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Turbulent convection in subglacial lakes
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Subglacial lakes are isolated, low-temperature and high-pressure water environments
hidden under ice sheets. Here, we use two-dimensional direct numerical simulations in
order to investigate the characteristic temperature fluctuations and velocities in freshwater
subglacial lakes as functions of the ice overburden pressure, pi, the water depth, h, and the
geothermal flux, F. Geothermal heating is the unique forcing mechanism as we consider
a flat ice–water interface. Subglacial lakes are fully convective when pi is larger than the
critical pressure p∗ ≈ 2848 dbar, but self-organize into a lower convective bulk and an
upper stably stratified layer when pi < p∗, because of the existence at low pressure of a
density maximum at temperature Td greater than the freezing temperature Tf . For both
high and low pi, we demonstrate that the Nusselt number, Nu, and Reynolds number,
Re, satisfy classical scaling laws provided that an effective Rayleigh number Raeff is
considered. We show that the convective and stably stratified layers at low pressure are
dynamically decoupled at leading order because plume penetration is weak and induces
limited entrainment of the stable fluid. From the empirical equation for Nu with Raeff ,
we derive two sets of closed-form expressions for several variables of interest, including
the unknown bottom temperature, in terms of the problem parameters pi, h and F. The
two predictions correspond to two limiting regimes obtained when the effective thermal
expansion coefficient is either approximately constant or linearly proportional to the
temperature difference driving the convection.

Key words: geophysical and geological flows, turbulent convection, stratified flows

1. Introduction

Subglacial lakes are water environments trapped between ice sheets and bedrocks (Siegert
et al. 2001). Over 400 subglacial lakes have been identified in Antarctica (Wright &
Siegert 2012) and approximately 50 have been detected in Greenland (Bowling et al.
2019). Antarctica has 250 subglacial lakes that are stable, i.e. with water trapped for
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millions of years and in complete isolation from the Earth’s climate. The remaining
150 are hydrologically active, i.e. are connected through networks of subglacial channels
and communicate via filling and discharge with the surrounding ocean (Smith et al.
2009). Here, we focus on stable subglacial lakes, which are of considerable interest
to astrobiology since they could host microorganisms that might have developed novel
survival strategies relevant to the oceans of icy moons (Cockell et al. 2011).

Subglacial lakes are heated by the Earth’s geothermal flux, hence they are prone to
vertical convection and can experience dynamic conditions. The water circulation in
isolated subglacial lakes can also be driven or be affected by horizontal temperature
gradients along the ice–water interface when it is tilted, due to the pressure dependence of
the freezing temperature (Wells & Wettlaufer 2008). The slope of the ice–water interface is
typically of the order of or smaller than 10−2 (Siegert 2005), although here we will assume
for simplicity that the ice–water interface is flat. Salt concentration levels are expected to
be of the order of 0.1 % or less in most subglacial lakes, such that the water is typically
fresh (Siegert et al. 2001). A hypersaline lake has, however, been recently identified in the
Canadian Arctic (Rutishauser et al. 2018), suggesting that high salt concentrations remain
possible. Subglacial lakes differ from ice-covered lakes because they typically have a much
thicker ice cover and because they do not experience radiative heating (Ulloa, Wüest &
Bouffard 2018).

Subglacial lakes under a thick ice cover, i.e. such as Lake Vostok, which lies beneath
4 km of ice (Siegert et al. 2001), are known to be unstable to vertical convection because
the thermal expansion coefficient of water, β, is always positive at high pressures.
Subglacial lakes under less than approximately 3 km of ice, such as Lake CECs (Rivera
et al. 2015), may on the contrary be stable against vertical convection because β < 0 at low
temperatures and for pressures lower than p∗ ≈ 2848 dbar (Thoma et al. 2010). Couston &
Siegert (2021) recently proposed that the geothermal flux, which is of the order of 50 mW
m−2, is large enough to trigger convection in most subglacial lakes despite the nonlinearity
of the equation of state. Convection typically occurs when the geothermal flux F forces
a bottom temperature in the static state T̄b > Td, with Td the temperature of maximum
density, such that β(T̄b) > 0, which is a condition met by most lakes deeper than a few
metres.

The existence of a density maximum at temperature Td > Tf with Tf the freezing
temperature means that low-pressure subglacial lakes self-organize into a lower convective
layer coupled to an overlaying stably stratified fluid region. This two-layer dynamics
has been extensively studied at atmospheric pressure, in which case Td ≈ 4 ◦C, both
numerically (Lecoanet et al. 2015; Toppaladoddi & Wettlaufer 2018; Wang et al. 2019) and
experimentally (Large & Andereck 2014; Léard et al. 2020). Here, using direct numerical
simulations (DNS), we investigate the turbulent dynamics of freshwater environments for
different ice overburden pressures, pi, which enclose and include p∗. Thus, our results
generalize the study of two-layer freshwater systems to arbitrary ice overburden pressure.

An important point is that we consider a fixed top freezing temperature and fixed
bottom heat flux condition, such that our boundary conditions are different from the
classical isothermal top and bottom boundary conditions considered in the canonical
Rayleigh–Bénard problem as well as by most numerical studies of mixed convective and
stably stratified fluids (Couston et al. 2017; Toppaladoddi & Wettlaufer 2018; Wang et al.
2019). Laboratory and numerical experiments have shown that convection driven by a
bottom isothermal boundary is statistically equivalent to convection driven by a bottom
fixed-flux boundary (assuming a top isothermal boundary in both cases), provided that the
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temperature-based Rayleigh number is the same in both experiments and the fluid is in
the Oberbeck–Boussinesq regime, i.e. its properties are independent of flow velocity and
temperature (Verzicco & Sreenivasan 2008; Johnston & Doering 2009). We will show that
the same is true for subglacial lakes, even though they are not in the Oberbeck–Boussinesq
regime, provided that an effective Rayleigh number is considered. We will demonstrate
that there exist two limiting behaviours of the dimensional variables with the input
heat flux and water depth depending on whether the thermal expansion coefficient β is
quasi-constant or linearly varying with the temperature difference driving convection.
Importantly, our results support the idea that the convective and stably stratified layer
dynamics are decoupled at leading order, which is a hypothesis that was recently invoked
in order to predict flow velocities in Antarctic subglacial lakes (Couston & Siegert 2021).

We organize the paper as follows. We present the equations and numerical experiments
in § 2. We analyse the DNS results and present the theoretical predictions in § 3. We discuss
the geophysical implications in § 4 and conclude in § 5.

2. Problem formulation

2.1. Governing equations in dimensional form
We consider a Cartesian coordinate system (x, y, z) centred on the lake’s bottom boundary
with ez the upward-pointing unit vector of the z axis, i.e. opposite to gravity, and we
denote H the ice thickness and h the lake water depth (cf. figure 1a). For computational
expediency we restrict our attention to two-dimensional motions, i.e. we assume y
invariance and neglect rotation. Here, as in most liquids, compressibility effects are weak
and density fluctuations with temperature and pressure are small compared to the reference
density ρ0 = 999 kg m−3. As a result, the evolution of the lake’s velocity vector u and
temperature T is well approximated by the Navier–Stokes equations in the Boussinesq
approximation and the incompressible energy equation, i.e. such that

∂tu − ν∇2u + ∇( p/ρ0) = −(u · ∇)u − (ρ/ρ0)gez, (2.1a)

∇ · u = 0, (2.1b)

∂tT − κ∇2T = −(u · ∇)T, (2.1c)

where p is the pressure, ρ is the density, ∂t denotes time derivative and ∇ is the gradient
operator. The physical parameters in (2.1) are the kinematic viscosity ν, the reference
density ρ0, the gravitational acceleration g and the thermal diffusivity κ (cf. table 1). For
the boundary conditions, we consider

u(z = 0) = u(z = h) = 0, ∂zT(z = 0) = −F/k, T(z = h) = Tf ( pi), (2.2a–c)

i.e. we assume no slip, fixed heat flux F on the bottom boundary with k the thermal
conductivity and we set the temperature at the top of the lake equal to the temperature
of freezing, Tf , which varies with the ice overburden pressure pi.

We approximate the equation of state for the density of freshwater as a function of the
lake pressure p ≥ pi and temperature T ≥ Tf ( pi) using the bivariate polynomial

ρ( p, T) = ρ0 + ρ1( p) + C( p)[T − Td( p)]2, (2.3)

where Td is the temperature of maximum density, i.e. such that (∂ρ/∂T)|p(T = Td) = 0.
We obtain (quadratic) polynomial expressions for ρ (through ρ1 and C), Td and Tf as
functions of pressure by minimizing their �2 relative error norm compared to the exact
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Figure 1. (a) Problem schematic. The green shading highlights the region of the water column that stays
stably stratified when pi ≤ p∗. (b) Thermal expansion coefficient β(T, p). The solid black (respectively red)
line shows Tf (respectively Td) while the dashed line shows the p∗ isobar. The arrows highlight the ice
overburden pressures considered in the simulations. (c) Density variations with depth at t = 0 for each of
the four simulation cases S1

i (i = 0, 1, 2, 3) of the first experiment corresponding to the different ice pressures
pi shown by arrows in (b).

thermodynamic values ρe, Te
d and Te

f (superscript e denoting exact values) computed
using TEOS-10 (McDougall & Barker 2011). The polynomial approximations for ρ,
Td and Tf (provided in table 1) result in errors smaller than 0.1 g m−3 and 0.002 ◦C
for p, pi ∈ [0, 10 000] dbar and T ∈ [Tf , Tf + 15 ◦C]. Figure 1(b) shows the pressure
dependence of Tf (solid black line) and Td (red line). Both Tf and Td decrease with
increasing pressure, but Td > Tf , i.e. such that the water is densest at a non-freezing
temperature, only for p < p∗ = 2848.5 dbar, which we call the critical ice overburden
pressure (dashed blue line). The form of the equation of state (2.3) highlights that the
density can be non-monotonic with temperature and exhibits a maximum at T = Td
within the water column provided that Td( p) > Tf ( pi). The condition T = Td requires
pi < p∗ and is most likely to be satisfied near the top of subglacial lakes since p ≥ pi
increases with depth by hydrostasy and Td decreases with p. The thermal expansion
coefficient is

β = − 1
ρ0

∂ρ

∂T

∣∣∣∣
p

= −2C( p)[T − Td( p)]
ρ0

. (2.4)

Figure 1(b) clearly shows that β > 0 for all temperatures when p > p∗, while β can
change sign with temperature for p < p∗, i.e. when the temperature of maximum density
exceeds the freezing temperature. The critical ice-cover thickness associated with p∗ is
H∗ = 104p∗/(ρig) = 3166 m (p∗ in dbar) assuming a mean ice density ρi = 917 kg m−3.

