11) now become

V(ρ, 0)=H(ρ, 0)=V(ρ,∞)− 1= 0. (3.14)
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Turbulent Bödewadt flow 892 A16-7

3.2. Discussion of the non-dimensionalization
The non-dimensionalization employs non-orthogonal independent variables; while ρ

is a dimensionless radial coordinate, ζ depends on both z and r. This choice of
independent variables serves to minimize the effect of radial variation. In particular,
if the parameters θ and Λ are independent of ρ, then that variable does not appear
explicitly in (3.7) and (3.13) or in conditions (3.14). Consequently, the solution is
independent of ρ; the radial derivatives in these equations may be ignored, making
them ordinary differential equations. In other words, if θ and Λ are independent
of ρ, then the non-dimensionalization is a similarity transform. This is the case for
diffusivity model A introduced in § 4, having the function L equal to a constant.
However, diffusivity model B has L varying with z. Since z= z0ζ

√
ρ, Λ depends on

ρ and the radial-derivative terms must be retained; when model B is employed, the
transformation is not a similarity.

The equations governing rotating flows with ν assumed constant have been
previously reduced to ordinary differential equations using

(i) the von Kármán–Bödewadt transformation (for rigid-body rotation with v∞ ∼ r)
having ζ independent of r;

(ii) Long’s conical transformation (for a potential vortex with v∞ ∼ 1/r) having ζ ∝
z/r; and

(iii) Kuo’s power-law transformation (for power-law vortex with v∞ ∼ r2n−1) having
ζ ∝ rn−1z;

(von Kármán (1921), Bödewadt (1940), Long (1958), Kuo (1971); see also Foster
(2009) and Bĕlík et al. (2014)). Note that Kuo’s transformation is a hybrid of the
first two, equalling the Kármán–Bödewadt similarity transformation when n = 1 and
the Long transformation when n= 0.

In each of these cases, the structure of the similarity transformation is keyed to a
specific radial variation of the flow outside the boundary layer. The transformation
given by (3.1)–(3.3) appears to be novel, in that there is no comparable restriction on
the form of v∞. With ν ∝ v∞(r), the structure of the principal transform variable ζ ∝
z/
√

r is independent of the radial variation of the outer flow and the function v∞(r)
enters the formulation parametrically, through the swirl parameter, θ . This feature is
important because it permits consideration of a large class of swirling flows. This
flexibility in the formulation permits the axial component of velocity to be of smaller
order than the radial component, in contrast to Long’s conclusion that the two must
be of the same order of magnitude. The difference between present formulation and
previous studies that treated the eddy diffusivity as constant is seen most clearly in
the continuity equation; if the diffusivity were constant (as in the laminar Bödewadt
problem considered in appendix C), the factor multiplying F in the continuity equation
would be 2 rather than 2θ + 1/2.

The present formulation is mathematically identical to the Blasius transformation,
quantifying flow over a semi-infinite flat plate (see § VII.e, pp. 125–133 of Schlichting
(1968)), with the horizontal coordinate (r) being distance from the leading edge in the
Blasius problem and distance from the vortex axis in the present problem. As with the
Blasius transformation, in the present formulation the horizontal velocity components
are not explicitly dependent on r, while both ζ and the axial velocity vary explicitly
as 1/

√
r, so that the solution has a weak algebraic singularity as r→ 0. This weak

singularity governs the behaviour of the solution in the limit r→ 0 for rigid-body
outer flow, but plays no role in the structure of the boundary layer for vortical outer
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892 A16-8 D. E. Loper

flow (having θ < 0.5); it will be seen in Part 2 that when the outer flow is vortical,
the boundary-layer formulation breaks down at a finite radius.

The structure of the outer flow and its effect on the boundary layer is encapsulated
in the parameter θ defined by (3.9), which is a dimensionless measure of both the
angular-momentum gradient and vorticity outside the boundary layer. Specifically, the
axial vorticity ω of the outer flow is related to θ by

ω=
1
r

d(rv∞)
dr

= 2θ
v∞

r
. (3.15)

Both ω and θ quantify the ‘stiffness’ of the outer flow, as exemplified by its ability
to resist radial motion and sustain inertial waves. This stiffness causes the axial
oscillation of the boundary-layer variables, with viscosity causing an axial damping.

If θ is constant, the outer flow is a simple power-law flow with

v∞ ∼ r2θ−1. (3.16)

Note that if

(I) θ < 0, the angular-momentum gradient is negative and outer flow is dynamically
unstable;

(II) θ = 0, the outer flow is a potential vortex;
(III) 0< θ < 1, the outer flow is a general swirling motion and more specifically

(i) for 0<θ < 1/2, v∞ is vortical, being a decreasing function of r and infinite
at r= 0;

(ii) for θ = 1/2, v∞ is independent of r and finite (and singular) at r= 0; and
(iii) for 1/2<θ < 1, v∞ is rotational: being an increasing function of r and zero

at r= 0;
(IV) θ = 1, the outer flow is rigid-body rotation and the problem becomes a turbulent

version of the classic Bödewadt problem; this is investigated in §§ 5 and 6;
(V) 1 < θ , the outer flow is ‘super rigid-body’ rotation, with the circumferential

velocity increasing with r faster than linear.

The flow in an atmospheric vortex has 0<θ < 1 in the region outside the eyewall and
θ > 1 within the eye, with a transition within the eyewall.

The singular behaviour of the boundary-layer formulation in the limit θ→ 0 (that
is, swirl tending to a potential vortex) is seen in the circumferential momentum
equation (3.6); radial advection of angular momentum goes to zero in this limit and
there is no mechanism to balance its axial diffusion in a steady state. This singular
behaviour is fundamental and cannot be eliminated by re-scaling the variables. As θ
decreases toward 0, the outer fluid becomes increasingly flaccid; the boundary layer
thickens and the meridional flow speed increases. Many studies of swirling flow
have assumed the outer flow to be a potential vortex, with the implicit assumption
that such flow is representative of vortical flows. However, this is not the case;
potential flow is in fact a singular limit of a general swirling flow. It is known
(Goldshtik 1990) that for laminar flow, the boundary-layer problem describing flow
beneath a potential vortex has a solution only if the Reynolds number rv∞/ν is less
than 5.53. This situation also occurs when the flow is turbulent, with no solution to
the boundary-layer problem if the outer flow is a potential vortex, or even close to it.
However, with a solution procedure in hand, it is possible to follow in some detail
the behaviour of the solution as this singular limit is approached. This investigation
is beyond the scope of this article; it is taken up in Part 2.
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3.2.1. Limitation of boundary-layer formulation
Two assumptions are fundamental to the boundary-layer approach to finding the flow

near a bounding surface: axial derivatives are much larger than transverse derivatives
and the axial velocity is small compared with the transverse velocity components. In
the present case these assumptions are satisfied provided

∂/∂r� ∂/∂z (3.17)

and w� v∞ or equivalently
εH?
� 1. (3.18)

With the former assumption the radial viscous terms may be neglected and with the
latter assumption, the axial momentum equation reduces to ∂p/∂z = 0 to dominant
order, with the external pressure field being impressed on the boundary layer, as is
done in § 2. Often these conditions go hand in hand; that is, they are simultaneously
satisfied or not.

If F and H are of unit order, it follows from (3.8) that H?
=O(ρ−1/2), and (3.18)

is satisfied provided that
εz0� r. (3.19)

This limitation is similar to that for the Blasius boundary layer, which is not valid
close to the leading edge of the flat plate. This restriction on the domain of validity
shows that a boundary layer cannot exist close to the axis of a vortical flow; flow in
that region must be different from that investigated in this study.

If H is of unit order, as it is for θ = 1, condition (3.19) is not a severe restriction on
the domain of validity of the boundary-layer solution. However, if H becomes large,
as it does for θ < 0.5, condition (3.18) places a limit on the radial domain in which
the boundary-layer formalism is valid. That is, it is seen in Part 2 that, for θ < 0.42,
condition (3.18) fails at a finite radius, which presumably signifies the presence of an
eye and corner region.

The problem consists of equations (3.7) and (3.13) to be solved for H, V and F=
Im[V] on the interval 0<ζ <∞, subject to conditions (3.14). Equation (3.13) contains
one parameter θ , defined by (3.9), and a diffusivity function Λ that is defined in the
following section. If the outer flow is a simple power of r then θ is a constant. This
leads to the investigation of a sequence of problems, beginning with rigid-body motion
θ = 1 in the following sections of this paper. Part 2 considers the structure of the
boundary layer beneath a power-law swirl, for which θ is constant.

4. Simple models of diffusivity function
The problem as posed in § 3 is incomplete; the diffusivity function L(r, z),

introduced in (2.8), needs to be specified. Two simple models of this function, defined
in the following two subsections, will be employed in the subsequent analysis.

4.1. Diffusivity model A
The simplest model of the diffusivity function is

L= εz0, (4.1)

where ε and z0 are constants. It is readily seen that (3.10) simplifies to

Λ= 1. (4.2)

This model is a parameterization of the resistance to turbulent flow afforded by
a homogeneous array of small-scale obstacles; it is essentially a model of turbulent
flow within a porous medium. This model is generalized and made more geophysically
plausible in the following subsection.
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4.2. Diffusivity model B
The physical basis for model B is the realization that the lower boundary for
atmospheric vortices is not smooth. Turbulence is induced near the ground by an
array of blunt obstacles (e.g. topographic irregularities, vegetation, buildings, etc.)
within a rough layer that extends a distance z0 from the ground. These obstacles
act as literal trip wires that induce turbulence within and above the layer. Within
the rough layer uniform resistance, with L= εz0, is retained. Above the rough layer,
turbulence is maintained by shear-flow instability. Representation of the diffusivity
function in the region above the layer is based on Prandtl’s mixing-length theory,
with ν = εv∞z. This is equivalent to formula (19.9) of Schlichting (1968; see also
§ 23.5.2 of Loper (2017)); that is, L= εz above the rough layer. Altogether,

L= ε
{

z0 if 0< z 6 z0
z if z0 < z (4.3)

for model B. Substituting (4.3) into (3.10) the dimensionless diffusivity function
becomes

Λ=

{
1 if 0< ζ 6 1/

√
ρ

ζ
√
ρ if 1/

√
ρ < ζ .

