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Using a dual variational approach, we obtain nontrivial real-valued solutions of the
critical nonlinear Helmholtz equation

−Δu − k2u = Q(x)|u|2∗−2u, u ∈ W 2,2∗(RN )

for N � 4, where 2∗ := 2N/(N − 2). The coefficient Q ∈ L∞(RN )\{0} is assumed to
be nonnegative, asymptotically periodic and to satisfy a flatness condition at one of
its maximum points. The solutions obtained are so-called dual ground states, that is,
solutions arising from critical points of the dual functional with the property of
having minimal energy among all nontrivial critical points. Moreover, we show that
no dual ground state exists for N = 3.
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1. Introduction

In this paper, we focus our attention on the existence of nontrivial real-valued
solutions of the critical nonlinear Helmholtz equation

− Δu− k2u = Q(x)|u|p−2u, u ∈W 2,p(RN ) (1.1)

for N � 3, k �= 0, and where Q ∈ L∞(RN )\{0} is a nonnegative weight function
and p = 2∗ := 2N/(N − 2) is the critical Sobolev exponent. Recently [11], the exis-
tence of solutions to (1.1) has been proven for all p in the noncritical interval
(2(N + 1)/(N − 1), 2N/(N − 2)). A direct variational approach leads to some dif-
ficulties. Indeed, by classical results of Rellich [20] and Kato [13], solutions of the
Helmholtz equation decay at most like

u(x) = O(|x|−(N−1)/2), as |x| → ∞.

Therefore, solutions of (1.1) can only be expected to lie in Lp(RN ) or W 2,p(RN )
for p > 2N/(N − 1). In particular, H1-solutions will not exist in general, as would
be required when using the natural energy functional associated with (1.1).
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The authors of [11] considered instead the integral equation

u = Rk(Q|u|p−2u), u ∈ Lp(RN ), (1.2)

where Rk denotes the real part of the resolvent operator Rk : f �→ Φk ∗ f of
−Δ − k2. Here, Φk is the (complex valued) radial outgoing fundamental solution
of the Helmholtz equation, that is, the convolution Φk ∗ f solves the inhomoge-
neous Helmholtz equation −Δu− k2u = f and satisfies the Sommerfeld outgoing
radiation condition

∂ru(x) − iku(x) = o(|x|(1−N)/2), as |x| → ∞.

For p ∈ [2(N + 1)/(N − 1), 2N/(N − 2)], solutions of the integral equation (1.2)
by [11, lemma 4.3] belong to W 2,q(RN ) with p � q <∞, so that, by Sobolev
embeddings u is indeed a strong solution of (1.1).

This dual variational approach, based on the dual energy functional JQ,p given
by

JQ,p(v) =
1
p′

∫
RN

|v|p′
dx− 1

2

∫
RN

vAQ,pv dx, v ∈ Lp′
(RN ),

where p′ = p/(p− 1) and AQ,pv = Q1/pRk(Q1/pv), admits a better behaved struc-
ture. The functional JQ,p is of class C1 and has the mountain pass geometry.
Therefore, the properties of Q determine whether it satisfies the Palais–Smale con-
dition and this, in turn, is linked in an essential way to compactness properties of
the Birman–Schwinger type operator AQ,p. For noncritical p, the operator AQ,p is
compact if Q vanishes at infinity, and then JQ,p satisfies the Palais–Smale condi-
tion. When Q is periodic, this is not the case anymore, but AQ,p still has some local
compactness. In combination with a crucial nonvanishing property [11, theorem 3.1]
of the quadratic form associated with Rk, a nontrivial critical point can then be
obtained as a weak limit after translation of a Palais–Smale sequence at the moun-
tain pass level. The problem (1.1) becomes more delicate in the critical case p = 2∗.
Applying to the differential equation (1.1) the rescalings

u �→ ur,x0 , where ur,x0(x) = r(N−2)/2u(r(x− x0)), (1.3)

the linear term vanishes as r → ∞ and, since the limit problem

− Δu = Q(x0)|u|2∗−2u in R
N (1.4)

possesses nontrivial solutions, the local compactness of AQ := AQ,2∗ is lost. In
the case where Q vanishes at infinity, the functional JQ := JQ,2∗ therefore, does
not satisfy the Palais-Smale condition at every level. Indeed, if u is a nontrivial
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Dual ground states for the critical Helmholtz equation 1157

solution of (1.4) for some x0 ∈ R
N , consider the function v given by

v = Q1/2+
(x0)|u|2∗−2u,

where 2+ = 2N/(N + 2) is the conjugate exponent to 2∗. Then, v satisfies the dual
equation

|v|2+−2v = Q1/2∗
(x0)R0(Q1/2∗

(x0)v),

where R0 = (−Δ)−1. The sequence (vn)n defined from v via the dual rescalings
vn(x) := n(N+2)/2v(n(x− x0)) is then a Palais-Smale sequence for the dual func-
tional JQ at level c = N−1‖v‖2+

2+ = N−1‖∇u‖2
2, and this sequence has no converging

subsequence in L2+
(RN ).

In analogy to the study of the critical problem (1.1) on a bounded domain, start-
ing with the celebrated work of Brézis and Nirenberg [3], we shall try to recover some
kind of compactness by comparing the mountain pass level LQ of the functional
JQ with the least energy level L∗

Q among all possible limiting problems (1.4) with
x0 ∈ R

N . From the duality between the Sobolev and the Hardy–Littlewood–Sobolev
inequalities, it follows that

L∗
Q =

SN/2

N‖Q‖(N−2)/2
∞

,

where S denotes the optimal constant in the Sobolev inequality (see § 3.2 for more
details).

The general strategy consists roughly in two steps:

(I) show that at every level 0 < β < L∗
Q, the Palais–Smale condition is satisfied,

and

(II) establish the strict inequality LQ < L∗
Q.

Ambrosetti and Struwe [2] confirmed that, for the Dirichlet problem on a bounded
domain, this scheme is also adapted to the dual variational framework. However,
whereas the authors in [2] reduce the proof of the Palais–Smale condition for the
dual functional to the proof of the same property for the direct functional, we do
not have for the problem (1.1) on R

N a direct functional at hand. In our approach
towards the above steps (I) and (II), we choose instead to work directly with the
resolvent operators for the original and the limit problems, via the corresponding
fundamental solutions. More precisely, we start by deriving accurate upper and
lower bounds on the difference of these fundamental solutions (lemma 2.1). This
involves a detailed study of Bessel functions for small arguments. Based on these
estimates, we then prove a new local compactness property for the difference oper-
ator Rk − R0, where R0 = (−Δ)−1 (see proposition 2.4). In addition, we show
that Rk remains locally compact in subcritical Lebesgue spaces. Combining these
properties, step (I) can be completed in the case where Q vanishes at infinity.

The next step is to prove the strict inequality LQ < L∗
Q. There, the lower bound

on the difference of the fundamental solutions plays a key role. Indeed, it implies
that in dimension N � 4 the quadratic form of the operator Rk − R0 is positive
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for positive functions supported in sets of small diameter. For such functions, the
energy of JQ can thus be made smaller than that of the dual functional associated
with (1.4). Since we are working with a nonconstant Q, an additional requirement
(see (Q2) in theorem 1.1 below) is needed to complete the argument. The condition
that we impose controls the way in which Q approaches its maximum value ‖Q‖∞.
The same condition also appears in several related critical problems, and it seems
to go back to the work of Escobar [7]. Let us mention that Egnell [6] provided
examples of critical problems on bounded domains for which this assumption is
necessary. More recently, this condition was also used in a paper by Chabrowski
and Szulkin [4], on a strongly indefinite critical nonlinear Schrödinger equation
on R

N with periodic coefficients. There, the authors work in a direct variational
framework and use generalized linking arguments to show the existence of a Palais–
Smale sequence at some level. The condition (Q2) is used to prove that this level lies
strictly below L∗

Q. A nontrivial critical point is then obtained with the help of Lions’
local compactness lemma [18] (see also [22, lemma 1.21]). Our approach to treat
periodic, and more generally asymptotically periodic functions Q, is inspired by [4],
although our arguments differ significantly. Working within the dual framework, we
can simply use the mountain pass theorem without Palais–Smale condition, but we
need to show that the nonvanishing property for Rk, proven in [11, theorem 3.1]
for noncritical exponents continues to hold in the critical case p = 2∗.

As already pointed out by Brézis and Nirenberg [3], there is a strong contrast
between the dimensions N = 3 and N � 4, for problems with the critical exponent.
In the present case, the estimates on the difference of the fundamental solutions have
the opposite sign for N = 3, so that Rk − R0 acts negatively on positive functions.
This does not permit to verify step (II) above and we show that, in fact, LQ = L∗

Q

holds for any bounded Q � 0 in this case. Moreover, we find that the mountain
pass level LQ is not achieved.

As indicated in [11], every nontrivial critical point v ∈ L2+
(RN ) of JQ is related,

via the transformation

u = Rk(Q1/2∗
v),

to a nontrivial strong solution u ∈W 2,2∗
(RN ) of (1.1) (see § 3.1 for more details).

The solutions we obtain in the present paper have the distinctive property that the
corresponding critical point of JQ has minimal energy among all nontrivial critical
points. Following the terminology introduced in a recent paper [8], we call such
solutions dual ground states of (1.1) (cf. § 3.1 for the precise definition). The main
result in the present paper is the following.

Theorem 1.1. Let N � 3 and consider Q ∈ L∞(RN )\{0} such that Q � 0 a.e.
in R

N .

(i) If N � 4 and Q satisfies the following conditions,
(Q1) Q = Qper +Q0, where Qper, Q0 � 0 are such that Qper is periodic and

Q0(x) → 0 as |x| → ∞;
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(Q2) there exists x0 ∈ R
N with Q(x0) = max

RN
Q and, as |x− x0| → 0,

Q(x0) −Q(x) =

⎧⎪⎨⎪⎩
o(|x− x0|2), if N � 5,

O(|x− x0|2), if N = 4,

then, the problem (1.1) with p = 2∗ has a dual ground state.

