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Branching behaviour of the Rayleigh–Taylor
instability in linear viscoelastic fluids
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The Rayleigh–Taylor instability of a linear viscoelastic fluid overlying a passive gas
is considered, where, under neutral conditions, the key dimensionless groups are the
Bond number and the Weissenberg number. The branching behaviour upon instability
to sinusoidal disturbances is determined by weak nonlinear analysis with the Bond
number advanced from its critical value at neutral stability. It is shown that the solutions
emanating from the critical state either branch out supercritically to steady waves at
predictable wavelengths or break up subcritically with a wavelength having a single node.
The nonlinear analysis leads to the counterintuitive observation that Rayleigh–Taylor
instability of a viscoelastic fluid in a laterally unbounded layer must always result
in saturated steady waves. The analysis also shows that the subcritical breakup in a
viscoelastic fluid can only occur if the layer is laterally bounded below a critical horizontal
width. If the special case of an infinitely deep viscoelastic layer is considered, a simple
expression is obtained from which the transition between steady saturated waves and
subcritical behaviour can be determined in terms of the leading dimensionless groups.
This expression reveals that the supercritical saturation of the free surface is due to the
influence of the normal elastic stresses, while the subcritical rupture of the free surface is
attributed to the influence of capillary effects. In short, depending upon the magnitude of
the scaled shear modulus, there exists a wavenumber at which a transition from saturated
waves to subcritical breakup occurs.

Key words: viscoelasticity, bifurcation

1. Introduction, physics and background

Pattern formation at a free surface of viscoelastic media when subject to a destabilizing
gravitational field is of relevance in the design of soft devices with tuneable shapes
(Riccobelli & Ciarletta 2017; Marthelot et al. 2018). In this work, we focus our attention
on the instability of a linear viscoelastic fluid layer overlying a passive gas in the presence
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Figure 1. (a) Schematic of a heavy fluid overlying a light fluid under gravity. (b) Steady patterns observed
at the free surface of a gravitationally unstable aqueous polyacrylamide soft gel. (From Mora et al. (2014);
republished with permission from the American Physical Society.)

of gravity. This instability, called the Rayleigh–Taylor (RT) problem (Rayleigh 1882;
Chandrasekhar 1961; Sharp 1984; Kull 1991; Inogamov 1999), is depicted schematically
in figure 1(a) and by a photograph of an experiment due to Mora et al. (2014) shown
in figure 1(b). The patterns seen in an RT experiment for viscous non-elastic fluids of
large horizontal extent are principally the consequence of competition between the fluid’s
inertia and its surface tension. The inertial acceleration is caused by the action of gravity
on crests and troughs upon perturbation. The pattern that is typically seen in containers of
large width corresponds to the fastest-growing wavelength of perturbation and depends on
the fluid viscosity and surface tension as well as its depth (Bellman & Pennington 1954;
Chandrasekhar 1961; Brown 1989; Mikaelian 1990). In containers of small lateral extent,
the instability commences beyond a critical width and the pattern at the critical point
is a single wave, i.e. a wave with one node (cf. Johns & Narayanan 2002). The growth
rate at the critical or neutral point is zero and the instability there is characterized by the
vanishing of velocity perturbations. Consequently, viscosity plays no role at the neutral
point of instability (Chandrasekhar 1961; Johns & Narayanan 2002). Indeed, the neutral
stability point is the consequence of a balance between gravitational potential energy and
surface potential energy.

The only dimensionless group that determines the critical width, or the critical
wavenumber, is the Bond number. This group, which will be formally introduced in § 3,
reflects the balance between gravity and surface tension effects. The critical Bond number
versus scaled wavenumber plot for the RT problem of non-elastic fluids is universal and
is depicted as a straight line with unit slope and zero intercept in figure 2, denoted RT
non-elastic limit. Such a plot, being monotonic, implies that there are no competing
effects with wavenumber. At sufficiently small wavenumbers, surface tension effects are
negligible compared to gravitational effects. At large wavenumbers, surface tension plays
a strong stabilizing effect and overwhelms the destabilizing pressure gradients between
crests and troughs at the interface. It is apparent from the straight line on figure 2 that
the critical Bond number for neutral stability decreases to zero as the layer becomes
infinitely wide. Any laterally constrained vessel will lead to critical conditions determined
by the figure. Past work reveals that the nature of the instability at any point along the
line in figure 2 is subcritical. This means that, beyond neutral stability, the interface
proceeds towards rupture. This has been shown by experiments (Ratafia 1973; Dalziel
1993; Ramaprabhu & Andrews 2004; Olson & Jacobs 2009; Andrews & Dalziel 2010)
and by theoretical predictions (Pullin 1982; Tryggvason 1988; Yiantsios & Higgins 1989;
Newhouse & Pozrikidis 1990; Elgowainy & Ashgriz 1997; Forbes 2009).
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Figure 2. A typical plot of Bond number (Bo) versus the square of the wavenumber (k2) for the RT instability
of a viscoelastic fluid. Weissenberg numbers (Wi) are equal to 1 and 5, respectively, as shown. The Weissenberg
number is the ratio of the elastic stresses to the viscous stresses and is defined later in table 2. As the
Weissenberg number increases, the curves approach the classical RT instability limit (black solid line).

The RT problem changes character in a dramatic and substantive way when the heavy
fluid is replaced by a soft gel, i.e. a viscoelastic fluid. Pattern formation at the free
surface of a viscoelastic fluid is of relevance in the design of soft devices with tuneable
shapes (Riccobelli & Ciarletta 2017; Marthelot et al. 2018) and also in the dynamics
of mucus films in pulmonary capillaries (Dietze & Ruyer-Quil 2015). Examples of
such materials are polyacrylamide and polydimethylsiloxane (PDMS). They are different
from typical viscous fluids in that they bear both viscous as well as elastic character.
We shall see in the next section that, at neutral stability, while velocity perturbations
vanish as before, a viscoelastic fluid displays perturbations in displacement fields and the
critical Bond number versus wavenumber plot is no longer a straight line, but displays a
minimum as depicted in two different curves in figure 2. The critical Bond number and
wavenumber relationship depends strongly on the elastic nature, now characterized by a
new dimensionless group – the Weissenberg number – that shows the effect of elastic
versus viscous stresses. This means that there are competitive effects with respect to
the wavenumber of a disturbance for the case of RT instability of a viscoelastic fluid.
The explanation for the occurrence of a minimum is that, while at low wavenumbers
surface tension is weak as before, elastic stabilization retains its importance combating
the destabilization driven by gravity. At high wavenumbers, in addition to the dissipation
of pressure perturbations generated by elastic stresses, surface tension also acts to thwart
the destabilization induced by gravity. This competition yields a wavenumber selection for
which an unbounded layer displays patterns at the free surface. Interestingly, the shapes of
the non-monotonic curves in figure 2 resemble those seen in the Bénard problem, where,
in that case, the characteristic plot is the Rayleigh number versus the wavenumber and
where the instability is always supercritical in nature (Joseph 1976). Contrast this with the
RT problem for a non-viscoelastic fluid, where the critical Bond number for an infinitely
wide container is zero and only a constrained vessel will lead to a critical Bond number
under neutral conditions.

As the present study is focused on RT instability of viscoelastic fluids, we set our work
in the context of previous research by reviewing earlier works that are directly pertinent
to this study. In some of these studies, experiments were performed in large-aspect-ratio
geometries, i.e. large horizontal-length-to-depth ratio, and the resulting planforms were
steady hexagonal patterns implying saturated states upon instability (Mora et al. 2014;
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Physical property Range

Density (ρ) 1000 kg m−3

Viscosity (μ) 1.5 kg m−1 s−1

Shear modulus (G) 10–45 Pa
Surface tension (γ ) 73 × 10−3 N m−1

Thickness (H) 1 × 10−3 – 20 × 10−3 m

Table 1. Physical properties of polyacrylamide viscoelastic fluid (Müller & Zimmermann 1999; Mora et al.
2014).