(4.4)

The parameter ρ, defined by (3.2), may be viewed in two ways. With z0 constant,
ρ is the non-dimensional radius. On the other hand, at a given radius, ρ is a measure
of the effect on the boundary-layer flow of a rough layer having thickness z0. Note
that:

(i) in the limit ρ→0 the mathematical problem using model B approaches that using
model A; however, the physical interpretation of the results differ for the two
models; results using model A apply for all values of r, while using model B,
results in the limit ρ→ 0 apply only as r→ 0 – not for all r;

(ii) in the limit ρ→∞ the resistive influence of the rough layer tends to zero and
model B becomes singular;

(iii) with z0 constant, the relative importance of the rough layer varies as 1/
√

r; that
is, the effect of the rough layer is relatively small far from the axis of rotation
and increases as r→ 0; and

(iv) this formulation of the diffusivity function above the rough layer is in accord with
the line of reasoning found in Bak (1996) and the idea that the mean shearing
motions within the boundary layer are at the margin of stability, with the local
Reynolds number nearly constant

Re=
v∞z
ν
=

1
ε
. (4.5)

This Reynolds number is likely to be moderately larger than the value at which
vortex shedding about a cylindrical obstacle first occurs: Re≈ 47. It follows that ε <
0.02. (Loper (2017, § 23.5.2) arrived at this estimated value in a different manner, with
ε = κ

√
CD, where κ = 0.421 is the von Kármán constant and CD ≈ 0.0013 is drag

coefficient.) The precise value of ε is not important. The only requirement is that it
is much less than unity, so that the neglect of the radial viscous terms, which are of
order ε2, is justified.

With ε ≈ 0.01, say, and z0 ranging from 0.1 m (grassland) to 10 m (forest) and r
ranging from 10 m (for a dust devil) to 1000 m (for a tornado), a plausible range for
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ρ is 0.01 < ρ < 100.0. Condition (3.19) requires that ε2
� ρ; this condition is well

satisfied with these parameter estimates.
This parameterization, with diffusivity growing with z, succeeds in giving reasonable

answers because inertial stability of the far fluid causes the boundary-layer variables to
decay exponentially with axial distance. If the far fluid is not rotating (as for example
in the von Kármán problem) this simple parameterization fails. Finally, it should be
noted that many other parameterizations of the diffusivity function could be used. The
choice will affect numerical values of the results presented in §§ 5 and 6, but it is
believed that the qualitative character of the solutions will be unchanged.

4.2.1. The rough layer and the slip condition
A diffusivity function that varies linearly with z is associated with a velocity profile

that is logarithmic near the boundary (e.g. see § 5.3.5 of Holton (2004) and/or § 23.6
of Loper (2017)) and normally the boundary-layer problem requires specification of a
slip boundary condition at z= 0. The slip condition is a relation between the velocity
and its normal gradient containing a drag coefficient; e.g. see (3.10) of Eliassen
(1971). The drag coefficient represents (parameterizes) the effect of small-scale
motions over and around tiny irregularities on the surface; e.g. see §§ 23.4 and 23.5 of
Loper (2017). When considering atmospheric vortices, this simple parameterization is
unsatisfactory because the so-called small-scale irregularities (that is, trees, buildings.
etc) are not that small, and considerable flow occurs within this rough layer. (The
need to explicitly resolve the flow within the rough layer is clearly evident from
the left-hand panels of figures 8, 9 and 10. Note that the rough layer extends from
z? = 0 to z? = 1. In particular, the left-hand panel of figure 8 shows that all of
the primary jet lies within the rough layer if ρ 6 0.1.) This realization led to the
development of a more sophisticated model of the interaction of turbulent flow with a
rough boundary in which the layer containing the roughness elements is of finite size,
with flow within this layer being explicitly resolved. In this model, drag is produced
by the macroscopic obstacles within the rough layer, rather than by microscopic
irregularities close to the ground. Essentially, the rough layer is a porous medium
within which flow is turbulent. Since the drag is represented by a body force in this
model, there is no need to introduce the heuristic slip condition and the more-precise
no-slip condition of laminar models may be retained. This results in a well-posed
problem provided z0 > 0. The momentum equation is singular in the limit z0 → 0,
or equivalently ρ → ∞, with velocity profiles near the boundary approaching the
well-known logarithmic shape (see the right-hand panels of figures 8 and 9).

For the remainder of this article, attention is confined to Bödewadt flow, with the
far fluid being in rigid-body motion with

v∞(r)=Ωr, (4.6)

where Ω is the rotation rate. In this case θ = 1. The solution to the problem
formulated in §§ 3 and 4 with θ = 1 using model A is investigated in the following
section, while the solution using model B is presented in § 6.

5. Turbulent Bödewadt flow using model A
For model A the diffusivity function is unity (see (4.2)), the transformation is a

similarity transformation and (3.7) and (3.12) become ordinary differential equations;
with θ = 1 these are

H′ + (5/2)F= 0 (5.1)
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FIGURE 1. Graphs of the velocity components for turbulent Bödewadt flow using model A.
The dotted line is the asymptotic value of the axial velocity component.

and
V′′ −HV′ + i V2

= i, (5.2)

where a prime denotes differentiation with respect to ζ . These equations are to be
solved on the interval 0< ζ <∞, subject to conditions (3.14). This problem lacks a
parameter and has a single definite solution that can be obtained using the spectral-
iterative procedure described in appendix B.

The velocity components F, G, H and

HA =H + 1
2ζF=

√
ρH? (5.3)

are graphed versus ζ in figure 1, with HA shown as a dashed curve. The origin of
relation (5.3) and its association with the continuity equation (3.7) is explained in
appendix A. For comparison, graphs of the solution for the case of laminar flow (i.e.
the solution to the Bödewadt problem; see appendix C) are presented in figure 2.
Note that the independent variables are different for these two figures. The turbulent
solution has larger axial velocity component and larger flow oscillation. Putting
numbers to these and other features,

(i) the radial speed reaches a minimum of Fmin =−0.561 at ζF = 1.263;
(ii) the circumferential speed reaches a maximum of Gmax = 1.435 at ζG = 3.084;

(iii) the asymptotic value of the axial speed is H∞ = 1.659;
(iv) the normal speed reaches a maximum value of Hmax = 2.975 (and F has a zero)

at ζmax = 3.390;
(v) the normal speed reaches an internal minimum value of Hmin= 1.408 (and F has

a zero) at ζmin = 7.479; and
(vi) the gradient of V at ζ = 0 is 0.759–0.999i.
For comparison, the corresponding values for laminar Bödewadt flow are given in
appendix C.

The magnitudes of the flow oscillations are illustrated in figure 3, which contains
hodographs of the horizontal velocities using model A and laminar Bödewadt flow;
compare with figure 11.3 of Schlichting (1968). The horizontal velocity is zero at the
boundary ζ = 0 and varies in a counter-clockwise sense as ζ increases, approaching
F= 0 and G= 1 as ζ→∞.
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6 8 10 12

Ω = z√Ø/v
-0.5

0.5

1.0

1.5

FIGURE 2. Graphs of the velocity components for laminar Bödewadt flow; after
figure 11.2 of Schlichting (1968). Ω is the rotation rate of the outer fluid. The dotted
line is the asymptotic value of the axial velocity component.

Radial

Circumferential

Bödewadt

Model A

G
0.2 0.4

-0.4

0.6 0.8 1.0 1.2 1.4

-0.2

0.2

F

FIGURE 3. Hodographs of the horizontal velocity using model A and for laminar
Bödewadt flow. The dots on the curves denote unit values of ζ : 0, 1, 2, . . . .

5.1. Comparison of model A and the laminar Bödewadt model
Model A is similar to the laminar Bödewadt model, in that the diffusivity is
independent of axial distance in both models. In fact the momentum equations for
these two models are mathematically identical; compare (5.2) with (C 8). However, the
models are not physically identical, because the continuity equations and meanings
of the quantity H differ. In Bödewadt flow, lines of constant ζ are parallel to
lines of constant z and, as a consequence, H is both the axial speed and the
speed normal to lines (in the meridional plane) of constant ζ . With the turbulent
non-dimensionalization, lines of constant ζ are tilted relative to lines of constant
z and consequently there is a difference between H, which is the speed normal
to lines of constant ζ , and HA, which is the speed normal to lines of constant z;
see (5.3). The difference between H and HA is visualized in the inset of figure 12.
This distinction between the physical meanings shows up in the continuity equations,
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which is H′ + (5/2)F= 0 for the turbulent Bödewadt model and H′ + 2F= 0 for the
laminar Bödewadt model; compare (5.1) with (C 5). A physical consequence of this
difference is that meridional flow is larger for the turbulent model, as illustrated by
the hodographs in figure 3.

Another difference between the laminar and turbulent Bödewadt solutions is in
the relation between dimensional and dimensionless axial velocity components. In
the laminar case, these two are related by a constant factor

√
νΩ , while in the

turbulent case, they are related by a factor that depends on r (see (3.1) and (3.8));
the dimensional turbulent axial velocity varies as 1/

√
r. This radial dependence,

which is implicit in the solution using model A, is made explicit when investigating
the structure of the solution using model B.

6. Turbulent Bödewadt flow using model B
Using model B the turbulent Bödewadt problem consists of equations (3.7) and

(3.13) and condition (3.14) with the diffusivity function Λ given by (4.4) and with
θ = 1. Since Λ now is a function of ρ, the solution depends on the specified value
of ρ and is necessarily more complicated than that using model A. This problem has
been solved using the spectral-iterative procedure described in appendix B for select
values of ρ, with the results summarized in table 1. Each row of the table represents
a converged iteration, with the first column giving the value of ρ and the remaining
nine columns containing:

(i) z?1: the axial location of the first zero of the radial speed;
(ii) z?2: the axial location of second zero of the radial speed;

(iii) Gmax: the maximum circumferential speed;
(iv) z?G: the axial location of this maximum;
(v) Fmin: the minimum radial (i.e. maximum radially inward) speed;

(vi) z?F: the axial location of this minimum;
(vii) H?

∞
: the axial speed (outflow) far from the boundary;

(viii) H?
max: the maximum axial speed within the boundary layer; and

(ix) V′0 ≡G′(0)+ iF′(0): the velocity gradient at the boundary.