(ii) If N = 3, no dual ground state exists for (1.1) with p = 2∗.

Note that the assumption (Q1) also allows for the cases Q = Q0 and Q = Qper.
Let us point out that, for a maximum point x0 of Q, the condition Q(x0) −Q(x) =
O(|x− x0|2) as x→ x0 is satisfied as soon as Q is twice differentiable at x0. The
assumption Q(x0) −Q(x) = o(|x− x0|2) as x→ x0 is more restrictive and requires
some additional flatness of Q at x0 (cf. [6]). For small k > 0, the condition (Q2)
seems to be sharp. However, using a scaling argument, we can slightly weaken
this assumption in dimensions N � 5 in the following sense: If Q is given and
x0 is some maximum point of Q for which Q(x0) −Q(x) = O(|x− x0|2) as x→
x0. Then, if (Q1) is satisfied, there is some k0 > 0 such that for all k � k0 the
equation (1.1) with p = 2∗ has a dual ground state. Concerning the existence of
multiple solutions, the method developed recently (see [8, theorem 4.1]) for the
high-frequency limit k → ∞ can be combined with the results of the present paper
to relate the number of dual bound states (i.e., solutions of (1.1) associated with
critical points of the dual functional) to the topology of the set M of maximum
points of Q. More precisely, for every given continuous Q vanishing at infinity
and satisfying the condition Q(x0) −Q(x) = O(|x− x0|2) as x→ x0 for some of its
maximum points x0 there is k∗ > 0 such that for all k � k∗ the problem (1.1) has
at least catMδ

(M) dual bound states, where Mδ is some neighbourhood of M and
cat denotes the Ljusternik–Schnirelman category.

Previous results on the critical equation (1.1) had been obtained in the radial case
in [10] and very recently in [19], where a broad class of nonlinearities is considered.
Up to our knowledge, theorem 1.1 is the first result concerning solutions of the
nonlinear Helmholtz equation with critical nonlinearity and nonradial Q. Let us
also mention that the lower critical case p = 2(N + 1)/(N − 1) is still open. There,
we expect completely different phenomena than for p = 2∗. A suitable method,
therefore, needs to be found and we will address this issue in a forthcoming paper.

We shall now briefly describe the structure of the paper. In § 2, we study the
Helmholtz resolvent operator in the Lebesgue space L2+

(RN ). Recalling first the
construction of the fundamental solution of the Helmholtz equation and its asymp-
totic properties, we derive in lemma 2.1 new upper and lower bounds on the
difference of the latter and the fundamental solution of Laplace’s equation, for
small arguments. The proof consists in the precise estimation of Bessel functions
and their derivatives, and the result is of crucial importance for the whole paper.
As a first application, we prove in proposition 2.4 that the difference

Rk − R0 : L2+
(RN ) → L2∗

loc(R
N ),
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where R0 denotes the Laplace resolvent operator, is compact. There, we start by
decomposing the fundamental solution of the Helmholtz equation in a similar way as
in [11] and then apply the upper bounds obtained in lemma 2.1. Another essential
property of the Helmholtz resolvent, the nonvanishing property, is established in
the case p = 2∗ in theorem 2.5. Its proof relies on improvements of previous results
from [11] by means of the Hardy–Littlewood–Sobolev inequality. After this study
of the Helmholtz resolvent, we turn in § 3 to the existence of dual ground states of
(1.1) with p = 2∗. We start by recalling the dual variational framework set up in
[11] and the characterization of the dual mountain pass level LQ. Using the com-
pactness properties of Rk and of Rk − R0 established in § 2, we then analyse the
behaviour of Palais–Smale sequences for JQ at the level LQ. Under the assumption
LQ < L∗

Q, we obtain in proposition 3.3 the existence of a nontrivial critical point for
JQ in the case where Q is asymptotically periodic. The nonvanishing property plays
here a key role in handling the periodic part Qper of the coefficient Q. Section 3.3
is then devoted to estimating the dual mountain pass level LQ under the additional
‘flatness condition’ (Q2). There, we show that the positive lower bound on the dif-
ference of the fundamental solutions given by lemma 2.1 yields the strict inequality
LQ < L∗

Q, in the case N � 4. Combining the above results, we obtain in § 3.4 the
existence of dual ground states stated in theorem 1.1. The paper concludes with the
3-dimensional case, in which we show that LQ = L∗

Q holds and, by a contradiction
argument, we obtain the nonexistence of dual ground states for (1.1) with p = 2∗

in this case.
We close this introduction by fixing some notation. Throughout the paper, we

denote by Br(x) the open ball in R
N with radius r and centre at x. Moreover,

we set Br = Br(0). The constant ωN := 2πN/2/(NΓ(N/2)), where Γ is the gamma
function, represents the volume of the unit ball B1. By 1M we shall denote the char-
acteristic function of a measurable set M ⊂ R

N . We write S(RN ) for the space of
Schwartz functions and S ′ for its dual, that is, the space of tempered distributions.
Furthermore, we shall indifferently denote by f̂ or F(f) the Fourier transform of a
function f ∈ S ′. For 1 � s � ∞, we abbreviate the norm in Ls(RN ) by ‖ · ‖s.

2. The Helmholtz resolvent in the critical case

2.1. Fundamental solutions

Without loss of generality and to simplify formulas, we consider the problem
(1.1) with k = 1. The general case follows by rescaling the independent variable.

For N � 3, the radial outgoing fundamental solution of the Helmholtz equation
−Δu− u = δ0 in R

N is given by

Φ(x) :=
i
4
(2π|x|)(2−N)/2H

(1)
(N−2)/2(|x|), for x ∈ R

N\{0}, (2.1)

where H(1)
(N−2)/2 denotes the Hankel function of the first kind of order (N − 2)/2.

For a function f ∈ S(RN ) the convolution u := Φ ∗ f ∈ C∞(RN ) is a solution of the
inhomogeneous Helmholtz equation −Δu− u = f which satisfies the Sommerfeld
outgoing radiation condition ∂ru(x) − iu(x) = o(|x|(1−N)/2), as |x| → ∞. Moreover,
it is known (see [12]) that, in the sense of tempered distributions, the Fourier
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transform of Φ is given by

Φ̂(ξ) = (2π)−N/2 1
|ξ|2 − (1 + i0)

:= (2π)−N/2 lim
ε→0+

1
|ξ|2 − (1 + iε)

. (2.2)

Since we shall be considering real-valued solutions of the Helmholtz equation in
the sequel, we turn our attention to

Ψ(x) := Re(Φ(x)) = −1
4
(2π|x|)(2−N)/2Y(N−2)/2(|x|), for x ∈ R

N\{0}, (2.3)

where Y(N−2)/2 denotes the Bessel function of the second kind of order (N − 2)/2.
Ψ should be seen as the fundamental solution of the Helmholtz equation associated
with real-valued standing waves.

Let us recall some well-known facts concerning the Bessel functions of the second
kind: For nonnegative orders ν and positive arguments t, the asymptotic behaviour
of Yν(t) is given by (see [15, remark 5.16.2])

Yν(t) = −2νΓ(ν)
πtν

(1 +O(t)), as t→ 0, if ν > 0, (2.4)

Y0(t) = − 2
π

ln
2
t

+O(1), as t→ 0, (2.5)

Yν(t) = −
√

2
πt

cos
(
t− (2ν − 1)π

4

)
(1 +O(t−1)), as t→ ∞, for all ν � 0.

(2.6)

As a consequence, we find that

Ψ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

N(N − 2)ωN
|x|2−N (1 +O(|x|)), as |x| → 0,

1
2
(2π|x|)(1−N)/2 cos

(
|x| − (N − 3)π

4

)
(1 +O(|x|−1)), as |x| → ∞.

(2.7)
Denoting by yν the first positive zero of Yν with ν � 0, we deduce from the asymp-
totics (2.4) and (2.5), that Yν(t) < 0 for all t ∈ (0, yν) and therefore Ψ(x) > 0 for
all |x| < yν .

Recalling that for N � 3 the fundamental solution Λ of Laplace’s equation in R
N

is given by

Λ(x) =
1

N(N − 2)ωN
|x|2−N , for x ∈ R

N\{0}, (2.8)

we see from (2.7) that Ψ(x) behaves like Λ(x) for small |x|. Our first result gives
more precise estimates on the way Ψ(x) approaches Λ(x) as |x| → 0. In partic-
ular, we observe a strong contrast between the dimension N = 3 and the higher
dimensions N � 4.

Lemma 2.1. Let r > 0 be given such that r < y(N−4)/2 if N � 4 and r < π if
N = 3.
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(i) There exist κ1, κ2 > 0 only depending on r and N , such that for all x ∈ Br,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κ1|x|4−N � Ψ(x) − Λ(x) � κ2|x|4−N , if N � 5,

κ1| ln |x| | � Ψ(x) − Λ(x) � κ2| ln |x| |, if N = 4,

−κ1|x| � Ψ(x) − Λ(x) � −κ2|x|, if N = 3.

(ii) For every multiindex α ∈ N
N
0 with |α| � 1, there exists κ3 > 0 only depending

on |α|, r and N , such that

|∂α(Ψ(x) − Λ(x))| � κ3|x|4−N−|α|, for all x ∈ Br. (2.9)

Proof. We start by considering for ν � 1 the function ην : [0,∞) → R given by

ην(t) :=

{
−cνtνYν(t), t > 0,
1, t = 0,

where cν =
π

2νΓ(ν)
.

Remark that ην is continuous, as a consequence of (2.4) and since Yν is analytic on
(0,∞). In addition, for t > 0, the recursion formula d/dt[tνYν(t)]′ = tνYν−1(t) (see
[15, p. 105]) gives

η′ν(t) = −cνtνYν−1(t).

Hence, ην is strictly increasing in the interval (0, yν−1) and, in particular, ην > 1 in
this interval. Moreover, using the asymptotic expansions for small arguments (2.4)
and (2.5), we see that

lim
t→0+

η′ν(t)
t

= −cν lim
t→0+

tν−1Yν−1(t) =
1

2(ν − 1)
, if ν > 1,

and lim
t→0+

η′1(t)
t| ln t| = −π

2
lim

t→0+

Y0(t)
− ln t

= 1.