Chakrabarti et al. 2018). These experiments were carried out in wide cylindrical and
rectangular containers whose aspect ratios varied between 3 and 20. The typical physical
properties of the viscoelastic fluid used in these experiments are given in table 1. Linear
stability theories by these authors assumed a neo-Hookean model and curves similar
to figure 2 were obtained. Capillary effects were ignored, and so the dip in the curves
results from the competition between the low-wavenumber stability due to elastic normal
stresses and large-wavenumber stability due to transverse dissipation of elastic stresses.
Experiments by these authors were compared with theoretical predictions. Specifically,
weak nonlinear analysis about the threshold wavenumber showed that hexagons were
the most stable patterns to several waveform disturbances and that the bifurcation is
transcritical for hexagonal patterns (cf. Chakrabarti et al. 2018).

Experiments in small-aspect-ratio containers were carried out by Yue et al. (2019). In
their study, the aspect ratio of the containers was between 0.4 and 2. These experiments
showed the formation of non-axisymmetric modes at the free surface. For small aspect
ratios, the instability was seen to be subcritical, with interface rupture, while for large
aspect ratios, the instability saturated to a steady pattern. Finite-element simulations
(Riccobelli & Ciarletta 2017; Yue et al. 2019) have qualitatively predicted the patterns
that were observed in experiments and have shown that the free surface saturates in
large-aspect-ratio containers. As capillary effects have been ignored in the above works,
the companion models can never approach the RT problem of a non-elastic fluid in the
high-Weissenberg-number limit.

The observations from past work (Mora et al. 2014; Riccobelli & Ciarletta 2017;
Chakrabarti et al. 2018; Yue et al. 2019) encourage us to hypothesize that there ought
be a supercritical to subcritical transition at some wavenumber that depends on the
Weissenberg number and where surface tension effects also play a role. Knowing this is
important because such a transition tells us when we might expect to see an instability that
saturates to steady wave patterns and when we might expect to see an instability that could
ultimately lead to rupture. To find the transition from super- to subcritical states requires
us to consider a weak nonlinear analysis about the critical or neutral state, where the Bond
number is advanced slightly beyond its critical value.

In contrast with earlier works, the focus of this paper is to provide the physical rationale
for the subcritical to supercritical transition in RT instability of viscoelastic fluids. In doing
so, we obtain an analytical formula for a model problem that helps us to glean the physics
of the transition. Keeping this in mind, our work focuses on linear viscoelastic models.
Nonlinear constitutive equations are admittedly of practical consequence. However,
insights into the competing effects of gravity, elasticity of the viscoelastic fluid and surface
tension can be provided through the linear and weak nonlinear analysis using simple
constitutive models.
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The mathematical model for the instability of the viscoelastic medium is briefly
explained in § 2. It is followed by a description of the linear stability analysis (§ 3) and
by the necessary steps involved in the weak nonlinear analysis (§ 4). Details that involve
cumbersome algebra are given as supplementary material to this paper (available at https://
doi.org/10.1017/jfm.2021.80). To arrive at a simple formula that is descriptive of the
problem, an idealized case of a two-dimensional (2-D) geometry is considered in § 4.1
and its three-dimensional (3-D) extension is given in § 4.2. Comments on the nature of the
bifurcation for hexagonal and circular disturbances are made at the end of § 4.2; and key
conclusions are summarized in § 5. We now turn to the mathematical model.

2. Mathematical model

The model assumes a hydrodynamically active viscoelastic fluid with constant properties
overlying a passive gas in a destabilizing gravitational field, as depicted in figure 1(a). The
fluid is taken to be linearly viscoelastic for algebraic simplicity whilst retaining essential
physics in this study.

Now, the stress tensor in a viscoelastic fluid may be expressed in terms of the
displacement field. The displacement vector, R, is the displacement of the position vector,
x, in the current configuration from the position vector, ζ , in the reference configuration
(cf. figure 3). In other words,

x = ζ + R(x). (2.1)

For a linear viscoelastic fluid (cf. Landau & Lifshitz 1989; Shankar & Kumaran 2000;
Dinesh & Pushpavanam 2017) the stress tensor, T , is given by

T = −p I + G(∇R + ∇RT) + μg(∇v + ∇vT). (2.2)

Here G and μg are the shear modulus and viscosity of the fluid material and v is the
velocity field. Now the velocity field in the fluid is itself expressed in terms of the
displacement field (cf. Patne, Giribabu & Shankar (2017) for a detailed explanation). This
expression is given by

v = (I − ∇RT)−1 · ∂R
∂t

. (2.3)

The equations of motion in the viscoelastic medium are thus

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · T + gρiz, (2.4)

where T and v are given by (2.2) and (2.3), where in (2.3) the superscript T on ∇R is the
transpose of the tensor ∇R and I is the identity tensor, and where iz is the base vector in the
positive z-direction in (2.4). The horizontal and vertical components of the displacement
vector, R, are denoted by X and Z, respectively.

The viscoelastic fluid is taken to be incompressible and the mass conservation demands
(Howell, Kozyreff & Ockendon 2009; Patne et al. 2017)

det(F ) = 1, (2.5)

where F is the deformation tensor given by F = ∂ζi/∂xj. Here ζi represent the components
of the position vector in the reference configuration. Upon expansion of (2.5) and using
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Figure 3. A depiction of a viscoelastic fluid in its reference configuration, and its current configuration,
upon perturbation. The position vector of a point in the reference configuration is denoted ζ . The reference
configuration is mapped to a point in the current configuration with a position vector x.

(2.1) we get
∂X
∂x

+ ∂Z
∂z

− ∂X
∂x

∂Z
∂z

+ ∂Z
∂x

∂X
∂z

= 0. (2.6)

Equations (2.4) and (2.6) along with the representations for T and v constitute the domain
equations. These are complemented by boundary conditions at the rigid wall and at the
interface.

At the wall, the displacement fields are taken to be zero. At the interface, z = h(x, t), the
normal and the tangential components of the momentum balance hold. They are

n · T · t = 0 and n · T · n = −γ∇ · n, (2.7a,b)

where the unit normal vector (n) and the unit tangent vector (t) are given by

n =
−∂h

∂x
ix + iz[

1 +
(

∂h
∂x

)2
]1/2 and t =

ix + ∂h
∂x

iz[
1 +

(
∂h
∂x

)2
]1/2 . (2.8a,b)

In addition we have an impermeable interface along with its kinematic relation

v · n =
∂h
∂t[

1 +
(

∂h
∂x

)2
]1/2 . (2.9)

The governing equations are made dimensionless by using the following scales denoted
by the subscript ‘c’:

xc = H, zc = H, Xc = H, Zc = H, tc = H
U

, pc = μU
H

. (2.10a–f )

Here U is a characteristic velocity scale. Using the above scales, the non-dimensional
model is now given by

Re
(

∂v

∂t
+ v · ∇v

)
= −∇p + 1

Wi
∇2R + 1

Wi
∇(∇ · R) + ∇2v + Bo

Ca
iz, (2.11)
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Branching of RT instability in linear viscoelastic fluids

Dimensionless
parameter Definition Range

Re ρHU/μ 1.5
Wi μU/GH 0.1–10
Bo ρgH2/γ 0.1–50

Table 2. Ranges of key dimensionless quantities for polyacrylamide viscoelastic fluid. The velocity scale U is
based on the capillary number such that U = γ /μ.

where Wi = μU/GH, Re = ρHU/μ, Bo = ρgH2/γ and Ca = μU/γ . The mass
conservation equation (2.6) remains unchanged and does not induce any dimensionless
groups. The interfacial force balance conditions at z = h(x, t) become

n · T · t = 0 and n · T · n = − 1
Ca

∇ · n. (2.12a,b)

Four key dimensionless groups Re, Ca, Bo and Wi emerge from the scaling of the
governing equations and the boundary conditions. They may be calculated for typical
thermophysical properties as depicted in table 1 and shown in table 2. A base solution to
equations (2.6), (2.11) and (2.12a,b) are R, v and T equal to zero. Our goal is to determine
the stability of the base solution and inspect the nature of the bifurcation as we advance a
control parameter from the bifurcation point. To this end, we must look for neutral stability
conditions and then consider the steady-state nature of the branching, observing that Wi,
Ca and Bo are the only pertinent dimensionless groups of the problem. Under steady-state
conditions it ought to be noted that the capillary number, Ca, always appears as Ca/Wi
and therefore a velocity scale, U, need not be specified or equivalently one may choose U
such that Ca is taken to be unity without any loss of generality.

