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This paper deals with the multivariate tail conditional expectation (MTCE) for generalized
skew-elliptical distributions. We present tail conditional expectation for univariate gener-
alized skew-elliptical distributions and MTCE for generalized skew-elliptical distributions.
There are many special cases for generalized skew-elliptical distributions, such as gener-
alized skew-normal, generalized skew Student-t, generalized skew-logistic and generalized
skew-Laplace distributions.
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1. INTRODUCTION

Consider a random variable X whose distribution function and tail function are denoted
by FX(x) and FX(x) = 1 − FX(x), respectively. The tail conditional expectation (TCE) is
defined as

TCEX(xq) = E(X |X > xq). (1)

Given the loss will exceed a particular value xq, generally referred to as the qth quantile
with

FX(xq) = 1 − q,

the TCE defined in formula (1) gives the expected loss that can potentially be experienced
(see [9]). There are a number of distributions whose TCE measures have been researched. For
instances, the TCE for univariate normal distribution was noticed in Panjer [12]; the TCE
for univariate elliptical distributions was provided by Landsman and Valdez [9]; conditional
tail expectation for the exponential family and its related distributions were derived by
Kim [5]; the TCE for family of symmetric generalized hyperbolic distributions and family
of skew generalized hyperbolic distributions was derived by Ignatieva and Landsman [3, 4],
respectively.
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Recently, Landsman et al. [7] defined a type of a multivariate tail conditional expectation
(MTCE),

MTCEq(X) = E[X |X > VaRq(X)]

= E[X |X1 > VaRq1(X1), . . . , Xn > VaRqn
(Xn)], q = (q1, . . . , qn) ∈ (0, 1)n,

where X = (X1,X2, . . . , Xn)T is a n× 1 vector of risks with cumulative distribution function
(cdf) FX(x) and tail function FX(x),

VaRq(X) = (VaRq1(X1),VaRq2(X2), . . . ,VaRqn
(Xn))T ,

and VaRqk
(Xk), k = 1, 2, . . . , n is the value at risk (VaR) measure of the random variable

Xk, being the qkth quantile of Xk (see [7] or [11]). Landsman et al. [6] also define an MTCE,
which is the above special case when q = (q, q, . . . , q). In Mousavi et al. [11], MTCE for scale
mixtures of skew-normal distribution is discussed. In the present paper, we derive MTCE
for generalized skew-elliptical distributions.

The rest of the paper is organized as follows. Section 2 reviews the definitions and
properties of the univariate generalized skew-elliptical distributions and provides TCE for-
mula for generalized skew-elliptical random variable. In Section 3, we introduce multivariate
generalized skew-elliptical distributions and derive MTCE for generalized skew-elliptical
random vector. Some examples are given in Section 4. We present numerical illustration in
Section 5. Finally, in Section 6, is the conclusions and directions for further research.

2. UNIVARIATE CASES

In this section, we derive TCE for generalized skew-elliptical random variable. Before doing
so, let us introduce univariate generalized skew-elliptical distributions.

A random vector Y ∼ GSE1(μ, σ2, g1,H(·)) is said to have a univariate generalized
skew-elliptical distribution, if its probability density function fY (y) exists and satisfies
(see [1])

fY (y) =
2
σ
g1

{
1
2

(
y − μ

σ

)2
}
H

(
y − μ

σ

)
, y ∈ R, (2)

where g1 is the density generator of elliptical random variable X ∼ E1(μ, σ2, g1) with
parameters μ and σ (see [2]). The condition

∫ ∞

0

t−1/2g1(t) <∞

guarantees g1 to be the density generator. H(x), x ∈ R, is called the skewing function sat-
isfying H(−x) = 1 −H(x) and 0 ≤ H(x) ≤ 1. The characteristic function of X takes the
form

ϕX(t) = exp{itμ}ψ
(

1
2
(σt)2

)
, t ∈ R,

with function ψ(t) : [0,∞) → R, called the characteristic generator (see [2]).
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To represent TCE for univariate generalized skew-elliptical distributions, a cumulative
generator G1(u) is defined as follows:

G1(u) =
∫ ∞

u

g1(v) dv.