Therefore, given 0 < r < yν−1 and since y0 < 1, there exist constants κ′1 = κ′1(ν, r)
and κ′2(ν, r) such that

η′ν(t)
t

� 2κ′1, if ν > 1, and
η′1(t)
t| ln t| � 2κ′1, for all 0 < t < r,∣∣∣η′ν(t)

t

∣∣∣ � 2κ′2, if ν > 1, and
∣∣∣η′1(t)
t ln t

∣∣∣ � 2κ′2, for all 0 < t < r.

Writing

ην(t) − 1
t2

=
∫ 1

0

s
η′ν(st)
st

ds and
η1(t) − 1
t2| ln t| =

∫ 1

0

s

∣∣∣∣ ln(st)
ln t

∣∣∣∣ η′1(st)
st| ln(st)| ds,

we obtain the bounds

ην(t) − 1 � κ′1t
2, if ν > 1, and η1(t) − 1 � κ′1t

2| ln t|, for all 0 < t < r,
(2.10)

|ην(t) − 1| � κ′2t
2, if ν > 1, and |η1(t) − 1| � κ′′2 t

2| ln t|, for all 0 < t < r,
(2.11)
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with some κ′′2 = κ′′2(r) > 0. The assertion (i) in case N � 4 follows from (2.10) and
(2.11), since we have

Ψ(x) − Λ(x) = Λ(x)(η(N−2)/2(|x|) − 1) =
1

N(N − 2)ωN
|x|2−N (η(N−2)/2(|x|) − 1).

In the case N = 3, we have

Ψ(x) − Λ(x) =
1

4π|x| (cos |x| − 1). (2.12)

Remark that

cos t− 1
t2

= −
∫ 1

0

s
sin(st)
st

ds, t �→ sin t
t

is decreasing in [0, π], lim
t→0

sin t
t

= 1,

and |sin t/t| � 1 for all t > 0. We thus conclude that for given 0 < r0 < π there is
a constant κ1 = κ1(r0) > 0 such that

cos t− 1
t2

� −κ1, for all 0 < t < r0, and
cos t− 1

t2
� −1

2
, for all t > 0.

Plugging these estimates in (2.12) yields the assertion (i) for N = 3 with κ2 =
1/(8π).

To prove the assertion (ii), we notice that for α ∈ N
N
0 and k = |α|, an induction

argument based on the recursion formula d/dt[t−νYν(t)]′ = −t−νYν+1(t) (see [15,
p. 105]) gives

∂α(Ψ(x) − Λ(x)) =
�k/2�∑
�=0

fk−�(|x|)Pk−2�(x),

where for m ∈ N0, Pm(x) is a homogeneous polynomial of degree m and where

fm(t) = (−1)m 2mΓ((N − 2)/2) +m)
Γ((N − 2)/2)

× t2−N−2m

N(N − 2)ωN
[η(N−2)/2+m(t) − 1], t > 0.

As a consequence, given r > 0, there is a constant γ = γ(N, k, r) > 0 such that

|∂α(Ψ(x) − Λ(x))| � γ|x|2−N−k

�k/2�∑
�=0

[η(N−2)/2+k−�(|x|) − 1], for all |x| < r.

Using (2.11) and remarking that (N − 2)/2 + k − � > 1 for k � 1 and 0 � � �
�k/2�, we obtain the desired assertion and the lemma is proven. �
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2.2. Compactness properties

Here, and in the next section, we discuss the properties of the resolvent Helmholtz
operator R := R1 given by the convolution f �→ Ψ ∗ f for f ∈ S(RN ), where Ψ is
given in (2.3). Let us first remark that as a consequence of an estimate of Kenig,
Ruiz and Sogge [14, theorem 2.3], this mapping extends as a continuous linear
operator

R : L2+
(RN ) → L2∗

(RN ).

In particular, there exists a constant C0 > 0 only depending on N such that

‖Rv‖2∗ � C0‖v‖2+ , for all v ∈ L2+
(RN ). (2.13)

Let us denote by

R0 : L2+
(RN ) → L2∗

(RN )

the linear operator given by the convolution with the fundamental solution of
Laplace’s equation

R0v := Λ ∗ v, v ∈ L2+
(RN ).

Notice that R0 is well defined and continuous, as a consequence of the weak Young
inequality [17, p. 107].

Remark 2.2. The results in this and the next sections are stated and proven for
the real part R of the resolvent, but they remain valid for the full resolvent R:
L2+

(RN ) → L2∗
(RN ) which is the extension of the convolution map f �→ Φ ∗ f ,

f ∈ S(RN ,C).

Lemma 2.3. For all 1 � t < 2∗ and all r > 0 the operator 1Br
R : L2+

(RN ) →
Lt(RN ) is compact.

Proof. By elliptic estimates (see [11, proposition A.1]), we can find for every r > 0
a constant Dr > 0 such that ‖Rv‖W 2,2+ (Br) � Dr‖v‖2+ for all v ∈ L2+

(RN ). Since

the embedding W 2,2+
(Br) ↪→ Lt(Br) is compact for all 1 � t < 2∗, and all r > 0, we

deduce that the operator 1Br
R : L2+

(RN ) → Lt(RN ) is compact for all 1 � t < 2∗

and all r > 0. �

Proposition 2.4.

(i) The difference R − R0 is a continuous linear mapping from L2+
(RN ) into

W 2,2∗
(RN )

(ii) For all r > 0, the operator 1Br
(R − R0): L2+

(RN ) → L2∗
(RN ) is compact.

Proof. In the sequel, for μ ∈ R, C and Cμ shall denote constants depending on N
and on N,μ respectively, but which may change from line to line.

To prove (i) we shall use a decomposition of Ψ, similar to the one introduced
in [11, § 3] for Φ. We fix a radial ψ ∈ S(RN ) such that ψ̂ ∈ C∞

c (RN ), 0 � ψ̂ � 1,
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ψ̂(ξ) = 1 for ||ξ| − 1| � 1/6 and ψ̂(ξ) = 0 for ||ξ| − 1| � 1/4. Write Ψ = Ψ1 + Ψ2

with

Ψ1 := (2π)−N/2(Ψ ∗ ψ), Ψ2 = Ψ − Ψ1. (2.14)

Then, for every f ∈ S(RN ) and α ∈ N
N
0 , the properties of the convolution of

Schwartz functions with a tempered distribution (see [21, theorem 7.19]) allow
to write

(∂αΨ1) ∗ f = (2π)−N/2[Ψ ∗ (∂αψ)] ∗ f = (2π)−N/2Ψ ∗ [(∂αψ) ∗ f ],

where ∂αψ ∈ S(RN ). Hence, from (2.13) and Young’s inequality for the convolution,
we obtain the estimate

‖(∂αΨ1) ∗ f‖2∗ = (2π)−N/2‖Ψ ∗ [(∂αψ) ∗ f ]‖2∗ � (2π)−N/2C0‖∂αψ‖1‖f‖2+ ,

for all f ∈ S(RN ). As a consequence, the convolution f �→ (∂αΨ1) ∗ f , f ∈ S(RN ),
extends as a continuous map from L2+

(RN ) into L2∗
(RN ) for every α ∈ N

N
0 .

Turning to Ψ2, we have by definition Ψ̂2 = (1 − ψ̂)Ψ̂ and, since taking real parts
in (2.2) yields

Ψ̂2(ξ) = (2π)−N/2 lim
ε→0+

|ξ|2 − 1
(|ξ|2 − 1)2 + ε2

(1 − ψ̂(ξ)) = (2π)−N/2 1 − ψ̂(ξ)
|ξ|2 − 1

,

we get Ψ̂2 ∈ C∞(RN ) and Ψ̂2(ξ) = (2π)−N/2(|ξ|2 − 1)−1 for |ξ| � 5/4. This gives
∂βΨ̂2 ∈ L1(RN ) for all β ∈ N

N
0 such that 2 + |β| > N . Therefore, using standard

differentiation properties of the Fourier transform, the fact that Ψ̂2 (and so Ψ2) is
radial and that F(f)(ξ) = F−1(f)(−ξ), we obtain

‖| · ||β|Ψ2‖∞ =
∥∥∥F (∂βΨ̂2

)∥∥∥
∞

�
∥∥∥∂βΨ̂2

∥∥∥
L1(RN )

� C|β|, for all |β| > N − 2.

Choosing β ∈ N
N
0 with |β| = N , we obtain that

|Ψ2(x)| � C|x|−N , for all x ∈ R
N . (2.15)

Using the same argument with ∂αΨ2 in place of Ψ2, for every α ∈ N
N
0 , we get

|∂αΨ2(x)| � C|α||x|−N−|α|, for all x ∈ R
N and all α ∈ N

N
0 . (2.16)

From lemma 2.1, we obtain estimates on ∂α(Ψ2 − Λ)(x) for |x| small. For large
values of |x|, we use (2.16) and |∂αΛ(x)| � C|α||x|2−N−|α|, which follows easily
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from (2.8). Altogether, we get for α ∈ N
N
0 and x ∈ R

N ,

|∂α(Ψ2 − Λ)(x)| �

⎧⎪⎨⎪⎩
C|α| min{|x|4−N−|α|, |x|2−N−|α|}, N = 3, N � 5, or

N = 4 and |α| � 1,
Cmin{1 + | ln |x||, |x|−2}, N = 4 and |α| = 0.

(2.17)

As a consequence, denoting by L
N/(N−2)
w (RN ) the weak-LN/(N−2) space, we infer

that

∂α(Ψ2 − Λ) ∈ LN/(N−2)
w (RN ), for all α ∈ N

N
0 such that |α| � 2.