3. Linear stability analysis

Linear stability analysis of the problem is performed by introducing small perturbations,
R� and v�, via

R(x, z, t) = R0 + R�(z) exp((σ t + ikx)) (3.1)

and

v = v�, (3.2)

where R0 is the base-state displacement field in the viscoelastic fluid and R − R0 is an
infinitesimal disturbance, and where v� = ∂R�/∂t. The disturbances considered in (3.1)
are taken to be 2-D in space, i.e. functions of z and x only. Extensions to three dimensions
are given for the case of square disturbances later and it will be seen that inferences drawn
from the corresponding analysis do not change qualitatively. We therefore restrict ourselves
to 2-D disturbances for the sake of simplicity in the majority of this study.

Equation (3.1) will lead to linearized equations on the reference domain, (ζx, ζz) (cf.
Johns & Narayanan 2002). In the analysis that follows, all perturbed equations are valid
only in the reference domain, where we denote the coordinates x and z for convenience
instead of ζx and ζz. Observe that R0 = 0 and the base-state pressure gradient is thus
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balanced by the gravitational body force, i.e.

dp0

dz
= Gr = Bo

Ca
, (3.3)

where Gr = ρgH2/μU. The linearized equations after substituting the form of the
perturbations given by (3.1) become

ikX� + dZ�

dz
= 0, (3.4)

Re σ 2X� = −ikp� +
(

1
Wi

+ σ

)(
d2X�

dz2 − k2X�

)
, (3.5)

Re σ 2Z� = −dp�

dz
+
(

1
Wi

+ σ

)(
d2Z�

dz2 − k2Z�

)
. (3.6)

Linearizing the boundary conditions (2.9) and (2.12a,b) at the reference interface, z = 1,
gives

v�
z = σZ� = σh�, i.e. Z� = h�, (3.7)(

1
Wi

+ σ

)(
dX�

dz
+ ikZ�

)
= 0 (3.8)

and

− p� − Bo
Ca

h� + 2
(

1
Wi

+ σ

)
dZ�

dz
= −k2h�

Ca
. (3.9)

The stability of this problem is determined by (3.4)–(3.6) and the boundary conditions
(3.7)–(3.9). The growth rate of the perturbations, σ , is a function of Re, Ca, Bo, Wi and k,
and determined by an eigenvalue problem of the form

Ax = σBx. (3.10)

These linearized equations are solved using a Chebyshev collocation technique (Guo,
Labrosse & Narayanan 2013) for a range of k. The growth rate σ of the perturbations
is depicted graphically in figure 4 for typical values of Re, Bo/Ca and Wi.

Several observations may be made. First, the growth constant starts negative at k2 = 0,
rises, reaches a maximum and then decreases. Second, for small Wi, the growth rate is
always negative, indicating the strongly stabilizing nature of the elasticity. As Wi increases,
σ can become zero, then positive, before descending to zero again, thereby showing the
presence of two neutral points. Clearly, there is a critical value of Wi for the input Re, Bo
and Ca at which the two neutral points coincide at the maximum. This leads to a neutral
curve as depicted in figure 2. Finally, as Wi becomes very large, the σ versus k2 curve
approaches the RT limit, as the models become the same.

To understand the nature of the initial rise and subsequent fall in the σ versus k2

curve, we consider a heuristic model from which an analytical expression for σ can be
obtained. This happens when the domain dynamics are dropped but interface dynamics
are retained only in the normal component of the force balance. Admittedly, this is a
heuristic model, but we pursue it with the expectation that we can learn why the growth
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Figure 4. Plots of σ versus k2 obtained from linear stability for Wi = 0.5, 1 and 5, Gr = Bo/Ca = 20 and
Re � 2.

rate commences negative when k → 0. The normal component of the force balance then
attains the following form at the interface, z = 1:

σ

[
−
(

d3Z�

dz3 − 3k2 dZ�

dz

)]
= −k4h�

Ca
+ k2 Bo

Ca
h� − 1

Wi

[
−
(

d3Z�

dz3 − 3k2 dZ�

dz

)]
.

(3.11)

In (3.11), Z� and its derivatives are obtained by solving the domain equations subject to
the assumptions in our heuristic model and evaluated at z = 1. For k2 = 0, the expression
asymptotically simplifies to

σ = − 1
Wi

. (3.12)

It can be shown that the bracketed term on the left-hand side of (3.11) is positive while the
first and last terms of the right-hand side are negative and the middle term is positive. This
shows that the stabilizing feature at k2 → 0 is entirely due to the elastic effect while the
rise is due to gravity given by Bo in (3.11) and the final fall is due to the capillary effect.

We now return to the full model where neutral stability is addressed. Here dynamics
are no longer of concern and the full physics of the model are retained. To determine the
conditions for neutral stability, we set σ to zero by observing that exchange of stability
holds. A proof of this is available in appendix A, where it is also shown that velocity
perturbations for neutral conditions are zero.

Under neutral conditions, equation (3.11) becomes

Bo = k[4Ca k2 + 2Ca cosh(2k) + 2Ca − 2k2Wi + kWi sinh(2k)]
Wi[sinh(2k) − 2k]

= 2Ca k[2k2 + cosh(2k) + 1]
Wi[sinh(2k) − 2k]

+ k2. (3.13)

Clearly, Re plays no role under neutral conditions and the neutral curve is given by Bo
versus k2 with Wi as a parameter. The typical neutral stability curves in the Bo versus k2

parameter space are shown in figure 2. The solid line in figure 2 represents the Bo versus
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k2 trend for a non-elastic fluid. As Wi tends to infinity, the viscoelastic fluid behaves like a
non-elastic liquid. It is seen from (3.13) that Wi must approach infinity via at least O(1/k3)
in order that Bo increase monotonically with k2.

Decreasing Wi from the large-Wi limit leads to departure from non-elastic behaviour,
and at Wi = 0 the medium acts like an elastic solid, making the system completely stable.
This trend is seen in the curves for Wi = 1 and 5 in figure 2. Also observe that, with
a decrease of Wi from the large-Wi limit, the curves take on the character of classical
hydrodynamic instability problems such as the Bénard problem of convection. This urges
us to think that, for large Wi, the instability will be subcritical like the RT instability of a
non-elastic fluid, and for decreasing Wi, the instability will become supercritical like the
Bénard problem. To find out the nature of the bifurcation, we carry out a weak nonlinear
analysis near the bifurcation point.