Tail expectation E
t

Z [h(Z)] of a random variable Z is defined as follows:

E
t

Z [h(Z)] =
∫ ∞

t

h(z)fZ(z) dz, z, t ∈ R,

where h(·) is an almost differentiable function. So

E
t

X∗ [H ′(X)] =
∫ ∞

t

H ′(x)fX∗(x) dx, x, t ∈ R,

with the probability density function (pdf)

fX∗(x) = − 1
ψ′(0)

G1

{
1
2
x2

}
,

where X∗ ∼ E1(0, 1, G1) (see [8]), and ψ′(·) is the derivative of characteristic generator ψ(·).

Remark 1: In Adcock et al. [1], pdf of a random variable X∗ ∼ E1(μ, σ2, G1) was defined
as

fX∗(x) =
1

E(R2)σ
G1

{
1
2

(
x− μ

σ

)2
}
,

where R is a non-negative random variable with pdf

fR(r) = 2g1(r2/2), r ∈ [0,∞).

We further suppose that E(R2) <∞, in which case the covariance of X exists and Cov(X) =
E[R2]σ2. However, in Landsman and Valdez [9], if |ψ′(0)| <∞, the covariance of X exists
and is equal to Cov(X) = −ψ′(0)σ2. Inspired by this, we define the pdf of X∗ ∼ E1(0, 1, G1)
as above.

If h(·) = 1, we will have E
t

Z [h(Z)] = FZ(t), which represents tail function of Z.

Theorem 2.1: Assume that a random vector Y ∼ GSE1(μ, σ2, g1,H(·)) follows a univariate
generalized skew-elliptical distribution with pdf (2). We suppose

lim
z→+∞H(z)G1

(
1
2
z2

)
= 0. (3)

Then

TCEY (yq) = μ+ 2σH(zq)
G1

(
1
2z

2
q

)
FZ(zq)

− 2σψ′(0)
E

zq

X∗ [H ′(X∗)]
FZ(zq)

, (4)

where Z ∼ GSE1(0, 1, g1,H(·)), X∗ ∼ E1(0, 1, G1), zq = (yq − μ)/σ, and H ′(·) is derivative
of function H(·).
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Proof: Using definition, we obtain

TCEY (yq) =
1

FY (yq)

∫ +∞

yq

2y
σ
g1

{
1
2

(
y − μ

σ

)2
}
H

(
y − μ

σ

)
dy.

Applying the transformation z = (y − μ)/σ, we have

TCEY (yq) =
1

FZ(zq)

∫ +∞

zq

2(σz + μ)g1

{
1
2
z2

}
H(z) dz

=
1

FZ(zq)

[
−2σ

∫ +∞

zq

H(z) dG1

{
1
2
z2

}
+ μ

∫ +∞

zq

2g1

{
1
2
z2

}
H(z) dz

]

=
1

FZ(zq)

[
2σ

(
H(zq)G1

{
1
2
z2
q

}
+
∫ +∞

zq

H ′(z)G1

{
1
2
z2

}
dz

)
+ μFZ(zq)

]

=
1

FZ(zq)

[
2σH(zq)G1

{
1
2
z2
q

}
− 2σψ′(0)E

zq

Z∗ [H ′(Z∗)] + μFZ(zq)
]
,

where the third equality we have used (3).
Therefore, we obtain (4), which completes the proof of Theorem 2.1. �

Remark 2: If H(·) = 1
2 , we will obtain TCE for elliptical distribution:

TCEY (yq) = μ+ σ
G1

(
1
2z

2
q

)
FZ(zq)

, (5)

where Z ∼ E1(0, 1, g1). We observe that (5) is a generalization of formula (3) (cn = 1) in
Lansman and Valdez [9].

