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Abstract. We investigate the real space H of Hermitian matrices in Mn(C) with
respect to norms on Cn. For absolute norms, the general form of Hermitian matrices
was essentially established by Schneider and Turner [Schneider and Turner, Linear and
Multilinear Algebra (1973), 9–31]. Here, we offer a much shorter proof. For non-absolute
norms, we begin an investigation of H by means of a series of examples, with particular
reference to dimension and commutativity.
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1. Introduction. The theory of numerical ranges has flourished for over half a cen-
tury. Much of the early interest focused on Hermitian elements, which generalised the
notion of self-adjoint elements in normed star algebras. Some intriguing examples of
Hermitians were given in the finite dimensional setting, but we know of no general attack
on describing all Hermitians in that setting. Surprisingly, Bauer hardly mentions the issue
in his splendid lecture course at Stanford [1]. Michael Crabb (obit 5 December, 2019) con-
tributed significantly to this and other areas of mathematics, particularly with his many
short and ingenious proofs. This paper is dedicated to him.

We work only with the algebra Mn(C) endowed with the operator norm |·| derived from
a norm ‖ · ‖ on Cn. We wish to describe the real space of Hermitians, H , for all possible
cases. Basic facts and notations for Hermitians may be found in [2, 3].

Section 2 deals with absolute norms on Cn. The main result was essentially proved
by Schneider and Turner [7], but without the use of the final version of the Vidav–Palmer
Theorem. The proof we give is much shorter. We show that H + iH is a direct sum of
C∗-algebras, and we identify all the possible C∗-algebra involutions on the subalgebras.

In Section 3, the norms on Cn are non-absolute, and the situation becomes more com-
plicated. Here, we begin an investigation of H , with particular reference to dimension and
commutativity, illustrating various possibilities with a selection of interesting examples.
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2. Absolute norms. We begin with a simple lemma. Recall that a norm on Cn is
absolute if

‖z‖ = ‖(z1, . . . , zn)‖ = ‖(|z1|, . . . , |zn|)‖,

for all z = (z1, . . . , zn) ∈ Cn and that T ∈ Mn(C) is Hermitian if and only if ‖ exp(itT)z‖ =
‖z‖ for all t ∈ R, z ∈ Cn. We write Ejk for the usual elementary matrix.

LEMMA 2.1. The norm ‖·‖ on Cn is absolute if and only if Ejj is Hermitian with respect
to |·| for every j.

Proof. For t, θ1, . . . , θn ∈ R,

θ1E11 + · · · + θnEnn = diag(θ1, . . . , θn)=� (say)

and

‖ exp(it�)z‖ = ‖(exp(itθ1)z1, . . . , exp(itθn)zn)‖. (2.1)

If each Ejj is Hermitian, then ‖z‖ = LHS(2.1) and if ‖ · ‖ is absolute, then ‖z‖ = RHS(2.1).
The result follows.

We give next a useful lemma on Lie products of Hermitians (the result holds in any
Banach algebra).

LEMMA 2.2. Let E, F, and T be Hermitians in Mn(C) with E, F orthogonal idempo-
tents. Then

(i) [[T, E], E] = TE − 2ETE + ET ∈ H,
(ii) i[[[T, E], E], F] = iETF − iFTE ∈ H,

(iii) [[[[T, E], E], F], F] = ETF + FTE ∈ H.

Proof. When E and F are Hermitian so is i(EF − FE).

Suppose now that the norm on Cn is absolute. By Lemma 2.1, H contains all real
diagonal matrices. It is well known that these are all the Hermitians for any �p norm, p �= 2.
Suppose that T is Hermitian in Mn(C), but not diagonal. For j< k, apply Lemma 2.2 with
E = Ejj, F = Ekk to give

Ujk := itjkEjk − itkjEkj ∈ H, Vjk := tjkEjk + tkjEkj ∈ H .

Add all these Vjk to give a Hermitian which is T with all diagonal entries replaced by 0.
It follows that the diagonal of T is Hermitian so that all diagonal entries of T are real.
For brevity, write α = tjk , β = tkj. Since all eigenvalues of Vjk are real, we must have
αβ ≥ 0. We cannot have αβ = 0 unless α = β = 0 since the zero matrix is the only nilpotent
Hermitian. If both are non-zero, we must have β = rα for some r> 0. By taking real linear
combinations of Ujk and Vjk , we may suppose that α = 1. When α= 1, we denote Ujk , Vjk

by Xjk , Yjk , respectively. Hence, the subalgebra consisting of all matrices with non-zero
entries only in these four positions has a basis for its subspace of Hermitians given by

Ejj, Ekk, Xjk, Yjk .