4. Weak nonlinear analysis and discussion

Anticipating a pitchfork-shaped branch, we advance Bo from its critical value by an
amount, ε, such that ε is defined by

Bo = Bo0 + ε2

2
. (4.1)

In response to this increase in Bo, the displacement fields, pressure field and the surface
elevation change from their base state by

X(x, z) = X0 + εX1(x, z) + ε2

2
X2(x, z) + ε3

6
X3(x, z) + · · · , (4.2)

Z(x, z) = Z0 + εZ1(x, z) + ε2

2
Z2(x, z) + ε3

6
Z3(x, z) + · · · , (4.3)

p(x, z) = p0 + εp1(x, z) + ε2

2
p2(x, z) + ε3

6
p3(x, z) + · · · (4.4)

and

h(x) = h0 + εh1(x) + ε2

2
h2(x) + ε3

6
h3(x) + · · · . (4.5)

At the free surface, the interior displacement field, X, is expressed as (Johns & Narayanan
2002)

X(x, z) = X0 + ε

(
X1 + h1

∂X0

∂z

)
+ ε2

2

(
X2 + h2

∂X0

∂z
+ 2h1

∂X1

∂z
+ h2

1
∂2X0

∂z2

)

+ ε3

6

(
X3 + h3

∂X0

∂z
+ 3h2

∂X1

∂z
+ 3h1

∂X2

∂z
+ 3h1h2

∂2X0

∂z2

+ 3h2
1
∂2X1

∂z2 + h3
1
∂3X0

∂z3

)
+ · · · , (4.6)

and likewise for Z(x, z) and p(x, z). The equations at various orders can thus be obtained.
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The equations at O(ε) are given by

∂X1

∂x
+ ∂Z1

∂z
= 0, (4.7)

−∂p1

∂x
+ 1

Wi

(
∂2X1

∂x2 + ∂2X1

∂z2

)
= 0, (4.8)

−∂p1

∂z
+ 1

Wi

(
∂2Z1

∂x2 + ∂2Z1

∂z2

)
= 0. (4.9)

The boundary conditions at O(ε) at the rigid wall, i.e. z = 0, are

Z1 = 0 and X1 = 0. (4.10a,b)

The interfacial conditions, i.e. at z = 1, at O(ε) become

Z1 − h1 = 0, (4.11)

1
Wi

(
∂X1

∂z
+ ∂Z1

∂x

)
= 0 (4.12)

and

− p1 − Bo0

Ca
h1 + 2

Wi
∂Z1

∂z
− 1

Ca
∂2h1

∂x2 = 0. (4.13)

Observe that the O(ε) equations are precisely the neutral stability equations. Hence h1(x)
becomes h1(x) = A cos(kx). Our job now is to determine the sign of A2, noting that a
positive value of A2 implies a supercritical bifurcation and a negative value implies a
subcritical bifurcation. To determine A2 we proceed to the next order.

The governing equations at O(ε2/2) are given by

∂X2

∂x
+ ∂Z2

∂z
= 2

∂X1

∂x
∂Z1

∂z
− 2

∂X1

∂z
∂Z1

∂x
, (4.14)

−∂p2

∂x
+ 1

Wi

(
∂2X2

∂x2 + ∂2X2

∂z2

)
= −1

Wi
∂

∂x

(
2
∂X1

∂x
∂Z1

∂z
− 2

∂X1

∂z
∂Z1

∂x

)
(4.15)

and

−∂p2

∂z
+ 1

Wi

(
∂2Z2

∂x2 + ∂2Z2

∂z2

)
= −1 − 1

Wi
∂

∂z

(
2
∂X1

∂x
∂Z1

∂z
− 2

∂X1

∂z
∂Z1

∂x

)
. (4.16)

The boundary conditions at z = 0 are

Z2 = 0 and X2 = 0. (4.17a,b)

The interfacial conditions, i.e. at z = 1, are now

Z2 − h2 = −2h1
∂Z1

∂z
, (4.18)

1
Wi

(
∂X2

∂z
+ ∂Z2

∂x

)
= −4

Wi
∂h1

∂x
∂Z1

∂z
+ 4

Wi
∂h1

∂x
∂X1

∂x
− 2h1

Wi
∂2X1

∂z2 − 2h1

Wi
∂2Z1

∂z∂x
(4.19)
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and

−p2 − Bo0

Ca
h2 + 2

Wi
∂Z2

∂z
− 1

Ca
∂2h2

∂x2

= 2h1
∂p1

∂z
− 4h1

Ca
∂2Z1

∂z2 + 4
Wi

∂h1

∂x
∂X1

∂z
+ 4

Wi
∂h1

∂x
∂Z1

∂x
. (4.20)

Observe the pattern of equations in (4.14)–(4.20) and compare them with (4.7)–(4.13).
The right-hand sides compriseforcing terms that are quadratic combinations of O(ε) terms
and directly proportional to A2. We call these quadratic combinations (1, 1) terms due
to their bilinear combinations of first-order variables. The solution to the second-order
problem must therefore be the sum of several A2-dependent terms and a sole term
independent of A due to the first term on the right-hand side of (4.16). Upon observing that
(4.7)–(4.13) are homogeneous and employing solvability conditions on (4.14)–(4.20), we
see that solvability of equations (4.14)–(4.20) is automatically satisfied. Thus we cannot
determine A2 at this order and must advance to the next order.

The governing equations at O(ε3/6) are given by

∂X3

∂x
+ ∂Z3

∂z
= 3

∂X1

∂x
∂Z2

∂z
+ 3

∂X2

∂x
∂Z1

∂z
− 3

∂X2

∂z
∂Z1

∂x
− 3

∂X1

∂z
∂Z2

∂x
, (4.21)

−∂p3

∂x
+ 1

Wi

(
∂2X3

∂x2 + ∂2X3

∂z2

)
= −3

Wi
∂

∂x

(
∂X1

∂x
∂Z2

∂z
+ ∂X2

∂x
∂Z1

∂z
− ∂X2

∂z
∂Z1

∂x
− ∂X1

∂z
∂Z2

∂x

)
(4.22)

and

−∂p3

∂z
+ 1

Wi

(
∂2Z3

∂x2 + ∂2Z3

∂z2

)
= −3

Wi
∂

∂z

(
∂X1

∂x
∂Z2

∂z
+ ∂X2

∂x
∂Z1

∂z
− ∂X2

∂z
∂Z1

∂x
− ∂X1

∂z
∂Z2

∂x

)
.

(4.23)
The boundary conditions at z = 0 are

Z3 = 0 and X3 = 0. (4.24a,b)

The interfacial conditions at z = 1 are

Z3 − h3 = −3h2
∂Z1

∂z
− 3h1

∂Z2

∂z
− 3h2

1
∂2Z1

∂z2 , (4.25)

1
Wi

(
∂X3

∂z
+ ∂Z3

∂x

)
= −6

Wi
∂h2

∂x

(
∂Z1

∂z
− ∂X1

∂x

)
− 6

Wi
∂h1

∂x

(
∂Z2

∂z
− ∂X2

∂x

)

+ 12
Wi

(
∂h1

∂x

)2 (
∂X1

∂z
+ ∂Z1

∂x

)
− 3h2

Wi

(
∂2X1

∂z2 + ∂2Z1

∂z∂x

)

− 3h1

Wi

(
∂2X2

∂z2 + ∂2Z2

∂z∂x

)
− 3h2

1
Wi

(
∂3X1

∂z3 + ∂3Z1

∂z2∂x

)

− 12h1

Wi
∂h1

∂x

(
∂2Z1

∂z2 − ∂2X1

∂z∂x

)
(4.26)
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and

−p3 − Bo0

Ca
h3 + 2

Wi
∂Z3

∂z
− 1

Ca
∂2h3

∂x2

= 3h2
∂p1

∂z
+ 3h1

∂p2

∂z
+ 3h2

1
∂2p1

∂z2

− 6h2

Wi
∂2Z1

∂z2 − 6h1

Wi
∂2Z2

∂z2 + 6
Wi

∂h2

∂x

(
∂X1

∂z
+ ∂Z1

∂x

)

− 12
Wi

(
∂h1

∂x

)2 (
∂X1

∂x
− ∂Z1

∂z

)
+ 6

Wi
∂h1

∂x

(
∂Z2

∂x
+ ∂X2

∂z

)

+ 12h1

Wi
∂h1

∂x

(
∂2X1

∂z2 + ∂2Z1

∂z∂x

)
− 6h2

1
Wi

∂3Z1

∂z3 − 9
Ca

(
∂h1

∂x

)2
∂2h1

∂x2 . (4.27)

The forcing terms from (4.21)–(4.27) are bilinear combinations of second-order and
first-order terms, i.e. (2, 1) terms, and trilinear combinations of first-order terms, i.e.
(1, 1, 1) terms. All of these terms are effectively homogeneous factors of A3, with the
exception of the boxed term in (4.27), i.e. 3h1(∂p2/∂z). This term is special because it
contains an O(ε)-independent part arising from the first term on the right-hand side of
(4.16). This observation is important because it is the sole reason for us to be able to
determine A2 upon employing solvability conditions on (4.21)–(4.27) using the first-order
equations (4.7)–(4.13). Saturation at this order, i.e. being able to obtain A2 at this order,
determines not only the amplitude but also the nature of the bifurcation.

