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THE WADGE ORDER ON THE SCOTT DOMAIN IS NOT A
WELL-QUASI-ORDER

JACQUES DUPARC AND LOUIS VUILLEUMIER

Abstract. We prove that the Wadge order on the Borel subsets of the Scott domain is not a well-quasi-
order, and that this feature even occurs among the sets of Borel rank at most 2. For this purpose, a specific
class of countable 2-colored posets Pemb equipped with the order induced by homomorphisms is embedded
into the Wadge order on the Δ02-degrees of the Scott domain. We then show that Pemb admits both infinite
strictly decreasing chains and infinite antichains with respect to this notion of comparison, which therefore
transfers to the Wadge order on the Δ02-degrees of the Scott domain.

With the exception of Section 5, all the results presented in this article—including
the main ones—are due to the sole second author.

§1. Introduction. TheWadge order≤w—named afterWadge [24]—on the subsets
of a topological space X is the quasi-order induced by reductions via continuous
functions. More precisely, if A,B ⊆ X, then A ≤w B if there exists a continuous
function f : X → X such that f−1[B] = A, i.e., x ∈ A ⇔ f(x) ∈ B for all
x ∈ X. The Wadge order measures the topological complexity of the subsets of X .
Indeed, A ≤w B means that the membership problem for A can be reduced, via
some continuous function, to the membership problem for B; or, in other words, A
is topologically less complicated than B.
The Wadge order is a refinement of both the classical Borel and Hausdorff–
Kuratowski difference hierarchies since when B is located strictly higher than A
in one of these hierarchies, then A ≤w B holds. Over the last 50 years, this quasi-
order has been extensively studied in the context ofPolish spaces—i.e., the separable
completely metrizable spaces [1,2,5,9–11,13,14,17,21,23–25].
Over the last decades, some slightly different classes of topological spaces rose
interest for their involvement in computer science [6, 7, 18–20, 26]. This has been
the case, in particular, of nonmetrizable—hence non-Polish—spaces occurring as
domains of the semantic of programming languages. Building on a prior work of
Selivanov—that extensively studied a generalized version of the Borel hierarchy to
nonmetrizable spaces [19,20]—de Brecht introduced in [4] the class of quasi-Polish
spaces—i.e., the second countable quasi-metrizable spaces, where a quasi-metric is a
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metric whose symmetry condition has been dropped. In particular, de Brecht proved
that some of themajor results of descriptive set theory extend to quasi-Polish spaces
(see Theorems 19, 23, 58, and 70 in [4]). He also exhibited theScott domain1 P� as a
universal quasi-Polish space. More precisely, de Brecht proved that the quasi-Polish
spaces are—up to homeomorphism—exactly theΠ02-subsets of P� (Theorem 24 in
[4]), where P� is the power set of the integers equipped with the topology where
a basic open set is composed of all the sets that contain a fixed finite subset of the
integers (Definition 2.1).
More results by de Brecht suggest that a reasonable descriptive set theory still
holds in the quasi-Polish setting. Unfortunately, very few is known about theWadge
order in this context. To the contrary, the Polish spaces X whose Wadge order
on the Borel subsets is well founded and contains no infinite antichain—or in
other words, ≤w is a well-quasi-order on the Borel subsets of X—were recently
characterized in [17] as the zero-dimensional ones—i.e., Polish spaces admitting a
clopen basis. Whether this result generalizes to quasi-Polish spaces remains open.
In a first attempt to tackle this question, we propose to study the Wadge order on
the subsets of the Scott domain P�.
Several results have already been obtained by Selivanov who proved the existence
of ≤w -antichains of size 4 for P�, as well as the existence of ≤w-minimal sets at
each level of the difference hierarchy of open sets [19]; and by Becher andGrigorieff
who exhibited, for each infinite level α of the difference hierarchy of open sets, some
strictly≤w-increasing chains of sets of lengthα, and also described the≤w-maximal
sets for each such level for a large number of quasi-Polish spaces includingP� [3]. In
this article, we show both that the Wadge order on the subsets of P� is ill-founded
and that it admits infinite antichains.Moreover, we show that these properties occur
already within the differences of � open sets, i.e., at a very low level of topological
complexity:

Theorem 6.1.
(
D�(Σ

0
1)(P�),≤w

)
is ill-founded.

Theorem 7.1.
(
D�(Σ

0
1)(P�),≤w

)
has infinite antichains.

These results are obtained through a generalization of a construction introduced
by Selivanov in [19]. More precisely, we define an order-embedding from a class
of 2-colored countable posets Pemb (Definition 3.4) endowed with the usual notion
of comparison by homomorphisms (as done in [12, 27]) into the Wadge order on
the Δ02-degrees of P�, where a degree is an equivalence class induced by ≤w (see
Definition 2.6):

Theorem 4.9. There exists an order-embedding:

(Pemb,�c)/≡c → (Δ02(P�),≤w )/≡w.

Different approaches have already been considered for tackling the problem of
classifying subsets of non-Polish spaces according to their topological complexity.
For instance, Pequignot andSelivanov studied the quasi-order obtained from reduc-
tions via admissible representations independently [16,22], andMottoRos, Schlicht,

1The Scott domain was first introduced by Scott as a denotational semantic for the �-calculus [18].
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and Selivanov investigated the quasi-order obtained from classes of reductions that
are larger than the continuous ones [15].
The article is organized as follows. We fix notations and general definitions in
Section 2, where we also recall results such as the characterizations of some of the
topological classes obtained by Selivanov in [19]. In Section 3, we define the class of
posets Pemb (Definition 3.4) that we embed into the Wadge order of P� (Theorem
4.9) in Section 4. This order-embedding is the main construction of this article.
A game characterization of reductions between 2-colored posets is introduced in
Section 5 (Definition 5.1) in order to show, in Sections 6 and 7, that theWadge order
ofP� is ill-founded (Theorem 6.1) and that it has infinite antichains (Theorem 7.1).
We conclude in Section 8 with open questions.

§2. Preliminaries.

2.1. General notations. As usual, we denote by � or N the set of all integers and
by ℵ0 its cardinality. We also write �+ for � \ {0} and �1 for the first uncountable
ordinal.We use the letters i, j, k, l,m, n for integers andα, �, � for arbitrary ordinals.
Since every ordinal is regarded as the set of its predecessors, if n ∈ �, the notation
x ∩ n stands for x ∩ {0, 1, . . . , n − 1}.
Given any sets X,Y , if f : X → Y is a function, A ⊆ X, and B ⊆ Y , then we
write f[A] = {f(x) | x ∈ A} and f−1[B] = {x | f(x) ∈ B}. If f is injective, we
write f−1(y) for the unique element x ∈ X such that f(x) = y.
An X -sequence—or simply a sequence—is a function s : α → X—denoted by
(s�)�<α—from some ordinal α = lh(s) called the length of the sequence to X . In
this article, we will mainly consider sequences such that α ∈ � + 1 = � ∪ {�}. We
use the letters s, t to denote sequences. The only sequence of length 0—the empty
sequence—is denoted by ∅. If s, t are sequences, then t is a prefix of s, written
t 
 s , if lh(t) ≤ lh(s) and sk = tk for all k < lh(t). If t 
 s but s �
 t, we
write t � s. If s, t are X -sequences, the concatenation of s and t is defined by
s�t = (s0, . . . , slh(s)−1, t0, . . . , tlh(t)−1). The set of all X -sequences of finite length is
denoted by X<�.
A tree T ⊆ X<� is a set of finite X -sequences closed under the prefix relation.2
It is well founded if it has no infinite branch,3 in which case the rank of any
t ∈ T is (well) defined by �-induction: rkT (t) = 0 if t is 
-maximal and rkT (t) =
sup{rkT (s) + 1 | t � s} otherwise. The rank rk(T ) of a nonempty well-founded
tree T is the ordinal rkT (∅).