The density ρ and the temperature of maximum density Td are functions of the full
pressure p (cf. table 1). However, for simplicity, here we will substitute ρ( p, T) and Td( p)

with ρ( pi, T) and Td( pi) in the governing equations, i.e. such that ρ and Td depend
on the ice overburden pressure only. This approximation is legitimate for lakes that are
not too deep, i.e. such that hydrostatic pressure variations are weak and considering
ρ( p, T) ≈ ρ( pi, T) and Td( p) ≈ Td( pi) does not impact significantly buoyancy effects.
All lakes considered in this work are shallow, i.e. the water depth does not exceed
8 metres, such that the approximation is valid. In particular, a simulation of a lake
with a maximum depth of 8 metres yields almost identical results whether we make
or relax the assumption ρ( p, T) ≈ ρ( pi, T) and Td( p) ≈ Td( pi) (cf. the Appendix).
Note that approximating ρ( p, T) ≈ ρ( pi, T) implies approximating β( p, T) ≈ β( pi, T)

as well.
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Physical parameters Polynomial expressions

ρ0 = 9.9999 × 102 kg m−3 Tf ( pi) = 4.7184 × 10−3 − 7.4584 × 10−4pi − 1.4999 × 10−8p2
i

g = 9.81 m s−2 Td( p) = 3.9795 − 2.0059 × 10−3p − 6.2514 × 10−8p2

ν = 1.70 × 10−6 m2 s−1 ρ1( p) = 4.9195 × 10−3p − 1.4372 × 10−8p2

κ = 1.33 × 10−7 m2 s−1 C( p) = −7.0785 × 10−3 + 1.8217 × 10−7p + 4.2679 × 10−12p2

k = 0.56 W m−1 ◦C−1

Table 1. Physical parameters and polynomial approximations for Tf , Td , ρ1 and C with temperatures in ◦C,
pressures in dbar, densities in kg m−3 and C in kg m−3 ◦C−2.

Our study of natural convection in subglacial lakes is fundamentally a study
of non-Oberbeck–Boussinesq (NOB) effects in thermal convection due to a
temperature-dependent thermal expansion coefficient (2.4). Previous works on NOB
effects due to a temperature-dependent thermal expansion coefficient that can change sign
include Couston et al. (2017); Toppaladoddi & Wettlaufer (2018) and Wang et al. (2019).
Toppaladoddi & Wettlaufer (2018) and Wang et al. (2019) considered the equation of state
for water at constant atmospheric pressure, i.e. such that their range of β < 0 was fixed,
whereas it varies with pressure in our case (see, e.g. figure 1b). Couston et al. (2017)
used a piecewise-linear equation of state and a variable stiffness parameter, which allowed
them to consider different ranges for β < 0. Our work is different from Couston et al.
(2017) because (i) we consider the full equation of state for water rather than an artificial
equation of state and (ii) the bottom boundary condition is fixed heat flux in our work rather
than fixed temperature, which we will show is an important point when β varies with T .
The dependence of viscosity ν and thermal diffusivity κ with temperature are two other
well-known NOB effects that can lead to noticeable deviations of thermal convection,
including a top–down asymmetry, from the classical Rayleigh–Bénard experiment (Ahlers
et al. 2006; Sugiyama et al. 2009). Nevertheless, here, we take ν and κ as constants
since their relative variations do not exceed 50 % over the range of ( p, T) considered, i.e.
0 dbar< p < 104 dbar and −5 ◦C < T < 5 ◦C (Forst, Werner & Delgado 2000; Huber
et al. 2012) and are not expected to have an effect on the lakes’ dynamics as important as
the variations of the thermal expansion coefficient. Future works might consider relaxing
this assumption.

2.2. Governing equations in dimensionless form
We use the water depth h as the characteristic length scale, the diffusive time τκ =
h2/κ as the time scale, the velocity uκ = h/τκ as the velocity scale and the pressure
pκ = ρ0u2

κ as the pressure scale in order to identify dimensionless control parameters
and non-dimensionalize the governing equations, which we recall are (2.1), (2.2a–c) and
(2.3) with ρ( pi, T) substituted for ρ( p, T). The temperature difference between the lake’s
top and bottom boundaries in the turbulent regime is unknown. However, we can use
Δ = Fh/k as the temperature scale, which is the temperature difference across the lake’s
depth in the diffusive base state, which we denote by overbars and is given by ū = 0, T̄ =
Tf + Δ(1 − z/h) and hydrostatic pressure p̄ = pi + ∫ h

z ρ̄gdz′. We use Tf ( pi) as reference
temperature and pi + [ρ0 + ρ1( pi)]g(h − z) as pressure gauge, i.e. such that we remove the
leading-order mean buoyancy and hydrostatic pressure terms, which balance each other,
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in the governing equations. The dimensionless variables, which we denote by tildes, are
then related to the dimensional variables through

(x, z) = h(x̃, z̃), t = τκ t̃, u = uκ ũ,

p = pi + [ρ0 + ρ1( pi)]g(h − z) + pτ p̃, T = Tf + ΔT̃.

}
(2.5a–e)

Substituting (2.5a–e) into (2.1) and (2.2a–c) combined with (2.3) (with pi replacing p in
the expression for ρ), yields a set of dimensionless equations and boundary conditions,
which we write as

∂t̃ũ − Pr∇̃2ũ + ∇̃p̃ = −(ũ · ∇̃)ũ + PrRaF
(1 + S̄)

2

[
T̃ − S̄

(1 + S̄)

]2

ez, (2.6a)

∂t̃ T̃ − ∇̃2T̃ = −(ũ · ∇̃)T̃, (2.6b)

∇̃ · ũ = 0, (2.6c)

ũ(z̃ = 0) = ũ(z̃ = 1) = 0, ∂z̃T̃(z̃ = 0) = −1, T̃(z̃ = 1) = 0, (2.6d)

with

Pr = ν

κ
, RaF = gh4Fβ̄b

kνκ
, S̄ = Td − Tf

T̄b − Td
, (2.7a–c)

the control parameters, and where

β̄b = −2C(T̄b − Td)/ρ0, (2.8)

T̄b = Tf + Δ, (2.9)

are the bottom thermal expansion coefficient and the bottom temperature of the diffusive
base state, respectively.

The control parameters (2.7a–c) are the (constant) Prandtl number Pr = 12.8, the
base-state flux Rayleigh number RaF, which is based on the heat flux F and the bottom
thermal expansion coefficient of the diffusive base state β̄b, and the base-state stiffness
number S̄, which compares the thermal expansion coefficient at the top of the lake, i.e. at
temperature Tf , to the thermal expansion coefficient at the bottom in the diffusive base
state, i.e. at temperature T̄b. The base-state flux Rayleigh number RaF is positive and
convection is possible if β̄b > 0, i.e. if the bottom temperature of the diffusive base state
exceeds the temperature of maximum density. This condition is satisfied provided that the
heat flux exceeds a minimum heat flux for fixed pi and h, or, equivalently, the water depth
exceeds a minimum water depth for fixed pi and F, which we call the threshold heat flux
and threshold water depth, respectively, and define as

Ft = max
{

k[Td( pi) − Tf ( pi)]
h

, 0
}

, ht = max
{

k[Td( pi) − Tf ( pi)]
F

, 0
}

, (2.10a,b)

i.e. such that Ft > 0 and ht > 0 if pi < p∗ and Ft = ht = 0 if pi ≥ p∗. When Fh >

k[Td( pi) − Tf ( pi)], RaF increases monotonically with pi, h and F. The base-state stiffness
number S̄ can take any value in [−∞, +∞]. Specifically, S̄ ≤ −1 when the lake is fully
stable, i.e. F < Ft; −1 < S̄ ≤ 0 when the lake is fully unstable, i.e. pi > p∗; and, S̄ > 0
when the lake is partially convective, i.e. Tf < Td < T̄b, and self-organizes into a stably
stratified upper layer and a convective bottom layer. When S̄ > 0, we might expect that
larger stiffness parameters S̄ correlate with stronger resistance of the top stable layer
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to overshooting convective motions (see, e.g. Couston et al. 2017). When the lake is
fully unstable, i.e. −1 < S̄ ≤ 0, S̄ ≈ −1 indicates that the base-state thermal expansion
coefficient is almost depth invariant, while S̄ ≈ 0 indicates that it strongly varies with
depth.

2.3. Numerical experiments
Since we impose the heat flux rather than the temperature on the bottom boundary of
the lake, we expect the mean bottom temperature 〈Tb〉 = 〈T(z = 0)〉, with 〈·〉 denoting
the horizontal and temporal average, to become smaller than T̄b as convection sets in.
This means that the control parameters RaF and S̄, while fully prescribing the system, do
not provide an effective measure of buoyancy forcing compared to dissipation or density
stratification in the stable layer when the flow is turbulent and at statistical steady state. As
a result, our goals are to:

(i) investigate the variations of the bottom temperature 〈Tb〉 at statistical steady state
with the problem parameters;

(ii) define an effective Rayleigh number Raeff based on 〈Tb〉, which can be used
to predict the characteristic Reynolds number Re and Nusselt number Nu of the
convective layer;

(iii) investigate the influence of the stable layer on the convective dynamics through the
use of, e.g. an effective stiffness parameter Seff .

We note that many studies have investigated how the classical scalings of Rayleigh–Bénard
convection (between isothermal plates) change when changing the boundary conditions
(e.g. fixed heat flux) or considering NOB effects (Chillà & Schumacher 2012). However,
previous studies considering the effect of a fixed-flux boundary condition have been
limited to the Oberbeck–Boussinesq regime (Verzicco & Sreenivasan 2008; Johnston
& Doering 2009), while those exploring the effect of a density maximum have used
isothermal boundaries (Couston et al. 2017; Toppaladoddi & Wettlaufer 2018; Wang
et al. 2019; Léard et al. 2020). Thus, we expect that the analysis presented in this paper
can provide new fundamental results on non-classical Rayleigh–Bénard convection while
being also useful to the study of subglacial lakes.

Although parametric fluid dynamics studies are usually optimally designed when
sweeping through parameters in dimensionless space, here, we explore the effect of the
parameters on the flow dynamics by sweeping through the physical space ( pi, F, h) rather
than through the control parameter space (RaF, S̄). The reason is that we are interested in
the variations and predictions of the bottom temperature 〈Tb〉 and flow velocities in the
convective layer in terms of a specific range of either geophysically relevant or laboratory
relevant lake parameters pi, F and h, which are difficult to cover with an exploration
in (RaF, S̄) space due to the nonlinear relationships between RaF, S̄ and F, h and pi.
Thus, we conduct our investigation of subglacial lake dynamics by sweeping through
lines of constant heat flux and lines of constant water depth in physical space (F, h)

while considering ice pressures both above and below the critical ice pressure p∗, which
separates the fully convective regime from the partially convective one (figure 2).

We consider subglacial lakes under 4 different ice overburden pressures, i.e. pi = 0,
2387, 2848.5 and 3549 dbar, corresponding to ice thicknesses H = 0 (infinitesimally
small ice layer), H = 2653 m (relevant for subglacial Lake CECs, cf. Rivera et al. 2015),
H = H∗ and H = 3945 m (relevant for subglacial lake Vostok, cf. Siegert et al. 2001),
respectively. For each ice pressure considered we investigate the temperature variations
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Figure 2. Graphical illustration of our two sets of numerical experiments in physical space with (a) h = 0.5
m fixed in the first experiment and (b) F (in W m−2) fixed in the second (cf. details in table 2). Thinner lines
correspond to a larger ice overburden pressure. (c) Corresponding coverage in dimensionless space (S̄, RaF).
The red shading highlights the region of fully convective lakes.