If A2 is positive, the branch is supercritical, but if it is negative, the Bond number would
not be advanced as indicated by (4.1) but reduced instead and the branch would become a
subcritical pitchfork. The calculations that involve solvability require the use of symbolic
manipulation, which was carried out in Mathematica � and the details are provided in
the supplementary material to this paper. The algebraic complications can be reduced if
the nonlinear terms of equation (2.6) are dropped. It has been observed by the present
authors that the results do not change qualitatively. The general results without making
this approximation are depicted in figure 5. This figure is to be interpreted as follows. We
first input Wi and Bo into equation (3.13) and calculate k2. This is the critical value of k2

and must be used in the weak nonlinear analysis from which the value of A2 is obtained.
From this we learn that, for every input Bo for a given Wi, the bifurcation corresponding
to the critical k2 is either supercritical or subcritical. It is apparent from figure 5(a) that
the branching is supercritical for a large range of k2 for moderate Wi. However, as Wi
becomes large, this range contracts and the branching becomes subcritical, indicating
RT-type behaviour. Figure 5(b) depicts an example of the intersection of the transition
curve with the neutral stability curve for Wi = 1, where all accessible wavenumbers above
the transition line lead to supercritical branching and all wavenumbers below the transition
line lead to subcritical branching. A key observation is that the transition line intersects
the neutral stability curve to the right of the minimum, thereby affording the possibility of
supercritical saturated waves. To glean the physics of the transition, we turn to a simpler
model of the problem, dropping the nonlinear term in (2.6) and taking the viscoelastic
fluid depth to be infinite.
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Figure 5. (a) Plots of Bo versus k2 versus Wi obtained from the weak nonlinear analysis. The change in the sign
of A2 is shown in the plot. (b) Plot of Bo versus k2 obtained from the neutral stability calculations (solid line)
for Wi = 1.0. The dashed line, from weak nonlinear calculations, demarcates the supercritical and subcritical
transition. This is obtained by setting A2 = 0 in the third-order calculations.

4.1. Tracing the cause of the transition from super- to subcritical branching
In the previous paragraphs, we observed that the nature of the bifurcation could be either
supercritical or subcritical in nature. Here, our focus is on tracing the terms responsible for
this transition. To accomplish this, we drop the nonlinear terms in (2.6) and carry out the
weak nonlinear analysis of a viscoelastic fluid layer whose depth is infinite. This infinite
layer configuration allows us to simplify the mathematical calculations.

In order to obtain the governing equations and the boundary conditions in the infinite
layer configuration, the z-coordinate is transformed using z − 1 → z. Now, the free surface
moves to z = 0 and the viscoelastic fluid is attached to the rigid wall now located at z →
−∞. We begin the weak nonlinear analysis of the infinite layer configuration by using the
expansions given by (4.2)–(4.5), and insert them into the governing equations.

At first order, the displacement fields, pressure and the interface deformation at O(ε) are
taken to be

X1 = X̂1(z) sin(kx),

Z1 = Ẑ1(z) cos(kx),

p1 = p̂1(z) cos(kx),

h1 = ĥ1 cos(kx) = A cos(kx),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.28)

where now k is a dimensionless wavenumber, scaled with respect to a horizontal dimension
such as the container width. By this, k must take discrete values of nπ.

Upon eliminating X1 from (4.8) and (4.9), and using the continuity equation (4.7), we
have (

d2

dz2 − k2

)2

Ẑ1 = 0. (4.29)

At z = 0 we have the tangential stress, kinematic and the normal force conditions. The
tangential stress condition is modified by taking the derivative of (4.12) with respect to x.
Upon eliminating X̂1 by using the continuity equation (4.7), we get the modified tangential
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stress equation, i.e.

1
Wi

(
d2Ẑ1

dz2 + k2Ẑ1

)
= 0. (4.30)

Equation (4.11) takes the form

Ẑ1 − ĥ1 = 0, i.e. Ẑ1 = A. (4.31)

The solution of the domain equation (4.29), using the modified tangential force condition
(4.30) and (4.31), yields

Ẑ1 = A ekz − kAz ekz. (4.32)

From (4.32) and the continuity equation (4.7), as well as the x-momentum equation (4.8),
we obtain the displacement field in the x-direction and the pressure field as

X̂1 = Akz ekz (4.33)

and

p̂1 = −2Ak ekz

Wi
. (4.34)

To obtain the critical value of Bo, we employ the normal force condition. The normal
force condition (4.13) is transformed by taking its x-derivative and thereafter eliminating
∂p1/∂x by using the x-momentum equation (4.8). Finally, upon eliminating X̂1 by
employing the continuity equation (4.7), we obtain a useable form of the normal force
balance, i.e.

1
Wi

(
d3Ẑ1

dz3 − 3k2 dẐ1

dz

)
+ Bo0

Ca
Ak2 − Ak4

Ca
= 0. (4.35)

Substituting (4.32) into (4.35) gives us the critical value of Bo, i.e. Bo0, via

Bo0 = 2kCa
Wi

+ k2. (4.36)

Note that this expression for Bo0 can be obtained from the analogous expression for
the finite layer (3.13) by rescaling the transverse coordinate in (3.13) with H/W, where
H and W are the thickness and width of the viscoelastic fluid layer, and then letting H/

W → ∞. A plot of Bo0 versus k2 obtained from (4.36) is shown in figure 6. By comparing
the curves in figure 2 with those in figure 6, we notice that the dip in the Bo versus k2

curves is lost. The falling branch in the Bo versus k2 curve obtained for the case of a
finite layer of viscoelastic fluid is due to the stabilizing effect of the proximity of the
rigid wall on the destabilizing pressure perturbations, i.e. the pressure perturbations are
quenched by the presence of the rigid wall. In the case of an infinite layer, as k → 0, the
pressure perturbations can no longer be quenched by any wall and the problem retains its
instability, leading to a monotonic Bo versus k2 curve with zero intercept. The absence of
a rigid wall ought not to change the occurrence of a supercritical to subcritical transition,
though the critical value of k2 at which this occurs is expected to be affected. We therefore
now proceed with the analysis and turn towards the second- and third-order equations to
investigate this transition.

As noted earlier, the forcing terms at second order obtained from (4.14)–(4.20) are
bilinear, i.e. they comprise (1, 1) terms. From these bilinear combinations of (1, 1) terms,
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Figure 6. Plots of Bo versus k2 curves for an infinite layer of viscoelastic fluid for Wi = 1 and 5. As Wi
increases, the curves approach the RT limit (solid line).

we deduce that the O(ε2/2) displacement fields, pressure field and interface deformation
must be expressed as

X2 = ˆ̂X2(z) sin(2kx) + X20(z),

Z2 = ˆ̂Z2(z) cos(2kx) + Z20(z),

p2 = ˆ̂p2(z) cos(2kx) + p20(z),

h2 = ˆ̂h2 cos(2kx).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.37)

Here the displacement fields and the pressure field consist of an x-dependent part and an
x-independent part. The domain equations for the x-dependent part of the problem are

d ˆ̂Z2

dz
+ 2k ˆ̂X2 = 0, (4.38)

2k ˆ̂p2 + 1
Wi

⎛
⎝d2 ˆ̂X2

dz2 − 4k2 ˆ̂X2

⎞
⎠ = 0 (4.39)

and

− d ˆ̂p2

dz
+ 1

Wi

⎛
⎝d2 ˆ̂Z2

dz2 − 4k2 ˆ̂Z2

⎞
⎠ = 0. (4.40)