2.2. Order-theoretic notations. A quasi-order on a set Q is any reflexive and
transitive relation4 ≤q ⊆ Q×Q. Whenever≤q is clear from the context, we writeQ
for the couple (Q,≤q). Wewill use the lettersP,Q for quasi-orders andp ∈ P, q ∈ Q
for their elements. As usual, q0 ≤q q1 stands for (q0, q1) ∈ ≤q , and q0 <q q1 for
q0 ≤q q1 but q1 �≤q q0. If q0 �q q1 and q1 �q q0, then q0 and q1 are said to be
incomparable which is denoted by q0 ⊥q q1. If Q is a quasi-order and P ⊆ Q, then

2If t ∈ T and s � t, then s ∈ T .
3An infinite branch is a function f : � → T such that, if n < m, then f(n) � f(m).
4A binary relation ≤q on Q is reflexive if, for all q ∈ Q, (q, q) ∈ ≤q , and transitive if, for any

q0, q1, q2 ∈ Q, (q0, q1), (q1, q2) ∈ ≤q implies (q0, q2) ∈ ≤q .
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P equipped with the induced relation is a quasi-order. An infinite antichain in Q is
a sequence (qn)n<� of pairwise incomparable elements, and a strictly ≤q-increasing
(respectively, a strictly ≤q-decreasing) sequence is a sequence (qn)n<� such that
qn <q qn+1 (respectively, qn+1 <q qn) for all n ∈ �. A well-quasi-order is a quasi-
order Q that has no infinite antichain and no strictly ≤q-decreasing sequence. We
denote by Pred(q) = {q′ ∈ Q | q′ ≤q q} the set of predecessors of q ∈ Q, and by
Predim(q) = {q′ ∈ Q | (q′ <q q) ∧ ¬∃q′′ ∈ Q (q′ <q q′′ ∧ q′′ <q q)} the set of its
immediate predecessors.
We use homomorphisms in order to compare structures. A homomorphism5

between two quasi-orders is an order-preserving function. If there exists an injective
homomorphism ϕ : P → Q, then we write P 1-1 h.−−→ Q; if it is injective and preserves
immediate predecessors,6 then we write P � Q. Notice that P � Q is more rigid
than P 1-1 h.−−→ Q; hence, it describes more local behaviors.
If q and q′ are elements of a quasi-orderQ such that q ≤q q′ and q′ ≤q q, then we
write q ≡q q′. The relation ≡q is an equivalence relation whose equivalence classes
are denoted by [q] = {q′ ∈ Q | q ≡q q′}. The quotient set Q/≡q = {[q] | q ∈ Q}
inherits the quasi-order≤q .More precisely, we set [q] ≤q [q′] if and only if q ≤ q′.
The set Q/≡q equipped with≤q is a poset, i.e., a quasi-order whose order-relation is
a partial order.7

Wedenote the class of countable posets byP. IfP ∈ P, thenwe can always consider
≤p ⊆ α × α where α ∈ � ∪ {�} via any bijection P ↔ α; so that all the posets
we consider are posets on P ∈ � ∪ {�}. An order-embedding is a homomorphism
between two posets ϕ : P → Q such that for any p0, p1 ∈ P, p0 ≤p p1 if and only
if ϕ(p0) ≤q ϕ(p1). Thus, order-embeddings are injective. The main poset studied
in this article will be the set of finite subsets of the integers ordered by inclusion(
P<�(�),⊆

)
.

A 2-colored poset is a triple P = (P,≤p, cp) where ≤p is a partial order on
P and cp : P → 2 is a 2-coloring. We usually use the letters P,Q for 2-colored
posets. As done in [12, 27], we compare them via homomorphisms.8 If there exists
a homomorphism from P to Q, then we write P �c Q; if this homomorphism
is injective, then we write P 1-1 h.−−→c Q; if it is injective and preserves immediate
predecessors, then we write P �c Q. Notice that �c is a quasi-order on 2-colored
posets. We will denote by ≡c the induced equivalence relation.

2.3. Topological notations. This article focuses on the study of a particular topo-
logical space first introduced by Scott as a universal model of the semantic of
�-calculus [18].

5A homomorphism between two quasi-orders P and Q is a function ϕ : P → Q such that for any
p0, p1 ∈ P, if p0 ≤p p1, then ϕ(p0) ≤q ϕ(p1).
6A function ϕ : P → Q preserves immediate predecessors if, for any p0, p1 ∈ P, whenever p0 ∈

Predim(p1), then ϕ(p0) ∈ Predim
(
ϕ(p1)

)
.

7A quasi-order (P,≤p) is a partial order if ≤p is antisymmetric, i.e., for any p0, p1 ∈ P, p0 ≤p p1
and p1 ≤p p0 implies p0 = p1.
8A homomorphism between P,Q two 2-colored posets is a quasi-order homomorphism ϕ : P → Q

such that for all p ∈ P, cp(p) = cq
(
ϕ(p)

)
.
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Definition 2.1. The Scott domain is the power set of the integersP(�) equipped
with the topology generated by the basis{

OF | F ∈ P<�(�)
}
, where OF = {x ⊆ � | F ⊆ x}.

The Scott domain is a nonmetrizable—in fact non-Hausdorff (T2), and even
non-Fréchet (T1)—compact space which is connected and Kolmogorov (T0).
From now on and throughout this article, we use the notation P� for the Scott
domain; F,G,H for finite subsets of�; x, y, z for arbitrary subsets of�; andA,B, C
for subsets of P�.
Our ultimate goal is to study the topological complexity of subsets of P�. In
metrizable spaces, this study begins with the definition of the Borel hierarchy (Sec-
tion 11.B in [10]). However, the same construction would not work with P� for
it is not metrizable. To overcome this obstacle, Selivanov introduced a new version
of the Borel hierarchy for arbitrary spaces [19, 20]. This generalization extends the
original one and induces a well-behaved hierarchy (see [4] for more details). In the
rest of this section, T denotes a topology on a setX . As usual, we denote byX both
the topological space and the underlying set without any risk of confusion.

Definition 2.2. We define Σ01(X ) = T , and for 1 < α < �1,

Σ0α(X ) =

{⋃
n∈�
(Bn \ B ′

n)

∣∣∣∣∣ Bn,B ′
n ∈ Σ0�n (X ), �n < α

}
.

We also defineΠ0α(X ) = {A ⊆ X | X \A ∈ Σ0α(X )},Δ0α(X ) = Σ0α(X )∩Π0α(X ) for
α < �1. Finally, we define the Borel sets as B(X ) =

⋃
α∈�1 Σ

0
α(X ).

The Borel hierarchy on X is the quasi-order({
Σ0α(X ),Π

0
α(X )

}
α∈�1 ,⊆

)
.

As customary in descriptive set theory, we consider the Hausdorff–Kuratowski
difference hierarchy as a first refinement of the Borel hierarchy (see Section 22.E in
[10]). Its definition relies on the difference operation.

Definition 2.3. If 0 < α < �1 and (A�)�<α is a sequence of subsets of X , then

Dα
(
(A� )�<α

)
=

⋃{
A� \ ∪�<�A�

∣∣∣∣� < α, andα and � have different parities

}
⊆ X.

If 0 < α, � < �1, then

Dα
(
Σ0�

)
(X ) =

{
Dα

(
(A�)�<α

)
| (A�)�<α ⊆ Σ0�(X )

}
⊆ P(X ).

Finally, we set Ďα
(
Σ0�

)
(X ) =

{
A ⊆ X | X \ A ∈ Dα

(
Σ0�

)
(X )

}
.

The Hausdorff–Kuratowski difference hierarchy on X is the quasi-order({
Dα

(
Σ0�

)
(X ), Ďα

(
Σ0�

)
(X )

}
α,�∈�1 ,⊆

)
.

All Borel and Hausdorff–Kuratowski classes previously defined are closed under
continuous preimages.9 This suggests a natural further investigation of topological

9A class of subsets Γ(X ) ⊆ P(X ) is closed under continuous preimages if for any A ∈ Γ(X ), f :
X → X continuous, then f−1[A] ∈ Γ(X ).
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complexity through the lens of Wadge reducibility, a notion of comparison first
studied thoroughly by Wadge in his Ph.D. thesis [24].

Definition 2.4. Let A,B ⊆ X. The set A is Wadge reducible to B, written
A ≤w B, if there exists a continuous function f : X → X such that for all x ∈ X ,

x ∈ A⇐⇒ f(x) ∈ B,

i.e., f−1[B] = A.
A isWadge equivalent to B, written A ≡w B, if A ≤w B and B ≤w A hold.

Since both the identity and the composition of continuous functions are contin-
uous, ≤w induces a quasi-order on the subset of X , and thus the binary relations
�w, <w and ⊥w are well defined.

Definition 2.5. Let X be any topological space and Γ(X ) ⊆ P
(
X
)
be any class

closed under continuous preimages. The Wadge order on the Γ-subsets of X is the
quasi-order

(
Γ(X ),≤w

)
.

For the equivalence relation ≡w, we have a special terminology:

Definition 2.6. Let X be any topological space, A ⊆ X and Γ(X ) ⊆ P
(
X
)
be

any class closed under continuous preimages.
TheWadge degree of A is its ≡w-equivalence class [A] = {B ⊆ A | A ≡w B}.
TheWadge order on the Γ-degrees of X is the poset

(
Γ(X ),≤w

)
/≡w.