By the Vidav–Palmer Theorem, this subalgebra is a C∗-algebra.
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It is tempting to hope that we must have r = 1 and the usual off diagonal self-adjoints
as Hermitians, but this is not the case. For example, in M2(C), with

S =
⎡
⎣a b

c d

⎤
⎦,

let S� be defined by

S� :=
⎡
⎣ a rc

(1/r)b d

⎤
⎦.

Then � is an involution on M2(C). Now define an inner product on C2 by

〈(z1, z2), (w1,w2)〉 = z1w1 + rz2w2.

It is easy to verify that the identity representation is a �-representation of M2(C) on this
inner product space and that each of our 2 × 2 Hermitians is self-adjoint with respect to �.

We ask next which collections of non-zero Xjk , Yjk can appear for a given Hermitian
T . Certainly, we cannot have an arbitrary collection of Xjk . For u< v<w, note that
i[Yuv, Yuw] = rXvw and Xvw has ratio s/r, where r and s are the ratios for Yuv and Yuw,
respectively. If there is no Xuv with u = 1 and v ≥ 2, then the associated C∗-algebra is
1-dimensional and is a direct summand. Suppose that the set of all X1v from all non-
diagonal Hermitian T is given by v = v1, v2, . . . , vk . (By addition, we may even suppose
that this occurs for one particular T .) Then, we also have Xv1w with w = v2, . . . , vk . But,
we cannot have X1t ∈ H for any t �= v2, . . . , vm since

i[X1v1 , Xv1t] = cX1t

for some non-zero real c. Continue this argument and then change the basis to give a
subalgebra which is Mm(C) for some m. In fact, we can obtain a ∗-representation of this
Mm(C) by generalising the involution � introduced above. Let r1 = 1 and let r2, . . . , rm−1

be the ratios for X12, . . . , X1m (and these determine the ratios for all other Xuv). For S =
[sjk], let S� be defined by S� = [(rk/rj)skj]. It is routine to verify that � gives an involution
on Mm(C). Now define an inner product on Cm by

〈z,w〉 = r1z1w1 + · · · + rmzmwm.

It is routine to verify that the identity representation is a �-representation of Mm(C) on Cm

with this inner product and so Mm(C) is a C∗-algebra with the operator norm on this inner
product space, with the involution �. We recall that any C∗-algebra has unique norm, unique
for the given involution on the algebra. Clearly, Mm(C) has infinitely many involutions
associated with the positive parameters rj. The maximal full matrix C∗-algebras clearly
give a direct sum. We have thus proved:

THEOREM 2.3. Let A = Mn(C) with operator norm from an absolute norm on Cn. Then,
either H + iH is all diagonal matrices or is a direct sum of C∗-algebras with involutions
as above. All such possibilities can occur, for example, by taking the norm on Cn to be the
maximum of the inner product norms on each of the corresponding subspaces of Cn.

The matrix subalgebra summands may take any dimensions. By choosing appropriate
summands, we see that the (real) dimension of H can take many values from n up to n2;
the list of possible values depends on the partitions of n.
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We already know that, for commutative Banach algebras, much pathology can occur
with Hermitians. Pathology can also occur for the case of non-commutative algebras of
matrices with operator norm on Cn with an absolute norm, as the following remarkable
example shows.

EXAMPLE 2.4. Let ‖ · ‖ be the absolute norm on C3 given by

‖(x, y, z)‖ = max{
√

|x|2 + |y|2,
√

|y|2 + |z|2}.
Then, C3 has two 2-dimensional subspaces each with the �2 norm and there are no non-
diagonal Hermitians in M3(C).

We begin by identifying the dual norm ‖ · ‖′ for ‖ · ‖. Recall that, for non-negative
a, b, x, y, the Cauchy–Schwartz inequality gives

ax + by ≤
√

a2 + b2
√

x2 + y2

with equality if and only if ay = bx.

LEMMA 2.5. The dual norm is given by

‖(ξ, η, ζ )‖′ =
√
(|ξ | + |ζ |)2 + |η|2.