First set of experiments (h fixed)
Second set of

experiments (F fixed)

pi H s.n. h Ft Fc F s.n. F ht hc h

0 0 S1
0 0.5 4.452 4.711 1.1Ft–20Ft S2

0 5.34 0.42 0.44 0.5–2

2387 2653 S1
1 0.5 0.781 0.876 1.2Ft–100Ft S2

1 1.17 0.33 0.38 0.5–4

2848.5 3166 S1
2 0.5 0 6.515 × 10−3 2Fc–6 × 103Fc S2

2 0.05 0 0.22 0.5–8

3549 3945 S1
3 0.5 0 1.912 × 10−5 2Fc–2 × 106Fc S2

3 0.005 0 0.12 0.5–8

Table 2. Dimensional parameters for the two sets of numerical experiments, which consider four distinct ice
overburden pressures pi (in dbar) each and either a broad range of geothermal fluxes (7th column) or a broad
range of water depths (last column). Ice thickness H and water depths h, hc and ht are in metres and fluxes F,
Fc and Ft are in W m−2; s.n. means simulation name. Note that figure 2 provides a graphical illustration of the
dimensional and dimensionless parameter spaces explored.

in the lake and the root-mean-square velocity as functions of the geothermal flux F and
water depth h. We use two sets of experiments. First we focus on the case h = 0.5 m and
increase F in successive stages. We denote the corresponding simulation cases S1

i , with
i = 0, 1, 2, 3 increasing as pi increases (four multi-stage simulations), i.e., such that e.g.
S1

0 corresponds to the simulation with h = 0.5 m and pi = 0 dbar and with F increasing
in successive stages. We pick h = 0.5 m, which is a relatively standard height for water
containers, such that the first set of simulations may be compared with future laboratory
experiments provided that water can be pressurized. Second, we fix F and increase h in
stages. We denote these simulations S2

i , again with i = 0, 1, 2, 3 increasing as pi increases
(cf. table 2). Each stage of a simulation (with both h and F fixed) lasts one diffusive thermal
time such that the results, averaged over the second half of a stage, describe the system at
statistical steady state. Figure 2 highlights the physical parameter space covered by the
numerical simulations as well as the corresponding coverage in dimensionless space.

For each simulation we first compute the threshold heat flux Ft if h is fixed (first set of
experiments) or the threshold water depth ht if F is fixed (second set of experiments) using
(2.10a,b). Then, we evaluate the critical heat flux Fc (respectively critical water depth hc),
which is required for the destabilizing buoyancy force to overcome viscous dissipation
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Turbulent convection in subglacial lakes

and thermal diffusion in (2.6) for the first (respectively second) set of experiments.
For the calculation of Fc and hc we use the eigentools package (https://github.com/
jsoishi/eigentools) in Python, which is based on the eigenvalue-solver capability of the
open-source pseudo-spectral code Dedalus (Burns et al. 2020). Necessarily, Fc > Ft and
hc > ht. We report Ft and Fc, as well as ht and hc, and the range of supercritical heat fluxes
and water depths considered for each simulation case in table 2. At t = 0, we initialize
the system with no velocities and a conductive (linear) temperature profile superimposed
with small-amplitude white noise. The corresponding mean density profiles are shown in
figure 1(c) for the four simulations of the first experiment. For both S1

0 and S1
1 , for which

pi < p∗, the density increases with height, such that the conductive state is unstable to
convection, in a lower subregion of the water column but decreases with height, hence is
stably stratified, above. For S1

2 and S1
3 the density always increases with height such that

the full water column is unstable to convection. For S1
2 , pi = p∗ and Tf = Td such that

β = 0 at z = h, which is why ∂zρ = 0 at the top boundary.
We solve (2.6) with the open-source pseudo-spectral code Dedalus (Burns et al. 2020).

We assume that the x direction is periodic and has dimensional length Lx = 4h. We recall
that we use no-slip boundary conditions, an isothermal top boundary and a fixed heat
flux bottom boundary. The horizontally averaged dynamic pressure, i.e. in excess of the
hydrostatic pressure, is set to 0 at the top boundary. We use a Fourier basis with nx = 512
modes in the x direction and a Chebyshev basis with nz = 256 in the z direction before
dealiasing for the most turbulent simulations. For the least turbulent simulations with
a stable layer, i.e. S1

0 , S1
1 , S2

0 , S2
1 with F ≤ 4Ft, F ≤ 20Ft, h ≤ 0.8 m and h ≤ 1.3 m,

respectively, we decrease nx to 256. For the least turbulent fully convective simulations,
i.e. S1

2 , S1
3 , S2

2 , S2
3 with F ≤ 1250Fc, F ≤ 2 × 105Fc, h ≤ 4 m and h ≤ 2 m, respectively,

we decrease both nx to 256 and nz to 128. We use a second-order two-step Runge–Kutta
method for time integration and a Courant-Friedrichs-Lewy constant (CFL) between 0.2
and 0.4, with the lower CFL used for the most turbulent simulations.

3. Results

3.1. General flow features
The flow dynamics in a subglacial lake with a dimensionless thermal expansion coefficient
β̃ = β/β̄b, which changes sign within the water column (provided that T̃d > T̃f = 0),
is qualitatively different from the flow dynamics in a subglacial lake with β̃ positive
throughout. Note that tildes denote dimensionless variables and that we will normalize
all thermal expansion coefficients by β̄b (cf. (2.8)). Figures 3(a) and 3(b) show several
snapshots of the dimensionless temperature field T̃ for simulation S1

1 , for which β̃

changes sign inside the water column, and simulation S1
3 , for which β̃ > 0 everywhere. In

figure 3(a), the water column is only partially unstable to convection. Convective motions
(associated with β̃ > 0), which are shown with the red-to-blue colour map, coexist with a
stably stratified layer (where β̃ < 0), which is shown by the yellow-to-green colour map.
As F increases (from top to bottom), the system transitions from a stationary laminar state
to a turbulent state, and, at the same time, the bottom convective layer grows while the
top stable layer shrinks. In figure 3(b), β̃ > 0 everywhere, such that the water column is
convecting over the full depth and the flow dynamics is qualitatively similar to classical
Rayleigh–Bénard convection.

We show in figures 3(c) and 3(d) the vertical profiles of the time and horizontally
averaged dimensionless temperature 〈T̃〉 for each value (stage) of F considered in
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Figure 3. (a) Snapshots of dimensionless temperature T̃ for simulation S1
1 with F increasing from top to

bottom. Here, T̃d is the dimensionless temperature of maximum density whereas 〈T̃b〉h is the dimensionless
horizontally averaged (but time-dependent) bottom temperature. (b) Same as (a) but for S1

3 . (c) Dimensionless
time and horizontally averaged temperature profiles 〈T̃〉 with depth at different stages (i.e. different F) for S1

1 .
(d) Same as (c) but for S1

3 . The line colours go from dark to light as F increases from small to large values (lines
shifting from right to left as shown by the black arrows). The thin black lines show the conductive profiles at
t̃ = 0. Panels (e) and ( f ) show the time evolution of 〈T̃b〉h for S1

1 and S1
3 , respectively. The vertical dashed lines

highlight the times t̃ = i (i = 1, 2, 3 . . .) when the control parameter (F or h) starts increasing (smoothly) and
the simulation stage changes, with a new statistical steady state reached before t̃ = i + 0.5.

simulations S1
1 and S1

3 . When F < Fc, i.e. F is subcritical, there is no motion nor mixing
such that the dimensionless temperature profile is fully conductive, i.e. T̃ = 1 − z/h, as
shown by the black solid lines. As F > Fc is increased (dark to light colours; following the
direction of the arrow), convective motions emerge, intensify and mix the lake’s unstable
bulk more and more efficiently. The increased mixing results in a decreasing temperature
of the lake’s bulk and a decreasing temperature of the bottom boundary. For simulation
S1

1 (figure 3c), the temperature profile remains conductive, i.e. linearly decreasing, in
the top stably stratified layer where convective motions are inhibited (because β̃ < 0).
The well-mixed convective region is small compared to the stably stratified region in S1

1
initially, but the situation reverses as F increases. For simulation S1

3 (figure 3d), convection
occurs everywhere such that 〈T̃〉 has a top–down symmetry and the bulk temperature is
approximately the average of the top and bottom temperatures. We display the time history
of the horizontally averaged bottom temperature 〈T̃b〉h = 〈T̃(z = 0)〉h of simulations S1

1
and S1

3 in figures 3(e) and 3( f ), respectively. The bottom temperature decreases in smooth
steps every time the heat flux (or, alternatively, the water depth for the second experiment)
increases. There are 10 stages in simulation S1

1 , each lasting one diffusive time, and
7 stages in simulation S1

3 . All simulations with ice overburden pressure pi < p∗ are
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Turbulent convection in subglacial lakes

qualitatively similar to simulation S1
1 , whereas simulations with pi ≥ p∗ are qualitatively

similar to simulation S1
3 . Note that time averaging of all variables of interest is performed

over the second half of each simulation stage.

3.2. Effective temperature difference and thermal expansion coefficient driving the
convection

The mean temperature on the bottom boundary is a key output of the simulations since
it gives the range of temperatures involved in convective motions and contributing to
the heat transport. The effective temperature difference driving the convection, which we
denote by Δeff , may be taken as the difference between the mean bottom temperature and
the maximum of the temperature of maximum density and freezing temperature, i.e. in
dimensionless form,

Δ̃eff = Δeff /Δ = 〈T̃b〉 − T̃d(T̃d > 0), (3.1)

as β̃ > 0 for 〈T̃b〉 ≥ T̃ ≥ 〈T̃b〉 − Δ̃eff . Note that the term (T̃d > 0) in (3.1) is to be
understood as a Heaviside function (in fact, all greater than or less than signs in between
parentheses should be understood as Heaviside functions in this paper), i.e. such that it is
1 if T̃d > 0 and 0 otherwise. For simulations with T̃d < 0, i.e. which are fully convective,
the dimensionless effective temperature difference is simply equal to the dimensionless
mean bottom temperature. For simulations with T̃d > 0, there can be no convection in the
temperature range 0 < T̃ < T̃d, such that the effective temperature difference is equal to
the mean bottom temperature minus the temperature of maximum density.

Since the mean bottom temperature is the highest (on average) temperature in the lake,
it sets not only the effective temperature difference driving the convection but also the
maximum value of the thermal expansion coefficient, which we write in dimensionless
form as β̃b = β̃(〈T̃b〉) = βb/β̄b with subscript b denoting bottom variables. We recall that
β̃ is also a function of pi. However, the ice overburden pressure is fixed for each simulation,
such that its influence on β̃ is not shown for simplicity. The effective thermal expansion
coefficient β̃eff can be taken as the average between the bottom (maximum) thermal
expansion coefficient and the thermal expansion coefficient at the top of the convective
layer, which is β̃f = β̃(T̃f = 0) > 0 if the lake is fully convective and 0 if the lake has a
stable layer (since in this case the mean temperature at the top of the convective layer is
T̃d), viz.