As before, upon eliminating ˆ̂X2 from the governing equations (4.39) and (4.40), by using
the continuity equation (4.38), we get(

d2

dz2 − 4k2

)2
ˆ̂Z2 = 0. (4.41)

At z = 0, we have the tangential stress and kinematic conditions. Eliminating ˆ̂X2 from
the x-dependent part of the tangential stress condition (4.19), by taking the horizontal
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derivative and using the continuity equation (4.38), we get

d2 ˆ̂Z2

dz2 + 4k2 ˆ̂Z2 = −2Ak

(
2k2X̂1 − 3k

dẐ1

dz
+ d2X̂1

dz2

)
, (4.42)

while the x-dependent part of kinematic condition (4.18), at z = 0, gives

ˆ̂Z2 − ˆ̂h2 = −AdẐ1

dz
. (4.43)

Solving (4.41) and applying the tangential stress condition (4.42), along with the
kinematic condition (4.43), we get

ˆ̂Z2 = e2kz(A2k2z + ˆ̂h2(1 − 2kz)). (4.44)

Employing (4.44) in the continuity equation (4.38) and the x-momentum equation (4.39)
yields

ˆ̂X2 = −1
2

k e2kz(A2(2kz + 1) − 4 ˆ̂h2z) (4.45)

and
ˆ̂p2 = 2k

Wi
(A2k − 2 ˆ̂h2)e2kz. (4.46)

We apply these solutions to the normal force condition at z = 0. The normal force

condition in terms of ˆ̂Z2 is obtained by eliminating pressure from (4.20). This is done
by taking the horizontal derivative and using the x-momentum equation (4.15). From the

resulting equation, ˆ̂X2 is eliminated by again taking the derivative in the x-direction and
now using the continuity equation (4.38). This finally yields

1
Wi

⎛
⎝d3 ˆ̂Z2

dz3 − 12k2 d ˆ̂Z2

dz

⎞
⎠+ 4

Bo0

Ca
ˆ̂h2k2 − 16 ˆ̂h2k4

Ca

= 1
Wi

(
12Ak4Ẑ1 − 8Ak3 dX̂1

dz
+ 4Ak2 d2Ẑ1

dz2

)
. (4.47)

We then substitute the solutions obtained for ˆ̂Z2, ˆ̂X2 and ˆ̂p2 and the solutions obtained

earlier for X̂1 and Ẑ1 into the above equation (4.47) to solve for ˆ̂h2, obtaining

ˆ̂h2 = 0. (4.48)

At the second order we are left with obtaining the solutions for the x-independent parts
of X2, Z2 and p2. To do this, we eliminate pressure from the momentum equations (4.15)
and (4.16), and further eliminate X2 by using the continuity equation (4.14), resulting in an
equation for Z2. The x-independent part of this equation gives

d4Z20

dz4 = 0. (4.49)

At z = 0, we have the tangential stress condition and the kinematic conditions. The
tangential stress condition for Z20 is obtained by eliminating X2 from (4.19) by taking
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the horizontal derivative and using the continuity equation (4.14). The x-independent part
of the resulting equation gives

d2Z20

dz2 = 0, (4.50)

and at z = 0 the x-independent part of the kinematic condition (4.18) yields

Z20 = −AdẐ1

dz
. (4.51)

The solution to equation (4.49) using the conditions (4.50) and (4.51) gives

Z20 = 0. (4.52)

Applying this solution to the z-momentum equation (4.16) yields

dp20

dz
= 1. (4.53)

Having obtained the solutions to the first- and second-order equations in terms of A, we
now turn to the equations at the third order, i.e. O(ε3/6), to determine A2. As noted earlier,
the forcing terms in (4.21)–(4.27) are bilinear combinations of second-order and first-order
terms, i.e. (2, 1) terms, and trilinear combinations of first-order terms, i.e. (1, 1, 1) terms.
From these combinations, we can infer that the displacement fields, pressure field and the
interface deformation at this order can be expressed as

X3 = ˆ̂̂
X3(z) sin(3kx) + X̂3(z) sin(kx),

Z3 = ˆ̂̂
Z3(z) cos(3kx) + Ẑ3(z) cos(kx),

p3 = ˆ̂̂p3(z) cos(3kx) + p̂3(z) cos(kx)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.54)

and

h3 = ˆ̂̂
h3 cos(3kx) + ĥ3(z) cos(kx). (4.55)

At this order, only the cos(kx) part of the displacement, pressure and the interface
deformation fields (the terms underlined in (4.54) and (4.55)) play a role in determining
the amplitude, A. Therefore, we see that the domain equations for the cos(kx) part of the
variables are

kX̂3 + dẐ3

dz
= 0, (4.56)

kp̂3 + 1
Wi

(
d2X̂3

dz2 − k2X̂3

)
= 0 (4.57)

and

−dp̂3

dz
+ 1

Wi

(
d2Ẑ3

dz2 − k2Ẑ3

)
= 0. (4.58)
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Again, as before, eliminating X̂3 from (4.57) and (4.58) and using the continuity equation
(4.56), we get (

d2

dz2 − k2

)2

Ẑ3 = 0. (4.59)

At z = 0 we have the tangential stress and the kinematic conditions. The tangential stress
is modified by eliminating X̂3 from the cos(kx) part of equation (4.26). This is done by
taking the horizontal derivative of the cos(kx) part of equation (4.26) and by using the
continuity equation (4.56). This gives

1
Wi

(
d2Ẑ3

dz2 + k2Ẑ3

)
= 3Ak

2Wi
d2 ˆ̂X2

dz2 + 3Ak2

Wi
d ˆ̂Z2

dz
+ 9A2k4Ẑ1

Wi

− 15A2k2

4Wi
d2X̂1

dz2 + 3A2k
4Wi

d3X̂1

dz3 − 6A2k3

Wi
dX̂1

dz
, (4.60)

and at z = 0, the cos(kx) part of the kinematic condition (4.25) yields

Ẑ3 − ĥ3 = −3A
2

d ˆ̂Z2

dz
− 9A2

4
d2Ẑ1

dz2 . (4.61)

Solving equations (4.59)–(4.61) gives

Ẑ3 = 1
4 ekz(3A3k2(kz + 1) − 4ĥ3(kz − 1)). (4.62)

For a matter of convenience that will soon become apparent, we split Ẑ3 into two parts,
one that is free of ĥ3 and the other that is homogeneous in ĥ3. Thus,

Ẑ3 = ẐA
3 + Ẑh

3, (4.63)

where ẐA
3 = [ekz(3A3k2(kz + 1))]/4 and Ẑh

3 = [ekz(−4ĥ3(kz − 1))]/4.
At the third order, the normal force condition in terms of Ẑ3 is obtained by eliminating

the pressure from the cos(kx) part of equation (4.27), by taking the horizontal derivative
and using the x-momentum equation (4.57). From the resulting equation, X̂3 is eliminated
by taking the horizontal derivative and using the continuity equation (4.56). This yields

1
Wi

(
d3Ẑ3

dz3 − 3k2 dẐ3

dz

)
+ Bo0

Ca
k2ĥ3 − k4ĥ3

Ca

= −9A3k6

4Ca
+ 3Ak2

2Wi
d2 ˆ̂Z2

dz2 − 3A2k5X̂1

Wi
+ 6Ak4 ˆ̂Z2

Wi
+ 21A2k4

4Wi
dẐ1

dz

− 3Ak2 dp20

dz
+ 9A2k2

4Wi
d3Ẑ1

dz3 . (4.64)

This equation, i.e. (4.64), and its first-order counterpart, i.e. (4.35), are the key equations
that help us determine A. To do this, we multiply (4.35) by ĥ3 and (4.64) by ĥ1, noting
that ĥ1 = A, and then subtracting the resulting equations.
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Therefore, upon multiplying the first-order normal force balance, (4.35), with ĥ3, we get

ĥ3

Wi
d3Ẑ1

dz3 − 3k2ĥ3

Wi
dẐ1

dz
+ Bo0

Ca
Ak2ĥ3 − Ak4ĥ3

Ca
= 0. (4.65)