Notice that the Wadge order on the Γ-subsets of X admits an infinite antichain
(respectively, a strictly ≤w-decreasing sequence) if and only if the Wadge order
on the Γ-degrees of X also admits an infinite antichains (respectively, a strictly
≤w-decreasing sequence).

2.4. Selivanov’s toolbox. Wewill restrict ourselves to the study of the quasi-order(
Δ02(P�),≤w

)
. As mentioned in the Introduction, some results have already been

obtained on this quasi-order in [19] and [3]. The main result of this article (Theorem
4.9) comes as a generalization of a construction introduced by Selivanov in [19] that
we recall here.

Definition 2.7 (p. 56 in [19]). Let Tα be any well-founded tree of rank � ≤ α <
�1, 	 : �<� → � be any injective mapping such that 	(∅) = 0, and e : Tα →
P<�(�) be defined as e(s) = {	(t) | t 
 s}. The sets Yα and Zα are defined by:
1. Yα = e

[
T 1α

]
, where T 1α = {s ∈ Tα | lh(s) is odd},

2. Zα = B(Tα) ∪ Yα, where B(Tα) = {x ⊆ � | ∀s ∈ Tα x � e(s)}.

In [19], it is shown that, given any � ≤ α < �1, Yα and Zα are differences of α
open sets, Wadge incomparable, and≤w-minimal among true differences of α open
sets. More precisely,

Theorem 2.8 (Propositions 5.9 and 6.4 in [19]). For n ∈ �, � ≤ α, � < �1 and
A ∈ Δ02(P�) \ Ďα(Σ01)(P�), we have:
1. Dn(Σ01)(P�) \ Ďn(Σ01)(P�) and Ďn(Σ01)(P�) \Dn(Σ01)(P�) form two incom-
parable Wadge degrees,

2. Yα,Zα ∈ Dα(Σ01)(P�) \ Ďα(Σ01)(P�),
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3. Yα ⊥w Z� ,
4. if � ∈ A, then Zα ≤w A,
5. if � /∈ A, then Yα ≤w A.
The proof of Theorem 2.8 makes use of Selivanov’s characterizations of the Δ02-
subsets and of the Dα

(
Σ01

)
-subsets of P�. Since our proof will also require these

characterizations, we first recall them. For this purpose, if x, y ∈ P� are such that
x ⊆ y, we introduce the notation

[x, y] = {z ∈ P� | x ⊆ z ⊆ y}.

Definition 2.9 (Definition 2.4 in [19]). A ⊆ P� is approximable if, for all x ∈ A,
there exists F ∈ P<�(�) such that F ⊆ x and [F, x] ⊆ A.

A subset A of P� is Δ02 if the membership of any subset x ⊆ � to A can be
approximated by a finite subset of x. More precisely:

Theorem 2.10 (Theorem 3.12 in [19]). Let A ⊆ P�.
A ∈ Δ02(P�)⇐⇒ A and P� \ A are approximable.

The characterization of Dα
(
Σ01

)
-subsets of P� is a stratification of the previous

result using the notion of a 1-alternating tree.

Definition 2.11 (Definition 3.5 in [19]). Let A ⊆ P� and 0 < α < �1. A
1-alternating tree for A of rank α is a homomorphism of quasi-orders

f : (T,
)→ (P<�(�),⊆)

from a well-founded tree T ⊆ �<� of rank α such that:
1. f(∅) ∈ A, and
2. for all s�〈n〉 ∈ T , we have

(
f(s) ∈ A ↔ f(s�〈n〉) /∈ A

)
.

Corollary 2.12 (Corollary 3.11 in [19]). Let A ⊆ P� and 0 < α < �1.

A ∈ Dα(Σ01)(P�)⇐⇒
{

A ∈ Δ02(P�) and
there is no 1-alternating tree for A of rank α.

§3. The classPemb. Wedefine a class—calledPemb—of countable 2-colored posets
(Definition 3.4) thatwill bemapped into theWadge order on the subsets of the Scott
domain in the next section. The definition of Pemb will first be independent of P�.
Afterwards, we will give an order theoretic characterization of the elements of Pemb
that link them to P� (Proposition 3.3).
We begin with the naming of several posets that are useful for the definition of a
subclass of P denoted by Pshr. In Figure 1, we represent each poset (P,≤p) with its
Hasse diagram G = (P,→). More precisely, if p, q ∈ P, then p ≤p q if and only if
there exists a finite sequence (pk)k≤l such that p0 = p, pl = q and for all k < l, we
have pk → pk+1.
In [19], Selivanov worked with well-founded trees in order to construct subsets
of P�.We will generalize this construction to a larger class of posets that we call
shrubs and that share some of the properties of well-founded trees. For this purpose,
we make use of the classical notion of bounded completeness that occurs in domain
theory [6].
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...

2

1

0

�

�

...

1

0

��

0

1

2

...

�∗

0 1 2 · · ·

⊥

N⊥

0 1 2 · · ·

�

N�

2 3

0 1

P4

Figure 1. Samples of useful countable posets.

Definition 3.1. Let (P,≤p) be any poset.
1. A subset B ⊆ P is bounded if there exists an element u ∈ P such that b ≤p u
holds for every b ∈ B. Such a u ∈ P is called an upper bound of B. The set of
all upper bounds of B is denoted by UB .

2. If the set UB of all upper bounds ofB has a—necessarily unique—≤p-minimal
element sB ∈ UB—i.e., ∀u ∈ UB sB ≤p u—it is called the supremum of B in P.

3. The poset (P,≤p) is bounded complete if every bounded S ⊆ P has a
supremum.

A typical example of a poset which is not bounded complete is P4 as shown in
Figure 1. All other posets shown in Figure 1, as well as (P<�(�),⊆) and (P�,⊆)
are bounded complete. Notice that every bounded complete poset P has a unique
≤p-minimal element, namely the supremum of the empty set, usually denoted
by ⊥.

Definition 3.2. The class of all shrubsPshr ⊆ P is the class of all countable posets
P ∈ P that satisfy:

1. � �1-1 h.−−→ P,
2. for all p ∈ P, Card(Pred(p)) < ℵ0,
3. P is bounded complete.

Well-founded trees, and in particular N⊥, are typical examples of shrubs. More
involved ones will be constructed in the proof of Theorem 6.1 (Figure 5) and of
Theorem 7.1 (Figure 6). To the contrary,�, ��, �∗, N�, and P4 are typical examples
of posets that are not shrubs.
In the next proposition, we give alternative characterizations to the second item
of the previous definition. In particular, we show that the posets we just defined
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can be embedded into P<�(�). We also give an alternative characterization of this
second item that exclusively depends on morphisms between posets.

Proposition 3.3. If P ∈ P, then the following are equivalent:

1. for all p ∈ P, Card(Pred(p)) < ℵ0,
2. P 1-1 h.−−→ P<�(�),
3. (�� �1-1 h.−−→ P), (�∗ �1-1 h.−−→ P) and (N� �1-1 h.−−→ P).
Proof. (1.⇒ 2.): We consider P ∈ � ∪ {�} and define a function:

e : P → P<�(�)
k �→ {n | n ≤p k}.

If k ≤p l, then by transitivity of ≤p, we get e(k) ⊆ e(l). If k �= l , we consider
the two cases k <p l and k ⊥p l (the third case l <p k is the same as the case
k <p l). In both cases, l ∈ e(l) \ e(k). Therefore, we obtain that e is an injective
homomorphism that witnesses P 1-1 h.−−→ P<�(�).
(2.⇒ 3.): If ϕ : Q 1-1 h.−−→ P, then for all q ∈ Q, the injectivity of ϕ implies
Card

(
Pred(q)

)
≤ Card

(
Pred(ϕ(q))

)
. Since Card

(
Pred(F )

)
< ℵ0 for any

F ∈ P<�(�), we get the result by contradiction.
(3.⇒ 1.): Towards a contradiction, we pick p ∈ P such that Card(Pred(p)) = ℵ0.
We consider three different cases.
(a) Suppose there exists q0 <p p such that there exists no immediate pre-
decessor p′ of p satisfying q0 ≤p p′. Hence, there exists q1 <p p such
that q0 <p q1. We continue the process to construct a sequence (qn)n∈�
witnessing �� 1-1 h.−−→ P via the mapping: � �→ p, and n �→ qn for any
n ∈ �.

(b) Suppose there exist infinitely many immediate predecessors (qn)n∈� of
p ∈ P, then the mapping: � �→ p, and n �→ qn for any n ∈ �, witnesses
N� 1-1 h.−−→ P.