3. MULTIVARIATE CASES

A random vector Y is called an n-dimensional generalized skew-elliptical random vector
and denoted by Y ∼ GSEn(μ,Σ, gn,H(·)). If its pdf exists, the form will be (see [1])

fY (y) =
2√|Σ|gn

{
1
2
(y − μ)T Σ−1(y − μ)

}
H(Σ−1/2(y − μ)), y ∈ R

n, (6)

where

fX(x) :=
1√|Σ|gn

{
1
2
(x − μ)T Σ−1(x − μ)

}
, x ∈ R

n, (7)

is the density of n-dimensional elliptical random vector X ∼ En(μ,Σ, gn). Here μ is a n× 1
location vector, Σ is a n× n scale matrix, and gn(u), u ≥ 0, is the density generator of X,
satisfying the condition ∫ ∞

0

tn/2−1gn(t) <∞.

H(x), x ∈ R
n, is called the skewing function satisfyingH(−x) = 1 −H(x) and 0 ≤ H(x) ≤

1. The characteristic function of X takes the form ϕX(t) = exp{itT μ}ψ(1
2tT Σt), t ∈ R

n,
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with function ψ(t) : [0,∞) → R, called the characteristic generator (see [2]). A cumulative
generator Gn(u) is defined. It takes the form

Gn(u) =
∫ ∞

u

gn(v) dv.

Shifted cumulative generator is also defined

G
∗
n−1(u) =

∫ ∞

u

gn(v + a) dv, a ≥ 0, n > 1, (8)

with G
∗
n−1(u) <∞ (see [6]).

Assume a random vector Y ∼ GSEn(μ,Σ, gn,H(·)) with finite vector μ =
(μ1, . . . , μn)T , positive defined matrix Σ = (σij)n

i,j=1 and pdf fY (y).
X∗ ∼ En(μ,Σ, Gn) (see [8]) is called an elliptical random vector with generator Gn(u),

if its density function (if it exists) defined by

fX∗(x) =
−1

ψ′(0)
√|Σ|Gn

{
1
2
(x − μ)T Σ−1(x − μ)

}
, x ∈ R

n. (9)

Remark 3: In Adcock et al. [1], pdf of a random vector X∗ ∼ En(μ,Σ, Gn) was defined as

fX∗(x) =
n

E(R2)
√|Σ|Gn

{
1
2
(x − μ)T Σ−1(x − μ)

}
, x ∈ R

n,

where R is a non-negative random variable with pdf

fR(r) =
2πn/2

Γ(n/2)
rn−1gn(r2/2), r ∈ [0,∞).

We further suppose that E(R2) <∞, in which case the covariance of X exists and
Cov(X) = (E[R2]/n)Σ. However, in Landsman and Valdez [9], if |ψ′(0)| <∞, the covari-
ance of X exists and is equal to Cov(X) = −ψ′(0)Σ. Inspired by this, we define the pdf of
X∗ ∼ En(μ,Σ, Gn) as above.

Y∗ ∼ GSEn(μ,Σ, Gn,H(·)) is a generalized skew-elliptical random vector. Let Z =
Σ−1/2(Y − μ) ∼ GSEn(0, In, gn,H(·)). Writing

zq = (z1,q, z2,q, . . . , zn,q)T = Σ−1/2(yq − μ),

where yq = VaRq(Y ), and z−k,q = (z1,q, z2,q, . . . , zk−1,q, zk+1,q, . . . , zn,q)T .

To derive the formula for MTCE, we define tail expectation E
t

Z[h(Z)] of n-dimensional
random vector Z:

E
t

Z[h(Z)] =
∫ ∞

t

h(z)fZ(z) dz, z, t ∈ R
n,

where h is an almost differentiable function and fZ(z) is pdf of Z.
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So tail expectation E
t

W−k
[H∗(W−k)] of (n− 1)-dimensional random vector

W−k = (W1,W2, . . . ,Wk−1,Wk+1, . . . ,Wn)T ∼ En−1(0, In−1, G
∗
n−1)

enable to be expressed as

E
t

W−k
[H∗(W−k)] =

∫ ∞

t

H∗(w−k)fW−k
(w−k) dw−k, w−k, t ∈ R

n−1,

dw−k = dw1 dw2 · · · dwk−1 dwk+1 · · · dwn, with the pdf

fW−k
(w−k) = − 1

ψ∗′(0)
G

∗
n−1,k

{
1
2
wT

−kw−k

}

= − 1
ψ∗′(0)