Proof. When |x| ≥ |z|, we have

|〈(ξ, η, ζ ), (x, y, z)〉| ≤ |ξx| + |ηy| + |ζ z| ≤ (|ξ | + |ζ |)|x| + |η||y|
≤

√
(|ξ | + |ζ |)2 + |η|2

√
(|x| + |y|)2 ≤

√
(|ξ | + |ζ |)2 + |η|2‖(x, y, z)‖

and similarly when |x| ≤ |z|.
When |ζ |> 0, let p = |ξ |/(|ξ | + |ζ |) and q = |ξ |/|ζ |. Then

|〈(ξ, η, ζ ), (ξ , pη, qζ )〉| = (|ξ | + |ζ |)|ξ | + |η|p|η|
=

√
(|ξ | + |ζ |)2 + |η|2

√
|ξ |2 + p2|η|2 (since (|ξ | + |ζ |)p|η| = |ξ ||η|)

=
√
(|ξ | + |ζ |)2 + |η|2‖(ξ , pη, qζ )‖,

and similarly when |ξ |> 0. The remaining cases are trivial.

For v in a normed space X with ‖v‖ = 1, we write

D(v)= {ψ ∈ X ′ :ψ(v)= 1 = ‖ψ‖}.
Proof of Example 2.4 Let

T =

⎡
⎢⎢⎣

a b c

d e f

g h k

⎤
⎥⎥⎦ ∈ H .

For the usual bases {ej} and {ψj} for the space and its dual, we have ψj ∈ D(ej), so ψj(Tej) ∈
R. Thus, a, e, k ∈ R and �= diag(a, e, k) ∈ H . Hence, S = T −� ∈ H , where

S =

⎡
⎢⎢⎣

0 b c

d 0 f

g h 0

⎤
⎥⎥⎦ ∈ H .
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For 1/
√

2 = |x| = |y| ≥ |z|, we have (x, y, 0) ∈ D(x, y, z) so that

bxy + cxz + dyx + f yz ∈ R. (2.2)

Taking y = 1/
√

2 and z = 0 in (2.2) leads to b = d. Hence, (2.2) gives cxz + f yz ∈ R,
and taking z = 1/

√
2 now leads to c = f = 0. Since our norms ‘reverse’, i.e. ‖(x, y, z)‖ =

‖(z, y, x)‖ and ‖(ξ, η, ζ )‖′ = ‖(ζ, η, ξ)‖′, we similarly have h = f and g = d = 0. Hence,
b = c = d = f = g = h = 0 and the proof is complete.

3. Non-absolute norms. Here, we begin an analysis of the case when the norm ‖ · ‖
on Cn is not absolute. We start with a useful result of Bauer [1, p. 38]. Let P be invertible in
Mn(C). Define an associated norm on Cn by ‖v‖P = ‖Pv‖. We have an associated operator
norm |·|P for the norm ‖ · ‖P. Bauer shows that the numerical range of A with respect to |·|P
is just the numerical range of PAP−1 with respect to |·|. To see this, observe that if ‖v‖P =
1 and ψ ∈ DP(v) then ‖Pv‖ = 1 and ψP−1 ∈ D(Pv) so that ψ(Av)=ψP−1((PAP−1)Pv).
Choose a real subspace of mutually commuting Hermitians of maximal dimension, say ν.
Since every Hermitian matrix is diagonable, it follows by Prasolov [6, p. 174] that we may
suppose that these mutually commuting Hermitians are real diagonal matrices. So for a
non-absolute norm, ν ≤ n − 1. It may be that any subspace X of the real diagonals can
occur in this way with a norm on Cn for which H = X .

We start with an example where n = 2 and ν = 1 and then use it to show by means of
further examples that for any n ≥ 2, ν can take any value from 1 to n − 1.

LEMMA 3.1. For the norm on C2 defined by

‖(z,w)‖ = max{|z|, |w|, |z + w|},
we have H = {rI : r ∈ R}.