Similarly, multiplying the third-order normal force condition, (4.64), with ĥ1, i.e. A,
results in

I︷ ︸︸ ︷
A
Wi

d3ẐA
3

dz3 + A
Wi

d3Ẑh
3

dz3 − 3k2A
Wi

dẐ3

dz
+ Bo0

Ca
Ak2ĥ3 − Ak4ĥ3

Ca

=

III︷ ︸︸ ︷
−9A4k6

4Ca
+

II︷ ︸︸ ︷
3A2k2

2Wi
d2 ˆ̂Z2

dz2 −3A3k5X̂1

Wi
+ 6A2k4 ˆ̂Z2

Wi

+ 21A3k4

4Wi
dẐ1

dz

IV︷ ︸︸ ︷
−3A2k2 dp20

dz
+9A3k2

4Wi
d3Ẑ1

dz3 . (4.66)

Now, upon subtracting (4.65) from (4.66) we get an expression for the amplitude square,
A2. To see how this obtains, we must make several observations. First, terms that are
homogeneous in ĥ3 cancel from the subtraction operation, and therefore this term need not
be evaluated. Second, all of the remaining non-braced terms cancel upon subtraction of
(4.65) from (4.66). Third, the braced terms I, II and III are all factors of A4 while term IV
is a multiple of A2. This last term is the sole reason for us to be able to determine A2 at
this order. Fourth, the terms I and II, which are of opposing signs, combine and make a net
positive contribution when moved to the right-hand side of (4.66), whereas the term III is
negative. Thus upon subtraction of the two equations, i.e. (4.65) from (4.66), we get

A2 = 4Ca
4Ca k3

Wi
− 3k4

. (4.67)

It is noteworthy that, as Wi → ∞, the above expression reduces to the RT expression for
A2 for non-elastic fluids (cf. supplementary material to this paper).

4.1.1. Explanation of the branching behaviour from (4.67)
It is noteworthy that the first term in the denominator of (4.67) corresponds to the
combination of terms I and II in (4.66). This term can be traced back to the normal
component of the force balance, (4.64), at O(ε3/6). It arises from the third-order correction
of the free surface term (2/Wi)(dZ/dz) derived from the normal force condition (3.9).
This term in equation (4.67) overshadows the other term when the wavenumber k → 0,
resulting in A2 > 0, indicating the supercritical nature of the bifurcation. A physical
interpretation is that the normal elastic stresses associated with Wi help to restrict the
motion of the free surface against gravity upon reaching instability, leading to the
supercritical saturation of a deformed free surface.

Contrast the above to the last term in the denominator of equation (4.67), which is
negative. It contributes to the subcritical nature of the bifurcation. Note, in particular,
that this term survives even as Wi becomes very large, remaining intact in the RT limit.
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Figure 7. Plots of A2/Ca versus Ca/Wi versus k2. (a) Here, surface 1 represents the subcritical nature of the
bifurcation. Surface 3 corresponds to the supercritical saturation of the free surface. Surface 2 consists of two
regions, a region where A2 is positive and a region where A2 is negative. (b) The top view of panel (a), (c) the
rear view of panel (a) and (d) the front view of panel (a).

This term corresponds to term III in (4.66). It arises from the trilinear (1, 1, 1) term,
which is the last term of equation (4.27). It becomes dominant in the high-wavenumber
regime, leading to the subcritical rupture of the interface. A 3-D surface plot indicating
the supercritical to subcritical transition is shown in figure 7. This plot of A2/Ca versus
Ca/Wi versus k2 is obtained from the expression for A2 in equation (4.67). The plot
consists of three surfaces, i.e. surfaces 1, 2 and 3. On surface 1, A2/Ca is always
negative, indicating the subcritical nature of the bifurcation. Surface 2 consists of two
regions, a region where A2 is positive and a region where A2 is negative. Surface 3
corresponds to A2 > 0, which is indicative of the supercritical nature of the bifurcation.
It is evident from figure 7 that the branching is supercritical for low k2 and surface 3
shrinks as the wavenumber increases. From (4.67), we determine the wavenumber at which
a supercritical to subcritical transition takes place. For k < 4Ca/3Wi, the bifurcation is
supercritical and the free surface saturates due to the elastic contribution to the normal
stresses counteracting gravity. When k > 4Ca/3Wi, the bifurcation is subcritical, i.e. the
viscoelastic fluid layer topples, leading to the rupture of the free surface. This leads to
the unintuitive result that, for large wavelengths, one does not see the rupturing of the
interface, whereas for small wavelengths, which will occur in highly laterally constrained
geometries, the bifurcation will be subcritical, leading to rupture. On further consideration,
and upon viewing figure 2, this is plausible, because in a laterally unconfined system the
most critical wavenumber appears at the dip of the curve, for which the control parameter
is at its lowest value, and therefore the destabilizing gravitational effect is least. Here, the
elastic forces can dominate, causing the interface to deflect upon instability but to proceed
to saturate. On the other hand, in a constrained container, the wavelengths are small and
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the instability can only occur on the rising branch of figure 2. Here, the instability appears
at a larger value of Bo and the elastic forces are insufficient to combat the destabilizing
gravitational effect, leading to the subcritical nature or rupture of the interface once the
instability commences. Observe that it is never possible in an experiment to arrive at the
left branch of the dip or the descending branch of figure 2.

4.2. Square-shaped and other waveforms of disturbances
A similar weak nonlinear analysis may be carried out for an infinite layer of viscoelastic
fluid perturbed by square-shapeddisturbances. A detailed derivation of the expression from
which we get A2 is given in the supplementary material. This expression reduces to

A2 = 16Ca
20Ca(k2

x + k2
y)

3/2

Wi︸ ︷︷ ︸
II

−8Ca kxky(kx + ky)

Wi
− 8Ca(k3

x + k3
y)

Wi︸ ︷︷ ︸
I

−2k2
xk2

y − 9(k4
x + k4

y)︸ ︷︷ ︸
III

.

(4.68)

An observation from the 2-D weak nonlinear analysis is that, as ky → 0, the expression
for A2 in (4.68) does not reduce to the expression in (4.67). This observation is also
true for RT instability of non-elastic fluids and is explained in a derivation given in the
supplementary material.

Further, observe that the terms I and II of (4.68) are of opposite sign. These terms arise
in the same manner as terms I and II in (4.66), which are derived from the one-dimensional
(1-D) weak nonlinear analysis. In the 1-D case, these terms combine, yielding a net
positive result, whereas in the 2-D case, they do not combine, yet they still result in
a net positive contribution. To demonstrate this positive contribution, we plot the term
(I + II)(Wi/Ca) against the wavenumbers kx and ky as shown in figure 8. As before, the
positive contribution arising from the sum of the terms I + II assists in the supercritical
nature of the bifurcation at low wavenumbers. The term III in (4.68) arises in the same
manner as term III in (4.66). Here, too, it is always negative, leading to the subcritical
nature of the bifurcation at large wavenumbers. To summarize, the supercritical nature of
the bifurcation always arises from the correction of normal stresses at the third order. The
subcritical nature of the bifurcation arises from the correction to the capillary terms at the
third order and retains its dominance at high wavenumber and high Wi.