(c) Suppose that we are not in the situations (a) and (b); then, by the pigeon-
hole principle, there exists q0 an immediate predecessor of p such that
Card(Pred(q0)) = ℵ0. If we replace p with q0 and start the proof again,
either we get a contradiction from (a) or (b) or we exhibit q1 an immediate
predecessor of q0 such that Card(Pred(q1)) = ℵ0. By an infinite iteration
of this process, we obtain a sequence (qn)n∈� witnessing �∗ 1-1 h.−−→ P via
the mapping: 0 �→ p, and n �→ qn−1 for any n ∈ �+. �

In Figure 2, we give a name to some specific 2-colored posets that are useful for
the next definition: the nodes of the form • and ◦ correspond to color 1 and color
0, respectively.

◦ ◦
•

∨01 : ◦ ◦
•

∧10 :
•
•

|11:

Figure 2. Samples of useful 2-colored countable posets.
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The next definition introduces the class of embeddable posets Pemb. We will later
associate a subsetAP of P� to each such 2-colored poset P ∈ Pemb, where the color
1 will correspond to elements inside AP.

Definition 3.4. The class of embeddable posets Pemb is the class of countable
2-colored posets P = (P,≤p, cp) such that (P,≤p) ∈ Pshr and whose coloring
satisfies:

1. cp(⊥) = 0,
2. for all k ∈ P ≤p-maximal, cp(k) = 1,
3. (∨01 ��c P), (∧10 ��c P) and (|11 ��c P).

If P is an embeddable poset, then the nodes of color 1 are isolated. Indeed, if
P ∈ Pemb, p ∈ P and cp(p) = 1, then p has a unique immediate predecessor; and
p has at most one immediate successor,10 depending on whether p is ≤p-maximal
or not. Moreover, if they exist, they both have color 0. Thus, we introduce the
following notations.

Notation 3.5. For P ∈ Pemb, p ∈ P and cp(p) = 1, we denote by p− its unique
immediate predecessor; and, if it exists, by p+ its unique immediate successor. We
have cp(p−) = cp(p+) = 0.

This means that the direct neighborhood—composed of all immediate predeces-
sors and all immediate successors—of every node of color 1 is of one of the form
given in Figure 3, depending on whether it is ≤p-maximal or not.

•p

◦p−

◦
•
◦

p+

p

p−

Figure 3. The two possible direct neighborhoods of any p ∈ P,
where P ∈ Pemb and cp(p) = 1. The first case occurs when p is
≤p-maximal, and the second one when p is not.

§4. An order-embedding into the Wadge order. In this section, we associate a
subset AP ∈ Δ02(P�) to each embeddable poset P ∈ Pemb, and show that this
association is such that, for any P,Q ∈ Pemb, P �c Q if and only if AP ≤w
AQ (Lemma 4.5). As a consequence, we get our main result that there exists an
order-embedding (Pemb,�c)/≡c → (Δ02(P�),≤w )/≡w (Theorem 4.9).
We first need to label the elements of any embeddable poset.

Definition 4.1. Let P ∈ Pemb so that P ∈ � ∪ {�} has a ≤p-minimal element
m = ⊥ for some m ∈ �. The labeling lp on P is defined by:

10If P is an embeddable poset, p ∈ P is an immediate successor of p′ ∈ P if p′ ∈ Predim(p).
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lp : P → P<�(�)
⊥ �→ ∅,

n �→
⋃
k≤pn

{k}.

We notice that lp is an injective homomorphism of posets. Therefore, for every
F ∈ P<�(�) in the range of lp, l−1p (F ) is well defined.
We then associate a subset of the Scott domain to any embeddable poset through
the labeling given by Definition 4.1.

Definition 4.2. Let P ∈ Pemb, we define the subset AP ⊆ P� as:
AP = lp

[
c−1p [{1}]

]
=

{
x ⊆ � | ∃p ∈ P (cp(p) = 1 ∧ lp(p) = x)

}
.

We also denote by C(AP) the set of all finite sets of integers contained in the labeling
of an element of P:

C(AP) =
{
F ⊆ � | ∃p ∈ P F ⊆ lp(p)

}
.

The next lemma gathers two crucial observations that arise from the construction
given by Definition 4.2.

Lemma 4.3. Let P ∈ Pemb and F ∈ P<�(�).
1. If F ∈ C(AP), then {p ∈ P | lp(p) ⊆ F } has an upper bound in P.
By Definition 3.2, it has a unique supremum denoted by sF ∈ P.

2. F ∈ AP ⇔
(
cp(sF ) = 1 ∧ lp(sF ) = F

)
.

Proof. 1. Since F ∈ C(AP) =
{
F ⊆ � | ∃p ∈ P F ⊆ lp(p)

}
, there exists

p0 ∈ P such that F ⊆ lp(p0). Thus, p0 ∈ P is an upper bound of {p ∈ P |
lp(p) ⊆ F }.

2. Assume first that F ∈ AP ⊆ C(AP). Then, there exists p0 ∈ P such that
cp(p0) = 1 and lp(p0) = F. It implies that p0 is the supremum of {p ∈ P |
lp(p) ⊆ F }, hence p0 = sF .We then get lp(sF ) = F and cp(sF ) = 1.
Conversely, from the very definition ofAP, wehave cp(sF ) = 1 and lp(sF ) = F ,
which implies that F ∈ AP. �

The rest of this section consists in proving that the correspondence P �→ AP

satisfies that AP ∈ Δ02(P�) and for any P,Q ∈ Pemb, P �c Q if and only if
AP ≤w AQ. For this, we make use of the well-known result that a continuous
mapping from P� to itself is completely determined by its behavior on P<�(�).
The proof can be safely left to the reader.

Lemma 4.4 (Exercice 5.1.62 in [7]). Given any homomorphism of posets f :
P<�(�) → P�, there exists a unique continuous extension of f to the whole Scott
domain. This extension is given by

f̂ : P� → P�

x �→
⋃
n∈�
f
(
x ∩ n

)
.

We are now ready for our main proof.

https://doi.org/10.1017/jsl.2019.51 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.51


THEWADGE ORDER ON THE SCOTT DOMAIN IS NOT AWELL-QUASI-ORDER 311

Lemma 4.5. The following mapping

H : (Pemb,�c)→ (Δ02(P�),≤w)
P �→ AP

satisfies that for any P,Q ∈ Pemb, we have

P �c Q if and only if AP ≤w AQ.

Proof. The proof is divided into the three Claims 4.6, 4.7, and 4.8. The first
two claims show that H is a well-defined homomorphism, whereas the third one
completes the proof.

Claim 4.6. If P ∈ Pemb, then AP ∈ Δ02(P�).
Proof of the claim. We show that AP is both approximable and co-
approximable, i.e., P� \ AP is approximable. AP is approximable because AP ⊆
P<�(�). For co-approximability, we proceed by contradiction and suppose thatAP

is not co-approximable for some x ∈ P� \ AP infinite. So, we fix F0 ∈ [∅, x] ∩ AP

and set p0 = l−1p (F0). Assume Fn and pn are already constructed. Since AP is not
co-approximable, there existsFn+1 ∈

(
[Fn, x]\{Fn}

)
∩AP.Wesetpn+1 = l−1p (Fn+1).

It follows that the function

ϕ : � → P
n �→ pn

witnesses � 1-1 h.−−→ P, a contradiction. �Claim
Claim 4.7. If P,Q ∈ Pemb and P �c Q, thenAP ≤w AQ.

Proof of the claim. Suppose that P �c Q is witnessed by ϕ : P → Q. Consider
the function:

fϕ : P<�(�)→ P�

F �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lq
(
ϕ(sF )

)
if F ∈ C(AP) ∧ cp(sF ) = 0,

lq
(
ϕ(sF )

)
if F ∈ C(AP) ∧ cp(sF ) = 1 ∧ F = lp(sF ),

lq
(
ϕ(s−F )

)
if F ∈ C(AP) ∧ cp(sF ) = 1 ∧ F � lp(sF ),

lq
(
ϕ(s+F )

)
if F ∈ C(AP) ∧ cp(sF ) = 1 ∧ F � lp(sF ),

� otherwise,

where sF is defined as in Lemma 4.3; s−F and s
+
F are defined as in Notation 3.5; and

s+F is replaced by � whenever sF is a maximal element in (P,≤p).
We show that the function f̂ϕ given by Lemma 4.4 satisfies f̂−1

ϕ

[
AQ

]
= AP.