β̃eff = β̃b + β̃f (T̃d < 0)

2
. (3.2)

We show in figure 4(a–d) the evolutions of the dimensionless effective temperature
difference Δ̃eff and thermal expansion coefficient β̃eff as we increase the heat flux
F (for the first experiment) or the water depth h (for the second experiment) in the
simulations. Figure 4(a) shows that Δ̃eff decreases monotonically with the normalized
heat flux (F − Ft)/(Fc − Ft) in all simulations (of the first experiment). Two asymptotic
behaviours, highlighted by the solid lines, emerge at relatively large values of (F −
Ft)/(Fc − Ft). The asymptotic behaviour is the same for simulations S1

i (i = 0, 1, 2) but
is different for simulation S1

3 . A similar result is obtained with the second experiment, as
shown in figure 4(b), i.e. Δ̃eff decreases monotonically with the normalized water depth
(h − ht)/(hc − ht) and displays two asymptotic behaviours, although the difference
between the asymptotic behaviour for S2

i (i = 0, 1, 2) and S2
3 is tenuous (which is
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Figure 4. (a,b) Dimensionless effective temperature difference Δ̃eff (i.e. driving the convection) as a function
of (a) the normalized geothermal flux (F − Ft)/(Fc − Ft) for the simulations of the first experiment and (b)
the normalized water depth (h − ht)/(hc − ht) for the simulations of the second experiment (cf. legends and
table 2). (c,d) Same as (a,b) but for the dimensionless effective thermal expansion coefficient β̃eff . (e–h) Show
the same variables as (a–d) but in dimensional form, i.e. with Δeff = ΔΔ̃eff and βeff = β̄bβ̃eff . The solid lines
show scaling laws as discussed in § 3.3 and listed in table 4. Note that the symbol size and line thickness are
inversely proportional to pi, i.e. large (respectively small) symbols and thick (respectively thin) lines highlight
results for small (respectively large) pi.

expected, as we will demonstrate in § 3.3). The origin of the two different asymptotic
behaviours for Δ̃eff can be related to the evolution of β̃eff with the normalized heat
flux and water depth shown in figure 4(c) and 4(d), respectively. On the one hand,
the effective thermal expansion coefficient β̃eff decreases monotonically and displays a
common asymptotic behaviour with the normalized heat flux for simulations S1

i with
i = 0, 1, 2 (figure 4c) and with the normalized water depth for simulations S2

i with
i = 0, 1, 2 (figure 4d). On the other hand, β̃eff ≈ 1 for simulations S1

3 (figure 4c) and
S2

3 (figure 4d), although it can be seen that β̃eff starts decreasing with the normalized heat
flux at large values for simulation S1

3 (figure 4c).
In order to understand why β̃eff either stagnates or decreases with the normalized

heat flux or water depth, it is useful to look at the dimensional effective temperature
difference Δeff = ΔΔ̃eff and the dimensional effective thermal expansion coefficient
βeff = β̄bβ̃eff shown in figure 4(e–h). Figures 4(e) and 4( f ) show that Δeff increases
in all simulations. This happens because Δ̃eff decreases more slowly with increasing
F or h (which increase mixing), than the temperature scale Δ = Fh/k increases with
F or h. Since Δeff increases in all simulations, the bottom temperature also increases,
and so does the thermal expansion coefficient βeff (figures 4g and 4h). However, βeff =
β̄b[Δeff + 2(Tf − Td)(Td < Tf )]/[2(T̄b − Td)] is an affine function of Δeff (cf. (3.2)).
Thus, while we might expect that the effective thermal expansion coefficient always scales
asymptotically like βeff ∼ Δeff as Δeff → ∞, there exists a range of effective temperature
differences, or bottom temperatures, i.e. 0 < 〈Tb〉 − Tf � Tf − Td, when Td < Tf for
which βeff increases negligibly and remains approximately constant. The range of bottom
temperatures for which βeff can be considered constant shrinks to 0 for subglacial lakes

915 A31-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.38


Turbulent convection in subglacial lakes

with pi ≤ p∗ since Td ≥ Tf in this case, and it increases as pi > p∗ increases. The
next section (§ 3.3) presents a derivation of two sets of closed-form expressions for
several variables of interest, including the bottom temperature, in terms of the problem
parameters, based on whether we assume that βeff is constant or is linearly proportional to
Δeff . Then, § 4 discusses which predictions are applicable to subglacial lakes in Antarctica.

3.3. Predictions in the limit of decoupled convective and stably stratified dynamics
In this section we set out to define an effective (output) Rayleigh number Raeff based
on the simulation results and explore its dependence on the control parameters. We then
demonstrate that the Nusselt number, Nu, which estimates the contribution of fluid motions
to the transport of heat relative to conduction alone, and the Reynolds number, Re, which
compares fluid inertia to viscous dissipation, display asymptotic behaviours with Raeff
similar to those observed in classical Rayleigh–Bénard convection. This allows for the
derivation of predictive expressions for all output variables of interest in terms of the
control parameters.

We assume that the convective and stably stratified layers are dynamically decoupled,
such that we can simply define the effective Rayleigh number as

Raeff =
gΔeff βeff h3

eff

νκ
, (3.3)

where heff is the effective (decoupled) convective layer depth and Δeff and βeff are the
effective temperature difference and thermal expansion coefficient discussed in § 3.2 and
whose dimensionless forms are given by (3.1) and (3.2). Neglecting the influence from
the stable layer on the convection means that the effective convective layer depth is well
approximated by the full depth minus the mean thickness of the top stably stratified layer,
which is equal to h(Td − Tf )/Δ if Td > Tf and 0 otherwise. Thus,

heff = h
[

1 − Td − Tf

Δ
(Td > Tf )

]
, (3.4)

which can be rewritten as

heff = h[1 − T̃d(T̃d > 0)] = h
1 + S̄(S̄ > 0)

, (3.5)

using either the dimensionless temperature of maximum density or the base-state stiffness
parameter (cf. (2.7a–c)). Using (3.5) we can rewrite Raeff , i.e. (3.3), as

Raeff = RaF
Δ̃eff β̃eff

[1 + S̄(S̄ > 0)]3
, (3.6)

where RaF is the base-state flux-based Rayleigh number (cf. (2.7a–c)). Equations (3.3)
and (3.6) can be expected to represent accurately the effective Rayleigh number when
there is (almost) no contribution from the stable layer to the convective dynamics, but
to be inaccurate when the stable layer is entrained into and modifies the properties of
the lower convective bulk. Couston et al. (2017) investigated the dynamics of mixed
convective and stably stratified fluids over a broad range of input stiffnesses and showed
that the Nusselt number was indeed enhanced due to an entrainment heat flux in the limit
of small (effective) stiffness, suggesting that the effective Rayleigh number should be
adjusted when entrainment from the stable layer into the convective bulk is significant.
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Figure 5. (a) Effective Rayleigh number Raeff as a function of RaF for all simulations, including the
Oberbeck–Boussinesq (OB) simulations SOB whose results are shown by black crosses. Note that, as in figure 4,
large (respectively small) symbols highlight simulation results with small (respectively large) pi. The thick
black and thin green solid lines show the predictive expressions for Raeff as a function of RaF for simulations
SOB (OB regime) and S1

2 (linear expansion coefficient, or LEC, regime), respectively (cf. table 4); (b) Raeff as a
function of 1 + S̄. The vertical dotted line highlights S̄ = 0; (c) Raeff for the first experiment only as a function
of the normalized heat flux (F − Ft)/(Fc − Ft); (d) Raeff for the second experiment only as a function of the
normalized water depth (h − ht)/(hc − ht). The solid lines in (c) and (d) show the theoretical scalings for Raeff
with F and h (cf. table 4) in the OB regime (thin red lines) and in the LEC regime (all other lines) with α and
γ listed in table 3.

We will show in § 3.4 that the entrainment heat flux is small in all our simulations, such
that the assumption of decoupled convective and stably stratified dynamics, leading to
(3.3) and (3.6) for Raeff , is accurate at leading order. Note that the base-state stiffness S̄,
which can be related to the effective convective layer depth (cf. (3.5)), is not the effective
stiffness of the system due to the variability of the bottom temperature and thermal
expansion coefficient. The effective stiffness of the simulations is estimated a posteriori
and discussed in § 3.4.

Figures 5(a)–5(d) show the effective Rayleigh number Raeff as a function of the
control parameters RaF and S̄ or normalized heat flux (F − Ft)/(Fc − Ft) and water depth
(h − ht)/(hc − ht). Figures 5(a) and 5(b) show Raeff for all simulations, i.e. combining the
results of the first and second experiments, in addition to the effective Rayleigh number for
a series of Oberbeck–Boussinesq (OB) simulations, which we denote by SOB and which
have different RaF and fixed Pr = 12.8 (shown by the black crosses). The definition of
the effective Rayleigh number for SOB is simply Raeff = Δ̃eff RaF since S̄ = 0 and all
physical variables, including the thermal expansion coefficient, are assumed constants in
the OB approximation. It can be seen in figure 5(a) that Raeff in simulations S2

3 (red
triangles) and S1

3 (red circles; for relatively low values of RaF) follows the same trend as
Raeff in simulation SOB (black crosses), whose asymptotic behaviour is shown by the
black solid line. This suggests that subglacial lakes that are fully convective, and for
which the effective thermal expansion coefficient is approximately independent of RaF,
i.e. constant, behave similarly to OB fluids. For simulations S j

i (i = 0, 1, 2; j = 1, 2), Raeff

also increases with RaF but following a trend (whose asymptotic behaviour is shown by
the green solid line) that is markedly different from the OB results, which is due to the
variability of the effective thermal expansion coefficient with the control parameters when
S̄ ≥ 0 (or pi ≤ p∗). Figure 5(b) shows Raeff as a function of (1 + S̄) instead of S̄ because
the base-state stiffness enters the definition of Raeff as 1/(1 + S̄) (cf. (3.5)). It should be
noted that RaF and S̄ are not independent variables in our two numerical experiments, since
we decided to explore the dynamics of subglacial lakes by sweeping along lines of constant
heat flux and water depth rather than lines of constant RaF and S̄. Thus, the increase of
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Raeff for simulation S1
3 with S̄ (small red circles in figure 5b) is due to the associated

increase of RaF, not S̄. Similarly, the decrease of Raeff with increasing S̄ for simulations
S j

i (i = 0, 1; j = 1, 2) is due to the associated decrease of RaF (cf. figure 2). The existence
of two distinct scaling behaviours for Raeff with the problem parameters is again clear
in figure 5(c) where Raeff follows a common asymptotic behaviour for simulations S1

i
(i = 0, 1, 2), shown by the parallel blue, orange and green (relatively thick) solid lines, and
one other for simulation S1

3 , shown by the thin red solid line. The difference in asymptotic
behaviours for Raeff between simulations S2

i (i = 0, 1, 2) and simulation S2
3 in figure 5(d)

is tenuous. This is because the difference in scalings for Raeff with the water depth is much
weaker than with the heat flux, as we demonstrate at the end of this section.

Now that we have explored the dependence of the effective Rayleigh number on the
problem parameters, we turn our attention to the Nusselt number Nu and the Reynolds
number Re. We define the Nusselt number as the ratio of the full heat flux F divided by
the conductive heat flux based on the output temperature difference between the top and
bottom boundaries of the convective bulk at statistical steady state, i.e.