Gn

{
1
2
wT

−kw−k +
1
2
z2
k,q

}
, k = 1, 2, . . . , n,

where H∗(w−k) = H(ξk,q) with ξk,q = (w1, w2, . . . , wk−1, zk,q, wk+1, . . . , wn)T , and G
∗
n−1,k

is defined by (8). In addition, ψ∗′
(·) is derivative of characteristic generator corresponding

to G
∗
n−1,k.

Remark 4: From Landsman et al. [6], we know that −1/ψ∗′
(0) = c∗n−1,k, and c∗n−1,k is the

normalizing constant, that is to say,

c∗n−1,k =
∫ ∞

0

t(n−1)/2−1G
∗
n−1,k(t) dt.

If h(·) = 1, we will have E
t

Z[h(·)] = FZ(t), which represents tail function of Z. Its tail
function as follows:

FZ(t) =
∫ ∞

t

fZ(z) dz, z, t ∈ R
n,

dz = dz1 dz2 · · · dzn, and fZ(z) is pdf of Z as above.

In the following, we formulate the theorem that gives MTCE for generalized skew-
elliptical distributions.

Theorem 3.1: Assume that a random vector Y ∼ GSEn(μ,Σ, gn,H(·)) follows a n-variate
generalized skew-elliptical distribution with pdf (6). We suppose

lim
zk→+∞H(z)Gn

(
1
2
zT z

)
= 0, k = 1, 2, . . . , n. (10)

Then

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (11)

where
δq = (δ1,q, δ2,q, . . . , δn,q)T

with

δk,q = −2ψ∗′
(0)E

z−k,q

W −k
[H∗(W−k)] − 2ψ′(0)E

zq

X∗ [∂kH(X∗)], k = 1, 2, . . . , n,

Z ∼ GSEn(0, In, gn,H(·)), X∗ ∼ En(0, In, Gn) and W−k ∼ En−1(0, In−1, G
∗
n−1,k). Fur-

thermore, ∂kH(X∗) = dH(x∗)/ dx∗k.
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Proof: Using definition, we obtain

MTCEY(yq)

=
1

FY(yq)

∫ +∞

yq

2y√|Σ|gn

{
1
2
(y − μ)T Σ−1(y − μ)

}
H(Σ−1/2(y − μ)) dy.

Applying the transformation z = Σ−1/2(y − μ), we have

MTCEY(yq) =
1

FZ(zq)

∫ +∞

zq

2(Σ1/2z + μ)gn

{
1
2
zT z

}
H(z) dz

=
1

FZ(zq)

[
Σ1/2

∫ +∞

zq

2H(z)zgn

{
1
2
zT z

}
dz

+μ

∫ +∞

zq

2gn

{
1
2
zT z

}
H(z) dz

]

=
1

FZ(zq)
[Σ1/2δq + μFZ(zq)].

Since

δk,q =
∫ +∞

zq

2H(z)zkgn

{
1
2
zT z

}
dz

= −2
∫ +∞

z−k,q

dz−k

∫ +∞

zk,q

H(z)∂kGn

{
1
2
zT
−kz−k +

1
2
z2
k

}

= 2
∫ +∞

z−k,q

H(ξk,q)Gn

{
1
2
zT
−kz−k +

1
2
z2
k,q

}
dz−k

+ 2
∫ +∞

zq

∂kH(z)Gn

{
1
2
zT z

}
dz

= −2ψ∗′
(0)E

z−k,q

W −k
[H∗(W−k)] − 2ψ′(0)E

zq

X∗ [∂kH(X∗)],

where ξk,q = (z1, z2, . . . , zk−1, zk,q, zk+1, . . . , zn)T , and in the third equality, we have used
(10). So that

δq =
∫ +∞

zq

2H(z)zgn

{
1
2
zT z

}
dz

= (δ1,q, δ2,q, . . . , δn,q)T .