Numerical entries are believed to be accurate (within rounding errors).

6.1. Visualization of results
When visualizing results obtained using model B the appropriate scaling of the radial
and axial coordinates is ρ and z? defined by (3.2) and (3.4), respectively. Also, using
(3.1), (3.3) and (3.8) the velocity components and their gradients may be expressed
as

u
v∞
= F,

v

v∞
=G,

w
εv∞
=H?,

z0

v∞

∂u
∂z
=

F′
√
ρ

and
z0

v∞

∂v

∂z
=

G′
√
ρ
.

 (6.1)

With this in mind,

(i) values of z?1, z?2, z?G and z?F are graphed versus ρ in figure 4;
(ii) values of H?

∞
and H?

max are graphed versus ρ in figure 5;
(iii) values of Fmin and Gmax are graphed versus ρ in figure 6; and
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ρ z?1 z?2 Gmax z?G Fmin z?F H?
∞

H?
max V′0

100 237.7 969.0 1.038 132.7 −0.199 12.28 0.404 0.486 2.157− 0.843 i
80.0 192.3 779.7 1.040 108.2 −0.204 10.59 0.425 0.512 2.011− 0.822 i
70.0 169.4 684.8 1.041 95.78 −0.208 9.697 0.438 0.529 1.929− 0.811 i
60.0 146.5 589.6 1.042 83.29 −0.212 8.774 0.454 0.549 1.839− 0.799 i
50.0 123.4 494.1 1.044 70.67 −0.217 7.808 0.474 0.575 1.740− 0.786 i
40.0 100.1 398.3 1.047 57.87 −0.223 6.784 0.501 0.610 1.629− 0.774 i
30.0 76.63 301.9 1.050 44.86 −0.232 5.686 0.540 0.660 1.499− 0.760 i
20.0 52.76 204.8 1.056 31.51 −0.245 4.471 0.604 0.744 1.339− 0.748 i
15.0 40.62 155.8 1.061 24.63 −0.256 3.794 0.657 0.815 1.240− 0.744 i
12.0 33.22 126.2 1.065 20.41 −0.265 3.353 0.704 0.879 1.171− 0.743 i
10.0 26.23 106.3 1.069 17.53 −0.272 3.038 0.747 0.937 1.118− 0.745 i

8.00 23.17 86.26 1.075 14.60 −0.283 2.702 0.805 1.018 1.059− 0.748 i
7.00 20.61 76.18 1.078 13.11 −0.289 2.523 0.843 1.072 1.026− 0.752 i
6.00 18.02 66.04 1.083 11.59 −0.297 2.335 0.891 1.141 0.990− 0.757 i
5.00 15.40 55.84 1.089 10.04 −0.308 2.136 0.954 1.233 0.951− 0.765 i
4.00 12.73 45.54 1.098 8.444 −0.322 1.921 1.041 1.364 0.906− 0.778 i
3.00 10.00 35.13 1.113 6.800 −0.342 1.686 1.172 1.569 0.856− 0.798 i
2.00 7.182 24.53 1.140 5.074 −0.378 1.419 1.401 1.958 0.798− 0.835 i
1.50 5.721 19.14 1.168 4.165 −0.409 1.266 1.599 2.332 0.766− 0.868 i
1.20 4.821 15.86 1.195 3.597 −0.438 1.165 1.771 2.697 0.748− 0.897 i
1.00 4.209 13.64 1.221 3.205 −0.463 1.090 1.922 3.051 0.738− 0.922 i
0.80 3.585 11.41 1.258 2.799 −0.495 1.008 2.114 3.553 0.732− 0.952 i
0.70 3.267 10.27 1.282 2.588 −0.513 0.961 2.231 3.884 0.732− 0.969 i
0.60 2.945 9.119 1.309 2.369 −0.533 0.911 2.370 4.284 0.734− 0.986 i
0.50 2.616 7.939 1.337 2.139 −0.552 0.853 2.541 4.763 0.739− 1.000 i
0.40 2.275 6.720 1.365 1.893 −0.566 0.782 2.770 5.333 0.746− 1.009 i
0.30 1.915 5.445 1.387 1.623 −0.570 0.690 3.112 6.050 0.755− 1.010 i
0.20 1.524 4.097 1.405 1.322 −0.565 0.567 3.701 7.189 0.759− 1.003 i
0.10 1.069 2.617 1.430 0.961 −0.561 0.400 5.100 10.04 0.759− 0.999 i
0.05 0.758 1.734 1.435 0.690 −0.561 0.282 7.201 14.15 0.759− 0.999 i
0.02 0.479 1.058 1.435 0.436 −0.561 0.179 11.74 22.38 0.759− 0.999 i
0.01 0.339 0.748 1.435 0.308 −0.561 0.126 16.64 31.65 0.759− 0.999 i
0 0.000 0.000 1.435 0.000 −0.561 0.000 1.659 2.975 0.759− 0.999 i

TABLE 1. Summary of calculations using model B. The dimensionless radial and axial
coordinates ρ and z? are defined by (3.2) and (3.4), respectively, and H? is defined by (3.8).
For comparison, the last row contains the results using model A, with the entries of the
eighth and ninth columns of this last row being H∞ and Hmax. The underlying calculations
have Ee < 0.01; see (B 67).

(iv) values of F′/
√
ρ and G′/

√
ρ evaluated at ζ = 0 are graphed versus ρ in figure 7.

Each of these figures consists of two panels, with graphs in the right-hand panels
extending from ρ = 0 to 100 and those the left-hand panels extending from ρ = 0
to 1.5, in order to show more clearly the structure close to the axis of rotation.

6.2. Boundary-layer shape
The shape of the boundary layer is illustrated in figure 4, which contains graphs of
the dimensionless axial locations z?1, z?2, z?G and z?F versus ρ. It is seen that overall the
boundary-layer thickness varies roughly linearly with radius, tending to zero at the
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FIGURE 4. Graphs of the dimensionless axial locations of the first (z?1) and second
(z?2) zeros of the radial component of velocity, the maximum (z?G) of the circumferential
component of velocity and the minimum (z?F) of the radial component of velocity using
model B: for 0 < ρ < 100 in (b) and for 0 < ρ . 1.5 in (a). The solid curves delimit
the domains of radial flow, with the double arrows denoting the direction of flow in the
meridional plane. The radial inflow within 0 < z? < z?1 is the primary jet and the radial
outflow within z?1 < z? < z?2 is the secondary jet.
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FIGURE 5. Graphs of the asymptotic (H?
∞

) and maximum (H?
max) values of the axial

velocity component: for 0<ρ < 100 in (b) and for 0<ρ . 1.5 in (a).
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FIGURE 6. Graphs of the maximum circumferential (Gmax) and minimum radial (Fmin)
velocity components: for 0<ρ < 100 in (b) and for 0<ρ . 1.5 in (a).

axis of rotation. There is a departure from linearity for ρ < 1, with the layer thickness
tending toward (but not achieving) the parabolic shape of model A. The variation with
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FIGURE 7. Graphs of the circumferential (positive values) and radial (negative values)
boundary gradients: for 0<ρ < 100 in (b) and for 0<ρ . 1.5 in (a).

ρ of the axial locations seen in this figure may be parameterized by

z?y = ay
√
ρ + byρ (6.2)

for y= 1, 2, G and F, with a1= 2.018, b1= 2.171, a2= 4.391, b2= 9.256, aG= 2.009,
bG = 1.128, aF = 0.875 and bF = 0.034.

The two solid curves in figure 4 visualize the axial locations of the first and second
interior zeros of F. Within 0< z? < z?1 the flow is radially inward; this is the primary
jet; the outward-flowing secondary jet occurs within z?1 < z? < z?2. That is, the lower
solid curve marks the top of the primary jet, while the secondary jet lies between
these two solid curves, as depicted by the double arrows in the right-hand panel of
this figure.

6.3. Velocity magnitudes
The asymptotic (H?

∞
) and maximum (H?

max) values of the axial velocity component are
graphed versus ρ in figure 5. The variation of these velocity components is governed
primarily by the factor

√
ρ appearing in the definition of H? (see (3.8)), with the

speeds becoming arbitrarily large as ρ→ 0. For large ρ, H?
∞

is moderately smaller
than H?

max, indicating that oscillations in the meridional flow are weak. For small ρ,
H?

max is considerably larger than H?
∞

, indicative of stronger oscillations.
The extreme values of F and G versus ρ are graphed in figure 6. They show little

variation, with extremes having greatest magnitude for small ρ.

6.4. Gradients at the boundary
The circumferential and radial shear stresses at the boundary are proportional to the
gradients of the respective horizontal velocity components; see (6.1). The variation of
these gradients with ρ is shown in figure 7. As with the axial velocity, the magnitude
of the gradients is dominated by the factor

√
ρ, becoming large as ρ decreases.

6.5. Flow structure
The structure of the flow is illustrated in figures 8–10 by graphs of the radial (F =
u/v∞), circumferential (G = v/v∞) and axial (H?

= εw/v∞) components of velocity
versus z? for select values of ρ: 0.1, 1.0, 10.0 and 100.0. The differences of vertical
scale at these locations reflect the roughly linear shape of the boundary layer. For large
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FIGURE 8. Graphs of the dimensionless radial velocity, F, versus z? at four radial
locations as indicated. The vertical dotted lines denote values of F in one-tenth intervals.
Note the changes in vertical scale.
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FIGURE 9. Graphs of the dimensionless circumferential velocity, G, versus z? at four
radial locations as indicated. The vertical dotted lines denote the asymptotic value G= 1.0.
Note the changes in vertical scale.

ρ, the boundary layer extends far above the top of the rough layer (at z? = 1), while
for ρ small, the boundary layer is comparable in height to the rough layer.

All velocity components oscillate as z increases, with F changing sign, while G
and H? remain positive. The strength of the oscillations increases as ρ decreases. The
profiles of F and G show that for large ρ, the boundary layer has a double-layer
structure; the radial velocity has a maximum and G surpasses unity at a modest value
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FIGURE 10. Graphs of the dimensionless axial velocity, H?, versus z? at four radial
locations as indicated. The vertical dashed lines denote the asymptotic values of H?. The
vertical dotted lines denote values of H? in unit intervals. Note the changes in vertical
scale.

of z?, then F relaxes to zero and the overshoot of G diminishes over a large range
of z?. For z? of unit order, these large-ρ profiles have similar structure to the well-
known logarithmic profiles for turbulent flow near a plane boundary (e.g. see §§ XIX.d
and XX.c of Schlichting (1968)).