First, for f̂ϕ to exist, we need fϕ to be order-preserving. Let F,G ∈ P<�(�) be
such that F ⊆ G.We have several cases to check:
1. if G /∈ C(AP), then fϕ(F ) ⊆ fϕ(G) = �.
Since G ∈ C(AP) implies F ∈ C(AP), we now suppose F,G ∈ C(AP) and thus
sF ≤p sG .
2. if cp(sF ) = cp(sG) = 0, then fϕ(F ) = lq

(
ϕ(sF )

)
⊆ lq

(
ϕ(sG )

)
= fϕ(G),

3. if cp(sF ) = 0 and cp(sG) = 1, then fϕ(F ) = lq
(
ϕ(sF )

)
⊆ lq

(
ϕ(s−G )

)
⊆

fϕ(G),
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4. if cp(sF ) = 1 and cp(sG) = 0, then fϕ(F ) ⊆ lq
(
ϕ(s+F )

)
⊆ lq

(
ϕ(sG )

)
=

fϕ(G),
5. if cp(sF ) = cp(sG) = 1 and sF �= sG , then there exists p ∈ P such that
sF <p p <p sG holds, because there exist no two consecutive nodes colored
by 1. Therefore fϕ(F ) ⊆ lq

(
ϕ(s+F )

)
⊆ lq

(
ϕ(s−G )

)
= fϕ(G).

It only remains to consider the cases where cp(sF ) = cp(sG) = 1, and sF = sG :

6. if F,G ∈ AP, then fϕ(F ) = lq
(
ϕ(sF )

)
= lq

(
ϕ(sG)

)
= fϕ(G),

7. if F ∈ AP and G /∈ AP, then fϕ(F ) = lq
(
ϕ(sF )

)
⊆ lq

(
ϕ(s+F )

)
= fϕ(G),

8. if F /∈ AP and G ∈ AP, then fϕ(F ) = lq
(
ϕ(s−F )

)
⊆ lq

(
ϕ(sF )

)
= fϕ(G),

9. if F,G /∈ AP and F � lp(sF ), then fϕ(F ) = lq
(
ϕ(s−F )

)
⊆ fϕ(G),

10. if F,G /∈ AP and F � lp(sF ), then fϕ(F ) = lq
(
ϕ(s+F )

)
= fϕ(G).

This finishes the proof thatfϕ : P<�(�)→ P� is order-preserving. It follows from
Lemma 4.4, that fϕ has a continuous extension f̂ϕ : P� → P�. We distinguish
between three different cases to show that f̂−1

ϕ

[
AQ

]
= AP.

x ∈ P�(�): because AP ⊆ P<�(�), we have x /∈ AP. Suppose, towards a contra-
diction, that f̂ϕ(x) ∈ AQ. Since AQ ⊆ P<�(�), there exist F ∈ P<�(�) and
n ∈ �, such that f̂ϕ(x) = F ∈ AQ and fϕ

(
x ∩m

)
= F both hold for allm ≥ n.

We then notice that, for any G ∈ P<�(�),
fϕ(G) ∈ AQ ⇒ G ∈ C(AP) ∧ cp(sG) = 1 ∧G = lp(sG)

⇒ G ∈ AP.

Where the first implication comes from the definition of fϕ and the second from
Lemma 4.3. We obtain that x ∩ m ∈ AP holds for all m ≥ n, this implies
cp

(
l−1p (x ∩ m)

)
= 1. Since x is infinite and lp injective, we can extract a

subsequence of
(
l−1p (x ∩m)

)
m∈� witnessing �

1-1 h.−−→ P, a contradiction.
F ∈ P<�(�) \ C(AP): F /∈ AP holds by the very definition of C(AP). Hence, we
have � = fϕ(F ) = f̂ϕ(F ) /∈ AQ.

F ∈ C(AP): Suppose first that F ∈ AP. By Lemma 4.3, f̂ϕ(F ) = lq
(
ϕ(sF )

)
is

satisfied. Moreover, from cq
(
ϕ(sF )

)
= 1, we get f̂ϕ(F ) ∈ AQ.

Suppose now that F /∈ AP. By Lemma 4.3, there are three cases:
1. if cp(sF ) = 0, then cq

(
ϕ(sF )

)
= 0 which implies f̂ϕ(F ) /∈ AQ,

2. if cp(sF ) = 1 and F � lp(sF ), then cq
(
ϕ(s−F )

)
= 0 which implies f̂ϕ(F ) /∈

AQ,
3. if cp(sF ) = 1 and F � lp(sF ), then cq

(
ϕ(s+F )

)
= 0 which implies

f̂ϕ(F ) /∈ AQ. �Claim
Claim 4.8. If P,Q ∈ Pemb and AP ≤w AQ, then P �c Q.
Proof of the claim. Weassume thatAP ≤w AQ iswitnessed by some continuous
functionf : P� → P�. We describe a reduction which witnesses P �c Q. First, we
need a few observations. Let p ∈ P. Since � �1-1 h.−−→ P and all ≤p-maximal elements
have color 1, there exists p′ ∈ P such that both p ≤p p′ and cp(p′) = 1 hold.
Therefore, f

(
lp(p′)

)
∈ AQ. Hence, for all p ∈ P, we have f

(
lp(p)

)
∈ C(AQ).We

also define, for all p ∈ P, the set
Qp =

{
q ∈ Q | lq(q) ⊆ f

(
lp(p)

)}
.
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Since f
(
lp(p)

)
∈ C(AQ) holds, Lemma 4.3 yields the existence of a unique supre-

mum tp of Qp in Q.
We define a mapping:

ϕ : P → Q

p �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tp if f

(
lp(p)

)
∈ AQ,

tp if f
(
lp(p)

)
/∈ AQ ∧ cq(tp) = 0,

t−p if f
(
lp(p)

)
/∈ AQ ∧ cq(tp) = 1 ∧ lq(tp) � f

(
lp(p)

)
,

t+p if f
(
lp(p)

)
/∈ AQ ∧ cq(tp) = 1 ∧ lq(tp) � f

(
lp(p)

)
,

where t−p and t
+
p are defined as in Notation 3.5.

For ϕ to be well defined, we need t+p not to occur whenever tp is a ≤q-maximal
element. So, suppose tp is a ≤q-maximal element. Since cq(tp) = 1, then tp ∈ Qp
for it has a unique immediate predecessor. Thus, lq(tp) ⊆ f

(
lp(p)

)
holds, which

shows that t+p does not occur in this case.
Since for every p ∈ P we have

cp(p) = 1⇔ lp(p) ∈ AP ⇔ f
(
lp(p)

)
∈ AQ,

it follows from the definition of ϕ, that for all p ∈ P we also have cp(p) = cq(ϕ(p)).
Therefore, it only remains to show that ϕ is order-preserving. Suppose p ≤p p′, we
get tp ≤q tp′ .We proceed with cases:
1. if cq(tp) = cq(tp′) = 0, then ϕ(p) = tp ≤q tp′ = ϕ(p′),
2. if cq(tp) = 0 and cq(tp′) = 1, then ϕ(p) = tp ≤q t−p′ ≤q ϕ(p′),
3. if cq(tp) = 1 and cq(tp′) = 0, then ϕ(p) ≤q t+p ≤q tp′ = ϕ(p′),
4. if cq(tp) = cq(tp′) = 1 and tp �= tp′ , then there exists some q ∈ Q that satisfies
tp <q q <q tp′ . This finally leads to ϕ(p) ≤q t+p ≤q t−p′ = ϕ(p′).

It only remains to consider the cases where cq(tp) = cq(tp′) = 1, and tp = tp′ :
5. if cp(p) = cp(p′) = 1, then ϕ(p) = tp = tp′ = ϕ(p′),
6. if cp(p) = 1 and cp(p′) = 0, then ϕ(p) = tp ≤q t+p = ϕ(p′),
7. if cp(p) = 0 and cp(p′) = 1, then ϕ(p) = t−p ≤q tp = ϕ(p′),
8. if cp(p) = cp(p′) = 0 and lq(tp) � f

(
lp(p)

)
, then ϕ(p) = t−p ≤q ϕ(p′),

9. if cp(p) = cp(p′) = 0 and lq(tp) � f
(
lp(p)

)
, then ϕ(p) = t+p = ϕ(p

′).
This concludes the proof that ϕ witnesses P �c Q. �Claim
So, Claim 4.6 proves that the mapping H : P �→ AP is a well-defined mapping
from (Pemb,�c) to (Δ02(P�),≤w), and we conclude from the Claims 4.7 and 4.8
that for any P,Q ∈ Pemb, P �c Q if and only if AP ≤w AQ. �
The previous lemma almost immediately yields the main result:
Theorem 4.9. The following mapping is an order-embedding:

(Pemb,�c)/≡c → (Δ02(P�),≤w )/≡w
[P] �→ [AP].