Therefore, we obtain (11), which completes the proof of Theorem 3.1. �

Remark 5: Letting H(·) = 1
2 in Theorem 3.1, we will obtain generalized formula of Theorem

2.1 (cn = 1) in Landsman et al. [6]:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (12)

where δq = (δ1,q, δ2,q, . . . , δn,q)T , δk,q = −ψ∗′
(0)FW −k

(z−k,q), k = 1, 2, . . . , n.
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4. EXAMPLES

We now provide MTCE for special cases of the generalized skew-elliptical distributions,
such as generalized skew-normal, generalized skew Student-t, generalized skew-logistic and
generalized skew-Laplace distributions.

Example 4.1 (Generalized skew-normal distribution): A n-dimensional generalized skew-
normal random vector Y, with location parameter μ, scale matrix Σ and skewing function
H(·) : R → R, has its density function as

fY (y) =
2√|Σ|(2π)n/2

exp
{
−1

2
(y − μ)T Σ−1(y − μ)

}
H(γT Σ−1/2(y − μ)),

y ∈ R
n, where γ = (γ1, γ2, . . . , γn)T ∈ R

n. We denote it by Y ∼ GSNn(μ,Σ,γ,H(·)). In
this case, Gn(u) = gn(u) = (2π)−n/2 exp{−u} and

H(Σ−1/2(y − μ)) = H(γT Σ−1/2(y − μ)).

MTCE is given by

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (13)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =

√
2
π

exp
{
−1

2
z2
k,q

}
E

z−k,q

W −k
[H(γT ξk,q)] + 2γkE

zq

X∗ [H ′(γT X∗)],

k = 1, 2, . . . , n, Z ∼ GSNn(0, In,γ,H(·)), X∗ ∼ Nn(0, In) and W−k ∼ Nn−1(0, In−1).

Remark 6: If H(·) = Φ(·) (the cdf of 1-dimensional standard normal distribution) in
Example 4.1, MTCE for n-dimensional skew-normal distribution will be obtained:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (14)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =

√
2
π

exp
{
−1

2
z2
k,q

}
E

z−k,q

W −k
[Φ(γT ξk,q)] + 2γkE

zq

X∗ [φ(γT X∗)], k = 1, 2, . . . , n,

Z ∼ GSNn(0, In,γ,Φ(·)), X∗ ∼ Nn(0, In) and W−k ∼ Nn−1(0, In−1). In addition, φ(·) is
the pdf of 1-dimensional standard normal distribution.

Remark 7: If H(·) = 1
2 in Example 4.1, we will obtain MTCE for n-dimensional normal

distribution as follows:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (15)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
1√
2π

exp
{
−1

2
z2
k,q

}
FW −k

(z−k,q), k = 1, 2, . . . , n,

Z ∼ Nn(0, In), and W−k is the same as in Example 4.1.
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We observe that (15) is generalization of MTCE for normal distribution in Landsman
et al. [6].

Example 4.2 (Generalized skew Student-t distribution): The density function of a n-
dimension generalized skew Student-t random vector Y, with location parameter μ, scale
matrix Σ, m > 0 degrees of freedom and skewing function H(·) : R → R, is given by

fY (y) =
2cn√|Σ|

[
1 +

(y − μ)T Σ−1(y − μ)
m

]−(m+n)/2

H(γT Σ−1/2(y − μ)), y ∈ R
n,

where γ = (γ1, γ2, . . . , γn)T ∈ R
n and cn = (Γ((m+ n)/2))/(Γ(m/2)(mπ)n/2). We denote

it by Y ∼ GSStn(μ,Σ,γ,m,H(·)). The density generator in this case is

gn(u) = cn

(
1 +

2u
m

)−(m+n)/2

, and H(Σ−1/2(y − μ)) = H(γT Σ−1/2(y − μ))

and Gn(u) = (cnm/(m+ n− 2))(1 + 2u/m)−(m+n−2)/2. MTCE is given by

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (16)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q = b∗n,kE
z−k,q