Nu = F

k
Δeff

heff

= h̃eff

Δ̃eff
= 1

Δ̃eff [1 + S̄(S̄ > 0)]
, (3.7)

with h̃eff = heff /h and the Reynolds number as

Re = Vrmsheff

ν
, (3.8)

with Vrms =
√

h−1
eff

∫ heff
0 〈|u|2〉 dz the root-mean-square (r.m.s.) velocity within the

convective layer.
We show the Nusselt number Nu as a function of Raeff in figure 6(a) for all simulations

of the first experiment (with results shown by circles), all simulations of the second
experiment (shown by triangles) and for simulation SOB (black crosses). There is a clear
universal asymptotic scaling of Nu with Raeff in all cases, which is highlighted by the
black solid line that shows the best-fit power law for the OB results. More precisely, the
Nusselt number in all simulations can be expressed to a good approximation as a power
law of the form

Nu = aRaα
eff , (3.9)

where pre-factor a and exponent α are reported in table 3 for each simulation along
with the relative error, which is typically of the order of 1 % and always less than 8 %.
The exponent 0.26 < α < 0.29 shows little variability across the simulations, as can be
seen from the similar slopes of the simulation results for large Raeff (cf. figure 6a).
The pre-factor is slightly more variable, i.e. 0.16 < a < 0.31, and is relatively large for
simulations S j

i (i = 0, 1; j = 1, 2), i.e. with a stable layer, as can be seen from the upward
shift of the large blue and orange circles and triangles relative to the other smaller
symbols and the solid black line. The discrepancy of Nu between simulations that are
fully convective and simulations with a top stably stratified layer is due to the fact that
the effective temperature difference Δ̃eff as defined by (3.1) underestimates the range of
temperatures involved in the convective heat transport, which is extended in the presence
of a stable layer. Substituting Δ̃eff with 3/2Δ̃eff in the definitions of Raeff and Nu helps
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Figure 6. (a) Nusselt number Nu as a function of Raeff for all simulations (we use the same symbol colours
and size chart as in figures 4 and 5). (b) Reynolds number Re as a function of Raeff . The black solid lines
in (a,b) show the power law fit (3.9) and (3.10) for Nu and Re for the results of simulation SOB (cf. table 3).
(c) Compensated Nusselt number as a function of RaF . (d) Compensated Reynolds number as a function of RaF .
The black (respectively green) solid lines in (c,d) show the power law fits provided in table 4 for the results of
simulation SOB (respectively S1

2 ), i.e. in the OB regime (respectively LEC regime). The light-coloured markers
in (a,b,c) show the results for simulations S j

i (i = 0, 1; j = 1, 2) with Nu multiplied by 2/3 and Raeff multiplied
by 3/2 (see details in § 3.4).

correct the discrepancy and yields the results shown by the light-blue and light-orange
markers in figure 6(a), which better overlap with the other simulation results (cf. details
in § 3.4). Similar to the Nusselt number, the Reynolds number also follows an almost
universal scaling with Raeff (see figure 6b), such that it can be predicted to a good
approximation using a power law of the form

Re = cRaγ

eff , (3.10)

with almost the same pre-factor c and exponent γ across all simulations (cf. table 3). Note
that the standard deviation σRe (in time) of the Reynolds number (respectively σNu for
the Nusselt number) over the (second) half of the diffusive time scale of each simulation
stage is always in the range 10−2Re < σRe < 10−1Re (respectively 10−3Nu < σNu < 3 ×
10−2Nu), i.e. small, except for simulation S1

3 with the smallest heat flux, for which σRe ≈
1.4Re, because Re increases slowly toward its final value Re ≈ 0.5 in this case.

With the predictive power law (3.9) for Nu in terms of Raeff in hand, we can derive a
predictive equation for the effective temperature difference Δ̃eff in terms of the problem
parameters. Substituting the expressions (3.6) and (3.7) for Raeff and Nu into (3.9), we
obtain

1

Δ̃eff [1 + S̄(S̄ > 0)]
= a

{
RaF

Δ̃eff β̃eff

[1 + S̄(S̄ > 0)]3

}α

, (3.11)

which is an equation between Δ̃eff , β̃eff and the control parameters. The effective thermal
expansion coefficient (3.2) can be expressed in terms of Δ̃eff and S̄ as

β̃eff = Δ̃eff

2
(1 + S̄) − S̄(T̃d < 0), (3.12)

with the second term on the right-hand side being the non-zero dimensionless thermal
expansion coefficient at the top of subglacial lakes that are fully convective, i.e. for which
T̃d < 0 or −1 ≤ S̄ < 0. Substituting (3.12) into (3.11) yields an algebraic equation for Δ̃eff
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s.n. a α Rel. err. c γ Rel. err.

S1
0 0.31 0.27 8 % 0.0071 0.58 6 %

S1
1 0.30 0.27 5 % 0.0046 0.61 4 %

S1
2 0.23 0.26 6 % 0.0088 0.58 3 %

S1
3 0.18 0.27 0.6 % 0.0080 0.58 2 %

S2
0 0.22 0.29 0.6 % 0.0060 0.59 3 %

S2
1 0.23 0.29 2 % 0.0062 0.59 3 %

S2
2 0.16 0.28 0.7 % 0.0075 0.59 2 %

S2
3 0.18 0.28 0.9 % 0.0075 0.58 3 %

SOB 0.18 0.28 1 % 0.0086 0.58 2 %

Table 3. Best-fit coefficients for the power laws Nu = aRaα
eff and Re = cRaγ

eff for Raeff > 105 for all
simulations, including the OB simulation SOB. Here, s.n. means simulation name while Rel. err. denotes the
maximum relative error between the simulation results and the predictive best-fit power law.

in terms of the control parameters RaF and S̄, viz.

Δ̃1+α
eff

[
Δ̃eff

2
(1 + S̄) − S̄(T̃d < 0)

]α

= [1 + S̄(S̄ > 0)]3α−1

aRa
α

F
. (3.13)

Equation (3.13) is valid as long as the power law (3.9) provides a good approximation
to the simulation results but is nonlinear in Δ̃eff . Based on the results of § 3.2, we know
that the thermal expansion coefficient in subglacial lakes exhibits two limiting behaviours,
i.e. βeff is approximately constant, which we refer to as the OB regime, or βeff is linearly
proportional to the effective temperature difference, which we refer to as the LEC regime.
(3.13) can be simplified in both regimes. In the OB regime, βeff = β̄b, i.e. β̃eff = 1, and
−1 ≤ S̄ < 0 (or T̃d < 0), such that (3.13) reduces to

Δ̃1+α
eff = 1

aRa
α

F
. (3.14)

In the LEC regime, which is obtained when S̄ > 0 (T̃d > 0) or |S̄| � Δ̃eff ≤ 1, the second
term on the right-hand side of (3.12) is negligible and (3.13) can be approximated as

Δ̃1+2α
eff = 2α(1 + S̄)2α−1

aRa
α

F
. (3.15)

Substituting the expressions (2.7a–c) for RaF and S̄ in terms of the control parameters into
(3.14) yields an asymptotic scaling in the OB regime, which assumes constant β̄b (such
that RaF ∼ Fh4), for the dimensional effective temperature difference as

Δeff = ΔΔ̃eff ∼ F1/(1+α)h(1−3α)/(1+α), (3.16)

which we recall is related to the mean bottom temperature through equation (3.1).
Substituting (2.7a–c) into (3.15) and using the approximation S̄ ≈ 1 in the limit
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(Fh)/k � Td (large thermal driving) when S̄ > 0, yields instead

Δeff = ΔΔ̃eff ∼ F1/(2α+1)h(1−3α)/(2α+1), (3.17)

in the LEC regime (for which RaF ∼ F2h5). From the closed-form expressions for Δ̃eff
(3.14) and (3.15) it is possible to derive the expressions for all variables of interest,
including Raeff , Nu and Re but also dimensional variables such as βeff and Vrms, in terms
of the problem parameters. We summarize all key expressions for the variables of interest
in terms of RaF and S̄ as well as the asymptotic scaling laws with the water depth and heat
flux in table 4. Figure 6(c–d) shows Nu and Re in terms of RaF compensated such that the
influence of the base-state stiffness predicted in table 4 is removed.

The asymptotic scalings with F and h are valid in the limit (Fh/k)/|Td − Tf | � 1, i.e.
such that S̄ ≈ −1 for the OB regime and (Fh/k)/|Td − Tf | � 1, i.e. such that S̄ ≈ 0, for
the LEC regime. The latter is satisfied when F → ∞ and h → ∞, i.e. for increasingly
large heat flux and water depth. The former limit for the OB regime is only valid for
a finite range of heat fluxes and water depth as the thermal expansion coefficient will
eventually increase substantially as F and h keep increasing. The results of simulation S1

3
show how β̃eff in figure 4(c) and Re in figure 6(d) transitions from varying according to
the OB regime for relatively small F but according to the LEC regime for relatively large
F.

The validity of the scaling laws provided in table 4 can be verified from the good overlap
between the simulation results and the solid lines, which show the asymptotic scalings
with F and h, in figures 4, 5(c) and 5(d). The relatively thick solid lines that are blue,
orange and green, display the asymptotic scalings in the LEC regime, whereas thin red
and black solid lines display asymptotic scalings in the OB regime. The simulation results
have provided not only the scaling exponents α and γ , but also the pre-factors a and c for
the predictive power laws (3.9) and (3.10). Thus, we can predict the actual value of any
variable of interest using the equations listed in table 4 rather than just the scalings with
the problem parameters. The validity of the full expressions derived for Raeff , Nu and Re
can be verified from the good overlap between the simulation results and the black and
green solid lines, which show the power law fits, in figure 5(a) and figure 6(a–d).

Here, we find α ≈ 2/7, which was first proposed as a natural scaling exponent for
Nu based on phenomenological arguments (Castaing et al. 1989), and γ ≈ 3/5 for all
simulations (cf. table 3). Substituting α = 2/7 and γ = 3/5 in the asymptotic expressions
for the dimensional variables with F and h in table 4 yields in the OB regime

heff ∼ h, Δeff ∼ F7/9h1/9, βeff ∼ 1, Vrms ∼ F7/15h13/15, (3.18a–d)

and in the LEC regime

heff ∼ h, Δeff ∼ F7/11h1/11, βeff ∼ F7/11h1/11, Vrms ∼ F42/55h10/11. (3.19a–d)

It can be seen that the difference in scalings is typically greater with F than with h, i.e. for
instance, the difference in scaling exponent for Δeff with F is 7/9 − 7/11 ≈ 0.14 whereas
it is only 1/9 − 1/11 ≈ 0.02 with h. The discrepancy in the difference of scaling exponents
is the reason the two asymptotic regimes are usually easier to identify in simulation results
from the first experiment than from the second experiment (compare, e.g. figures 4(a,b)
and 5(c,d)). We find that Vrms has a scaling with F and h that is steeper for subglacial
lakes in the LEC regime than in the OB regime. The steeper scaling for Vrms in the LEC
regime occurs because the effective Rayleigh number Raeff increases more rapidly with F
and h in the LEC regime, due to the combined increase of the effective thermal driving
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OB regime LEC regime

RaF ∼ Fh4 RaF ∼ F2h5

h̃eff = 1 ∼ 1 h̃eff = (1 + S̄)−1 ∼ 1

Δ̃eff = a−1/(1+α)Ra
−α/(1+α)

F ∼ (Fh4)−α/(1+α) Δ̃eff = a−1/(2α+1)2α/(2α+1)Ra
−α/(2α+1)

F (1 + S̄)(2α−1)/(2α+1) ∼ (F2h5)−α/(2α+1)

β̃eff = 1 ∼ 1 β̃eff = a−1/(2α+1)2(−1−α)/(2α+1)Ra
−α/(2α+1)

F (1 + S̄)4α/(2α+1) ∼ (F2h5)−α/(2α+1)