From the weak Young inequality, the convolution f �→ ∂α(Ψ2 − Λ) ∗ f , f ∈ S(RN ),
extends as a continuous map from L2+

(RN ) into L2∗
(RN ) for such α. Summarizing

and using the fact that

‖(Ψ − Λ) ∗ f‖2
W 2,2∗ � 2

∑
|α|�2

‖∂α(Ψ2 − Λ) ∗ f‖2
2∗ + 2

∑
|α|�2

‖(∂αΨ1) ∗ f‖2
2∗ ,

we obtain that the convolution f �→ (Ψ − Λ) ∗ f extends as a continuous map from
L2+

(RN ) into W 2,2∗
(RN ). Therefore, the operator

R − R0 : L2+
(RN ) →W 2,2∗

(RN )

is continuous and (i) is proven.
By the Rellich–Kondrachov theorem, the embedding W 2,2∗

loc (RN ) ↪→ Lt
loc(R

N ) is
compact for all 1 � t < 2N/(N − 6)+. Thus, we obtain the compactness of 1Br

(R −
R0) : L2+

(RN ) → L2∗
(RN ) for all r > 0, which proves (ii). �

2.3. Nonvanishing property and related estimates

As a key ingredient for the existence result in § 3 below, we prove that the non-
vanishing property of the quadratic form associated with the Helmholtz resolvent
holds true in the space Lp′

(RN ) with p = 2∗. This property has been proved in [11,
theorem 3.1] in the noncritical range 2(N + 1)/(N − 1) < p < 2∗.

Theorem 2.5. Consider a bounded sequence (vn)n ⊂ L2+
(RN ) satisfying

lim sup
n→∞

∣∣∣∣∫
RN

vnRvn dx
∣∣∣∣ > 0. (2.18)

Then there exists R > 0, ζ > 0 and a sequence (xn)n ⊂ R
N such that, up to a

subsequence, ∫
BR(xn)

|vn|2+
dx � ζ, for all n. (2.19)
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Proof. Let us assume by contradiction that

lim
n→∞

(
sup

y∈RN

∫
Bρ(y)

|vn|2+
dx

)
= 0, for all ρ > 0. (2.20)

Consider the decomposition Ψ = Ψ1 + Ψ2 introduced in (2.14), and denote by R1:
L2+

(RN ) → L2∗
(RN ) the continuous extension of the convolution map f �→ Ψ1 ∗ f ,

f ∈ S(RN ). Since lemma 3.4 in [11] holds for the critical exponent p = 2∗, we obtain
by density of S(RN ) in L2+

(RN ) that∫
RN

vnR1vn dx→ 0, as n→ ∞, (2.21)

taking real parts. Turning to Ψ2, we note that the estimate (2.15) and the behaviour
of Ψ close to x = 0 given by (2.7) yield the existence of some constant C ′ = C ′(N) >
0 such that

|Ψ2(x)| � C ′ min{|x|2−N , |x|−N}, for all x �= 0. (2.22)

Setting MR := R
N\BR for R > 1, we deduce from (2.22) that

‖Ψ2‖LN/(N−2)(MR) � C ′
( ∫

|x|�R

|x|−N2/(N−2) dx

)(N−2)/N

→ 0, as R→ ∞.

Hence, by Young’s inequality,

sup
n∈N

∣∣∣ ∫
RN

vn[(1MR
Ψ2) ∗ vn] dx

∣∣∣
� ‖Ψ2‖LN/(N−2)(MR) sup

n∈N

‖vn‖2
L2+ (RN )

→ 0, as R→ ∞. (2.23)

Consider a decomposition of R
N into disjoint N -cubes {Q�}�∈N of side length R,

and let for each � the N -cube Q′
� have the same centre as Q� but side length

3R. From the estimate (2.22) and the Hardy–Littlewood–Sobolev inequality [17,
theorem 4.3], there is a constant C ′′ = C ′′(N) such that

∣∣∣∣∫
RN

vn[(1BR
Ψ2) ∗ vn] dx

∣∣∣∣ � ∞∑
�=1

∫
Q�

(∫
|x−y|<R

|Ψ2(x− y) ||vn(x)| |vn(y)|dy
)

dx

� C ′
∞∑

�=1

∫
Q�

(∫
Q′

�

|vn(x)| |vn(y)|
|x− y|N−2

dy

)
dx

� C ′
∞∑

�=1

(∫
Q′

�

|vn(x)|2+
dx

)(N+2)/N
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� C ′
[

sup
�∈N

∫
Q′

�

|vn(x)|2+
dx

]2/N ∞∑
�=1

∫
Q′

�

|vn(x)|2+
dx

� C ′′
[

sup
y∈RN

∫
B3R

√
N (y)

|vn(x)|2+
dx

]2/N

3N‖vn‖2+

2+ ,

for all n. Therefore, the boundedness of (vn)n and the assumption (2.20) give

lim
n→∞

∫
RN

vn[(1BR
Ψ2) ∗ vn] dx = 0, for every R > 0. (2.24)

Combining (2.21), (2.23) and (2.24), we obtain∫
RN

vnRvn dx =
∫

RN

vnR1vn dx+
∫

RN

vn[Ψ2 ∗ vn] dx→ 0, as n→ ∞,

contradicting the assumption (2.18). The theorem follows. �

Let us recall a result obtained recently [8, lemma 2.4], on the bilinear form
associated with the operator R for functions having disjoint support.

Lemma 2.6. Let p > 2(N + 1)/(N − 1). There exists a constant D = D(N, p) >
0 such that for any R > 0, r � 1 and u, v ∈ Lp′

(RN ) with supp(u) ⊂ BR and
supp(v) ⊂ R

N\BR+r,∣∣∣∣∫
RN

uRv dx
∣∣∣∣ � Dr−λp‖u‖p′‖v‖p′ , where λp =

N − 1
2

− N + 1
p

.

The proof (see [8]) uses the decomposition Ψ = Ψ1 + Ψ2 introduced in (2.14)
for the fundamental solution of the Helmholtz equation. The dominant term in
the estimate comes from the convolution with Ψ1 and is obtained as follows. First
remark that the Fourier transforms Ψ̂1 and Ψ̂1ϕ̂ coincide, for any ϕ satisfying ϕ̂ ≡ 1
on the set {||ξ| − 1| � 1/4}. Choosing such a ϕ for which, in addition, supp(ϕ̂) is
contained in {||ξ| − 1| � 1/2}, one can replace v with ϕ ∗ v and apply the result in
[11, proposition 3.3] to the convolution (1Mr

Ψ1) ∗ (ϕ ∗ v) giving the asserted decay
rate. The remaining convolution terms are estimated using Young’s inequality and
these only give lower order contributions.

Based on this estimate, we prove a technical result which will be used in
§ 3.2 below to deal with a remainder term in an estimate derived from the
Hardy–Littlewood–Sobolev inequality.

Lemma 2.7. Let (zn)n ⊂ L2+
(RN ) be a bounded sequence. Then, for every ε > 0,

there exists ρε > 0 such that

lim inf
n→∞

∣∣∣∣ ∫
RN

1Bρ
znR

(
1Mρ

zn

)
dx
∣∣∣∣ < ε, for all ρ � ρε.

Here, Mρ := R
N\Bρ.
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Proof. Let ζ := sup{‖zn‖2+ : n ∈ N}. We first see that by lemma 2.6 there is a
constant D = D(N) > 0 such that

∣∣∣∣ ∫
RN

1Bρ
znR(1M2ρ

zn) dx
∣∣∣∣ � Dζ2ρ−1/N , for all n ∈ N and every ρ � 1.

Hence, setting ρ0 := max{1, (2Dζ2/ε)N}, we find

∣∣∣∣ ∫
RN

1Bρ
znR

(
1M2ρ

zn

)
dx
∣∣∣∣ � ε

2
, for all n ∈ N and every ρ � ρ0.

Next, we choose η > 0 such that η < (ε/(2C0ζ))2
+
, where C0 > 0 is such that (2.13)

holds, and we claim that

∃ρ1 > 0 such that lim inf
n→∞

∫
B2ρ\Bρ

|zn|2+
dx < η, for all ρ � ρ1. (2.25)

Suppose this is not the case. Then, for every k ∈ N we can find a radius ρk � k and
an index n0(k) ∈ N for which

∫
B2ρk

\Bρk

|zn|2+
dx � η, for all n � n0(k).

Moreover, we can assume without loss of generality that n0(k + 1) � n0(k) and
ρk+1 � 2ρk. For each � ∈ N, it follows that

ζ2+ �
∫

RN

|zn|2+
dx �

�∑
k=1

∫
B2ρk

\Bρk

|zn|2+
dx � �η, for all n � n0(�).

For � large enough, we obtain a contradiction, and the claim is proven.
As a consequence of the above results, we can write for ρ � ρε := max{ρ0, ρ1},∣∣∣∣ ∫

RN

1Bρ
znR(1Mρ

zn) dx
∣∣∣∣

�
∣∣∣∣ ∫

RN

1Bρ
znR(1M2ρ

zn) dx
∣∣∣∣+ ∣∣∣∣ ∫

RN

1Bρ
znR(1B2ρ\Bρ

zn) dx
∣∣∣∣

� ε

2
+ C0ζ‖1B2ρ\Bρ

zn‖2+ ,

using Hölder’s inequality and the estimate (2.13). The conclusion then follows from
the claim (2.25). �
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3. Existence via the dual variational method

3.1. The dual energy functional

We follow the path established in [11] and use a dual variational framework to
find nontrivial solutions for the problem

− Δu− u = Q(x)|u|2∗−2u, u ∈W 2,2∗
(RN ), (3.1)

where Q ∈ L∞(RN ) is a nonnegative function which is not identically zero. Setting
v = Q1/2+ |u|2∗−2u, we shall study the fixed-point problem

|v|2+−2v = Q1/2∗
R(Q1/2∗

v), v ∈ L2+
(RN ), (3.2)

where R denotes the resolvent Helmholtz operator defined in § 2.2. For the Birman-
Schwinger type operators associated with the Helmholtz and Laplace resolvents
respectively, we introduce the notation

AQv := Q1/2∗
R(Q1/2∗

v) and GQv := Q1/2∗
R0(Q1/2∗

v), v ∈ L2+
(RN ).