Proof. By Lemma 4.5 and the definition of the order on quotient sets, it is clear
that for any [P], [Q] ∈ (Pemb,�c )/≡c, we have [P] �c [Q] if and only if [AP] ≤w [AQ].
Moreover, if [AP] = [AQ], then AP ≡w AQ, and by Lemma 4.5, we have P ≡c Q,
hence [P] = [Q]. Thus, the mapping [P] �→ [AP] is an order-embedding. �
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§5. A reduction game on P. This section introduces a game characterization of
reductions on 2-colored posets. This characterization and the order-embedding
given in Theorem 4.9 are the essential tools that we need in order to study the
Wadge order on the Scott domain.
As pointed out by an anonymous referee, this game-theoretical approach is not
entirely needed in order to obtain the main results of the article (as suggested by
Proposition 5.3). However, this version of the Ehrenfeucht-Fraı̈ssé game [8] that we
use captures the dynamic viewpoint that was essential—at least for the authors—in
obtaining Theorems 6.1 and 7.1. Moreover, this playful viewpoint also works as a
powerful tool in analyzing the Wadge order on P�, a study currently undertaken
by the authors.
This game comes as a standard two-player infinite game where the players choose
elements of some given posets P,Q ∈ P.

Definition 5.1. Let P,Q ∈ P. The game GP(P,Q) is defined as a two-player (I
and II) game played on � rounds. Each round n ∈ � is played as follows: first I
picks an element pn ∈ P and then II picks an element qn ∈ Q.We further require
that there exists n0 ∈ � such that, for all n ≥ n0, pn = pn0 .
We say that II wins the game if and only if the two following conditions are
satisfied:

1. pn ≤p pm → qn ≤q qm holds for all n,m ∈ �,
2. cp(pn) = cq(qn) for all n ∈ �.
Schematically, the game goes as in Figure 4.
A run of the game is a sequence (p0, q0, p1, q1, . . . ) ∈ (P ∪Q)�.

In plain English, player I moves inside the 2-colored poset P, whereas player II
moves inside the 2-colored poset Q. The goal of II is to reproduce (order-wise and
color-wise) inQ the run that I is producing in P.Notice that the condition of playing
ultimately constant for player I is equivalent to requiring that the game stops after
finitely many rounds.
Related to this game, we introduce the notion of an ultrapositional strategy as a
strengthening of the usual notion of a strategy.

Definition 5.2. Let P,Q ∈ P. An ultrapositional strategy for player II in the game
GP(P,Q) is a function 
 : P → Q.

Contrary to the usual strategies that rely on the history of the opponent’s run,
ultrapositional strategies only take into account the last move of the opponent. An
ultrapositional strategy is winning if it ensures a win whatever the opponent does.

I

II

p0

q0

p1

q1

· · ·

· · ·

pn0

qn0

pn0

qn0+1

· · ·

· · ·

pn0

qk

· · ·

· · ·

Figure 4. The game GP(P,Q) for P,Q ∈ P.
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Ultrapositional strategies characterize the reductions inside P as shown by the
next proposition.

Proposition 5.3. Let P,Q ∈ P.

P �c Q ⇐⇒ II has an ultrapositional winning strategy in GP(P,Q).

Proof. First, suppose thatP �c Q holds and is witnessed byϕ : P → Q. Observe
that ϕ is also an ultrapositional strategy for II inGP(P,Q). From the very definition
of a homomorphism between 2-colored posets, it respects the two conditions to be
winning for II in GP(P,Q).
Conversely, an ultrapositional winning strategy for II in GP(P,Q) is a homomor-
phism ϕ : P → Q for it respects the two winning conditions. �
We have a reduction between 2-colored posets and their subposets that are closed
under the predecessor relation.

Definition 5.4. Let (Q,≤q) be a poset. A subposet (P,≤p) is an ideal of (Q,≤q)
if, for all p ∈ P, we have {q ∈ Q : q ≤q p} ⊆ P.

Proposition 5.5. Let P,Q ∈ P.

If P is an ideal of Q, then P �c Q.
Proof. The inclusion i : P → Q, p �→ p witnessing that (P,≤p) is an ideal of
(Q,≤q) is an ultrapositional winning strategy for II in GP(P,Q). �

5.1. On the reduction game on Pfin. In order to simplify some later proofs, we
conclude this section with some necessary conditions for an ultrapositional strategy
to be winning in a subclass of the embeddable posets.

Definition 5.6. A finite branching poset is an embeddable poset P ∈ Pemb such
that every element p ∈ P which is not≤p-minimal has finitely many successors, i.e.,
for all p ∈ P, if p �= ⊥, then:

Card
(
Succ(p)

)
= Card

(
{p′ ∈ P | p ≤p p′}

)
< ℵ0.

The class of all finite branching posets is denoted by Pfin.

It turns out that the image of a finitely branching poset via the order-embedding
of Theorem 4.9 must be topologically reasonably simple, for we have:

Proposition 5.7. If P ∈ Pfin, then AP ∈ D�(Σ01)(P�).
Proof. We use the characterization of Corollary 2.12. Since P ∈ Pemb holds,
Lemma 4.5 implies that AP ∈ Δ02(P�) holds as well. Towards a contradiction,
assume thatAP admits a 1-alternating tree of rank �, namely:

f : T� → P<�(�).

This implies that, for every k ∈ �, there exists a strictly ⊆-increasing sequence
(F km)m<k such that F

k
0 = f(∅) and F

k
m ∈ AP both hold for all m < k. Thus, the

sequence
(
l−1p

(
F km

))
l<k
is a strictly ≤p-increasing sequence of size k that satisfies

cp
(
l−1p

(
F k0

))
= cp

(
l−1p

(
f(∅)

))
= 1,
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for every k ∈ �. Therefore, we obtain

Card
(
Succ

(
l−1p

(
f(∅)

)))
= ℵ0.

By definition of a finite branching poset, this implies l−1p
(
f(∅)

)
= ⊥, a

contradiction for cp(⊥) = 0. �
As a corollary, we obtain a somehow more detailed picture of Theorem 4.9.

Corollary 5.8. The following mapping is an order-embedding:

H : (Pfin,�c)/≡c → (D�(Σ
0
1)(P�),≤w )/≡w

[P] �→ [AP].

Now, we introduce some notations to talk about the game-theoretical strength of
a given node in a finite branching poset.
Let us fix P ∈ Pfin and p ∈ P. If it exists, let kp ∈ � be the length of the largest
strictly≤p-increasing sequence (sn)n<kp that satisfies s0 = p and (cp(sn) = cp(p)⇔
n is even). The increasing strength of p in P is

Strincr(p) =

{
kp if kp ∈ � exists,
� otherwise.

Since P ∈ Pfin, the latter case can only occur when p = ⊥. From a game-theoretical
viewpoint, if p �= ⊥, then Strincr(p) corresponds to the length of the strongest
<p-increasing run that a player can take while playing in P.
In a similar manner, we define the decreasing strength of p in P, denoted by
Strdecr(p) = k ∈ �, as the length of the largest strictly ≤p-decreasing sequence
(sn)n<k that satisfies s0 = p and (cp(sn) = cp(p) ⇔ n is even). It is well defined
since Card(Pred(p)) < ℵ0 holds for every p ∈ P.
The increasing and decreasing strengths of a node give a good indication of the
strength it bears as a position in the game:

Lemma 5.9. If P,Q ∈ Pfin and 
 is a winning ultrapositional strategy for II in the
game GP(P,Q), then for all p ∈ P:
1. Strincr(p) ≤ Strincr

(

(p)

)
,

2. Strdecr(p) ≤ Strdecr
(

(p)

)
.

Proof.