Proof. Let

T =
⎡
⎣a b

c d

⎤
⎦ ∈ H,

where a, b, c, d ∈ C, so that f (Tv) ∈ R whenever ‖v‖ = 1 and f ∈ D(v). Apply this with
(1, 1) ∈ D(1, 0) and (1, 1) ∈ D(0, 1) to give a + c, b + d ∈ R. Since T has real eigenval-
ues, we also have a + d ∈ R. With ω= exp(2π i/3), we have (1, 0) ∈ D(1, ω) and (1, 0) ∈
D(ω, 1) and so a + bω, a + bω ∈ R. By elementary algebra, we now have a, b, c, d ∈ R

and b = 0. Interchange coordinates to give c = 0. If a �= d, then diag(1, 0) and diag(0, 1)
are in H and the norm is absolute by Lemma 2.1; but ‖(1,−1)‖ = 1 and ‖(1, 1)‖ = 2. So,
a = d and the proof is complete.

THEOREM 3.2. Let N = {1, . . . , n} (n ≥ 2) and let P be a subset of N with |P| ≥ 2.
Then for the norm on Cn defined by

‖(z1, . . . , zn)‖ = max{|zj|, |zs + zt| : j ∈ N, s, t ∈ P, s< t},
H consists of all real matrices of the form diag(a1, . . . , an), where, for all p ∈ P, ap = r for
some real r. Hence, H has real dimension n − |P| + 1.

Proof. Let T be Hermitian for this norm. Given j< k, define a norm on C2 by

�(zj, zk)� = ‖(0, . . . , zj, . . . , zk, . . . , 0)‖.
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Observe that �·� is either the supremum norm or the norm in Lemma 3.1, and

�(zj, zk)� ≤ ‖(z1, . . . , zn)‖
for arbitrary entries. Given �(zj, zk)� = 1 and (ψj, ψk) ∈ D(zj, zk), we have

(0, . . . , ψj, . . . , ψk, . . . , 0) ∈ D(0, . . . , zj, . . . , zk, . . . , 0)

since

|〈(0, . . . , ψj, . . . , ψk, . . . , 0), (z1, . . . , zn)〉|
= |ψjzj +ψkzk| ≤ �(zj, zk)� ≤ ||(z1, . . . , zn)||.

Let U be the 2 × 2 matrix whose entries are the entries of T in positions (j, j), (j, k), (k, j),
(k, k), respectively. It follows easily that U is Hermitian on C2 for �·�. So, U is real
diagonal, and if j, k ∈ P, then U = cI for some real c. Since these restrictions apply to each
such U, it follows that T has the required form.

We look next at two norms on C3 and C4, for which ν = 2. Both have higher
dimensional analogues which we describe briefly in subsequent remarks.

Let T = {w ∈ C : |w| = 1}.
EXAMPLE 3.3. For the norm on C3 given by

‖(x, y, z)‖ = max{|w−1x + y + wz| : w ∈ T},
the Hermitians matrices are the real linear combinations of I and diag(−1, 0, 1).

We first prove a lemma which is useful when investigating this and similar norms.

LEMMA 3.4. For an ∈ C (n = 0,±1, . . . ,±N), let

N∑
n=−N

anwn ∈ R (w ∈ T).

Then, a0 ∈ R and a−n = an (n = 1, . . . ,N).

Proof. Let A = ∑N
n=−N anwn and B = ∑N

n=−N anwn. Then A, B ∈ R for all w ∈ T. Write
w = exp(iθ) and consider A ± B to give

Im a0 +
N∑

n=1

Im(an + a−n) cos nθ = 0 and
N∑

n=1

Re(an − a−n) sin nθ = 0.

The Fourier coefficients all vanish and the result follows.

Proof of Example 3.3 It follows from [2, Example 6.1] that U = diag(−1, 0, 1) is
Hermitian. The norm is not absolute, so if all Hermitian matrices are real diagonal, then
I,U will form a basis for H since its dimension cannot exceed 2.

Let

T =

⎡
⎢⎢⎣

a b c

d e f

g h k

⎤
⎥⎥⎦ ∈ H .
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For w ∈ T, let φw be the functional (w−1, 1,w). Then, w−nφw ∈ D(en), and hence
w−nφ(Ten) ∈ R, for each of the usual basis vectors e−1 = (1, 0, 0), e0 = (0, 1, 0), e1 =
(0, 0, 1). Thus,

a + wd + w2g ∈ R, w−1b + e + wh ∈ R, w−2c + w−1f + k ∈ R,

and applying Lemma 3.4 with N = 3, we obtain, in turn,

a ∈ R and d = g = 0, e ∈ R and b = h, k ∈ R and c = f = 0.