W −k
[H(γT ξk,q)] +

2mγk

m+ n− 2
E

zq

X∗

[(
1 +

X∗T X∗

m

)
H ′(γT X∗)

]
,

k = 1, 2, . . . , n, Z ∼ GSStn(0, In,γ,m,H(·)), X∗ ∼ Stn(0, In,m) (Student-t distribution),
W−k ∼ Stn−1(0,

�
k,m− 1),

�
k = [m(1 + z2

k,q/m)/(m− 1)]In−1 and

b∗n,k =
Γ(m−1

2 )(m−1
m )(n−1)/2

Γ(m
2 )
√
π/m

(
1 +

z2
k,q

m

)−(m+n−2)/2

.

Remark 8: If H(·) = T (·) (the cdf of 1-dimensional standard Student-t distribution) in
Example 4.2, MTCE for n-dimensional skew Student-t distribution will be obtained:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (17)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q = b∗n,kE
z−k,q

W −k
[T (γT ξk,q)] +

2mγk

m+ n− 2
E

zq

X∗

[(
1 +

X∗T X∗

m

)
t(γT X∗)

]
,

k = 1, 2, . . . , n, Z ∼ GSStn(0, In,γ,m, T (·)), and t(·) is the pdf of 1-dimensional standard
Student-t distribution. Furthermore, b∗n,k, X∗ and W−k are the same as in Example 4.2.
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Remark 9: If H(·) = 1
2 in Example 4.2, we will obtain a generalized formula of MTCE for

Student-t distribution in Landsman et al. [6]:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
,

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
b∗n,k

2
FW −k

(z−k,q), k = 1, 2, . . . , n,

and Z ∼ Stn(0, In,m). In addition, b∗n,k and W−k are the same as in Example 4.2.

Example 4.3 (Generalized skew-logistic distribution): The density function of a generalized
skew-logistic random vector Y, with location parameter μ, scale matrix Σ and skewing
function H(·) : R → R, is given by

fY (y) =
2cn√|Σ|

exp{− 1
2 (y − μ)T Σ−1(y − μ)}

[1 + exp{− 1
2 (y − μ)T Σ−1(y − μ)}]2H(γT Σ−1/2(y − μ)),

y ∈ R
n, where γ = (γ1, γ2, . . . , γn)T ,

cn =
Γ(n/2)
(2π)n/2

[∫ ∞

0

tn/2−1 exp(−t)
[1 + exp(−t)]2 dt

]−1

=
1

(2π)n/2Ψ∗
2(−1, n

2 , 1)
.

We denote it by Y ∼ GSLon(μ,Σ,γ,H(·)). The density generator in this case is

gn(u) = cn
exp{−u}

[1 + exp{−u}]2 , and so Gn(u) = cn
exp{−u}

1 + exp{−u} ,

and H(Σ−1/2(y − μ)) = H(γT Σ−1/2(y − μ)). MTCE is given by

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (18)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
2cn
c∗n−1,k

E
z−k,q

W −k
[H(γT ξk,q)] + 2γkE

zq

X∗

[(
1 + exp

{
−X∗T X∗

2

})
H ′(γT X∗)

]
,

k = 1, 2, . . . , n, Z ∼ GSLon(0, In, π(·)), X∗ ∼ Lon(0, In) (logistic distribution),

c∗n−1,k =
Γ((n− 1)/2) exp{ z2

k,q

2 }
(2π)(n−1)/2

⎡
⎣∫ ∞

0

t(n−3)/2 exp{−t}
1 + exp{− z2

k,q

2 } exp{−t}
dt

⎤
⎦
−1

=
exp{ z2

k,q

2 }
(2π)(n−1)/2Ψ∗

1(− exp{− z2
k,q

2 }, n−1
2 , 1)

,
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and pdf of W−k:

fW−k
(t) = c∗n−1,k

exp{− tT t
2 − z2

k,q

2 }
1 + exp{− tT t

2 − z2
k,q

2 }
, k = 1, 2, . . . , n, t ∈ R

n−1.