(3.3)

We consider the functional

JQ(v) :=
1

2+

∫
RN

|v|2+
dx− 1

2

∫
RN

vAQv dx, for v ∈ L2+
(RN ). (3.4)

It is known that J ∈ C1(L2+
(RN ),R) and from the symmetry of AQ (cf. [11, lemma

4.1]), we have

J ′
Q(v)w =

∫
RN

(
|v|2+−2v − AQv

)
w dx, for all v, w ∈ L2+

(RN ).

We detect solutions of (3.1) by finding critical points of the functional JQ.
Indeed, for v ∈ L2+

(RN ), we have J ′
Q(v) = 0 if and only if v satisfies (3.2). Setting

u = R(Q1/2∗
v), we see that u solves u = R(Q|u|2∗−2u). Any solution of this integral

equation has the following properties:

Lemma 3.1 (Special case of [11, lemma 4.3]). Let Q ∈ L∞(RN ) and consider a
solution u ∈ L2∗

(RN ) of u = R(Q|u|2∗−2u). Then, u ∈W 2,q(RN ) for all 2∗ � q <
∞ and u is a strong solution of (3.1). Moreover, u is the real part of a function ũ
which satisfies Sommerfeld’s outgoing radiation condition in the form

lim
R→∞

1
R

∫
BR

∣∣∣∣∇ũ(x) − iũ(x)
x

|x|
∣∣∣∣2 dx = 0.

In addition, u satisfies the following asymptotic relation

lim
R→∞

1
R

∫
BR

∣∣∣∣u(x) −√π

2
Re
[
ei|x|−i(N−3)π/4

|x|(N−1)/2
F(Q|u|2∗−2u)

(
x

|x|
)]∣∣∣∣2 dx = 0.
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As shown in [11, lemma 4.2], the functional JQ has the mountain pass geometry,
that is,

(MP1) there exists δ > 0 and ρ > 0 such that JQ(v) � δ > 0,

for all v ∈ L2+
(RN ) with ‖v‖2+ = ρ;

(MP2) there exists v0 ∈ L2+
(RN ) such that ‖v0‖2+ > ρ and JQ(v0) < 0.

The mountain pass level

LQ := inf
P∈P

max
t∈[0,1]

JQ(P (t)),

where

P =
{
P ∈ C([0, 1], L2+

(RN )) : P (0) = 0 and JQ(P (1)) < 0
}
,

is therefore, well defined, 0 < LQ <∞, and by the same arguments as in [9, lemma
4.1], it can be characterized as the following infimum

LQ = inf
{
JQ(tvv) : v ∈ L2+

(RN ) with
∫

RN

vAQv dx > 0
}

= inf

{
1
N

( ‖v‖2
2+∫

RN vAQv dx

)N/2

: v ∈ L2+
(RN ) with

∫
RN

vAQv dx > 0

}
.

(3.5)

Here, for v ∈ L2+
(RN ) with

∫
RN vAQv dx > 0,

tv =

( ∫
RN |v|2+

dx∫
RN vAQv dx

)1/(2−2+)

(3.6)

denotes the unique t > 0 with the property JQ(tvv) = max
t>0

JQ(tv). Remarking that

for every such v, J ′
Q(tvv)v = 0, we see that if LQ is achieved by some critical point

of JQ, then LQ coincides with the least-energy level, that is,

LQ = inf{JQ(v) : v ∈ L2+
(RN )\{0} with J ′

Q(v) = 0}.
Following the terminology introduced in [8], we will call a solution u of the nonlinear
Helmholtz equation (3.1) a dual ground state, if u = R(Q1/2∗

v) and v ∈ L2+
(RN )

is a critical point of the functional JQ at the mountain pass level, that is, J ′
Q(v) = 0

and JQ(v) = LQ. As a consequence of the discussion at the beginning of the section,
every dual ground state u has the properties stated in lemma 3.1.

3.2. Palais–Smale sequences

In this section, we investigate the properties of Palais–Smale sequences for the
functional JQ. Recall that a sequence (vn)n ⊂ L2+

(RN ) is called a Palais–Smale
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sequence for JQ if (JQ(vn))n is bounded and ‖J ′
Q(vn)‖∗ → 0 as n→ ∞. Here, ‖ · ‖∗

denotes the dual norm to ‖ · ‖2+ . If, in addition, JQ(vn) → β as n→ ∞ for some β ∈
R, (vn)n is called a (PS)β-sequence for JQ. We start by considering sequences which
satisfy a localized version of the above property. For this purpose, we introduce the
following piece of notation: If v ∈ L2+

(RN ), we let J ′
Q(v)1Br

denote the continuous
linear form w �→ J ′

Q(v)(1Br
w) on L2+

(RN ).

Lemma 3.2. Let (vn)n ⊂ L2+
(RN ) be a bounded sequence such that, for all r > 0,

‖J ′
Q(vn)1Br

‖∗ → 0 as n→ ∞. Then, up to a subsequence,

(i) (vn)n has a weak limit v ∈ L2+
(RN ).

(ii) For all 1 � q < 2+ and all r > 0, we have 1Br
vn → 1Br

v, strongly in Lq(RN )
and vn → v a.e. on R

N , as n→ ∞.

(iii) J ′
Q(v) = 0.

(iv) As n→ ∞, we have for all r > 0,

‖1Br
(vn − v)‖2+

2+ =
∫

RN

1Br
(vn − v)AQ(vn − v) dx+ o(1). (3.7)

Proof. Since (vn)n is bounded in L2+
(RN ), there exists v ∈ L2+

(RN ) and a sub-
sequence which we still denote by (vn)n such that vn ⇀ v weakly. This proves (i).
From now on, we restrict to this particular subsequence. To prove (ii), let r > 0,
1 � t < 2∗ and ϕ ∈ C∞

c (RN ). For n,m ∈ N, we have∣∣∣∣ ∫
RN

(1Br
|vn|2+−2vn − 1Br

|vm|2+−2vm)ϕdx
∣∣∣∣

=
∣∣∣∣[J ′

Q(vn) − J ′
Q(vm)](1Br

ϕ) +
∫

RN

1Br
ϕAQ(vn − vm) dx

∣∣∣∣
� ‖J ′

Q(vn)1Br
− J ′

Q(vm)1Br
‖∗‖1Br

ϕ‖2+ + ‖1Br
AQ(vn − vm)‖t‖ϕ‖t′

� C[‖J ′
Q(vn)1Br

‖∗ + ‖J ′
Q(vm)1Br

‖∗]‖ϕ‖t′

+ ‖Q‖1/2∗
∞ ‖1Br

R(Q1/2∗
(vn − vm))‖t‖ϕ‖t′ ,

where the constant C > 0 depends on N and r. The first expression in the last
line vanishes as n,m→ ∞, by assumption, and the second one also vanishes due
to lemma 2.3. Therefore, arguing by density, we find that (1Br

|vn|2+−2vn)n is
a Cauchy sequence in Lt(RN ). Since the mapping N : Lt(RN ) → Lt/(2∗−1)(RN )
given by N(u) := |u|2∗−2u is well defined and Lipschitz continuous, it follows
that (1Br

vn)n = (N(1Br
|vn|2+−2vn))n is a Cauchy sequence in Lq(RN ) for all

1 � q < 2+. Since these spaces are complete, and since 1Br
vn ⇀ 1Br

v in each of
these spaces, we obtain the desired strong convergence 1Br

vn → 1Br
v in Lq(RN )

for all 1 � q < 2+. Going to a subsequence, we also have the pointwise convergence
vn(x) → v(x) as n→ ∞, for almost every x ∈ R

N .
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Assertion (iii) now follows from (ii), since for ϕ ∈ C∞
c (RN ) and r > 0 such that

supp(ϕ) ⊂ Br, we have

J ′
Q(v)ϕ =

∫
RN

1Br
|v|2+−2vϕdx−

∫
RN

1Br
ϕAQv dx

= lim
n→∞

[ ∫
RN

1Br
|vn|2+−2vnϕdx−

∫
RN

1Br
ϕAQvn dx

]
= lim

n→∞J ′
Q(vn)1Br

ϕ = 0.

To prove assertion (iv), we use the assumption ‖J ′
Q(vn)1Br

‖∗ → 0 as n→ ∞ and
write

o(1) = J ′
Q(vn)1Br

vn = ‖1Br
vn‖2+

2+ −
∫

RN

1Br
vnAQvn dx

= ‖1Br
vn‖2+

2+ −
∫

RN

1Br
(vn − v)AQ(vn − v) dx

−
∫

RN

1Br
vnAQv dx−

∫
RN

1Br
vAQ(vn − v) dx.

(3.8)

The last expression vanishes as n→ ∞, since vn ⇀ v in L2+
(RN ) and since AQ:

L2+
(RN ) → L2∗

(RN ) is continuous. Furthermore, using (iii), the weak convergence
vn ⇀ v and the Brézis–Lieb lemma [22, lemma 1.32], which applies due to (ii), we
obtain

‖1Br
vn‖2+

2+ −
∫

RN

1Br
vnAQv dx

= ‖1Br
vn‖2+

2+ − (‖1Br
v‖2+

2+ −
∫

RN

1Br
vAQv dx) −

∫
RN

1Br
vnAQv dx

= ‖1Br
(vn − v)‖2+

2+ + o(1), as n→ ∞.