Hence

T =

⎡
⎢⎢⎣

a h 0

0 e 0

0 h k

⎤
⎥⎥⎦ and i[T,U] =

⎡
⎢⎢⎣

0 ih 0

0 0 0

0 −ih 0

⎤
⎥⎥⎦.

Since i[T,U] is both Hermitian and nilpotent, h = 0. So T = diag(a, e, k) with a, e, k ∈ R

and the proof is complete.

EXAMPLE 3.5. For the norm on C4 given by

‖(x, y, u, v)‖ = max{|w−2x + w−1y + wu + w2v| : w ∈ T},
the Hermitians matrices are the real linear combinations of I and diag(−2,−1, 1, 2).

Proof. This is similar to the proof of Example 3.3. Let T = (tjk) ∈ H . For w ∈ T, let
φw be the functional (w−2,w−1,w,w2). Then, for example, wφw ∈ D(e2), where e2 =
(0, 1, 0, 0) and hence

wφw(Te2)= w−1t12 + t22 + w2t32 + w3t42 ∈ R.

Thus

w−30 + w−20 + w−1t12 + t22 + w0 + w2t32 + w3t42 ∈ R,

and applying Lemma 3.4 with N = 3, we obtain

t22 ∈ R and t12 = t32 = t42 = 0.

Similar arguments applied to the other three usual basis vectors establish that T is a real
diagonal matrix.

Let �= diag(−2,−1, 1, 2). A routine calculation gives ‖ exp(it�)‖ = 1 so that � ∈
H . Since T is Hermitian and real diagonal, we can write T = pI + q�+ rE11 + sE44, where
p, q, r, s ∈ R. Then, U = rE11 + sE44 ∈ H . Considering ‖ exp(itU)z‖ = ‖z‖ for small posi-
tive t and z = (1, 1, 1, 1) leads to r = s = 0. Hence, T is a real linear combination of I and
�, as required.

REMARKS. In [4, Proposition 2.3], the norm of Example 3.3 is generalised to higher
dimensional C2n+1 by defining

‖(z−n, . . . , z−1, z0, z1, . . . , zn)‖ = max

⎧⎨
⎩

∣∣∣∣∣∣
z0 +

n∑
j=1

(w−jz−j + wjzj)

∣∣∣∣∣∣
: w ∈ T

⎫⎬
⎭ , (3.3)

and it follows from the proposition in [4] that every diagonal Hermitian is a real linear com-
binations of I and T = diag(−n, . . . ,−1, 0, 1, . . . , n). We conjecture that all Hermitians
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for this norm are diagonal so that H is the real linear span of I and T . A lengthy argument
does establish this for C5, but a different technique may be required for higher dimensions.

A similar generalisation of the norm of Example 3.5 is obtained for higher dimensional
C2n by omitting the z0 terms in (3.3). And correspondingly, we conjecture that H is the real
linear span of I and diag(−n, . . . ,−1, 1, . . . , n).

For the above examples, the real linear space H has always been a commutative set.
Can there be non-absolute norms for which H is not commutative? We show that the answer
is yes, and we begin with such a norm on C3. We lead into this norm via two self-adjoint
matrices. Let A = i(E12 − E21) and B = i(E13 − E31). We seek a non-absolute norm on C3

for which A and B are Hermitian. We must also have I Hermitian and also i[A, B] = i(E23 −
E32). We show in fact that for our norm these four matrices give a basis for H . The norm
must lead to

| exp(itA)| = | exp(itB)| = 1 (t ∈ R).

An easy computation gives

exp(itA)=

⎡
⎢⎢⎣

cos t − sin t 0

sin t cos t 0

0 0 1

⎤
⎥⎥⎦, exp(itB)=

⎡
⎢⎢⎣

cos t 0 − sin t

0 1 0

sin t 0 cos t

⎤
⎥⎥⎦.