In addition, Ψ∗
µ(z, s, a)is the generalized Hurwitz–Lerch zeta function defined by (cf. [10])

Ψ∗
µ(z, s, a) =

1
Γ(μ)

∞∑
n=0

Γ(μ+ n)
n!

zn

(n+ a)s
,

which has an integral representation

Ψ∗
µ(z, s, a) =

1
Γ(s)

∫ ∞

0

ts−1e−at

(1 − ze−t)µ
dt,

where R(a) > 0; R(s) > 0 when |z| ≤ 1 (z 	= 1); R(s) > 1 when z = 1. Therefore,

cn
c∗n−1,k

=
Ψ∗

1

(
− exp{− z2

k,q

2 }, n−1
2 , 1

)
φ(zk,q)

Ψ∗
2(−1, n

2 , 1)
,

where φ(·) is pdf of 1-dimensional standard normal distribution.

Remark 10: If H(·) = Lo(·)(the cdf of 1-dimensional standard logistic) in Example 4.3 ,
MTCE for n-dimensional skew-logistic distribution will be obtained:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (19)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
2cn
c∗n−1,k

E
z−k,q

W −k
[Lo(γT ξk,q)] + 2γkE

zq

X∗

[(
1 + exp

{
−X∗T X∗

2

})
lo(γT X∗)

]
,

k = 1, 2, . . . , n, Z ∼ GSLon(0, In,γ, Lo(·)), and lo(·) is pdf of 1-dimensional standard
logistic distribution. Furthermore, cn, c∗n−1,k, X∗ and W−k are the same as in Example
4.3.

Remark 11: If H(·) = 1
2 in Example 4.3, we will obtain a generalization of MTCE for

logistic distribution in Landsman et al. [6]:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
,

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
cn

c∗n−1,k

FW −k
(z−k,q), k = 1, 2, . . . , n,

and Z ∼ Lon(0, In). In addition, cn, c∗n−1,k and W−k are the same as in Example 4.3.
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Example 4.4 (Generalized skew-Laplace distribution): A n-variate generalized skew-
Laplace random vector Y, with location parameter μ, scale matrix Σ and skewing function
H(·) : R → R, has its density function as

fY (y) =
2cn√|Σ| exp{−[(y − μ)T Σ−1(y − μ)]1/2}H(γT Σ−1/2(y − μ)), y ∈ R

n,

where γ = (γ1, γ2, . . . , γn)T and cn = Γ(n/2)/2πn/2Γ(n). We denote it by Y ∼
GSLan(μ,Σ,γ,H(·)). In this case, gn(u) = cn exp{−√

2u}, H(Σ−1/2(y − μ)) = H(γT

Σ−1/2(y − μ)) and Gn(u) = cn(1 +
√

2u) exp{−√
2u}. MTCE is given by

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (20)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
2cn
c∗n−1,k

E
z−k,q

W −k
[H(γT ξk,q)] + 2γkE

zq

X∗ [(1 +
√

X∗T X∗)H ′(γT X∗)],

k = 1, 2, . . . , n, Z ∼ GSLan(0, In,γ,H(·)), X∗ ∼ Lan(0, In) (Laplace distribution),

c∗n−1,k =
Γ
(

n−1
2

)
(2π)(n−1)/2

[∫ ∞

0

t
n−3

2 (1 +
√
t+ z2

k,q) exp{−
√
t+ z2

k,q} dt
]−1

,

and pdf of W−k:

fW−k
(t) = c∗n−1,k(1 +

√
tT t + z2

k,q) exp{−
√

tT t + z2
k,q}, k = 1, 2, . . . , n,

t ∈ R
n−1.

Remark 12: If H(·) = La(·)(the cdf of 1-dimensional standard Laplace) in Example 4.4,
MTCE for n-dimensional skew-Laplace distribution will be obtained:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
, (21)

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
2cn
c∗n−1,k

E
z−k,q

W −k
[La(γT ξk,q)] + 2γkE

zq

X∗ [(1 +
√

X∗T X∗)la(γT X∗)],

k = 1, 2, . . . , n, Z ∼ GSLan(0, In,γ, La(·)), and la(·) is pdf of 1-dimensional standard
Laplace distribution. Furthermore, cn, c∗n−1,k, X∗ and W−k are the same as in Example
4.4.