Raeff = a−1/(1+α)Ra
1/(1+α)

F ∼ (Fh4)1/(1+α) Raeff = a−2/(2α+1)2−1/(2α+1)Ra
1/(2α+1)

F (1 + S̄)−4/(2α+1) ∼ (F2h5)1/(2α+1)

Nu = a1/(1+α)Ra
α/(1+α)

F ∼ (Fh4)α/(1+α) Nu = a1/(2α+1)2−α/(2α+1)Ra
α/(2α+1)

F (1 + S̄)−4α/(2α+1) ∼ (F2h5)α/(2α+1)

Re = ca−γ /(1+α)Ra
γ /(1+α)

F ∼ (Fh4)γ /(1+α) Re = ca−2γ /(2α+1)2−γ /(2α+1)Ra
γ /(2α+1)

F (1 + S̄)−4γ /(2α+1) ∼ (F2h5)γ /(2α+1)

heff = h ∼ h heff = h(1 + S̄)−1 ∼ h

Δeff = ΔΔ̃eff ∼ F1/(1+α)h(1−3α)/(1+α) Δeff = ΔΔ̃eff ∼ F1/(2α+1)h(1−3α)/(2α+1)

βeff = β̄bβ̃eff ∼ 1 βeff = β̄bβ̃eff ∼ F1/(2α+1)h(1−3α)/(2α+1)

Vrms ∼ Fγ /(1+α)h4γ /(1+α)−1 Vrms ∼ F2γ /(2α+1)h5γ /(2α+1)−1

Table 4. Key expressions in terms of the control parameters RaF and S̄ (cf. (2.7a–c)) and asymptotic scaling laws in terms of the water depth h and heat flux F for the
dimensionless and dimensional variables of interest to the study of turbulent convection in subglacial lakes. The starting point is the algebraic equation for Δ̃eff (3.13). The
difference between the limiting OB regime and LEC regime arises from the independence or variability of the effective thermal expansion coefficient β̃eff with the effective
temperature difference Δ̃eff . The asymptotic scalings with F and h are valid in the limit (Fh/k)/|Td − Tf | � 1 (S̄ ≈ −1) for the OB regime and (Fh/k)/|Td − Tf | � 1
(S̄ ≈ 0) for the LEC regime.

915
A

31-19

https://doi.org/10.1017/jfm.2021.38 Published online by Cambridge University Press

https://doi.org/10.1017/jfm.2021.38


L.-A. Couston

and thermal expansion coefficient, than in the OB regime for which the thermal expansion
coefficient remains constant.

3.4. Effective stiffness and entrainment dynamics
The power laws (3.9) and (3.10) for Nu and Re with Raeff are in excellent agreement with
the numerical results using pre-factors and exponents that are almost the same across all
simulations, including the OB simulation (cf. table 3). This suggests that our definition of
Raeff , i.e. (3.6), which assumes decoupled convective and stably stratified dynamics, is a
good proxy for the true effective Rayleigh number of all laboratory-scale subglacial lakes,
including lakes that have a top stable layer and can experience penetrative convection.

In this section, we investigate in details the influence of the stable fluid layer on the
convection in order to predict whether the assumption of decoupled convective and stably
stratified dynamics can hold at significantly higher heat flux and water depth. We first
estimate the effective stiffness Seff of the convective–stably stratified interface in the
simulations as

Seff = Td − Tf

〈Tb〉 − Td
, (3.20)

which is the ratio of the temperature difference across the stable layer to the temperature
difference across the convective layer. In a mixed convective and stably stratified subglacial
lake, i.e. for which pi ≤ p∗, this ratio is equal to the ratio of the opposite of the thermal
expansion coefficient at the top of the stable layer (minimum negative thermal expansion
coefficient) to the thermal expansion coefficient at the bottom of the convective layer
(maximum positive thermal expansion coefficient). Thus, the effective stiffness Seff in
(3.20) is equivalent to the Λ parameter in Toppaladoddi & Wettlaufer (2018) and is
similar to the input stiffness parameter Si in Couston et al. (2017), although we recall
that Couston et al. (2017) used a thermal expansion coefficient that is piecewise constant
rather than linearly varying with temperature. We show Seff as a function of Raeff in
figure 7(a) for all simulations with a stably stratified layer. The effective stiffness decreases
monotonically with Raeff , which is expected since the numerator in (3.20) is constant
while the denominator, which is the dimensional thermal driving Δeff , increases with
Raeff (cf. figure 4e, f ). The decrease of Seff with Raeff suggests that the stably stratified
layer may modify the properties of the convective bulk significantly for large enough F
and h. Couston et al. (2017) demonstrated that the two layers become increasingly coupled
as the input stiffness decreases, indeed, with, for instance, the mean temperature of the
well-mixed bulk dropping below the temperature of maximum density in their experiment
with Ra = 8 × 107 and Si = 1.

In order to understand whether the decrease of Seff with Raeff implies that the stable
layer of subglacial lakes modifies the convective bulk dynamics for large (geophysical) F
and h, as may be expected based on the results of Couston et al. (2017), we first investigate
the evolution of the temperature of the well-mixed bulk, which we define as

T̃bulk = 1

h̃eff

∫ h̃eff

0
T̃ dz̃, (3.21)

with Raeff . If there is no stable layer (T̃d < 0) or if the stable layer does not influence the
convective dynamics, we expect [T̃bulk − T̃d(T̃d > 0)] ≈ [〈T̃b〉 − T̃d(T̃d > 0)]/2, i.e. the
bulk temperature is the average of the temperatures at the top and bottom of the convection
zone. Figure 7(b) shows that the bulk temperature is the average (approximately) of the
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Figure 7. (a) Effective stiffness Seff (cf. (3.20)) as a function of Raeff for simulations S j
i (i = 0, 1; j = 1, 2),

i.e. with a top stably stratified layer. (b) Ratio between the bulk temperature T̃bulk (cf. (3.21)) in excess of
T̃d(T̃d > 0) and the mean bottom temperature 〈T̃b〉 in excess of T̃d(T̃d > 0) as a function of Raeff . The results
are shown for all simulations of the first and second experiments and the dashed line highlights the 1/4 ordinate.
(c) Effective stiffness Seff as a function of the expected dimensionless convective layer depth h̃eff (cf. (3.5)) for
all simulations with a top stably stratified layer.

top and bottom temperatures for simulations without a stable layer (small green and red
symbols). For simulations with a stable layer, however, we find that the bulk temperature
minus T̃d(T̃d > 0) of the two-layer system is typically lower than [〈T̃b〉 − T̃d(T̃d > 0)]/2.
Specifically, we find that it decreases initially with Raeff and then reaches the plateau
[T̃bulk − T̃d(T̃d > 0)] ≈ [〈T̃b〉 − T̃d(T̃d > 0)]/4 (black dashed line). For simulation S1

1 ,
the normalized bulk temperature appears to anomalously increase with Raeff at large Raeff
(two rightmost orange circles). The increase of the normalized bulk temperature toward the
0.5 mark at large Raeff for S1

1 is due to the shrinking of the top stable layer. In fact, Raeff
increases because F increases in the simulations of the first experiment, which forces a
thinning of the stratified top layer. As the stably stratified layer shrinks, possibly to a point
where it is thinner than the thermal boundary layer, upward plumes attempting to penetrate
into the stable layer rapidly feels the effect of the top wall and lose their inertia, which
reduces entrainment of the stable fluid and lowering of the bulk temperature. The vanishing
of the stable layer thickness can be seen in figure 7(c), which shows that the convective
layer depth h̃eff → 1 as Seff decreases, or, equivalently, as Raeff increases. The observation
of a plateau for [T̃bulk − T̃d(T̃d > 0)]/[〈T̃b〉 − T̃d(T̃d > 0)] at 0.25 with Raeff (let alone
possible increase toward the 0.5 mark when the stable layer becomes too thin) suggests
that there is an influence of the stable layer on the convection, but that this influence does
not increase with increasing Raeff or decreasing Seff . We further demonstrate in the next
paragraph that the entrainment of stable fluid into the convection zone does not increase
with Raeff , such that the stable layer’s influence on the convection is indeed limited and
negligible at leading order.

The lowering of the bulk temperature is caused by turbulent plumes that occasionally
penetrate into the stable layer and entrain some of the top cold fluid into the convection
zone. The significance of the entrained stable fluid to the system’s overall dynamics can
be estimated from its contribution to the convective heat flux (Couston et al. 2017),
as the downward motion of cold fluid can contribute a positive heat flux similar to
upward-moving warm plumes. We define the depth-dependent (dimensionless) heat flux
due to convective plumes, which we denote by qcp, and the depth-dependent heat flux due
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to the entrained stable fluid, which we denote by qce, as

qcp = 〈w̃(T̃ − T̃d)(T̃ > T̃d)〉, (3.22)

qce = 〈w̃(T̃ − T̃d)(T̃ ≤ T̃d)〉, (3.23)

respectively. We show in figure 8(a–d) the entrained heat flux qce (solid lines), the
plume-driven convective heat flux qcp (dashed lines) and the conductive heat flux qd =
−〈∂z̃T̃〉 (dotted lines) as functions of the normalized water depth z/h for all simulation
stages including a stable layer. The plume-driven convective heat flux is significant over a
depth that becomes larger with each simulation stage (later stages are shown with lighter
colours), due to the increase of either F (figure 8a,b) or h (figure 8c,d). The top of the
convective layer is approximately where the entrained heat flux is maximum and where
the conductive heat flux increases rapidly with z/h. Note that qce + qcp + qd ≈ 1 for all
z/h as the total heat flux is depth invariant at statistical steady state (the discrepancy after
temporal and horizontal averaging is smaller than a few per cent). We remark that the
conductive heat flux qd can be negative in the lower half of the convective layer (see,
e.g. dotted lines to the left of the 0 abscissa below z/h ≈ 0.2 in figure 8a,b) and that the
entrainment heat flux qce can be slightly negative at the top of the convection zone (see,
e.g. solid lines going to the left of the 0 abscissa at z/h ≈ 0.2, 0.55, 0.7, 0.8 in figure 8c).
The reversals of the conductive heat flux in the convective region and of the entrainment
heat flux at the bottom of the stable layer are real physical phenomena (i.e. they are neither
a numerical nor a statistical artefact) and we note that they have been observed in past
laboratory experiments (Townsend 1964; Adrian 1975).