1. Towards a contradiction, suppose that Strincr(p) > Strincr
(

(p)

)
. We proceed

by cases.
If Strincr(p) �= �: assume that Strincr(p) = k is witnessed by a sequence
(pn)n<k. Since 
 is winning,

(

(pn)

)
n<k
is strictly ≤q-increasing and satisfies


(p0) = 
(p) and
(
cq

(

(pn)

)
= cp

(

(p)

)
⇔ n is even

)
.Thus Strincr

(

(p)

)
≥

k, a contradiction.
If Strincr(p) = �: for all k ∈ �, there exists a strictly ≤p-increasing sequence
(sn)n<k that satisfies s0 = p and (cp(sn) = cp(p) ⇔ n is even). Since 

is winning,

(

(pn)

)
n<k
is strictly ≤q-increasing and satisfies 
(p0) = 
(p)

and
(
cq

(

(pn)

)
= cp

(

(p)

)
⇔ n is even

)
. Therefore, Strincr

(

(p)

)
= �, a

contradiction.
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2. Towards a contradiction, suppose that Strdecr(p) > Strdecr
(

(p)

)
. We also

suppose that Strdecr(p) = k ∈ � is witnessed by a sequence (pn)n<k. Since 

is winning,

(

(pn)

)
n<k
is strictly ≤q-decreasing and satisfies 
(p0) = 
(p)

and
(
cq

(

(pn)

)
= cp

(

(p)

)
⇔ n is even

)
. Thus Strdecr

(

(p)

)
≥ k, a

contradiction. �

§6. Ill-foundedness of the Wadge order on the Scott domain. In this section, we
prove that the quasi-order≤w is already ill-founded inside the class of�-differences
of open sets of the Scott domain.

Theorem 6.1. (
D�(Σ01)(P�),≤w

)
is ill-founded.

Proof. The proof consists in exhibiting a strictly �c-decreasing sequence of
posets (Pn)n∈�+ in Pemb and making use of the Lemma 4.5.
First, let us fix n ∈ �+.We define Pn = (Pn,≤pn , cpn ) as the 2-colored countable
poset with colored Hasse diagram given in Figure 5.
Formally, the set of nodes is

Pn = {⊥} ∪ {wm, xm, ym}m∈�
∪
{
z2km | k ∈ �, n ≥ km

}
∪
{
z2k+1m | k ∈ �, n ≥ (k + 1)m

}
,

the order relation is

≤pn =
{
(⊥, wm), (wm, xm), (xm, ym), (xm+1, ym), (ym, z0m)

}
m∈�

∪
{
(zkm, z

k+1
m ) | k ≤

⌊m
n

⌋
· 2− 1

}
,

wnwn−1· · ·w2w1w0 wn+1 · · · w2n−1 w2n w2n+1 · · ·

⊥

xnxn−1· · ·x2x1x0 xn+1 · · · x2n−1 x2n x2n+1 · · ·

ynyn−1· · ·y2y1y0 yn+1 · · · y2n−1 y2n y2n+1 · · ·

z0nz0n−1· · ·z02z01z00 z0n+1 · · · z02n−1 z02n z02n+1 · · ·

z1n z1n+1 · · · z12n−1 z12n z12n+1 · · ·

z2n z2n+1 · · · z22n−1 z22n z22n+1 · · ·

z32n z32n+1 · · ·

z42n z42n+1 · · ·

Figure 5. The colored Hasse diagram of Pn ∈ Pemb for n ∈ �+.
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where
⌊
m
n

⌋
denotes the integer part of mn , and the 2-coloring is:

cpn : Pn → 2

p �→ 0 if p ∈ {⊥, xm, ym}m∈� ∪
⋃
m∈�
zoddm ,

p �→ 1 if p ∈ {wm}m∈� ∪
⋃
m∈�
zevenm ,

where z·m = {zkm | k ≤
⌊
m
n

⌋
· 2}, zevenm = {zkm ∈ z·k | k even}, and zoddm = {zkm ∈ z·k |

k odd}.
For all n ∈ �+, it is easy to check that all the requirements that are needed for Pn
to belong to Pfin are fulfilled. Therefore, by Proposition 5.7, we have:

APn ∈ D�(Σ01)(P�).
For the remainder of the proof, we need some notations. For any k ∈ �, we call
branch k of Pn the set of nodes Bk = {wk, xk, yk} ∪ z·k, and right-shift in Pn any
sequence of moves of the form (wk, yk , wk+1). First, we describe the behavior of an
ultrapositional winning strategy facing a right-shift.

Claim 6.2. Let n,m ∈ �+ and 
 be an ultrapositional strategy for II inGP(Pn,Pm).
If I’s moves are a right-shift (wk, yk, wk+1) and 
(wk) ∈ Bl for some l ∈ �, then

(wk+1) ∈ Bl ′ for some l ′ ≤ l + 1.
Proof of the Claim. We split the proof in two different cases.

If l = 0 holds: since wk ≤pn yk, cpn (yk) = 0, 
 is winning and 
(wk) ∈ B0, we get

(yk) ∈ {x0, y0}.Moreover, since wk+1 ≤pn yk, cpn (wk+1) = 1 and 
 is winning,
we get:


(wk+1) ∈ {w0, w1} ⊆ B0 ∪ B1.
If l ∈ �+ holds: once again, since wk ≤pn yk, cpn (yk) = 0, 
 is winning and

(wk) ∈ Bl , we get 
(yk) ∈ zoddl−1 ∪ zoddl ∪ {xl , yl , yl−1}. Moreover, since
wk+1 ≤pn yk, cpn (wk+1) = 1 and 
 is winning, we get:


(wk+1) ∈ zevenl−1 ∪ zevenl ∪ {wl−1, wl , wl+1} ⊆
⋃
l ′≤l+1

Bl ′ . �Claim

It remains to show that the sequence (Pn)n∈�+ is an infinite strictly�c-decreasing
sequence in Pemb.

Claim 6.3. If 0 < n < m < �, then Pm �c Pn.
Proof of the Claim. It suffices to observe that Pm is an ideal of Pn and use
Proposition 5.5. �Claim
Claim 6.4. If 0 < n < m < �, then Pn ��c Pm.
Proof of the Claim. Towards a contradiction, suppose that Pn �c Pm holds.
By Proposition 5.3, player II has a winning ultrapositional strategy 
 in the game
GP(Pn,Pm).
The idea of the proof is to construct a particular run of the game that 
 cannot
win. ByClaim6.2, if I plays a sequence of the form (w0, y0, w1, y1, w2, . . . ) composed
with right-shifts, then II’s moves are limited. In particular, whenever I shifts from
Bk to Bk+1, II can only shift from Bl to Bl ′ where l ′ ≤ l + 1. Because n < m, I can
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finally reach a node of greater increasing strength than the one reached by II, which
leads to a contradiction.
More formally, suppose that I’s first move is w0 so that 
(w0) ∈ Bk0 for some
k0 ∈ �, and that I plays a run composed with several right-shifts

(w0, y0, w1, y1, w2, . . . , wl ).

By an iteration of Claim 6.2, we get 
(wl ) ∈ Bl ′ for some l ′ ≤ k0 + l . Since n < m,
there exists n0 ∈ � such that the following inequalities work:

Strincr(wnmn0) = 2mn0 + 3 > 2nn0 + Strincr(wk0 ) ≥ Strincr
(

(wnmn0 )

)
,

which is a contradiction to Lemma 5.9. �Claim
So, we constructed an infinite strictly �c-decreasing sequence of embeddable
posets, namely

P1 �c P2 �c P3 �c P4 �c · · · .
By Lemma 4.5, we obtain an infinite strictly ≤w-decreasing sequence of subsets of
P�, namely:

AP1 >w AP2 >w AP3 >w AP4 >w · · ·
which were also proved to be differences of � open sets. �

§7. Antichains in the Wadge order on the Scott domain. We prove that infinite
≤w-antichains already exist within the class of �-differences of open subsets of the
Scott domain. The proof is nothing but a tailoring of the proof of Theorem 6.1.

Theorem 7.1. (
D�(Σ

0
1)(P�),≤w) has infinite antichains.

Proof. We construct an infinite sequence of embeddable posets (Qn)n∈�+ that
are pairwise �c-incomparable.
We fix n ∈ �+ and define Qn = (Qn,≤qn , cqn ) as the 2-colored countable poset
with the colored Hasse diagram given in Figure 6.
Formally, the set of nodes is:

Qn = {⊥} ∪ {xkm, ym}m∈�,k<2n
∪
{
z2km | k ∈ �, n ≥ km

}
∪
{
z2k+1m | k ∈ �, n ≥ (k + 1)m

}
,

the order relation is:

≤qn =
{
(⊥, x0m), (xkm, xk+1m ), (x2n−1m , ym), (x2n−1m+1 , ym), (ym, z

0
m)

}
m∈�,k<2n−1

∪
{
(zkm, z

k+1
m ) | k ≤

⌊m
n

⌋
· 2− 1

}
,

and the coloring is given by the function:

cpn : Pn → 2

p �→ 0 if p ∈ {⊥, x2k+1m , ym}m∈�,k<n ∪
⋃
m∈�
zoddm ,

p �→ 1 if p ∈ {22km }m∈�,k<n ∪
⋃
m∈�
zevenm .

https://doi.org/10.1017/jsl.2019.51 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.51


320 JACQUES DUPARC AND LOUIS VUILLEUMIER

x0nx0n−1· · ·x02x01x00 x0n+1 · · · x02n−1 x02n x02n+1 · · ·

x1nx1n−1· · ·x12x11x10 x1n+1 · · · x12n−1 x12n x12n+1 · · ·

...
...· · ·...