Remark 13: If H(·) = 1
2 in Example 4.4, we will obtain a generalized formula of MTCE

for Laplace distribution in Landsman et al. [6]:

MTCEY(yq) = μ + Σ1/2 δq

FZ(zq)
,

where δq = (δ1,q, δ2,q, . . . , δn,q)T ,

δk,q =
cn

c∗n−1,k

FW −k
(z−k,q), k = 1, 2, . . . , n,

and Z ∼ Lan(0, In). In addition, cn, c∗n−1,k and W−k are the same as in Example 4.4.
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5. NUMERICAL ILLUSTRATION

We provide a numerical illustration of the TCE risk measure for the normal (N), skew-
normal (SN), Student-t (St) and skew Student-t (SSt) distributions. In addition, we also
consider MTCE risk measure for the normal (N) and skew-normal (SN) distributions.

We consider N1(μ, σ2), SN1(μ, σ2, γ), St1(μ, σ2,m) and SSt1(μ, σ2,m, γ), with μ = 1.4,
σ = 1.33, m = 4 and γ = −1.0, 2.0. The results are presented in Tables 1 and 2:

Table 1. The TCE of N and SN (γ = −1.0, 2.0) distributions for q = 0.90, 0.95, 0.98

TCE Distribution
q SN(−1.0) N SN (2.0)

0.90 2.521028 3.734046 4.132160
0.95 2.830467 4.143596 4.450346
0.98 3.209941 4.619739 4.871836

Table 2. The TCE of St and SSt (γ = −1.0, 2.0) distributions for q = 0.90, 0.95, 0.98

TCE Distribution
q SSt(−1.0) St SSt(2.0)

0.90 2.691679 4.724058 5.664056
0.95 3.097983 5.659712 6.705451
0.98 3.601481 7.080627 8.273033

In addition, we consider U = (U1, U2, U3)T ∼ N3(μ,Σ) and V = (V1, V2, V3)T ∼
SN3(μ,Σ,γ), with

μ =

⎛
⎝ 1.4

1.1
3.4

⎞
⎠ , Σ =

⎛
⎝ 1.33 −0.067 2.63

−0.067 0.25 −0.50
2.63 −0.50 5.76

⎞
⎠ and γ =

⎛
⎝ 2.2

−0.046
−1.38

⎞
⎠ .

We let q = (0.90, 0.95, 0.98)T , then the results are presented in Table 3:

Table 3. The MTCE of N and SN distributions for q = (0.90, 0.95, 0.98)T

MTCE Vector
Distribution U1(V1) U2(V2) U3(V3)

N 3.4240 2.0915 9.1187

SN 1.3825 × 103 0.5788 × 103 1.7689 × 103

Remark 14: From Tables 1 and 2, we can observe that TCE increases with the increase in γ.
From Table 3, we can find that the component-wise MTCE for skewed Normal distributions
are greater than that for corresponding non skewed distribution. As one of the reviewers
pointed out that it maybe a deep theoretical fact. However, we do not prove this statement
at this moment.
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6. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

This paper has introduced MTCE for generalized skew-elliptical distributions, which is a
generalization of MTCE for elliptical distributions [6]. As special cases, generalized skew-
normal, generalized skew Student-t, generalized skew-logistic and generalized skew-Laplace
distributions are considered. To illustrate our results can be computed in the theorems, the
numerical illustrations of the obtained results are given. Furthermore, in [7], the authors
introduced and provided expressions for multivariate tail covariance (MTCov) and mul-
tivariate tail correlation (MTCorr) matrices for the case of elliptical distribution. These
matrices are very important for the tail analysis of the data, it is worthwhile extending these
presentations to the generalized skew-elliptical distributions. We hope that these important
problems can be addressed in future research.
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