Substituting in (3.8), the desired conclusion follows. �

In the above proof, the fact that the operator 1Br
R: L2+

(RN ) → Lt(RN ) is
compact for 1 � t < 2∗ was essential. For t = 2∗, the compactness does not hold
anymore and therefore the assertion (ii) is false in this case. However, in view
of the proposition 2.4, this is only caused by the noncompactness of the operator
1Br

R0: L2+
(RN ) → L2∗

(RN ) associated with the fundamental solution of Laplace’s
equation. In the next result, we prove that local strong convergence can be restored,
provided the mountain pass level LQ lies below the threshold value given by the
least-energy level L∗

Q of the functional

J∗
Q(v) :=

1
2+

∫
RN

|v|2+
dx− 1

2

∫
RN

vGqv dx,

where, using the notation (3.3), Gqv = q1/2∗
R0(q1/2∗

v) for q = ‖Q‖∞. As men-
tioned in the introduction, this functional arises from the limit of suitable rescaling
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of JQ. The least-energy level L∗
Q can be characterized by a formula similar to (3.5),

namely

L∗
Q = inf

⎧⎨⎩ 1
N

(
‖v‖2

2+

‖Q‖2/2∗
∞

∫
RN vR0v dx

)N/2

: v ∈ L2+
(RN )\{0}

⎫⎬⎭ . (3.9)

We note incidentally that it can be expressed in terms of the optimal constant S
for the Sobolev inequality in R

N ,

‖∇u‖2
2 � S‖u‖2

2∗ , for all u ∈ L2∗
(RN ) with ∇u ∈ L2(RN ). (3.10)

Indeed, it is known (see [16] and also [5]) that the Sobolev inequality is dual to the
Hardy–Littlewood–Sobolev inequality∫

RN

vR0v dx � S−1‖v‖2
2+ (3.11)

and that the optimal constants are inverse to each other. Hence, we obtain

L∗
Q =

SN/2

N‖Q‖(N−2)/2
∞

. (3.12)

Proposition 3.3. Let Q ∈ L∞(RN )\{0} have the form Q = Qper +Q0, for some
Qper, Q0 � 0 such that Qper is Z

N -periodic and Q0(x) → 0 as |x| → ∞.
If (vn)n ⊂ L2+

(RN ) is a (PS)β–sequence for JQ such that β = LQ < L∗
Q, then

there exists w ∈ L2+
(RN ), w �= 0, such that J ′

Q(w) = 0 and JQ(w) = LQ.

Proof. Since (vn)n is a (PS)β-sequence for JQ with β > 0, it is bounded (see [11,
lemma 4.2]). Using lemma 3.2, we find

lim
n→∞

∫
RN

Q1/2∗
vnR(Q1/2∗

vn) dx =
(

1
2+

− 1
2

)−1

lim
n→∞

[
JQ(vn) − 1

2+
J ′

Q(vn)vn

]
= Nβ > 0.

Hence, the nonvanishing theorem 2.5 gives the existence of a sequence (xn)n ⊂ R
N

and of constants R, ζ > 0 such that, up to a subsequence,∫
BR(xn)

|vn|2+
dx � ‖Q‖−2+/2∗

∞∫
BR(xn)

|Q1/2∗
vn|2+

dx � ‖Q‖−2+/2∗
∞ ζ > 0, for all n. (3.13)

Moreover, we may assume that (xn)n ⊂ Z
N by making R larger, if necessary. We

now distinguish the two cases.
Case 1: |xn| → ∞, for a subsequence.
Let us restrict to this subsequence, setting wn := vn(· + xn) for all n. We shall

use lemma 3.2 for the sequence (wn)n and with Q replaced with Qper. We, therefore,
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need to check that ‖J ′
Qper

(wn)1Br
‖∗ → 0 as n→ ∞, for all r > 0. For this, observe

that for r > 0 and ϕ ∈ C∞
c (RN ), we have

J ′
Qper

(wn)1Br
ϕ = J ′

Q(vn)1Br(xn)ϕ(· − xn)

+
∫

RN

1Br
ϕ(AQ(·+xn) − AQper(·+xn))wn dx,

(3.14)

using the fact that Qper is invariant under Z
N -translations. Since (vn)n is a Palais–

Smale sequence, the first term in the right-hand side goes to zero uniformly for
‖ϕ‖2+ � 1. The second term can be estimated as follows.

∣∣∣∣ ∫
RN

1Br
ϕ(AQ(·+xn) − AQper(·+xn))wn dx

∣∣∣∣
=
∣∣∣∣ ∫

RN

1Br
ϕ(Q1/2∗

(· + xn) −Q1/2∗
per (· + xn))

R[(Q1/2∗
(· + xn) +Q1/2∗

per (· + xn))wn] dx
∣∣∣∣

� 2C0‖Q‖1/2∗
∞ ‖ϕ‖2+‖wn‖2+‖1Br

(Q1/2∗
(· + xn) −Q1/2∗

per (· + xn))‖∞,

(3.15)

where C0 > 0 is given by (2.13). Moreover, by assumption, Q(x) −Qper(x) =
Q0(x) → 0 as |x| → ∞. Thus, since |xn| → ∞ as n→ ∞ and Q,Qper � 0 are
bounded functions, it follows that

‖1Br
(Q1/2∗

(· + xn) −Q1/2∗
per (· + xn))‖∞ → 0, as n→ ∞, for all r > 0. (3.16)

Combining (3.14), (3.15) and (3.16), we find that ‖J ′
Qper

(wn)1Br
‖∗ → 0, as n→ ∞.

Therefore, the conditions of lemma 3.2 are fulfilled and, going to a subsequence, we
obtain wn ⇀ w in L2+

(RN ) and wn → w a.e. on R
N , for some w ∈ L2+

(RN ) which
satisfies J ′

Qper
(w) = 0.

Furthermore, from (3.7), we infer that, as n→ ∞,

‖1Br
(wn − w)‖2+

2+ =
∫

RN

1Br
(wn − w)AQper(wn − w) dx+ o(1)

=
∫

RN

1Br
(wn − w)AQper [1Br

(wn − w)] dx

+
∫

RN

1Br
(wn − w)AQper

[
1Mr

(wn − w)] dx+ o(1),

(3.17)

for all r > 0, where Mr := R
N\Br.
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For the first integral, we obtain with the proposition 2.4 and the characterization
(3.9) of L∗

Q, ∫
RN

1Br
(wn − w)AQper [1Br

(wn − w)] dx

=
∫

RN

1Br
(wn − w)GQper [1Br

(wn − w)] dx

+
∫

RN

1Br
(wn − w)(AQper − GQper)[1Br

(wn − w)] dx

� ‖Q‖2/2∗
∞

∫
RN

1Br
|wn − w|R0[1Br

|wn − w|] dx+ o(1)

� (NL∗
Q)−2/N‖1Br

(wn − w)‖2
2+ + o(1), as n→ ∞,

where GQper is given by (3.3) with Qper in place of Q. In addition, the Brézis–Lieb
lemma implies

‖1Br
(wn − w)‖2+

2+ � ‖wn − w‖2+

2+ = ‖wn‖2+

2+ − ‖w‖2+

2+ + o(1)

� ‖vn‖2+

2+ + o(1) =
(

1
2+

− 1
2

)−1(
JQ(vn) − 1

2
J ′

Q(vn)vn

)
+ o(1)

= Nβ + o(1), as n→ ∞,

since (vn)n is a (PS)β-sequence by assumption. Combining these two estimates, we
obtain⎡⎣1 −

(
β

L∗
Q

)2/N
⎤⎦ ‖1Br

(wn − w)‖2+

2+

� ‖1Br
(wn − w)‖2+

2+ − (NL∗
Q)−2/N‖1Br

(wn − w)‖2
2+ + o(1)

� ‖1Br
(wn − w)‖2+

2+ −
∫

RN

1Br
(wn − w)AQper [1Br

(wn − w)] dx+ o(1),

as n→ ∞, and (3.17) gives for all r > 0,⎡⎣1 −
(
β

L∗
Q

)2/N
⎤⎦ ‖1Br

(wn − w)‖2+

2+

�
∫

RN

1Br
(wn − w)AQper [1Mr

(wn − w)] dx+ o(1), (3.18)

as n→ ∞, where the first factor on the left-hand side is strictly positive since we
are assuming β < L∗

Q.
Let us now suppose by contradiction that (1Br

wn)n does not converge strongly
to 1Br

w in L2+
(RN ), for some fixed r > 0. Then, passing to a subsequence, there
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exists ε > 0 such that⎡⎣1 −
(
β

L∗
Q

)2/N
⎤⎦ ‖1Br

(wn − w)‖2+

2+ > ε for all n.

Lemma 2.7 applied to the sequence (Q1/2∗
per (wn − w))n gives ρε > 0 such that for all

ρ � max{ρε, r}, we have

ε > lim inf
n→∞

∣∣∣∣ ∫
RN

1Bρ
(wn − w)AQper [1Mρ

(wn − w)] dx
∣∣∣∣

� lim inf
n→∞

⎡⎣1 −
(
β

L∗
Q

)2/N
⎤⎦ ‖1Bρ

(wn − w)‖2+

2+ , using (3.18)

� lim inf
n→∞

⎡⎣1 −
(
β

L∗
Q

)2/N
⎤⎦ ‖1Br

(wn − w)‖2+

2+

� ε.

This contradiction proves the strong convergence 1Br
wn → 1Br

w in L2+
(RN ) as

n→ ∞, for all r > 0. Using (3.13), we immediately deduce that w �= 0. Moreover,

JQper(w) = JQper(w) − 1
2
J ′

Qper
(w)w =

1
N

‖w‖2+

2+

� lim inf
n→∞

1
N

‖wn‖2+

2+ = lim inf
n→∞

1
N

‖vn‖2+

2+

= lim inf
n→∞ [JQ(vn) − 1

2
J ′

Q(vn)vn] = β = LQ.

(3.19)

Now, consider the function

w̃ :=
(
Qper

Q

)1/2∗

w.

Since Q = Qper +Q0 with Q0 � 0, we find that |w̃| � |w|. In particular, we have
w̃ ∈ L2+

(RN ) and by definition,∫
RN

w̃AQw̃ dx =
∫

RN

wAQperw dx = ‖w‖2+

2+ > 0,

since w is a nontrivial critical point of JQper . Hence, w̃ �= 0 and, setting

τ :=

⎛⎜⎜⎝
∫

RN

|w̃|2+
dx∫

RN

w̃AQw̃ dx

⎞⎟⎟⎠
1/(2−2+)

,
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we find that 0 < τ � 1 and J ′
Q(τw̃)w̃ = 0. In addition, since |w̃| � |w|, we have

JQ(τw̃) =
1
N

⎛⎜⎜⎝ ‖w̃‖2
2+∫

RN

w̃AQw̃ dx

⎞⎟⎟⎠
N/2

� 1
N

⎛⎜⎜⎝ ‖w‖2
2+∫

RN

wAQperw dx

⎞⎟⎟⎠
N/2

= JQper(w).