Our first construction of a norm was as follows. Let G be the closed group generated by all
exp(isA), exp(itB)with s, t ∈ R. Note that G is a compact subgroup of the unitary matrices.
Let ‖ · ‖G be the norm on C3 defined by

‖v‖G = sup
g∈G

‖gv‖∞,

where ‖ · ‖∞ is the supremum norm on C3. It is routine to verify that | exp(itA)| =
| exp(itB)| = 1 for this norm so that A, B ∈ H with AB �= BA. We were able to prove that
‖ · ‖G is not an absolute norm, but it is difficult to do computations with this norm. We
found a related norm for which computations are much easier. We define the norm ‖ · ‖0

on C3 by

‖(x, y, z)‖0 = max{|αx + βy + γ z| : (α, β, γ ) ∈ S},
where

S = {(α, β, γ ) ∈ R3 : α2 + β2 + γ 2 = 1}.
We have

exp(itA)(x, y, z)= (x cos t − y sin t, x sin t + y cos t, z),

and so

‖ exp(itA)(x, y, z)‖0 = max
(α,β,γ )∈S

|(α cos t + β sin t)x + (β cos t − α sin t)y + γ z|.

Since the map (α, β, γ )→ (α cos t + β sin t, β cos t − α sin t, γ ) is a rotation of R3, it fol-
lows that | exp(itA)| = 1 for ‖ · ‖0 and so A is Hermitian. Similarly, B is Hermitian. The
link between ‖ · ‖G and ‖ · ‖0 is remarkable.
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PROPOSITION 3.6. We have ‖(x, y, z)‖G = ‖(x, y, z)‖0.

Proof. (≤) By compactness, we may choose g ∈ G such that

g(x, y, z)= (p, q, r) and ‖(x, y, z)‖G = ‖(p, q, r)‖∞.

By replacing g, if necessary, with exp(itA)g or exp(itB)g, where t = π/2, we may suppose
without loss that ‖(x, y, z)‖G = |p|. All matrices in G have real entries and so p = ax +
by + cz, where a, b, c ∈ R and [a, b, c] is the first row of g. Then, |p| = |ax + by + cz|, and
since g is unitary, we have a2 + b2 + c2 = 1. Hence, ‖(x, y, z)‖G ≤ ‖(x, y, z)‖0.

(≥) Let (α, β, γ ) ∈ S with ‖(x, y, z)‖0 = |αx + βy + γ z|. Let (1, θ, φ) be the polar
coordinates of (α, β, γ ) so that

α = cos θ cos φ, β = sin θ cos φ, γ = sin φ.

Then, with g = exp(−iφB) exp(−iθA), we have g(x, y, z)= (p, q, r), where

p = cos θ cos φ x + sin θ cos φ y + sin φ z = αx + βy + γ z.

Hence, ‖(x, y, z)‖G ≥ ‖(x, y, z)‖0 and the proof is complete.

Next we show that, for the norm ‖(x, y, z)‖0, the space of Hermitians H is the real
linear span of I , A, B and i[A, B]. First, we obtain information on values of ‖|(x, y, z)‖0 and
its dual norm

‖(ξ, η, ζ )‖′
0 = max{|ξx + ηy + ζ z| : ‖(x, y, z)‖0 ≤ 1}.

LEMMA 3.7. We have

(i) ‖(x, y, z)‖0 is invariant under any permutation of the three entries,
(ii) for x, y, z ∈ R, ‖(x, y, z)‖0 = √

x2 + y2 + z2, ‖(ix, y, z)‖0 = max{|x|,√y2 + z2},
(iii) ‖(ξ, η, ζ )‖′

0 is invariant under any permutation of the three entries,

(iv) for ξ, η, ζ ∈ R, ‖(ξ, η, ζ )‖′ ≤ √
ξ 2 + η2 + ζ 2, ‖(iξ, η, ζ )‖′

0 ≤ |ξ | + √
η2 + ζ 2.

Proof. (i) and (ii) These are clear except for the last assertion. For x, y, z ∈ R,

‖(ix, y, z)‖2
0 = max{|αix + βy + γ c|2 : (α, β, γ ) ∈ S}

= max{(αx)2 + (βy + γ z)2 : (α, β, γ ) ∈ S}
= max{α2x2 + (1 − α2)(y2 + z2) : α2 ∈ [0, 1]}
= max{x2, y2 + z2}

and the result follows.
(iii) This follows from (i).
(iv) For α, β, γ ∈ R with α2 + β2 + γ 2 = 1, and (x, y, z) ∈ C3,

|αx + βy + γ c| ≤ ‖(x, y, z)‖0

and the first part of (iv) follows. Then using this, we have

|iαx + βy + γ c| ≤ |i(αx + 0y + 0c| + |0x + βy + γ c|
≤ (|α| +

√
β2 + γ 2)‖(x, y, z)‖0,

which gives the second part of (iv).
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LEMMA 3.8. Let

T =

⎡
⎢⎢⎣

a b c

d e f

g h k

⎤
⎥⎥⎦.

be Hermitian with respect to ‖ · ‖0 on C3. Then

(i) a, e, k ∈ R and b, c, d, f , g, h ∈ iR,
(ii) b = −d, c = −g, f = −h.