Hodographs of the horizontal velocity components graphed in figures 1, 2, 8 and 9
are presented in figure 11. Note that the strength of the meridional flow, illustrated by
radial variation of the hodographs (the vertical in figure 11), is enhanced by boundary
roughness and increases with decreasing ρ.

7. Discussion of results
When comparing the turbulent Bödewadt-boundary-layer solution in § 6 to the

laminar solution found in appendix C, one distinctive feature that stands out is the
nearly linear radial variation of boundary-layer thickness in the turbulent model, as
shown in figure 4. It is of interest to note that this feature is also seen in models of
the boundary layers beneath vortices, both models that explicitly employ a conical
transformation (Long 1958) and those that do not: e.g. see figures 1(a) and 2(a) of
Kepert (2010a), figure 1 of Kepert (2010b), figures 1(a), 3(a–c), 5(a), 7(a), 11(a,b)
and 12(a,b) of Nolan et al. (2017) and figure 7 of Part 2. Evidently this structure
is a robust feature of realistic models of turbulent boundary layers beneath rotating
flows. It follows that models that assume the boundary layer has uniform thickness
are incapable of accurately depicting boundary-layer shape.

As previously noted, one feature that is common to both the laminar and turbulent
models is the axial oscillations of the velocity components; these oscillations are seen
in both analytic solutions (e.g. see figures 4.1, 6.1, 6.2, 6.3 and 6.4 of Kuo (1971))
and numerical simulations (e.g. see the panels corresponding to ω= 0.080 in figure 10
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FIGURE 11. Hodographs at four radial locations ρ = 0.1, 1.0, 10.0 and 100.0 (shown
as dashed curves), together with those using model A and the laminar Bödewadt flow,
from figure 3 (shown as solid curves). The dots on the curves denote unit values of ζ :
0, 1, 2, . . . .

of Rotunno (2013) and figures 3, 5 and 7 of Nolan (2013)). As noted in § 1.1, these
oscillations are induced within the boundary layer by the inertial stability of the
axisymmetric rotating flow above; the fluid is capable of sustaining inertial waves.
Oscillations of the radial velocity component are manifest as a sequence of jets
having strength that diminishes with height. The primary jet, closest to the ground, is
strongest and flow is radially inward. The secondary jet immediately above, having
radially outward flow, is an essential part of the boundary-layer structure. This jet
is apparent in figures 1(a) and 2(a) of Kepert (2010a). It is shown in Part 2 that
these oscillations play an important role in the behaviour of the boundary layer in
the vicinity of the eye of a vortex.

The axial structure of the velocity components seen in figures 8, 9 and 10 shows
that considerable flow occurs within the rough layer when ρ is small. If the boundary
layer is much thicker than the rough layer, with little flow occurring within z< z0, then
models using the slip condition can give accurate results. But if the boundary layer
is comparable in thickness to the rough layer with significant flow occurring within
z< z0, models using the slip condition may give erroneous results.

7.1. Axial and supergradient flow
There has been some discussion in the literature whether it is correct to specify the
circumferential speed at the top of the boundary layer in regions where the axial flow
is exiting the layer (e.g. see Smith & Montgomery (2010) and references therein).
Smith & Vogl (2008) note that ‘It is probably incorrect to prescribe the tangential
wind speed just above the boundary layer in the inner region, where the flow exits
the boundary layer’. In a similar vein, Smith & Montgomery (2014) argue that
prescription of the tangential wind at the top of the boundary layer where the flow
is upwards ‘makes the physical problem ill-posed as the boundary layer itself should
be allowed to determine the tangential momentum that it expels into the bulk vortex
aloft’. These conjectures are based on a misunderstanding of the mathematical nature
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of boundary-layer flows. A viscous boundary layer is a dynamical structure that
provides a smooth variation between the tangential velocity of fluid near a boundary
and the velocity of the boundary itself. It is a general feature of these boundary
layers that dynamical processes within the layer require an axial (perpendicular to the
boundary) flow at the outer edge of the layer. That is, this axial flow is a dependent
response to the imposition of an independent tangential velocity difference. In the
present context, v∞ is the independently prescribed velocity difference and w∞ is
the dependent response. This functional relationship holds whether w∞ is positive or
negative. If the axial velocity were specified, then it is true that the circumferential
velocity could not be. But this is not a physically reasonable approach. The boundary
layer is forced by the circumferential velocity, with the axial velocity being determined
by the internal dynamics of the boundary layer.

The classic laminar Bödewadt flow (see appendix C) and the turbulent boundary-
layer flows presented in this article (see § 6) and in Part 2 all have positive axial flow
(out of the boundary layer) for all radii; when the outer flow is rigid-body rotation,
fluid is expelled from the boundary layer into the overlying fluid. Provided positive
axial flow from the layer also occurs in the case of a swirling outer flow, such flow
allows the boundary layer to communicate with – and indirectly to influence – this
swirling flow. This communication is not very important to a tornado because there
is little dynamical distinction between boundary-layer air and that above. However in
a tropical cyclone, typically air within the boundary layer is warm and moist relative
to the air above and so has the potential to drive convective motions. A mathematical
consequence is that v∞ and w∞ are likely to be coupled functions of r for a tropical
cyclone, but not for a tornado.

Another issue mentioned in the literature is whether, in regions having vertical
outflow from the boundary layer, supergradient flow is expelled and acts to enhance
the vortical flow outside the layer (Smith & Vogl 2008; Kepert 2010a). The solutions
presented above show that this is not the case. The supergradient flow is confined to
the boundary layer and simply a manifestation of inertial oscillations. This suggests
that models exhibiting supergradient flow at the top of the boundary layer may not
be accurate.

8. Summary

The turbulent boundary-layer problem formulated in § 2 is a model of the mean
flow near a rough non-rotating boundary in the case that the outer fluid (far from the
boundary) is in steady, axisymmetric circumferential motion: v∞(r). A key feature
of the formulation is the assumption that the eddy diffusivity is proportional to the
velocity difference across the boundary layer; specifically ν(r, z)= v∞(r)L(r, z). With
this assumption, the viscous terms have a mathematical structure very similar to
the inertial terms. Consequently, the outer-flow function v∞(r) plays a more passive
role in determining turbulent boundary-layer structure than it would if the flow were
laminar.

The effect of outer-flow swirl is quantified by the dimensionless vorticity θ ,
defined by (3.9). The problem is cast in non-dimensional form using non-orthogonal
coordinates ρ and ζ that minimize the influence of the radial-derivative terms
in the governing equations. In fact, if θ and L are constant (as in model A),
the radial-derivative terms are zero and the non-dimensionalization is in fact
a similarity transformation. The formulation is further simplified by combining
the two components of the momentum equation into a single complex equation.
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The formulation contains an algebraic singularity, with z∼
√
εz0r and w∼ v∞

√
εz0/r.

This scaling implies that both the velocity gradient at the boundary and axial outflow
from the layer tend to infinity as r tends to zero.

The problem consisting of (3.7) and (3.13) (with θ = 1) and boundary conditions
(3.14) has been solved, using the spectral-iterative procedure described in appendix B,
in the case that the outer flow is in rigid-body motion for two models of the axial
variation of the eddy diffusivity. In model A, the diffusivity function L is independent
of axial distance, while in model B, L varies linearly outside a rough layer of
thickness z0 and is constant within that layer. The effect of the rough layer is
encapsulated in the dimensionless parameter ρ = εr/z0, where ε is a small parameter
roughly equal to the inverse of the local Reynolds number (see (4.5)). Mathematically
model A is the limiting case of model B as ρ→ 0, but the physical interpretation of
the results using the two models differ. That is, the results for model A are valid for
all radial locations, while the results for model B in the limit ρ→ 0 are valid only
at the axis of rotation.

Using model A the boundary-layer shape is strictly parabolic, varying as z∼
√

r, for
all r as dictated by the definition of ζ ; see (3.3). Using model B, the boundary-layer
shape is close to linear (z∼ r) for ρ >1, but trending toward parabolic as ρ→0. Using
model A, the velocity components u and v are subject to the algebraic singularity
through the dependence of ζ on r but are otherwise independent of r, while w and
the velocity gradients at the boundary vary as 1/

√
r. Using model B, u, v and

√
rw

have modest explicit variation with r.
The boundary-layer solutions using either model and for all parameter values

have similar axial structure. The horizontal velocity components decay to zero as
exponentially damped oscillations while the axial component decays to a positive
constant in a similar fashion. The radial flow consists of a sequence of jets having
alternating orientation and successively weaker amplitudes. The primary jet is a strong
radial inflow near the ground, as indicated by the radially inward double arrow in
figure 4(b), the secondary jet is a weaker radial outflow above, as indicated by the
radially outward double arrow in that figure, and so on. Smith, Montgomery & Vogl
(2008) has found that a secondary jet – flowing radially outward – is an essential
feature of a realistic model of meridional flow associated with a boundary layer
beneath a vortex. For model A the meridional flow is significantly stronger than that
in laminar Bödewadt flow and the axial oscillation of the velocity components are
significantly larger. Figures 8–10 show that using model B, the oscillations are weak
for large ρ and increasing in strength as ρ decreases.

For r� z0/ε the boundary layer takes on a double-layer structure, with gradients F′
and G′ remaining of unit order close to the bounding plane and the axial locations of
zeros of the radial velocity component continually increasing with increasing r. This
suggests that the problem may be amenable to an asymptotic analysis in the limit
εr/z0→∞, but this is beyond the scope of this study.

As noted previously, the results described in the § 6 depend quantitatively on the
assumed form for the diffusivity function, but the qualitative results summarized in
this section are believed to be valid for a wide range of diffusivity models. Also,
Kepert (2010a) finds that the quantitative results of boundary-layer models are fairly
insensitive to the specific turbulence model.