We estimate the contribution of each heat flux component (i.e. qcp, qce and qd) to the full
heat transport by computing the ratio of each heat flux component (integrated over depth)
to the volume-averaged heat flux, which is unity in dimensionless space. We separate the
contribution of the diffusive heat flux below and above the convection zone by integrating
qd either over [0, h̃eff ] or over [h̃eff , 1]. As in Couston et al. (2017), we interpret the
ratio of each depth-integrated heat flux component to the mean heat flux as an equivalent
(dimensionless) layer thickness (wherein the full heat flux is assumed transported by that
heat flux component), in order to visualize the contribution of each heat flux component
to the full heat transport. Specifically, we denote by

Ldb =
∫ h̃eff

0
qd dz, Lcp =

∫ 1

0
qcp dz, Lce =

∫ 1

0
qce dz, Ldt =

∫ 1

h̃eff

qd dz,

(3.24a–d)

the equivalent layer thicknesses of the diffusive bottom boundary layer, of the
plume-driven convective layer, of the entrained layer and of the diffusive top stable
layer, respectively, which we envision as stacked on top of each other, with Ldb + Lcp +
Lce + Ldt ≈ 1. Figure 8(e–h) shows the top of each layer, i.e. z̃ = Ldb (bottom circles),
z̃ = Ldb + Lcp (lower horizontal bars), z̃ = Ldb + Lcp + Lce (upper horizontal bars) and
z̃ = Ldb + Lcp + Lce + Ldt (top squares) as functions of Raeff . We also display the height
z̃d of the mean T̃d isotherm for each simulation (crosses), which is almost always between
the top of the plume-driven layer and the top of the entrained layer. Importantly, the
thickness of the entrained layer, which is given by the vertical distance between the two
horizontal bars showing Ldb + Lcp and Ldb + Lcp + Lce, does not vary significantly with
Raeff . This can be clearly seen in figure 9(a), which shows Lce as a function of Raeff . Lce
is typically less then 0.05 and does not noticeably increase with Raeff . While the thickness
of the entrained layer remains approximately constant, the thickness of the plume-driven
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Figure 8. (a–d) Convective plume-driven qcp (dashed lines), entrainment-driven qce (solid lines) and
conductive qd (thin dotted lines) heat fluxes as functions of water depth z/h (y axis) for simulations S1

0 , S1
1 ,

S2
0 and S2

1 , respectively. (e–h) Top of the bottom conductive layer z̃ = Ldb (big bottom circles), plume-driven
convective layer z̃ = Ldb + Lcp (lower horizontal bars), entrainment-driven convective layer z̃ = Ldb + Lcp +
Lce (upper horizontal bars) and stably stratified layer z̃ = Ldb + Lcp + Lce + Ldt (top squares) as functions of
Raeff for simulations S1

0 , S1
1 , S2

0 and S2
1 , respectively. The crosses show the height z̃d of the mean T̃d isotherm.

The lines’ colour and symbol colour become lighter as the heat flux or water depth increases.

convective layer thickness increases with Raeff , such that the entrainment parameter, E ,
which we define as

E = qce

qcp + qce
, (3.25)

and which compares the entrainment heat flux to the full convective heat flux, is (almost)
monotonically decreasing with Raeff (figure 9b). Figure 9(c) shows the height z̃d of the
T̃d isotherm, which may be considered as an output mean convective–stably stratified
interface height (similar to the top of the entrained layer z̃ = Ldb + Lcp + Lce), as a
function of the expected convective layer depth h̃eff = 1/(1 + S̄(S̄ > 0)). We have z̃d ≈
h̃eff for all simulations and z̃d ≈ Ldb + Lcp ≈ Ldb + Lcp + Lce since Lce is small (cf.
figure 8e–h), which means that the convective and stably stratified layers are sufficiently
decoupled that h̃eff is an accurate estimate for the thickness of the well-mixed turbulent
bulk. Note that h̃eff , z̃d and Ldb + Lcp + Lce are not always close to each other, as is the
case here, but can be significantly different when there is strong entrainment (Couston
et al. 2017).

The conclusions of this section are that (i) the entrainment of stable fluid can modify
the temperature of the well-mixed bulk in subglacial lakes but that (ii) the influence
of the stably stratified layer on the convective dynamics does not increase with the
effective Rayleigh number or heat flux and water depth. Thus, we predict that the
convective and stably stratified layers can be considered decoupled at leading order and
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Figure 9. (a) Thickness of the entrained layer Lce (cf. (3.24a–d)) as a function of Raeff . (b) Entrainment
parameter E as a function of Raeff . (c) Dimensionless height z̃d of the T̃d isotherm as a function of the expected
convective layer thickness h̃eff . The solid line shows z̃d = h̃eff .

that classical scaling laws for Nu and Re apply to natural subglacial lakes with large
water depths and heat fluxes, provided that the effective Rayleigh number in (3.3) is
considered. Further, we remark that the (finite) lowering of the bulk temperature from
(T̃bulk − T̃d) ≈ (〈T̃b〉 − T̃d)/2 to (T̃bulk − T̃d) ≈ (〈T̃b〉 − T̃d)/4 in the presence of a thick
stable layer can be accounted for by changing the effective temperature difference driving
the convection from Δ̃eff to 3Δ̃eff /2. Multiplying the Nusselt number by 2/3 and the
effective Rayleigh number by 3/2 for the simulation results with a stable layer indeed
provides an improved collapse with the simulation results without a stable layer (cf.
light-coloured symbols in figure 6a–c). We note that the lowering of the normalized bulk
temperature in the presence of a stable layer, although relatively constant over the range
of simulations considered (cf. figure 7b), should be expected (in general) to vary with the
problem parameters (as is the case in Couston et al. 2017), such that the 3/2 correction
proposed for the effective temperature difference is unlikely to be universal. Investigating
the functional form of the correction coefficient for the effective temperature difference
with the problem parameters in the context of real subglacial lakes would be interesting
but is beyond the scope of the present work and is not expected to significantly change the
current leading-order predictions, which neglect the influence of the stable layer on the
convection.

4. Geophysical discussion

The closed-form expressions presented in table 4 are applicable to subglacial lakes that are
either in the OB or LEC regime. We recall that the criterion for the OB regime (cf. (3.12))
is β̃eff ≈ 1, i.e. S̄ ≈ −1, which can be satisfied by fully convective lakes only. The criterion
for the LEC regime is instead β̃eff ≈ Δ̃eff (1 + S̄)/2, i.e. Δ̃eff � 2S̄(T̃d < 0)/(1 + S̄),
which is satisfied when S̄ ≥ 0, i.e. all lakes with a top stable layer, or Δ̃eff � |S̄| ≈ 0,
which may be verified for some fully convective lakes. We show in figure 10(a) (1 + S̄)

as a function of ice pressure and lake water depth. We consider a heat flux of F = 68
mW m−2, which is expected to be the average geothermal flux across Antarctica (Martos
et al. 2017). For 1 + S̄ < 0, T̄b < Td, such that the thermal expansion coefficient is
negative throughout the full water column and the lake is stable. We have 1 + S̄ < 0
where the water depth h and ice overburden pressure pi are small (hashed region in the
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Figure 10. (a) Colour map of 1 + S̄, with S̄ the base-state stiffness parameter, in ( pi, h) space relevant to
Antarctic subglacial lakes with heat flux F = 68 mW m−2. The hashed region in the top left corner highlights
subglacial lakes that are fully stable because F = 68 mW m−2 is smaller than the threshold heat flux Ft. The
horizontal dashed line highlights the p∗ isobar and corresponds also to the isocontour 1 + S̄ = 1. The dotted
blue lines are isocontours of 1 + S̄ and the coloured circles (see legend) highlight the location of some of
the well-known subglacial lakes in parameter space (Couston & Siegert 2021). (b) Same as (a) but for the
dimensionless effective thermal driving Δ̃eff . The dotted blue lines still show the isocontours of 1 + S̄ whereas
the green solid lines show isocontours of Δ̃eff .

top left corner), so small that F = 68 mW m−2 is smaller than the threshold heat flux
Ft( pi, h) (cf. (2.10a,b)). We have 1 + S̄ ≥ 1 for all lakes with pi ≤ p∗ (as expected) and
1 + S̄ ≥ 0.9 for many fully convective lakes, including the three well-known subglacial
lakes Ellsworth, Concordia and Vostok (cf. three filled circles below the p∗ isobar).
This means that the LEC regime is applicable to all mixed convective and stably stratified
lakes but also possibly to some of the fully convective lakes if Δ̃eff is not too small. We
have 1 + S̄ ≤ 0.1, which is the criterion for the OB regime, for a limited number of fully
convective lakes only (bottom left corner below the 0.1 isoline of the diagram), because all
lakes that are deep can experience relatively large temperature differences, such that the
thermal expansion coefficient becomes variable.

In order to investigate the applicability of the LEC regime to real subglacial lakes, we
display in figure 10(b) the dimensionless effective temperature difference Δ̃eff predicted
based on (3.15) as a function of ( pi, h) and superimpose isocontours of 1 + S̄ (same blue
dotted lines as seen in figure 10a). We find that Δ̃eff is always smaller or much smaller
than |S̄|, i.e. such that the LEC regime is not applicable unless S̄ ≥ 0, except for a narrow
band of ice pressures pi close to p∗ (horizontal dashed line). For instance, the isoline
Δ̃eff = 10−2 (green solid line) is the rightmost boundary of the region where Δ̃eff ≥ 10−2,
and it can be seen that this region does not overlap with the region of |S̄| ≤ 10−2, which is
above and to the right of the 1 + S̄ = 0.99 isocontour (blue dotted line), unless S̄ ≥ 0 (or
pi ≤ p∗). Thus, the −S̄(T̃d < 0) term in (3.12) is not negligible when T̃d < 0 (or −1 ≤ S̄ <

0) and neither the OB regime nor the LEC regime is applicable to deep fully convective
lakes.

Although neither limiting regime is rigorously applicable to deep fully convective
lakes, we can still use the closed-form expressions in table 4 in order to provide
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some first-order estimates for the r.m.s. velocity and temperature difference driving
the convection in both shallow subglacial Lake CECs, where the LEC regime
applies, and deep subglacial lake Vostok. The most recent geophysical information
on Lake CECs is that the heat flux should be around F ≈ 100 mW m−2

and that the maximum water depth is h ≈ 300 m (personal communication with
N. Donoso from Centro de Estudios Científicos, Chile). Using F = 100 mW m−2, h = 300
m and using the approximate pre-factors and exponents a = 0.25, c = 0.006, α = 2/7 and
γ = 3/5 for the closed-form expressions in the LEC regime yields Vrms ≈ 2.4 mm s−1 and
Δeff ≈ 0.04 ◦C, which corresponds to a bottom temperature Tb = Td + Δeff = −1.12 ◦C,
i.e. 0.74 ◦C above freezing (Tf = −1.86 ◦C). For lake Vostok, the geothermal flux is
closer to 50 mW m−2 and the maximum water depth is of the order of 1000 m (Siegert
et al. 2001). Using F = 50 mW m−2, h = 1000 m and a = 0.25, c = 0.006, α = 2/7
and γ = 3/5 yields in the LEC regime Vrms ≈ 4.2 mm s−1 and Δeff ≈ 0.03 ◦C, with
Δeff directly equal to Tb − Tf , i.e. the bottom temperature in excess of the freezing
point (Tf = −2.83 ◦C), since there is no stable layer in this case. Note that we obtain
Δeff ≈ 0.005 ◦C and Vrms ≈ 25 mm s−1, i.e. a significantly larger r.m.s. velocity, using
predictions in the OB regime for lake Vostok because the effective thermal expansion
coefficient is strongly overestimated in the OB regime for deep fully convective lakes.