...
...

... · · · ...
...

... · · ·

x2n−2nx2n−2n−1· · ·x2n−22x2n−21x2n−20 x2n−2n+1 · · · x2n−22n−1 x2n−22n x2n−22n+1 · · ·

⊥

x2n−1nx2n−1n−1· · ·x2n−12x2n−11x2n−10 x2n−1n+1 · · · x2n−12n−1 x2n−12n x2n−12n+1 · · ·

ynyn−1· · ·y2y1y0 yn+1 · · · y2n−1 y2n y2n+1 · · ·

z0nz0n−1· · ·z02z01z00 z0n+1 · · · z02n−1 z02n z02n+1 · · ·

z1n z1n+1 · · · z12n−1 z12n z12n+1 · · ·

z2n z2n+1 · · · z22n−1 z22n z22n+1 · · ·

z32n z32n+1 · · ·

z42n z42n+1 · · ·

Figure 6. The colored Hasse diagram of Qn ∈ Pemb for n ∈ �+.

As in the proof of Theorem 6.1, it is easy to see that Qn ∈ Pfin, and thus AQn ∈
D�(Σ

0
1)(P�) holds for every n ∈ �+. Now, it remains to show that (Qn)n∈�+ is

a sequence of pairwise �c-incomparable embeddable posets. For this purpose, we
define a right-shift in Qn as any sequence of moves of the form (x2n−2k , yk, x

2n−2
k+1 )

for some k ∈ �.

Claim 7.2. If 0 < n < m < �, then Qm ��c Qn.

Proof of the claim. Towards a contradiction, we assume that Qm �c Qn holds.
By Proposition 5.3, II has an ultrapositional winning strategy 
 in the game
GP(Qm,Qn).
The idea of the proof is to exhibit some specific run for I in this game that 

cannot beat. For this purpose, player I will use the fact that n < m and several
right-shifts to reach an element q ∈ Qn which has a larger increasing strength than

(q).
We consider x2m−20 as I’s first move. If II’s first move is x2ji for some i ∈ � and
j < n, then Strdecr

(
x2m−20

)
= 2m > 2n ≥ Strdecr

(
x2ji

)
, which contradicts Lemma

5.9. Since cqm (x
2m−2
0 ) = 1, we can assume that 


(
x2m−20

)
= z2kl0 for some k, l0 ∈ �.

If I’s second move is y0, then II’s second move has color 0. Hence, II’s second
move is of the form z2k

′+1
l0

for some k′ ∈ �.
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Since Strdecr
(
x2m−21

)
= 2m > 2n ≥ Strdecr

(
x
2j
i

)
for all j < n, if I’s third move is

x2m−21 , then Lemma 5.9 implies that II’s third move cannot be of the form x2ji for
some i, j ∈ �. So, II’s third move is of the form z2k′′l0

for some k′′ ∈ �.
Now, consider the run where I plays right-shifts:(

x2m−20 , y0, x
2m−2
1 , y1, x

2m−2
2 , y2, . . .

)
.

By the previous observations, II will only play in z·l0 . But there exists i0 ∈ � such
that

Strincr(yi0 ) > max{Strincr(q) | q ∈ z·l0},
which contradicts Lemma 5.9. �Claim
For the last two claims, we need to introduce the notion of branches in Qn. For
any k ∈ �, we call branch k of Qn the set of nodes Bk = {xlk, yk}l<2n ∪ z·k. The
next claim, which concerns the 2-colored countable posets of the form Qn for some
n ∈ �+, is a tailoring of Claim 6.2.
Claim 7.3. Let n,m ∈ �+ and 
 be an ultrapositional strategy for IIinGP(Qn,Qm).
If I’s moves are a right-shift (x2n−2k , yk, x

2n−2
k+1 ) and 


(
x2n−2k

)
∈ Bl holds for some

l ∈ �, then 

(
x2n−2k+1

)
∈ Bl ′ holds for some l ′ ≤ l + 1.

Proof of the claim. We proceed as in the proof of Claim 6.2, except that the
right-shift (wk, yk , wk+1) in Pn is replaced by the right-shift (x2n−2k , yk, x

2n−2
k+1 ) in

Qn. �Claim
With the help of the previous claim, we finally obtain:

Claim 7.4. If 0 < n < m < �, then Qn ��c Qm.
Proof of the claim. We proceed as in the proof of Claim 6.4. Towards a contra-
diction, suppose that Qn �c Qm holds. By Proposition 5.3, player II has a winning
ultrapositional strategy 
 in the game GP(Qn,Qm).
Suppose that I’s first move is x2n−20 so that 


(
x2n−20

)
∈ Bk0 for some k0 ∈ �, and

that I plays a run composed with several right-shifts(
x2n−20 , y0, x

2n−2
1 , y1, x

2n−2
2 , . . . , x2n−2l ).

By an iteration of Claim 7.3, we get 

(
x2n−2l

)
∈ Bl ′ for some l ′ ≤ k0 + l . Since

n < m, there exists n0 ∈ � such that the following inequalities work:

Strincr
(
x2n−2nmn0

)
= 2mn0 + 3 > 2nn0 + Strincr

(
x0k0

)
≥ Strincr

(


(
x2n−2nmn0

))
,

which contradicts Lemma 5.9. �Claim
So, we constructed an infinite sequence of pairwise�c-incomparable embeddable
posets, namely (Qn)n∈�+ . By Lemma 4.5, we obtain an infinite sequence of pairwise
≤w-incomparable subsets of P�, namely

(
AQn

)
n∈�+ .We also proved that all these

sets are �-differences of open sets. �

§8. Open questions. We conclude with some related open questions that may
serve as guidelines for future work.
In Theorem 4.9, we exhibited a partial order on a class of 2-colored countable
posets which embeds in the Wadge order on the Δ02-degrees of P�. It would be
desirable to find a better description of this partial order, as it was recently done
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in [11] for the Baire space ��—the space of infinite sequence of integers endowed
with the product of the discrete topology. More precisely, building on [5, 21], they
showed that the Wadge order on the Borel subsets of �� can be represented by
countable joins of countable transfinite nests of well-founded trees labeled by 2.
Although such a description seems to be out of reach for the whole Borel subsets,
a reasonable question would be:

Question 8.1. Is there any already well-studied order-theoretic structure that is
isomorphic to

(
Δ02(P�),≤w

)
/≡w?

We showed that some unwanted properties already occur at a very low topological
complexity level in the Wadge order of P�. By looking at some reductions that are
more general than the continuous ones, these bad behaviors may disappear. For
example, Motto Ros, Schlicht, and Selivanov consider the class of Σ0�-functions
F0 = {f : P� → P� : f−1(A) ∈ Σ0�(P�) for any A ∈ Σ0�(P�)} [15]. They
show that ≤F0

11 induces a well-quasi-order on the Borel subsets of P�. Thus, the
following question seems of interest:

Question 8.2. For which classes of functions F ⊆ F0 containing the continuous
ones is the induced order ≤F on the Borel subsets of P� a well-quasi-order?

Another relevant question concerns the possibility of extending our results to
some other quasi-Polish spaces.We essentially focused onP� because it is universal
among them. Since we showed that P� is not well behaved with respect to the
Wadge order, one may ask whether there exists some characterization of the well-
behaved quasi-Polish spaces, in a similar way as zero-dimensionality characterizes
the well-behaved Polish spaces [17].

Question 8.3. Is there any topological criterion that singles out the quasi-Polish
spaces whose Wadge order on the Borel subsets is a well-quasi-order?
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in Logic, vol. 37, Association for Symbolic Logic, La Jolla, CA; CambridgeUniversity Press,Cambridge,
2012, pp. 47–73.
[14] A. Louveau and J. Saint-Raymond, The strength of Borel Wadge determinacy,Wadge Degrees

and Projective Ordinals. The Cabal Seminar. Volume II (A. S. Kechris, B. Löwe, and J. R. Steel, editors),
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The Cabal Seminar. Volume II (A. S. Kechris, B. Löwe, and J. R. Steel, editors), Lecture Notes in Logic,
vol. 37, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012,
pp. 24–42.
[24]W. W. Wadge, Reducibility and determinateness on the Baire space, Ph.D. thesis, University of

California, Berkeley, 1984.
[25] , Early investigations of the degrees of Borel sets,Wadge Degrees and Projective Ordinals.
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