One factor motivating this study is a desire to obtain a better understanding of
the structure of atmospheric vortices. The present study is a first step, in which the
formulation is developed and applied in a simple setting. An obvious drawback of the
results presented in §§ 5 and 6 is the assumption of rigid-body flow in the far field.
This deficiency will be addressed in Part 2.
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Appendix A. Meridional flux balance
This appendix illustrates the form of the vertical velocity in the non-

dimensionalization presented in § 3, beginning with the control volume illustrated
in figure 12. The flux balance illustrated by this figure is

Q1 =Q2 +Q3, (A 1)

where the Q values are volume fluxes per radian, with

Q1 =

∫ √εz0rζ

0
u(r, z)r dz, (A 2)

Q2 =

∫ √εz0(r+1r)ζ

0
u(r+1r, z)(r+1r) dz (A 3)

and

Q3 =

∫ (r+1r)

r
n · v(r̆,

√
εz0r̆ζ )r̆ d r̆

=

∫ (r+1r)

r

(
−

1
2

√
εz0

r̆
ζu(r̆,

√
εz0r̆ζ )+w(r̆,

√
εz0r̆ζ )

)
r̆ d r̆; (A 4)

the vector

n=−
1
2

√
εz0

r̆
ζ1r + 1z (A 5)

is normal to the parabola ζ = z/
√
εz0r = constant and has magnitude equal to the local

arc length.
Introducing the non-dimensionalization (3.1) and using (5.3), these flux integrals

become

Q1 = rv∞(r)
√
εz0r

∫ ζ

0
F(ζ̆ , r) d ζ̆ , (A 6)

Q2 = (r+1r)v∞(r+1r)
√
εz0(r+1r)

∫ ζ

0
F(ζ̆ , r+1r) d ζ̆

≈ Q1 +1r
dQ1

dr
(A 7)

and

Q3 =

∫ (r+1r)

r

(
−

1
2ζF(ζ , r̆)+H?(ζ , r̆)

)
v∞(r̆)

√
εz0r̆ d r̆

≈ 1r
(
−

1
2ζF(ζ , r)+H?(ζ , r)

)
v∞(r)

√
εz0r. (A 8)
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No flux

r + Îrr

z = 0

Q1 Q2

Q3

ΩF1
2

HA

H

z = �´z0(r + Îr)Ω

z = �´z0rΩ

FIGURE 12. A control volume in the meridional (r, z) plane. The dashed curve is a
parabola, on which ζ is constant. The inset illustrates the balance quantified by (5.3).

Cancelling out the common factors
√
εz0 and 1r and re-arranging, the flux balance

is
d
dr

(
r3/2v∞(r)

∫ ζ

0
F(ζ̆ , r) d ζ̆

)
=

(
1
2
ζF(ζ , r)−H?(ζ , r)

)
v∞(r)

√
r. (A 9)

Noting that dv∞/dr= (2θ − 1)v∞/r (see (3.9)), balance (A 9) becomes(
2θ + 1

2

) ∫ ζ

0
F(ζ̆ , r) d ζ̆ + r

∫ ζ

0
Fr(ζ̆ , r) d ζ̆ = 1

2ζF(ζ , r)−H?(ζ , r). (A 10)

This balance is valid for arbitrary ζ ; it follows that

2θF+ rFr =
1
2ζFζ −H?

ζ . (A 11)

This form of the continuity equation is readily converted into (3.7) using (3.2)
and (5.3).

Appendix B. Spectral-iterative solution procedure
This appendix describes a procedure for finding the solution to the turbulent

boundary-layer problem formulated in § 3, consisting of (3.7) and (3.13) and
conditions (3.14). The solution procedure consists of five steps:

(i) transform the semi-infinite domain 0 < ζ <∞ to the finite domain 0 < ξ < 1
(see § B.1);

(ii) restructure the momentum equation (see § B.2);
(iii) representation of the velocity components (see § B.3);
(iv) satisfaction of the governing equation at a set of collocation points (see § B.4);

and
(v) an iterative approach to the solution (see § B.5).

The resulting solution is approximate because the series is truncated at a finite
number of terms and the iteration is performed a finite number of times. However, the
solution can be obtained to any desired accuracy by increasing these two adjustable
integers, provided of course that the iteration is convergent.
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B.1. Step (i): transformed problem
The first step in the solution procedure is to map the infinite interval 0<ζ <∞ onto
the finite interval 0< ξ < 1 keeping ρ fixed. This is accomplished by writing

ζ = ασ(ξ), (B 1)

where α is a specified positive constant and the function σ(ξ) satisfies the boundary
constraints

σ(0)= 0 σ ′(0)= 1 and σ(1)=∞. (B 2a−c)

(A prime denotes differentiation with respect to ξ .) Eliminating ζ between (B 1)
and (3.3), vertical distance is given by

z? ≡
z
z0
=
√
ρασ(ξ). (B 3)

The formulas presented in the following are expressed in terms of a general transform
function σ(ξ), while the calculations employ the sigmoid function

σ(ξ)=
ξ

(1− ξ)τ
, (B 4)

where τ is a second specified positive constant. This function satisfies the boundary
constraints (B 2). Also note that σ ′′(0)= 2τ , σ ′′′(0)= 3(1− τ)τ and 1/σ ′(1)= 0.

The values of α and τ are to be specified prior to an iteration; a converged solution
will not depend on the values of α and τ , but the rate of convergence and accuracy
of the iteration procedure will. Roughly speaking, the fraction of collocation points
allocated to the rough layer is controlled by the parameter α, while the parameter
τ controls the distribution of collocation points above the rough layer. When using
model A, α may be varied continuously to obtained the best rate of convergence,
while with model B α will be discretized to control the location of the top of the
rough layer relative to the collocation points; see § B.4.1.

Note that
∂

∂ζ
=

1
ασ ′

∂

∂ξ
. (B 5)

Since 1/σ ′(1) = 0, the transformed continuity equation is non-singular at ξ = 1
provided F is assumed to be linearly proportional to 1/σ ′. The coupling between F
and G in the momentum equation then requires G− 1 to be proportional to 1/σ ′ as
well. This line of reasoning leads to expressing the dependent variables as

V(ρ, ζ )= 1+
v(ρ, ξ)

σ ′(ξ)
and H(ρ, ζ )= αh(ρ, ξ) (B 6a,b)

for both models A and B, with the understanding that the ρ dependence is suppressed
when using model A. Substituting (B 6) into (3.7) and (3.13), these governing
equations may be expressed as

hξ +
(
2θ + 1

2

)
f + ρfρ = 0, (B 7)

and
L[v] =N, (B 8)
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where the linear operator

L[·] = 2i[·] +
1
α2

(
λ

σ ′

(
[·]

σ ′

)
ξ

)
ξ

(B 9)

quantifies the Coriolis and viscous terms, the nonlinear term

N= h
( v

σ ′

)
ξ

+ ρf
vρ

σ ′
− 2(1− θ)f

(
1+

v

σ ′

)
− i

v2

σ ′
(B 10)

quantifies the inertial terms and

λ(ρ, ξ)=Λ(ρ, ασ(ξ)) (B 11)

is the transformed version of the viscosity function. Note that derivatives with respect
to ξ are denoted by a prime if the variable (e.g. σ ) is a function only of ξ and by a
subscript if the variable depends on both ρ and ξ .

The function λ quantifies the axial variation of the diffusivity function. Using
model A, with Λ= 1 (see (4.2))

λ= 1. (B 12)

With α, θ and λ being constants (independent of ρ), the similarity is preserved; the
velocity components are functions only of ξ . However, ρ does appear in the transform
(3.3) and in the relation between the axial and normal velocity (3.8).

Using model B, (4.4) transforms to

λ=

{
1 if 0< ξ 6 ξ0
α
√
ρ σ(ξ) if ξ0 < ξ,

(B 13)

where ξ0 is the solution of

σ(ξ0)=
1

α
√
ρ
. (B 14)

Now λ depends on ρ and the radial-derivative terms need to be retained in the
governing equations. Since the coordinate transform (B 3) presupposes that α is a
constant, ξ0 is a function of ρ with

σ ′(ξ0) dξ0 =−
dρ

2αρ3/2
. (B 15)

The governing equations are to be solved on the interval 0< ξ < 1, subject to the
transformed version of conditions (3.14). In light of the fact that 1/σ ′(1) = 0, these
are

at ξ = 0 : v + 1= h= 0; (B 16)
at ξ = 1 : ‖v‖<∞. (B 17)

The momentum equation (B 8) is satisfied at ξ = 1 provided

at ξ = 1 : v = 0. (B 18)

In the following, this condition will be applied instead of the more lax (B 17).
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Note that w
εv∞
=H?

=
α
√
ρ

(
h+

σ

2σ ′
f
)

(B 19)

and w∞
εv∞
=

α
√
ρ

h|ξ=1. (B 20)

Also, at the bounding plane

∂V
∂ζ

∣∣∣∣
ζ=0

=
1
α
(σ ′′(0)+ v′(0)). (B 21)

B.1.1. Representation of the radial derivative
When using model B the radial derivatives vρ and fρ = Im[vρ] need to be

quantified. (When using model A, vρ = 0.) These are quantified by the first-order
forward-difference formula

vρ ≈
v+ − v

ρδ
, (B 22)

where v+ = v(ρ+, ξ) with
ρ+ = ρ(1+ δ) (B 23)

and δ is a specified small positive number. (The forward difference is employed rather
than the usual backward difference because the stability of iterative solution procedure
improves with increasing ρ.) This approximation introduces the variable v+, which
satisfies

L+[v+] =N+, (B 24)

where

L+[·] = 2i[·] +
1
α2

(
λ+

σ ′

(
[·]

σ ′

)
ξ

)
ξ

, (B 25)

N+ = h+
(

v+

σ ′

)
ξ

+ ρ+f+
v+ρ

σ ′
− 2(1− θ)f+

(
1+

v+

σ ′

)
− i
(v+)2

σ ′
, (B 26)

λ+ =

{
1 if 0< ξ 6 ξ+0
α
√
ρ+ σ(ξ) if ξ+0 < ξ,

(B 27)

and
ξ+0 = ξ0 −

δ

2α
√
ρσ ′(ξ0)

(B 28)

(see (B 15)). The variable h+ satisfies

h+ξ +
(
2θ + 1

2

)
f+ + ρ+f+ρ = 0. (B 29)

The system of equations is closed by approximating the radial derivative at ρ+ by a
backward difference

v+ρ ≈
v+ − v

ρδ
. (B 30)