The nature of the bifurcation clearly depends on the waveform of the disturbances. In
the foregoing analysis, the bifurcation behaviour has been discussed only for sinusoidal
disturbances and the pitchfork nature of the bifurcation is clearly due to the symmetry
that arises from these trigonometric forms. For reasons of brevity, we do not give the
detailed analysis for other symmetric disturbances such as hexagonal and circular forms.
However, some comments are in order. If hexagonal disturbances are considered using
the Christopherson forms (Chandrasekhar 1961), it can be shown very easily that the
bifurcation is transcritical and that A can be obtained at the second order, no matter
the magnitude of the wavenumber. The transcritical nature for hexagonal disturbances
has also been observed by Mora et al. (2014). As pointed out in § 4.1 and in the current
section, the branching in the presence of square waves is conditional. The supercriticality
appears at low wavenumbers and subcriticality appears at high wavenumbers. A final
observation is that the RT instability of viscoelastic fluids in circular containers will lead
to symmetric bifurcations, i.e. either supercritical or subcritical bifurcations much like the

915 A63-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.80


Branching of RT instability in linear viscoelastic fluids

0

10

T
er

m
s 

(I
+

II
)

W
i/C
a 20

0

0.5

1.0

0

0.5

1.0ky
2

kx
2

Figure 8. Terms (I + II)(Wi/Ca) versus k2
x versus k2
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positive for all k2

x and k2
y . Note that (I + II)(Wi/Ca) is independent of Wi and Ca.

case discussed in this paper, with transcritical branching appearing only for axisymmetric
disturbances. This again clearly arises due to the periodicity of the disturbances in the
azimuthal direction, which leads to trigonometric forms of the perturbations.

5. Summary

The linear stability of a viscoelastic fluid residing above a passive gas in a gravitational
field results in a non-monotonic graph of the critical Bond number (Bo) versus the square
of the wavenumber (k2) for finite Weissenberg number, Wi. That graph shows a minimum
at some wavenumber and, as Wi → ∞, it becomes a straight line with zero intercept,
i.e. it becomes a Rayleigh–Taylor (RT) plot for a non-elastic medium. A weak nonlinear
analysis around the critical Bo for an assigned wavenumber determines the nature of the
bifurcation. A general result, for fluids of finite depth, shows that in a wide layer the nature
of the bifurcation to sinusoidal disturbances is supercritical but will turn subcritical for a
constrained layer at some predictable horizontal width. Under neutral conditions, for the
case of an infinitely deep layer of viscoelastic fluid, the Bo versus k2 curves do not show
a minimum. However, a simple expression obtained from a weak nonlinear analysis for
this case reveals the physics of the supercritical to subcritical transition and, in addition,
gives the wavenumber demarcating this transition in the bifurcation. We find that, for k <

4Ca/3Wi, the free surface of the viscoelastic fluid layer saturates, while for k > 4Ca/3Wi,
the free surface ruptures, where Ca is the capillary number.

In short, the main message is that an unbounded layer of a viscoelastic fluid under
an RT configuration is conditionally stable, and when it is unstable at a critical Bond
number it will bifurcate supercritically with predictable wavelengths. However, in bounded
layers, the instability for viscoelastic fluids will lead to subcritical rupture of the interface
for widths that are smaller than a critical value. Contrast this result with the case of
RT instability of a non-elastic fluid, where the instability is always subcritical. Here the
bifurcation is unconditionally unstable in an infinitely wide container and can be delayed
only by narrowing the horizontal span of the container, nevertheless breaking subcritically.

An interesting extension of this work is to consider the instability of a viscoelastic fluid
in a liquid bridge (Jørgensen et al. 2015; Lin et al. 2019) due to the similarities between
the instability of a liquid bridge and RT instability (Johns & Narayanan 2002). In such
an extension, one might expect that, depending on the length-to-radius ratio, the liquid
bridge can either saturate or rupture. This then could lead to a possible experiment that
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determines the surface tension and the shear modulus of a viscoelastic fluid by correlating
these properties to the point of instability.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.80.
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Appendix A. Proof of exchange of stability

In this section we show that the imaginary part of the growth rate σ is zero when its real
part is zero, thereby ensuring an exchange of stability under neutral conditions.

The base interface is taken to be flat but the geometry is taken to be of arbitrary shape.
To this end, we consider the governing equations and the boundary conditions, i.e.

∂X
∂x

+ ∂Z
∂z

− ∂X
∂x

∂Z
∂z

+ ∂Z
∂x

∂X
∂z

= 0, (A1)

Re
(

∂v

∂t
+ v · ∇v

)
= −∇p + 1

Wi
∇2R + 1

Wi
∇(∇ · R) + ∇2v + Bo

Ca
iz, (A2)

n · T · t = 0 and n · T · n = − 1
Ca

∇ · n. (A3a,b)

The governing equations are linearized with respect to the base state, via

R(x, z, t) = R0 + R′(z) exp((σ t + ikx)) (A4)
and

v = v′(z) exp((σ t + ikx)). (A5)
Note that the perturbed velocity v′ in (A5) can be expressed as

v′ = σR′. (A6)
Upon substituting the perturbation into the governing equations and dropping the prime

for the perturbed variables for convenience, we get
σRe v = ∇ · T . (A7)

Here,

T = −p I + E

Wi
+ D. (A8)

Here E is the elastic contribution of the stress tensor T and D is the viscous part of
the stress tensor T . We then take the projection of equation (A7) with v�, the complex
conjugate of v (in this appendix � now means the complex conjugate). We obtain

σRe
∫

V0

v · v� dV0 = −
∫

S0

p(v� · n0) dA0 + 2
∫

S0

n0 · D · v� dA0 − 2
∫

V0

D : ∇v� dV0

+ 2
Wi

∫
S0

n0 · E · v� dA0 − 2
Wi

∫
V0

E : ∇v� dV0, (A9)

where V0 and S0 represent the volume and interface of the reference domain, i.e. the
unperturbed domain and where no slip and no penetration have been used on the rigid
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surfaces. From (A9), we get

σRe
∫

V0

v · v� dV0 = −
∫

S0

p(v� · n0) dA0 + 2
∫

S0

n0 · D · v� dA0 − 2
∫

V0

D : ∇v� dV0

+ 2
Wi

∫
S0

n0 · E · v� dA0 − 2σ�

Wi

∫
V0

E : ∇R� dV0. (A10)

In the above equation (A10), we can express ∇v� and ∇R� as follows:

∇v� = ∇v� + ∇(v�)t

2
+ ∇v� − ∇(v�)t

2
= D∗ + W ∗,

∇R� = ∇R� + ∇(R�)t

2
+ ∇R� − ∇(R�)t

2
= E∗ + F∗.

⎫⎪⎪⎬
⎪⎪⎭ (A11)

Upon substituting the above expansions in (A10), we get

σRe
∫

V0

v · v� dV0 =
∫

S0

(
1

Ca
∂2h
∂x2 − Bo

Ca
h
)

σ ∗h∗ dA0 − 2
∫

V0

D : D∗ dV0

− 2σ ∗

Wi

∫
V0

E : E� dV0 − 2
∫

V0

D : W ∗ dV0 − 2σ ∗

Wi

∫
V0

E : F � dV0.

(A12)

In (A12), it can be shown that D : W � = 0 and E : F � = 0. This yields

σRe
∫

V0

v · v� dV0 =
∫

S0

(
1

Ca
∂2h
∂x2 − Bo

Ca
h
)

σ ∗h∗ dA0 − 2
∫

V0

D : D∗ dV0

− 2σ ∗

Wi

∫
V0

E : E� dV0. (A13)

Likewise we have

σ ∗Re
∫

V0

v� · v dV0 =
∫

S0

(
1

Ca
∂2h∗

∂x2 − Bo
Ca

h∗
)

σh dA0 − 2
∫

V0

D∗ : D dV0

− 2σ

Wi

∫
V0

E∗ : E dV0. (A14)

Finally, adding (A13) and (A14) after integration by parts and employing free edge
conditions on h, we get

Re(σ )

[
Re
∫

V0

|v|2 dV0 −
∫

S0

(
1

Ca

∣∣∣∣∂h
∂x

∣∣∣∣2 − Bo
Ca

|h|2
)

dA0 + 2
Wi

∫
V0

E : E∗ dV0

]

= −2
∫

V0

D : D∗ dV0. (A15)

Hence, the real part Re(σ ) = 0 implies that v = 0 as a result of the last integral on the
right-hand side of (A15) being single-signed. From the kinematic condition along the
interface at z = 0, we deduce that σ = 0. This therefore implies that, under neural stability
conditions, both the real and imaginary parts of σ are zero and that the perturbed velocity
is zero.
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