Proof. We consider

ψ(Tv)= ξ(ax + by + cz)+ η(dx + ey + fz)+ ζ(gx + hy + kz) ∈ R,

for various v = (x, y, z) and ψ = (ξ, η, ζ ), where ||v|| = 1 and ψ ∈ D(v). Throughout we
have x, y, z, ξ, η, ζ ∈ R.

(1) Let v = (−i, y, z), ψ = (i, 0, 0) with y2 + z2 ≤ 1. With y = z = 0, this gives a ∈ R.
Then y = 1, z = 0 and y = 0, z = 1 give, respectively, a + ib ∈ R and a + ic ∈ R, and
so b, c ∈ iR.

(2) Similar reasoning with v = (x,−i, z), ψ = (0, i, 0) and v = (x, y,−i), ψ = (0, 0, i)
gives e ∈ R, d, f ∈ iR and k ∈ R, g, h ∈ iR.

(3) With v = (1/
√

2, 1/
√

2, 0), ψ = (1/
√

2, 1/
√

2, 0), we find that b + d ∈ R ∩ iR and
so b = −d. Similarly, we find c = −g and f = −h.

THEOREM 3.9. For C3 with norm ‖ · ‖0, the Hermitians in M3(C) are the real linear
span of the linearly independent matrices I, A, B and i[A, B].

Proof. It is enough to prove that for the matrix T in Lemma 3.8, a = e = k. Let U =
diag(a, e, k) so that U is Hermitian and hence

‖(exp(iat)x, exp(iet)y, exp(ikt)z)‖0 = ‖(x, y, z)‖0.

Taking v = (i, 1, 0) gives ‖(i exp(iat), exp(iet), 0)‖0 = 1, and so we have

‖(i, exp(i(e − a)t), 0)‖0 = 1.

If a �= e, we can choose t such that exp(i(e − a)t)= i. Since ‖(i, i, 0)|| = √
2, we must have

a = e. Similarly, we find a = k, completing the proof.

REMARKS. The unit sphere of C3 with norm ‖ · ‖0 of Proposition 3.6 is not smooth
since (0, 1, 0) and (−i, 0, 0) are both in D(v) when v = (i, 1, 0). The unit sphere of the real
vector subspace {(ix, y, z) : x, y, z ∈ R} has the shape of a cylindrical can.

In M2(C) with the operator norm derived from ‖ · ‖0, M2(R) is a real C∗ subalgebra of
highest dimension, demonstrating that having a real C∗ algebra of full real dimension does
not force a large H .

We easily extend the norm ‖ · ‖0 to Cn, and we can obtain a mixture of Hermitians with
real or imaginary entries by modifying the norm by a similarity matrix which is diagonal
with each entry either 1 or i.

The linear independence of I , A, B and i[A, B] in Theorem 3.9 holds, more generally,
for Hermitian elements A and B, with AB �= BA, in any complex unital Banach alge-
bra. To see that I , A, B and T = i[A, B] are linearly independent over C (and hence also
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over R), consider first U = aA + bB + cI = O, where a, b, c ∈ C. Then, O = UB − BU =
a(AB − BA) giving a = 0. Similarly, b = 0 and it follows that c = 0. Hence I , A and B
are linearly independent. Now, towards a contradiction, suppose that T = pA + qB + rI ,
where p, q, r ∈ C. If p �= 0 then TB − BT and T commute since TB − BT = p(AB − BA)
= −ipT . By Kleinecke [5] or Širokov [9], TB − BT , and hence T , is quasi nilpotent. Then
Sinclair [8, Proposition 2] gives T = O, a contradiction. So p = 0 and similarly q = 0. Then,
AB − BA = −iT = −irI so that r �= 0. But this being so, AB − BA commutes with B, and
Kleinecke–Širokov–Sinclair again gives the contradiction T = O.
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