The major challenge at hand is to obtain solutions of the nonlinear momentum
equations (B 8) and (B 24). Solutions can be found using an iterative procedure
provided these equations are suitably restructured, as explained in step (ii).
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B.2. Step (ii): restructuring the momentum equation
Momentum equations (B 8) and (B 24) may be recast in forms that are amenable to
iterative solution by writing

{v, v+} = {ṽ, ṽ
+
} + {v̂, v̂

+
}, (B 31)

where ṽ and ṽ
+ are known approximations and v̂ and v̂

+ are unknown improvements.
Substituting (B 31) into momentum equations (B 8) and (B 24), these may be expressed
as

{L[v̂],L+[v̂+]} = {Ẽ, Ẽ
+

} + {M̂, M̂
+

}, (B 32)

where L[·] and L+[·] (defined by (B 9) and (B 25)) are linear operators with known
coefficients,

{Ẽ, Ẽ
+

} = {Ñ, Ñ
+

} − {L[ṽ],L+[ṽ+]}, (B 33)

Ñ and Ñ
+

are given by (B 10) and (B 26) with tildes added to all the velocity
components and M̂ and M̂

+

are complicated complex functions containing products
of approximations and improvements. The forms of M̂ and M̂

+

are unimportant as
these terms will be ignored, with the simplified equations

{L[v̂],L+[v̂+]} = {Ẽ, Ẽ
+

} (B 34)

to be solved, rather than (B 32). Equations (B 34) will be solved iteratively for v̂ and
v̂
+ with the improvement being successively added to the approximation, as explained

in § B.4. In a converged solution, the approximations are the desired result, with the
improvement v̂ and v̂

+ being negligibly small and with each of the functions Ẽ, Ẽ
+

,
L[v̂], L+[v̂+], M̂ and M̂

+

being effectively equal to zero.
Stipulating that the approximations satisfy conditions

at ξ = 0 : {ṽ, ṽ+} + 1= 0; (B 35)
at ξ = 1 : {ṽ, ṽ+} = 0, (B 36)

conditions (B 16) and (B 18) require that the improvements satisfy

at ξ = 0 : {v̂, v̂+} = 0; (B 37)
at ξ = 1 : {v̂, v̂+} = 0. (B 38)

In summary, the problem consists of continuity equations (B 7) and (B 29) and
momentum equations (B 34) with λ given by (B 12) when using model A, λ and
λ+ given by (B 13) and (B 27) when using model B and vρ and v+ρ given by (B 22)
and (B 30), respectively. When using model A, the variables with superscript + are
irrelevant and may be ignored. Harmonic representations of h and h+ appropriate
to the continuity equations are given in § B.3.1 and harmonic representations of the
improvements v̂ and v̂

+ appropriate to the momentum equations are given in § B.3.2.
Representation of the approximations ṽ and ṽ

+ is necessarily a bit more complicated,
as explained in the following subsection.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

81
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.818


Turbulent Bödewadt flow 892 A16-29

B.2.1. Elements of the approximations
The approximations ṽ and ṽ

+ are composed of three elements: starting polynomials
(denoted by subscript s), accumulated improvements (denoted by an overbar) and
supplemental polynomials (denoted by a breve)

{ṽ, ṽ
+
} = vs + {v, v

+
} + {v̆, v̆

+
}. (B 39)

The starting polynomials satisfy the non-homogeneous boundary condition (B 35)
and serve as a seed to initiate the iteration. The accumulated improvements are
the judicious sum of the improvements found at each iteration; see § B.3.2. The
supplemental polynomials ensure satisfaction of the governing equations at the
endpoints ξ = 0 and 1 and continuity of the governing equations at the top of the
rough layer ξ = ξ0. The starting polynomials are invariant during an iteration, while
the accumulated improvements and supplemental polynomials are updated at each
step. A converged solution is independent of the specific forms of the starting and
supplemental polynomials. Reasonable forms of these polynomials are presented in
§§ B.3.3 and B.3.4, respectively.

Boundary conditions (B 35) and (B 36) are satisfied by specifying that

at ξ = 0 : vs + 1= 0; (B 40)
at ξ = 1 : vs = 0 (B 41)

so that the variables v, v+, v̆ and v̆
+ satisfy the homogeneous conditions

at ξ = 0 : v = 0; (B 42)
at ξ = 1 : v = 0. (B 43)

B.3. Step (iii): representations
The axial velocity components h and h+ are fairly simple and can be represented
by Fourier cosine series, as explained in § B.3.1. The complex horizontal velocity
components are somewhat more complicated, consisting of improvements represented
by Fourier sine series, as explained in § B.3.2, a starting polynomial given in § B.3.3
and a supplemental polynomial given in § B.3.4.

B.3.1. Representation of h and h+

The normal velocity components h and h+ satisfy equations (B 7) and (B 29) with
f = f̃ and f+ = f̃+ and boundary conditions h= h+ = 0 at ξ = 0. Since f̃ and f̃+ are
zero at ξ = 0 and 1, hξ = h+ξ = 0 at ξ = 0 and 1. Forms satisfying these conditions are

{h, h+} =
Kh∑
j=1

{hk, h+k }
cos(kπξ)− 1

kπ
, (B 44)

where Kh is a specified integer. Now (B 7) and (B 29) become
Kh∑
j=1

{hk, h+k } sin(kπξ)= {C,C+}, (B 45)

where

{C,C+} =
(

2θ +
1
2

)
{ f̃ , f̃+} +

f̃+ − f̃
δ

. (B 46)

Equations (B 45) are readily solved by collocation and matrix inversion; see § B.4.
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B.3.2. Representation of improvements
Homogeneous boundary conditions (B 37), (B 38), (B 42) and (B 43) are

automatically satisfied if the improvements (denoted by carets) and accumulated
improvements (denoted by overbars) are expressed in terms of a Fourier sine series

x=
K∑

k=1

xk sin(kπξ) (B 47)

for x= v̂, v, v̂
+ and v+, where K is a specified integer.

Operating on (B 47) with L and L+, which are given by (B 9) and (B 25), the
differential operations become algebraic

{L[x],L+[x+]} =
K∑

k=1

{Lkxk, L+k x+k } (B 48)

for x= v̂ and v, where

{Lk, L+k } = 2i sin(kπξ)+
1
α2

(
{λ, λ+}

σ ′

(
sin(kπξ)
σ ′

)
ξ

)
ξ

(B 49)

are known complex functions. Now (B 34) may be expressed as

K∑
k=1

{Lkv̂k, L+k v̂
+

k } = {Ẽ, Ẽ
+

}, (B 50)

where Ẽ and Ẽ
+

are given by (B 33). These equations are to be solve iteratively for
the coefficients v̂k and v̂

+

k , with the terms on the right-hand side updated at each step.
The coefficients vk and v+k are the weighted sum of the values of v̂k and v̂

+

k
found during previous iterations. Updating needs to be done judiciously, because the
improvements overshoot the mark when ρ is small, causing the iteration to diverge.
In order to avoid this undesirable result, at each iteration the coefficients will be
updated by the replacements

vk + γ v̂k→ vk (B 51)

and similarly for v+k , where γ is an adjustable parameter satisfying 0< γ 6 1.

B.3.3. Representation of starting polynomials
The starting polynomials (denoted by subscript s) satisfy conditions (B 40) and

(B 41), thereby providing a seed to initiate the iteration procedure. In addition, they
are constructed such that the functions Ẽ and Ẽ

+

, defined by (B 33), are equal to 0
at ξ = 0.

The starting polynomials are

fs = f+s = −
α2

3(2+ σ ′′(0))
(1− 2ξ)(1− ξ)ξ

= −
α2

6(1+ τ)
(1− 2ξ)(1− ξ)ξ (B 52)
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and

gs = g+s = −

(
1+

3σ ′′(0)+ 3 (σ ′′(0))2 − σ ′′′(0)
2+ 3σ ′′(0)

ξ

)
(1− ξ)

= −

(
1+

3
2
τξ

)
(1− ξ), (B 53)

with vs = gs + ifs and v+s = g+s + if+s .

B.3.4. Representation of supplemental polynomials
The supplemental polynomials (denoted by a breve) serve two related functions;

they ensure the approximations to the momentum equation Ẽ and Ẽ
+

are zero at ξ = 0
and (for model B) are continuous at ξ = ξ0. The forms satisfying the condition that
Ẽ= 0 at ξ = 0 are

f̆ =−2(1− ξ)3ξ f ξ |ξ=0, (B 54)

and

ğ = −
3σ ′′(0)

2+ 3σ ′′(0)
(1− ξ)ξ gξ |ξ=0

= −
3τ

1+ 3τ
(1− ξ)ξ gξ |ξ=0, (B 55)

with v̆ = ğ+ if̆ . Forms satisfying the condition that Ẽ
+

= 0 at ξ = 0 are obtained by
simply adding superscripts + to f and g in these formulas.

Continuity of the approximation Ẽ at ξ = ξ0 is achieved by amending the
supplemental functions in the interval ξ0 < ξ < 1; that is,

ṽ⇒

{
ṽ if 0< ξ 6 ξ0
ṽ + v̀ if ξ0 < ξ < 1 (B 56)

with

v̀ =

(
σ ′′

σ
ṽ −

σ ′

σ
ṽξ

)∣∣∣∣
ξ=ξ0

p′3, (B 57)

where

p3 =
1
6
(1− ξ)2

(
ξ − ξ0

1− ξ0

)3

. (B 58)

Similarly, continuity of the approximation Ẽ
+

at ξ = ξ+0 is achieved by replacing ξ0

with ξ+0 and ṽ with ṽ
+ in these formulas.

To sum up, the problem consists of the algebraic equations (B 50) to be solved for
v̂k and v̂

+

k and algebraic equations (B 45) to be solved for h and h+ with

(i) L and L+ given by (B 9) and (B 25), respectively;
(ii) σ given by (B 4);

(iii) λ= 1 for model A and λ and λ+ given by (B 13) and (B 27) for model B;

(iv) Ẽ and Ẽ
+

given by (B 33);

(v) Ñ and Ñ
+

given by (B 10) and (B 26);

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

81
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.818


892 A16-32 D. E. Loper

(vi) ṽ expressed as the sum of vs, v and v̆ and ṽ
+ expressed as the sum of vs, v+

and v̆
+ (see (B 39));

(vii) vs = gs + ifs given by (B 52) and (B 53);
(viii) v and v+ given by (B 47) with vk and v+k being successively updated according

to (B 51);
(ix) v̆ = ğ+ if̆ and v̆

+
= ğ+ + if̆+ given by (B 54) and (B 55) and v̀ and v̀

+ given
by (B 57).