Therefore, (3.5) and (3.19) yield JQ(τw̃) = LQ = JQper(w) and we deduce that τ =
1. We now claim that τw̃ = w̃ is a critical point for JQ. To prove this, let ϕ ∈
L2+

(RN ) be arbitrarily given and choose δ > 0 such that∫
RN

(w̃ + sϕ)AQ(w̃ + sϕ) dx > 0, for all s ∈ [−δ, δ],

and, for s ∈ [−δ, δ], set

ts :=

⎛⎜⎜⎝
∫

RN

|w̃ + sϕ|2+
dx∫

RN

(w̃ + sϕ)AQ(w̃ + sϕ) dx

⎞⎟⎟⎠
1/(2−2+)

.

Then we can write, using (3.5), the property JQ(w̃) = JQ(τw̃) = max
t>0

JQ(tw̃) and

the mean-value theorem,

0 � JQ(ts(w̃ + sϕ)) − JQ(w̃) � JQ(ts(w̃ + sϕ)) − JQ(tsw̃)

= J ′
Q(ts(w̃ + sσϕ))tssϕ,

for some σ ∈ [−1, 1]. Dividing by s �= 0 and letting s→ 0±, we obtain J ′
Q(w̃)ϕ = 0,

since ts → 1, as s→ 0. The proposition is proven in this case.
Case 2: (xn)n is bounded. In this case, making R again larger if necessary, we

can assume that (3.13) holds with xn = 0 for all n.
Since (vn)n is a (PS)β-sequence, the assumptions of lemma 3.2 are satisfied.

Thus, going to a subsequence, we obtain vn ⇀ v in L2+
(RN ) and vn → v a.e. on

R
N , for some v ∈ L2+

(RN ) which satisfies J ′
Q(v) = 0. Replacing in (3.17) and the

subsequent computations Qper with Q, wn with vn and w with v, we obtain for all
r > 0,⎡⎣1 −

(
β

L∗
Q

)2/N
⎤⎦ ‖1Br

(vn − v)‖2+

2+ �
∫

RN

1Br
(vn − v)AQ[1Mr

(vn − v)] dx+ o(1),

as n→ ∞, and the same contradiction argument as in Case 1 yields the strong
convergence 1Br

vn → 1Br
v as n→ ∞ in L2+

(RN ), for all r > 0. In particular, v is
a nontrivial critical point of JQ and the characterization (3.5) of the mountain-pass
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level LQ yields

LQ � JQ(v) = JQ(v) − 1
2
J ′

Q(v)v =
1
N

‖v‖2+

2+

� lim inf
n→∞

1
N

‖vn‖2+

2+ = lim inf
n→∞

[
JQ(vn) − 1

2
J ′

Q(vn)vn

]
= β = LQ.

Hence, JQ(v) = LQ and this concludes the proof. �

Remark 3.4.

(i) When Q ≡ Q0, Case 1 does not occur in the proof above. Moreover, the
operator AQ − GQ is itself compact so that all arguments in the proof hold
globally on R

N . As a consequence, JQ satisfies the Palais–Smale condition at
every level 0 < β < L∗

Q.

(ii) In the case where Q ≡ Qper, we have w̃ = w in the above proof and the
proposition is valid for any 0 < β < L∗

Q, except for the last assertion which
should be replaced with LQ � JQ(w) � β.

3.3. Estimating the dual mountain-pass level

Our next result shows that in dimension N � 4, the mountain-pass level LQ lies
below the critical threshold L∗

Q if the coefficient Q satisfies some flatness condition
(see condition (Q) below). This additional condition seems to go back to the works
of Escobar [7] and Egnell [6] (see also [4, remark 1.2]).

To estimate LQ, we shall use the functions

vε(x) := (N(N − 2)ε)(N+2)/4

(
1

ε+ |x|2
)(N+2)/2

, ε > 0. (3.20)

It was shown by Lieb [16] (see also [17, theorem 4.3]) that, up to translation
and multiplication by a constant, vε, ε > 0 are the only optimizers of the Hardy–
Littlewood–Sobolev inequality (3.11), that is,∫

RN

vεR0vε dx = S−1‖vε‖2
2+ . (3.21)

In addition, we have vε = u2∗−1
ε , where

uε(x) := (N(N − 2)ε)(N−2)/4

(
1

ε+ |x|2
)(N−2)/2

, ε > 0,

are the Aubin–Talenti instantons (see, e.g., [3]) that optimize the Sobolev inequality
(3.10) and for which the following holds:

‖∇uε‖2
L2(RN ) = ‖uε‖2∗

2∗ = SN/2, for all ε > 0.

In particular, we deduce that

‖vε‖2+ = ‖uε‖2∗−1
2∗ = S(N+2)/4, for all ε > 0. (3.22)
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Proposition 3.5. Let N � 4 and consider Q ∈ L∞(RN )\{0} nonnegative. Assume
further, that there exists x0 ∈ R

N with Q(x0) = ‖Q‖∞ and that

Q(x0) −Q(x) = o(|x− x0|2), as |x− x0| → 0. (Q)

Then we have

LQ < L∗
Q.

Proof. Let us assume – without loss of generality – that x0 = 0 and set q := ‖Q‖∞.
We consider for ε > 0 the dual instanton vε given by (3.20) and put v := v1. Fix

a cut-off function ϕ ∈ C∞
c (RN ) with 0 � ϕ � 1 on R

N , ϕ ≡ 1 on B1(0) and ϕ ≡ 0
outside of B2(0). Setting for ε > 0, α > 0,

vε,α := ϕαvε, where ϕα(x) := ϕ
(x
α

)
,

we shall estimate the ratio

‖vε,α‖2
2+∫

RN

vε,αAQvε,α dx
,

and we first look at the quadratic form
∫

RN vε,αAQvε,α dx. Consider the decompo-
sition∫

RN

vε,αAQvε,α dx =
∫

RN

vεGqvε dx−
∫

RN

(1 + ϕα)vεGq((1 − ϕα)vε) dx

+
∫

RN

vε,α(Aq − Gq)vε,α dx−
∫

RN

vε,α(Aq − AQ)vε,α dx,

(3.23)
with Gq as in (3.3) where Q is replaced by the constant function q, that is, Gq =
q1/2∗

R0q
1/2∗

. Starting with the first integral in the right-hand side of (3.23), we
remark that (3.21) and (3.22) together with the definition of Gq give∫

RN

vεGqvε dx = q2/2∗
∫

RN

vεR0vε dx = q2/2∗
SN/2. (3.24)

Using the Hardy–Littlewood–Sobolev inequality, the second integral in (3.23) can
be estimated as follows∫

RN

(1 + ϕα)vεGq((1 − ϕα)vε) dx � q2/2∗
S−1‖(1 + ϕα)vε‖2+‖(1 − ϕα)vε‖2+ .

Moreover, since 1 − ϕα = 0 in Bα(0), we obtain

‖(1 − ϕα)vε‖2+

2+ � NωN (N(N − 2))N/2

∫ ∞

α/
√

ε

r−(N+1) dr

= ωN (N(N − 2))N/2α−NεN/2.
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Thus, from (3.22) and since 0 � ϕα � 1, it follows that∫
RN

(1 + ϕα)vεGq((1 − ϕα)vε) dx

� 2q2/2∗
(ωN )1/2+

S(N−2)/4(N(N − 2))(N+2)/4α−(N+2)/2ε(N+2)/4. (3.25)

The third integral in (3.23) can be rewritten as∫
RN

vε,α(Aq − Gq)vε,α dx

= q2/2∗
∫

RN

vε,α[(Ψ − Λ) ∗ vε,α] dx

= q2/2∗
∫

RN

∫
RN

vε(x)vε(y)ϕα(x)ϕα(y)[Ψ(x− y) − Λ(x− y)] dy dx.

Since ϕα(x) = 0 for all |x| � 2α, it is enough to estimate the difference Ψ − Λ inside
B4α(0). Fixing α0 ∈ (0, y0/4) and observing that yν < yν+1 for ν � 0, we obtain
from lemma 2.1 a constant κ0 > 0 such that

Ψ(z) − Λ(z) �

⎧⎨⎩κ0|z|4−N , if N � 5,

κ0| ln |z| |, if N = 4,
for all 0 < |z| � 4α0.

As a consequence, and since ϕα ≡ 1 in Bα, we can write for all 0 < α � α0 and
0 < ε � α2: ∫

RN

vε,α(Aq − Gq)vε,α dx

� κ0q
2/2∗

∫
Bα

∫
Bα

vε(x)vε(y)|x− y|4−N dy dx

= εκ0q
2/2∗

∫
Bα/

√
ε

∫
Bα/

√
ε

v(x)v(y)|x− y|4−N dy dx

� ε24−Nκ0q
2/2∗

(∫
B1

v(x) dx
)2

,

in the case where N � 5. In a similar way, we obtain for N = 4,∫
RN

vε,α(Aq − Gq)vε,α dx � ε| ln(2
√
ε)|κ0q

2/2∗
(∫

B1

v(x) dx
)2

. (3.26)

Setting γ := 24−Nκ0q
2/2∗

(∫
B1
v(x) dx

)2

, the above computations yield∫
RN

vε,α(Aq − Gq)vε,α dx � γε, for all 0 < α � α0 and

0 < ε � min
{
α2,

e−2

4

}
. (3.27)
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To estimate the remaining integral in (3.23), we first note that since 0 � Q(x)/q � 1,
we have

0 � q1/2∗ −Q1/2∗
(x) � q1/2∗−1(q −Q(x)), for all x.

Thus, the assumption (Q) gives for each δ > 0 a constant αδ > 0 such that

0 � q1/2∗ −Q1/2∗
(x) � δ

2
|x|2, for all |x| � 2αδ.