The velocities in the LEC regime are of the same order as the velocities Vrms ≈ 1 mm
s−1 for Lake CECs and Vrms ≈ 4 mm s−1 for lake Vostok predicted by previous studies,
including (Wüest & Carmack 2000), who applied scaling laws of vertical convection in
the rapidly rotating regime to lake Vostok, and, more recently, Couston & Siegert (2021),
who predicted the physical properties of most subglacial lakes based on three-dimensional
non-rotating scaling laws. The rough agreement between the velocities predicted in lake
Vostok by Wüest & Carmack (2000) and this work is far from trivial since the former
assumes that the flow dynamics is dominated by rotation while the latter neglects rotation.
The importance of rotation in subglacial lakes is an open question, which is beyond the
scope of this manuscript. The agreement between the velocities predicted in lakes CECs
and Vostok by Couston & Siegert (2021) and this work is also better than could be
expected as there is a significant difference in the scaling exponent γ ≈ 3/5 calculated
in this work based on two-dimensional simulations and the scaling exponent γ ≈ 1/2
used in Couston & Siegert (2021) and obtained based on three-dimensional simulations
(King, Stellmach & Buffett 2013). The discrepancy in exponents is compensated by the
difference in pre-factors for the case of lakes CECs and Vostok considered here but may
result in inaccurate predictions of three-dimensional r.m.s. velocities in other conditions.
Another difference between this work and Couston & Siegert (2021) is that the latter study
used conservative estimates for the effective thermal expansion coefficient, such that their
predicted velocities can be expected to be smaller than those we estimate based on the
closed-form expression for the thermal expansion coefficient derived in the LEC regime.
We refer the reader to Couston & Siegert (2021) for a detailed geophysical discussion of
first-order predictions of physical properties in most Antarctic subglacial lakes, which is
based on the assumption – which we validated in this work through novel DNS – that the
convective and stably stratified dynamics are decoupled at leading order.

We have demonstrated that the penetration of convective motions tends to lower the
temperature of the turbulent well-mixed bulk when the top stable layer is not too thin,
i.e. much thicker than the thermal boundary layer, despite the fact that the convection
and stably stratified layer can be considered dynamically decoupled at leading order.
Couston & Siegert (2021) showed that the top stable layer of Antarctic subglacial lakes
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grows from 0 m at pi = p∗ to approximately 40 m thickness at pi = patm ≈ 105 Pa. The
thickness of the thermal boundary layer can be estimated as heff /(2Nu) and is less than
1 m for most Antarctic subglacial lakes (Couston & Siegert 2021). Thus, we expect that
most mixed convective and stably stratified subglacial lakes have bulk temperature that
can be lowered by entrainment, but note that the decrease of the bulk temperature in
three-dimensional simulations may differ from the lowering we reported in § 3.4 and
figure 7(b).

5. Concluding remarks

We have investigated the dynamics of laboratory-scale subglacial lakes via DNS and
demonstrated that the Nusselt number Nu and Reynolds number Re follow similar
scalings laws as in classical Rayleigh–Bénard convection provided that an effective
Rayleigh number Raeff is considered. We obtained pre-factors and exponents similar
to those obtained for two-dimensional fully convective Rayleigh–Bénard simulations in
the OB regime with Pr = 1 (Johnston & Doering 2009; Sugiyama et al. 2009), which
means that the effect of the Prandtl number is relatively weak. As in Johnston &
Doering (2009), we remark that it is possible to define an effective flux-based Rayleigh
number, i.e. RaFeff = (gh4

eff Fβeff )/(kνκ), which is equal to RaF in the OB regime (i.e.
when the thermal expansion coefficient is constant) and is related to Raeff through
RaFeff = NuRaeff .

We have shown that dimensional variables, such as the effective temperature difference,
or bottom temperature, and r.m.s. velocity, scale differently with the problem parameters
depending on whether the effective thermal expansion coefficient βeff is constant or
linearly proportional to the effective temperature difference Δeff . We have called the
dynamical regimes associated with the two limiting behaviours of βeff the OB regime
and the LEC regime and derived explicit expressions for all variables of interest in terms
of the problem parameters in both regimes (table 4). When βeff is an affine function of
temperature, with non-negligible y-intercept, it is possible to infer Δeff from (3.13) (and
deduce all other variables thereafter) but an explicit expression is not available. We remark
that the expressions for, e.g. Δeff , with the problem parameters are discontinuous between
the OB regime and the LEC regime but can be continued and connected through the use
of (3.13) in regions of the parameter space where neither regime is accurate.

The key results of our work are:

(i) the definition of an accurate Raeff for subglacial lakes leading to classical scaling
laws for Nu and Re with Raeff ;

(ii) the demonstration that the convective and stably stratified layer dynamics are
decoupled at leading order;

(iii) the identification of the two limiting OB and LEC regimes;
(iv) the derivation of closed-form expressions for all variables of interest in terms of the

problem parameters in the OB and LEC regimes.

The numerical predictions of physical variables in subglacial lakes is briefly discussed
in § 4. We emphasize that while we expect that the expressions hold in both two and three
dimensions, the pre-factors a, c and exponents α, γ may vary between two-dimensional
and three-dimensional simulations. Clearly, future predictions of physical variables in
subglacial lakes should consider power laws obtained in three dimensions, although we
remark that the power law for Nu is almost the same between two-dimensional and
three-dimensional simulations of both classical Rayleigh–Bénard convection (Ahlers,
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Grossmann & Lohse 2009) and water convection close to the density maximum (Wang
et al. 2019).

We have demonstrated that the penetration of convective motions in the stratified layer
decreases with Raeff , such that there should be limited entrainment in most two-layer
subglacial lakes. This does not mean that future studies should discard the stratified layer
altogether. For instance, it would be interesting to investigate if internal waves excited by
convection (Couston et al. 2018) can melt the ice ceiling such that ice-trapped oxygen and
nutrients become available in subglacial lakes with a thin ice cover. The independence of
the bulk temperature or thickness of the entrained layer with increasing Raeff or decreasing
Seff , which we observed for simulations with a thick stable layer, seems at odds with the
results of Couston et al. (2017). Couston et al. (2017) demonstrated a monotonic lowering
of the bulk temperature and increase of the entrained layer thickness with a decrease of
their input stiffness Si, which, intuitively, is what may be expected if the inverse of the
stiffness does provide a measure of the degree of coupling between the convective and
stably stratified layers. We expect that the linear dependence of the thermal expansion
coefficient with the temperature in our numerical simulations may be responsible for
the observed discrepancy between our results and the results of (Couston et al. 2017),
who instead used a piecewise-constant thermal expansion coefficient. On the one hand,
in our numerical simulations, plumes approaching the T̃d isotherm lose their buoyancy
even before entering the stable layer, which limits penetration. On the other hand, the base
of the stable layer always has a small negative thermal expansion coefficient, i.e. a small
Brunt–Väisälä frequency, such that penetration is always possible, i.e. including at large
stiffness Seff . Thus, the stiffness parameter can be expected to have a weaker effect on
entrainment when the thermal expansion coefficient changes sign smoothly rather than
discontinuously. A study designed specifically to investigate the effect of the functional
form of the thermal expansion coefficient with temperature on entrainment would be a
valuable addition to the literature on penetrative convection but is beyond the scope of this
work.

Future works could investigate the effect of planetary rotation, which is most important
near the poles and may play a significant role in the turbulent dynamics and mean
vertical temperature profiles obtained in Antarctic subglacial lakes (Wüest & Carmack
2000), and low to moderate salt concentrations. Considering planetary rotation will require
three-dimensional simulations, unless we assume decoupled rotating convective and stably
stratified dynamics and use existing results on the effect of planetary rotation in classical
Rayleigh–Bénard convection (Plumley & Julien 2019). An important limitation of the
present work is the assumption of a flat ice–water interface, such that considering a tilted
ice ceiling and investigating the combined dynamics of the resulting baroclinic horizontal
flow with the vertical convection is essential. There is also a possibility that the proposed
scalings may become inaccurate as the water depth becomes large enough that the effect
of pressure variations within the water column on buoyancy can no longer be neglected.

We expect that this paper and future studies improving our understanding of the
hydrodynamic conditions in subglacial lakes could help identify subglacial environments
that are physically favourable for a biome and guide future observations and sampling of
subglacial lake water.
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improve the initial manuscript.
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Figure 11. (a) Time history of the dimensionless effective temperature difference 〈T̃b〉h − T̃d( pi) for
simulation S2

14 (thick orange line), which is simulation S2
1 discussed in the main text with h = 4 m and

constant T̃d , and simulation S2
14+ (thin black line), which includes hydrostatic effects in T̃d . (b) Same as (a) but

for the Reynolds number. (c) Same as (a,b) but for the dynamic pressure r.m.s. p′
rms normalized by 10−9 dbar.

(d) Mean vertical profiles of the dimensionless temperature T̃ (solid lines) and of the dimensionless temperature
of maximum density T̃d (dashed lines) for simulations S2

14 (thick orange lines) and S2
14+ (thin black lines).
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Appendix. Pressure effects

All simulations discussed in the main text and listed in table 2 assume that the thermal
expansion coefficient can be approximated as β( p, T) ≈ β( pi, T), i.e. such that pressure
variations within the water column are neglected in the expression for β. We demonstrate
that this is a valid approximation at leading order by showing in figure 11 the time history
and vertical profiles of several variables obtained in simulation S2

14, which is simulation
S2

1 with h = 4 m and in an additional simulation, denoted S2
14+, which is the same as S2

14
but with β( p, T) ≈ β( pi + ρ0g(h − z), T), i.e. such that it includes pressure variations
due to hydrostasy in the expression of the thermal expansion coefficient. We select S2

14 as
a point of comparison as the temperature of maximum density, Td, which is the variable
that is most sensitive to p in the expression for β, is reached inside the water column (i.e.
there is a top stable layer) and because it is one of the simulations with the largest water
depth (4 metres), such that pressure variations due to hydrostasy are relatively large.

Figures 11(a)–11(c) show that the dimensionless effective temperature difference, the
Reynolds number and the dynamic pressure r.m.s. p′

rms = [〈(p − 〈p〉h)
2〉h]1/2, which we

evaluate in (approximately) the middle of the convection zone at z = 0.5, are similar in
both cases. The small discrepancies between the two cases are that the dimensionless
effective temperature difference is slightly smaller in S2

14+ than in S2
14 and that Re and

p′
rms are slightly larger in S2

14+ than in S2
14. This suggests that S2

14+ is slightly more
turbulent than S2

14, which is expected since the decrease of Td with decreasing z in S2
14+

results in a slightly larger thermal expansion coefficient in S2
14+ than in S2

14 at depth.
The variability of Td within the water column for S2

14+ can be seen in figure 11(d), which
displays the mean vertical profiles of T̃d and T̃ . It can be seen that the decrease of 〈T̃d〉 with
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depth in S2
14+ is significantly smaller than the variability of 〈T̃〉, which is, ultimately, the

reason why the neglect of pressure variations in the expression for the thermal expansion
coefficient is valid, at least for the laboratory-scale subglacial lakes considered in this
paper. For deeper (geophysical) subglacial lakes, it may be expected that the decrease
of T̃d with depth results in slightly more turbulent conditions than could be predicted
assuming β( p, T) ≈ β( pi, T). The exact discrepancy due to the neglect or consideration
of hydrostatic pressure variations in the expression for β in geophysical lakes is beyond
the scope of this work. We note that considering hydrostatic effects in the expression for
β does not incur any computational overhead, such that they should be included in future
works. Figure 11(c) shows that the dynamic pressure r.m.s. is much smaller than 1 dbar
(by 9 orders of magnitude), which is equal to the change of hydrostatic pressure over 1
metre. Thus, dynamic pressure variations can be safely neglected from the expression for
β in simulations of laboratory-scale subglacial lakes as well as in simulations of (most)
geophysical subglacial lakes.
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