Unlike the starting polynomials that are invariant during the iteration procedure,
the supplemental polynomials are updated during each iteration step. This updating
procedure involves evaluations of the accumulated improvements v= g+ if and v+=

g+ + if+ at ξ = ξ0 and their derivatives at both ξ = 0 and ξ0.

B.4. Collocation

The essence of the spectral method is to determine the unknown coefficients, hk, h+k ,
v̂k and v̂

+

k , by satisfying (B 45) and (B 50) at a set of collocation points, equally
spaced on the interval 0< ξ < 1

ξj =
j

K + 1
for j= 1→K. (B 59)

The number of points chosen to represent h and h+ (denoted by Kh) may differ from
the number K chosen to represent v̂, v̂

+, v and v+.
The collocated forms of (B 45) and (B 50) are

Kh∑
k=1

Skj{hk, h+k } = {Cj,C+j } (B 60)

and
K∑

k=1

{Lkjv̂k, L+kj v̂
+

k } = {Ẽj, Ẽ
+

j }, (B 61)

where
Skj = sin(kπξj) (B 62)

and a subscript j means evaluation at ξ = ξj for j running from 1 to Kh or K. These
equations are readily solved by matrix inversion

{hk, h+k } =
Kh∑
j=1

[Skj]
−1
{Cj,C+j } (B 63)

and

{v̂k, v̂
+

k } =

K∑
j=1

{[Lkj]
−1Ẽj, [L+kj]

−1Ẽ
+

j }, (B 64)

where [Skj]
−1, [Lkj]

−1 and [L+kj]
−1 are the inverse of the transpose of Skj, Lkj and L+kj ,

respectively. Equation (B 63) can be solved in one step, but (B 64) is solved iteratively
until Ẽj and Ẽ

+

j are effectively zero, with (B 63) being updated at each step.
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B.4.1. Spacing of collocation points
The diffusivity function for model B, given variously by (4.3), (4.4) and (B 11), is

not analytic at the break point ξ = ξ0 and graphs of the real and imaginary parts of
the equation error (introduced in § B.6.2) have sharp spikes at this point. These errors
are regularized by locating ξ0 at the midpoint between two adjacent collocation points.
This is accomplished by setting

ξ0 =
1+ 2Kr

2+ 2K
, (B 65)

where the integer Kr is the number of collocation points within the rough layer, with
06Kr<K. Previously, the value of α was prescribed, with ξ0 given in terms of α and
ρ by (B 14). Now the integer Kr is prescribed and ξ0 is given by (B 65) with (B 14)
determining α. Constancy of α for the parallel iteration is assured by specifying ξ+0
using (B 28).

The continuous problem using model B presented in § B.2 is singular in the limit
ρ→∞ (that is, as z0→ 0). However, the collocated problem presented earlier in this
section is not. Singular behaviour near ξ = 0 has been eliminated by representing the
velocity components in terms of Fourier series. This regularization of the collocated
problem permits solution in the case that no collocation points fall within the rough
layer.

B.5. Iteration
The fifth and last step of the solution procedure is to solve the discretized problem
iteratively. The iterative solution procedure is preceded by some preliminary steps, as
follows:

(I) choose values of:

(i) the parameters θ and (for model B) ρ;

(ii) the number of collocation points for the vertical velocity (Kh), for the
horizontal velocity (K) and within the rough layer (Kr);

(iii) the fractional radial distance δ between the parallel iteration;

(iv) the transform exponent τ ;

(v) the stopping criteria Emin and Emax (see § B.6.1),

(vi) the maximum iteration count Cm; and

(vii) the additive parameter γ (see (B 51));

(II) evaluate ξ0 using (B 65), α using (B 14), ρ+ using (B 23) and ξ+0 using (B 28);
(III) evaluate vs using (B 52) and (B 53);
(IV) set ṽ = ṽ

+
= vs and h= h+ = 0;

(V) evaluate L[ṽ], L+[ṽ+], Ñ, Ñ
+

, Lk and L+k using (B 9), (B 25), (B 10), (B 26)
and (B 49);

(VI) evaluate Ẽ, Ẽ
+

and Skj using (B 33) and (B 62);

(VII) collocate Ẽj, Ẽ
+

j , Lkj and L+kj ;
(VIII) invert the transpose of Lkj, L+kj and Skj;

(IX) set the iteration count to zero.
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The values of Kh and K must be suitably large and the value of Emin suitably small
to achieve an accurate representation of the solution. Errors associated with these
approximations are discussed in § B.6. A finite value of Cm ensures that the iteration
will terminate and a finite value of Emax halts divergent calculations. An alternate
initialization procedure involves setting the values of ṽ, ṽ

+, h and h+ to values
obtained in a previous iteration and modifying the subsequent preliminary steps as
indicated by the iteration steps enumerated below. (When seeking solutions for ρ
small, the latter option is superior.)

Following these preliminaries, the iteration proceeds as follows:

(i) update the iteration count;
(ii) evaluate v̂k and v̂

+

k using (B 64);
(iii) update the coefficients vk and v+k by adding a fraction γ of the improvements

v̂k and v̂
+

k to the current values (see (B 51));
(iv) evaluate v and v+ using (B 47);
(v) update the supplemental polynomials using (B 54), (B 55) and (B 57);

(vi) compose the approximations ṽ and ṽ
+ using (B 39);

(vii) evaluate and collocate C and C+ using (B 46);
(viii) calculate hk and h+k using (B 63);

(ix) calculate ṽρ and ṽ
+

ρ using (B 22) and (B 30);

(x) re-evaluate and re-collocate Ẽ and Ẽ
+

using (B 9), (B 10), (B 25), (B 26)
and (B 33);

(xi) calculate the iteration error Ei using (B 66);
(xii) if Ei < Emin, Emax < Ei or the iteration count equals Cm, STOP;

(xiii) GO TO iteration step (i).

B.6. Quantification of errors
The iteration procedure involves adjustable parameters, τ , Kr, K, Kh, γ and Emin, that
affect both the ability to obtain a converged solution and the accuracy of the numerical
results. The iteration tends to diverge if K is too small or γ is too large. On the other
hand, the number of iteration steps and time to complete an iteration increases as K
is increased and γ is decreased, so parameter values must be chosen judiciously.

The difference between the approximate and exact solution tends to zero as K→∞
and Emin → 0. The rate that this difference tends toward zero is influenced by the
values of τ , Kr, Kh and γ and is quantified by two measures of error: the iteration
error, Ei, and the equation error, Ee.

B.6.1. Iteration error
The iteration error is quantified by evaluating

Ei =
1
K

√
Ẽj · Ẽ

∗

j , (B 66)

(where an asterisk denotes the complex conjugate) after updating the approximation.
The iteration should be continued until Ei < Emin, in which case the solution has
converged, or Emax < Ei, in which case it has diverged. There is a third possibility:
fluctuation without convergence or divergence. This possibility is taken into account
by placing a maximum on the number of iterations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

81
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.818


Turbulent Bödewadt flow 892 A16-35

B.6.2. Equation error
The equation error is quantified by evaluating

Ee =

√∫ 1

0
ẼẼ
∗

dξ . (B 67)

Also, graphs of the real and imaginary parts of Ẽ versus ξ are a useful diagnostic
tool.

For a well-converged solution Ee � 1.0. Graphs of the real and imaginary parts
of Ẽ(ξ) have spikes at ξ = ξ0 because the diffusivity function is not analytic at that
point. The effect of these spikes is controlled by increasing K and by judicious choice
of ξ0; see § B.4.1. In calculations underlying the results presented in this article, the
parameters were adjusted to achieve Ee < 0.01.

B.7. Model summary
The problem using model A contains one parameter, θ (which has been set equal to
unity in the calculations reported in this article), while that using model B contains
an additional parameter, ρ. The solution procedure presented in this appendix employs
seven internal parameters: Emin, K, Kr (or equivalently ξ0), Kh, δ, τ and γ . These
internal parameters are briefly described in the following subsection, then the solution
procedure is explained in § B.7.2. Two strategies for improving the iteration procedure
are discussed in § B.7.3 and the procedure for recovering the velocity components
u(r, z), v(r, z) and w(r, z) from the solutions v(ξ) and h(ξ) is detailed in § B.7.4.

B.7.1. Discussion of model parameters
The value of Emin determines when the iteration has satisfactorily converged to an

approximate solution; the iteration is terminated when and if the iteration error, Ei
given by (B 66), is less than Emin. This value should be chosen sufficiently small that
the results are insensitive to its magnitude. In the investigations reported in §§ 5 and 6,
Emin= 10−8, which appears to give numerical results accurate to three significant digits.

The value of K should be chosen sufficiently large that the results are insensitive
to its value. It turns out that function accuracy can be quite good, even when Ee
is not particularly small because the governing equation involves differentiation that
magnifies the relative importance of the large-k terms. If the supplemental polynomials
were not employed, Ee would decay slowly, as 1/

√
K, with increasing K. However,

with these polynomials, the error decreases more rapidly than 1/K with increasing K,
greatly facilitating convergence to reasonably accurate solutions. For a wide range of
ρ values, accurate results are obtained with K in the range 50 to 100.

The value of Kr controls the spacing of collocation points for model B; for model A,
ξ0 is directly prescribed, rather than being calculated by (B 65). A judicious choice of
Kr facilitates convergence of the iteration and the accuracy of the results. For both
diffusivity models, the equation error is close to minimum when α ≈ 10.0. If Kr is
greater than optimal, the equation errors increase rapidly. If Kr is significantly smaller
than optimal, the iteration procedure diverges.

The value of Kh controls the number of collocation points employed in calculating
the axial velocity components h and h+. Since these components are determined by
solving a linear problem, solution accuracy is enhanced with little computational cost
by making Kh larger than K. In the calculations summarized in table 1, Kh = 3K.
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The value of δ controls the fractional radial spacing between the parallel iterations
(see (B 23)). In the calculations summarized in table 1, δ = 0.001.