Since ϕε,α ≡ 0 outside B2α, we find for 0 < α � αδ and 0 < ε � α2,∫
RN

vε,α(Aq − AQ)vε,α dx =
∫

RN

(q1/2∗ −Q1/2∗
)vε,αR[(q1/2∗

+Q1/2∗
)vε,α] dx

� 2q1/2∗
C0‖(q1/2∗ −Q1/2∗

)vε,α‖2+‖vε,α‖2+

� δεq1/2∗
S(N+2)/4C0

(∫
RN

| |x|2v(x)|2+
dx
)1/2+

.

Choosing δ > 0 such that δq1/2∗
S(N+2)/4C0

(∫
RN | |x|2v(x)|2+

dx
)1/2+

� γ/2 and
setting α := min{α0, αδ}, we obtain the estimate∫

RN

vε,α(Aq − AQ)vε,α dx � γ

2
ε, for all 0 < ε � α2. (3.28)

With this choice of α, putting the estimates (3.24), (3.25), (3.27) and (3.28)
together, the decomposition (3.23) yields∫

RN

vε,αAQvε,α dx � q2/2∗
SN/2 +

γ

2
ε− ζε(N+2)/4 � q2/2∗

SN/2 +
γ

4
ε

> q2/2∗
SN/2, for 0 < ε � ε0

:= min

{
α2,

(
γ

4ζ

)4/(N−2)

,
e−2

4

}
,

(3.29)

where ζ = 2q2/2∗
(ωN )1/2∗

S(N−2)/4(N(N − 2))(N+2)/4α−(N+2)/2. Hence, from (3.5),
(3.12), (3.22) and (3.29), we infer that for α = min{α0, αδ} and 0 < ε � ε0,

LQ � 1
N

⎛⎜⎜⎝ ‖vε,α‖2
2+∫

RN

vε,αAQvε,α dx

⎞⎟⎟⎠
N/2

<
1
N

(
S(N+2)/2

q2/2∗SN/2

)N/2

=
SN/2

Nq(N−2)/2
= L∗

Q.

This proves the desired result. �

Remark 3.6. In the case N = 4, using the estimate (3.26) instead of (3.27), we see
that the condition (Q) can be weakened to

Q(x0) −Q(x) = O(|x− x0|2), as |x− x0| → 0.
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3.4. Existence and nonexistence of dual ground states

We are now in a position to give the proof of our main existence result for the
critical nonlinear Helmholtz equation.

Theorem 3.7. Let N � 4 and consider Q ∈ L∞(RN )\{0}. Assume in addition
that

(Q1) Q = Qper +Q0, where Qper, Q0 � 0 are such that Qper is Z
N -periodic and

Q0(x) → 0 as |x| → ∞;

(Q2) there exists x0 ∈ R
N with Q(x0) = ‖Q‖∞ and, as |x− x0| → 0,

Q(x0) −Q(x) =

⎧⎪⎨⎪⎩
o(|x− x0|2), if N � 5,

O(|x− x0|2), if N = 4.

Then the problem

−Δu− u = Q(x)|u|2∗−2u, u ∈W 2,2∗
(RN ) (3.30)

has a dual ground state.

Proof. Using the mountain pass theorem without the Palais–Smale condition (see
[1] and [3, theorem 2.2]), we obtain the existence of a Palais–Smale sequence
(vn)n ⊂ L2+

(RN ) at the mountain pass level LQ. Therefore, by propositions 3.3,
3.5 and remark 3.6, the functional JQ possesses a critical point w ∈ L2+

(RN ) of JQ

which satisfies JQ(w) = LQ. Setting u = R(Q1/2∗
w), we find that u ∈ L2∗

(RN ) is
a dual ground state of (3.30), and this concludes the proof. �

In dimensionN = 3, the situation completely changes. Indeed, the proof of propo-
sition 3.5 fails, since the estimate in lemma 2.1(i) now has the opposite sign. In fact,
we have the following nonexistence result.

Proposition 3.8. Let Q ∈ L∞(R3)\{0} satisfy Q(x) � 0 for almost every x ∈ R
3.

Then, there is no dual ground state for the problem

−Δu− u = Q(x)|u|2∗−2u, u ∈W 2,2∗
(R3). (3.31)

Proof. We start by proving the inequality LQ � L∗
Q.

For this, let us consider the family of functions vε, ε > 0, given in (3.20). Let
0 < δ < ‖Q‖∞ be arbitrary but fixed, and consider the set ωδ := {x ∈ R

3 : Q(x) �
‖Q‖∞ − δ}. Since ωδ has positive measure, we can choose a point xδ ∈ ωδ such that

lim
α→0+

|ωδ ∩Bα(xδ)|
|Bα(xδ)| = 1, (3.32)
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where | · | denotes the Lebesgue measure. With ϕδ := 1ωδ∩B1/2(xδ), we find

∫
R3
ϕδvε(· − xδ)AQ(ϕδvε(· − xδ)) dx

=
∫

R3

∫
R3
ϕδ(x)ϕδ(y)vε(x− xδ)vε(y − xδ)Q1/2∗

(x)Q1/2∗
(y)Ψ(x− y) dxdy

� (‖Q‖∞ − δ)2/2∗
∫

R3

∫
R3
ϕδ(x)ϕδ(y)vε(x− xδ)vε(y − xδ)Ψ(x− y) dxdy,

since Ψ(x− y) = cos |x− y|/(4π|x− y|) � 0 for all x, y ∈ B1/2(z), z ∈ R
3. Remark-

ing furthermore that vε(x) = ε−5/4v1(x/
√
ε), a change of variables gives

∫
R3

∫
R3
ϕδ(x)ϕδ(y)vε(x− xδ)vε(y − xδ)Ψ(x− y) dxdy

=
∫

R3

∫
R3
ϕδ(

√
εx+ xδ)ϕδ(

√
εy + xδ)v1(x)v1(y)

cos(
√
ε(x− y))

4π|x− y| dxdy

−→
∫

R3

∫
R3
v1(x)v1(y)

1
4π|x− y| dxdy =

∫
R3
v1R0v1 dx, as ε→ 0+,

using (3.32) in the last step. Thus, we obtain

lim inf
ε→0+

∫
R3
ϕδvε(· − xδ)AQ(ϕδvε(· − xδ)) dx � (‖Q‖∞ − δ)2/2∗

∫
R3
v1R0v1 dx

= (‖Q‖∞ − δ)2/2∗
S−1‖v1‖2

2+ .

In addition, since ‖ϕδvε(· − xδ)‖2+ → ‖v1‖2+ , as ε→ 0+, the characterization (3.5)
of LQ yields

LQ � lim sup
ε→0+

1
N

⎛⎜⎜⎝ ‖ϕδvε(· − x0)‖2
2+∫

R3
ϕδvε(· − x0)AQ(ϕδvε(· − x0)) dx

⎞⎟⎟⎠
N/2

� SN/2

N(‖Q‖∞ − δ)(N+2)/2
.

Letting now δ → 0+, we infer from (3.12) that LQ � L∗
Q.

We next assume by contradiction that LQ is achieved. In this case, there exists
v ∈ L2+

(R3) such that ‖v‖2+ = 1 and

∫
R3
vAQv dx = (NLQ)−

2
N .
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Since LQ � L∗
Q and recalling the value of L∗

Q given in (3.12), we can write

S−1‖Q‖2/2∗
∞ = (NL∗

Q)−2/N � (NLQ)−2/N =
∫

R3
vAQv dx

�
∫

R3
Q1/2∗ |v|[|Ψ| ∗ (Q1/2∗ |v|)] dx �

∫
R3
Q1/2∗ |v|[Λ ∗ (Q1/2∗ |v|)] dx

=
∫

R3
Q1/2∗ |v|R0(Q1/2∗ |v|) dx � S−1‖Q1/2∗

v‖2
2+ � S−1‖Q‖2/2∗

∞ ,

using the fact that |Ψ(z)| = cos |z|/(4π|z|) � 1/(4π|z|) = Λ(z) for all z ∈ R
3, and

the Hardy–Littlewood–Sobolev inequality. As a consequence, all inequalities are
equalities and we find LQ = L∗

Q and obtain the following identities.

∫
R3
Q1/2∗ |v|R0

(
Q1/2∗ |v|

)
dx = S−1‖Q1/2∗

v‖2
2+ , (3.33)∫

R3
Q1/2∗ |v|[|Ψ| ∗ (Q1/2∗ |v|)] dx =

∫
R3
Q1/2∗ |v|[Λ ∗ (Q1/2∗ |v|)] dx. (3.34)

From (3.33) and the uniqueness of the optimizers for the Hardy–Littlewood–Sobolev
inequality [16,17], we deduce that

Q1/2∗ |v| = γvε(· − x0), for some γ, ε > 0 and x0 ∈ R
3,

where vε is given by (3.20). In particular, Q1/2∗ |v| > 0 everywhere in R
3, and we

obtain

∫
R3
Q1/2∗ |v|[|Ψ| ∗ (Q1/2∗ |v|)] dx

=
∫

R3

∫
R3
Q1/2∗

(x)|v(x)|Q1/2∗
(y)|v(y)| | cos |x− y||

4π|x− y| dxdy

<

∫
R3

∫
R3
Q1/2∗

(x)|v(x)|Q1/2∗
(y)|v(y)| 1

4π|x− y| dxdy

=
∫

R3
Q1/2∗ |v|[Λ ∗ (Q1/2∗ |v|)] dx.

This contradicts (3.34) and therefore, shows that LQ is not achieved. In particular,
JQ does not have any critical point at level LQ, and thus no dual ground state
solution of (3.31) can exist. �
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https://doi.org/10.1017/prm.2018.103 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.103

	1 Introduction
	2 The Helmholtz resolvent in the critical case
	2.1 Fundamental solutions
	2.2 Compactness properties
	2.3 Nonvanishing property and related estimates

	3 Existence via the dual variational method
	3.1 The dual energy functional
	3.2 Palais--Smale sequences
	3.3 Estimating the dual mountain-pass level
	3.4 Existence and nonexistence of dual ground states

	References