The parameter τ controls the distribution of collocation points for z? large, with the
number of such points increasing with τ . With θ = 1, the iteration procedure works
best if τ increases moderately with ρ, varying from τ ≈ 0.5 for ρ� 1 to τ ≈ 3.5 for
ρ ≈ 100.

The parameter γ controls how much of an improvement is added to the
approximation; see (B 51). The choice of γ affects the course of the iteration, but
does not have any effect on a converged iteration. As noted previously, there are
three possible outcomes for the iteration procedure: converge, diverge or fluctuate.
The tendency to fluctuate is related to the amplitude of the axial oscillations. These
oscillations, which make it difficult to achieve a convergent solution, have greatest
magnitude using model A with θ < 1. If the averaging strategy (described in § B.7.3)
is not employed, the value of γ needs to be very small (less than 0.01) and may it
take thousands of iterations to achieve convergence.

B.7.2. Solution convergence and accuracy
The converged solution using model A described in § 5 was obtained using γ = 0.8,

α = 9.0 and K = 100. The iteration converged in 96 steps and the solution was well
converged, with Ee < 0.00004.

The procedure for obtaining the converged solutions using model B given in table 1
is as follows:

(i) start with δ= 0.001, Kh= 3K, ρ having a specified value and γ sufficiently small
that the iteration procedure converges;

(ii) with K relatively small, systematically vary Kr and τ to find the value that
minimizes the equation error (see § B.6.2);

(iii) increase K, keeping τ and the ratio Kr/K constant, until Ee < 0.01;
(iv) for presentation in table 1, truncate the resulting numbers less than 10.0 at the

third decimal, those between 10.0 and 100.0 at the second decimal and those
greater than 100.0 at the first decimal.

B.7.3. Iteration strategies
As noted previously, there are three possible outcomes of an iteration: convergence,

fluctuation and divergence. Fluctuations, which occur if ρ is small, are seen as
oscillations of h(1), with the period being a number (roughly ten or more) of
iterations. Two strategies have been adopted to improve the rate of convergence,
dampen fluctuations and squelch divergence. One strategy is to reduce the value of γ ;
however, this leads to long iterations. A second strategy that has been found to be
effective is to average extremes. This is accomplished as follows. During an iteration,
keep track of the value of h(1) as the iteration proceeds, and save the values of
v̂k and v̂

+

k when h(1) first reaches an extreme value. When h(1) again reaches an
extreme, set v̂k and v̂

+

k to the average of the current and saved values, then resume
the iteration. Roughly speaking, the value γ is chosen to be sufficiently small that
the iteration does not diverge, while the averaging strategy effectively squelches the
fluctuations.

B.7.4. Untangling the results
The result of a converged iteration is a set of K complex constants vk and a set of

Kh real constants hk. (The constants associated with the parallel iteration, v+k and h+k
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are no longer of interest.) With these coefficients in hand, the solution is reconstituted
as follows:

(i) construct v(ξ) and h(ξ) using (B 47) and (B 44);
(ii) update the supplemental polynomials using (B 54)–(B 58);

(iii) with v̂(ξ) being effectively equal to 0, evaluate v(ξ)= ṽ(ξ) using (B 31);
(iv) evaluate V(ζ ) and H(ζ ) using (B 6);
(v) untangle F(ζ ) and G(ζ ) from V(ζ ) using (3.12); and

(vi) finally evaluate u(r, z), v(r, z) and w(r, z) using (3.1)–(3.3).

Evaluation of V(ζ ) and H(ζ ) requires the transfer of function values from ξ to ζ .
If τ is a small integer (1, 2, 3 or 4), formula (B 4) may be inverted to obtain
analytic expressions. Alternatively, for all values of τ the expressions ṽ(ξ) may be
evaluated at select values of ξ , with the function evaluations transferred from ξ to
ζ using (B 4). The transferred function values may then be graphed using a package
such as ListLinePlot in Mathematica.

Appendix C. Spectral-iterative solution of the laminar Bödewadt problem
The purpose of this appendix is to apply the spectral and iterative procedure

described in appendix B to the classic laminar Bödewadt problem laid out in § XI.1
(pp. 213–218) of Schlichting (1968). This procedure significantly improves the
accuracy of the published solution.

The laminar Bödewadt problem begins with equations (2.3)–(2.7) with ν constant
and v∞(r)=Ωr, where Ω is a constant rotation rate. The partial differential equations
are reduce to ordinary differential equations by the von Kármán–Bödewadt similarity
transformation

{u(r, z), v(r, z),w(r, z)} = {ΩrF(ζ )Ωr,G(ζ ),
√
νΩH(ζ )}, (C 1)

where
ζ = z

√
Ω/ν (C 2)

is the similarity variable. This transformation reduces the problem to (11.6) and
conditions (11.7) of Schlichting (1968)

F′′ −HF′ − F2
+G2

= 1, (C 3)
G′′ −HG′ − 2GF= 0, (C 4)

H′ + 2F= 0, (C 5)
F(0)=G(0)=H(0)= 0, (C 6)

and
F(∞)=G(∞)− 1= 0. (C 7)

In these equations, a prime denotes differentiation with respect to ζ .
Introducing the complex notation (3.12), equations (C 3) and (C 4) may be combined

into
V′′ −HV′ + i V2

= i. (C 8)

This equation is to be solved subject to conditions (3.14).
Note that, in the case radial derivatives are zero, Λ= 1 and θ = 1, equations (C 3)

and (C 4) are the same as (3.5) and (3.6) and (C 8) is identical to (5.2). The only
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ζ F spec F Schl G spec G Schl H spec H Schl

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 −0.34865 −0.343 0.38343 0.382 0.19437 0.190
1.0 −0.47877 −0.468 0.73543 0.731 0.62410 0.614
1.5 −0.44963 −0.437 1.01340 1.004 1.09874 1.076
2.0 −0.32875 −0.318 1.19237 1.175 1.49288 1.460
2.5 −0.17621 −0.171 1.27214 1.246 1.74587 1.704
3.0 −0.03609 −0.038 1.27141 1.242 1.84964 1.800
3.5 +0.06631 +0.056 1.21822 1.192 1.83081 1.784
4.0 +0.12265 +0.106 1.14128 1.123 1.73251 1.702
4.5 +0.13711 +0.117 1.06399 1.056 1.59954 1.590
5.0 +0.12098 +0.103 1.00163 1.003 1.46851 1.478
5.5 +0.08783 +0.074 0.96114 0.969 1.36323 1.390
6.0 +0.04992 +0.041 0.94270 0.954 1.29439 1.332
6.5 +0.01618 +0.013 0.94207 0.953 1.26195 1.308
7.0 −0.00838 −0.010 0.95302 0.959 1.25892 1.304
7.5 −0.02232 −0.020 0.96926 0.975 1.27514 1.320
8.0 −0.02677 −0.023 0.98571 0.990 1.30039 1.340
8.5 −0.02428 −0.020 0.99905 1.000 1.32636 1.364
9.0 −0.01787 −0.013 1.00779 1.007 1.34765 1.382
9.5 −0.01022 −0.006 1.01185 1.010 1.36170 1.390

10.0 −0.00328 0.000 1.01212 1.009 1.36833 1.390
10.5 +0.00182 +0.003 1.00991 1.007 1.36888 1.386
11.0 +0.00474 +0.004 1.00654 1.005 1.36542 1.382
11.5 +0.00568 +0.003 1.00309 1.002 1.36007 1.380
12.0 +0.00517 +0.001 1.00027 1.000 1.35455 1.380
12.5 +0.00383 0.000 0.99841 1.000 1.35000 1.380
∞ 0.00000 0.000 1.00000 1.000 1.34943 1.380

TABLE 2. Comparison of the values of velocity components F, G and H calculated using
the spectral method (spec) and those (Schl) given in table 11.1 of Schlichting (1968).

difference between the laminar and turbulent Bödewadt similarity equations is the
form of the continuity equation; compare (C 5) with (5.1).

Setting τ =1 in the coordinate transform (see (B 1) and (B 4)) so that ζ =αξ/(1− ξ)
and using transform (B 6), equations (C 6) and (C 8) become

h′ + 2f = 0 (C 9)

and
L[v] =

(
(1− ξ)2v

)′
h− i(1+ (1− ξ)2v)v, (C 10)

where a prime now denotes differentiation with respect to ξ , f (ξ)= Im[v] and

L[v] =
1
α2
((1− ξ)2((1− ξ)2v)′)′ + iv. (C 11)

Reformulating the problem using (B 31), (C 9) and (C 10) (again ignoring products
of approximations and improvements) may be expressed as

h′ + 2f̃ = 0 (C 12)
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and

L[v̂] = Ẽ
= ((1− ξ)2ṽ)′h− i (1+ (1− ξ)2ṽ)ṽ −L[ṽ]. (C 13)

These equations are to be solved subject to conditions

h(0)= v(0)= v(1)= 0. (C 14)

The solution for h is given by (B 44) with hk determined by (B 63), where Cj = 2f̃j.
The solution for ṽ is determined as described in § B.3.

The iteration procedure converges fastest with α ≈ 3.0; with γ = 1, it typically
converges in approximately 55 iterations, depending on the value of K. The iteration
error decreases rapidly with increasing K, with Ee ≈ 0.1 for K = 50, ≈0.005 for
K = 100 and ≈0.00007 for K = 200.

A converged calculation using K = 200 is summarized as follows:

(i) the circumferential velocity reaches a maximum of Gmax = 1.280 at ζG = 2.736;
(ii) the radial velocity reaches a minimum of Fmin =−0.484 at ζF = 1.130;

(iii) the asymptotic value of the axial velocity is H∞ = 1.349;
(iv) the axial velocity reaches a maximum value of Hmax= 1.855 (and F= 0) at ζ1=

3.153;
(v) the axial velocity reaches an internal minimum value of Hmin= 1.257 (and F= 0)

at ζ2 = 6.804; and
(vi) the gradient of V at ζ = 0 is 0.773− 0.942i.
Note that the asymptotic axial speed differs from the value 1.380 in table 11.1 of
Schlichting (1968). The value 1.34943, obtained from a well-converged solution, is
believed to be accurate. Comparison between the published values of the velocity
components and those more-recently obtained are summarized in table 2.
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