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Abstract For a finite quiver Q without sources, we consider the corresponding radical square zero
algebra A. We construct an explicit compact generator for the homotopy category of acyclic complexes
of projective A-modules. We call such a generator the projective Leavitt complex of Q. This terminology
is justified by the following result: the opposite differential graded endomorphism algebra of the projective
Leavitt complex of Q is quasi-isomorphic to the Leavitt path algebra of Qop. Here, Qop is the opposite
quiver of Q, and the Leavitt path algebra of Qop is naturally Z-graded and viewed as a differential graded
algebra with trivial differential.
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1. Introduction

In the last decade, Leavitt path algebras of directed graphs (or quivers) [1,5] were intro-
duced as an algebraization of graph C∗-algebras [16,22] and, in particular, Cuntz–Krieger
algebras [11]. This class of algebras has been attracting significant attention, with inter-
est in whether K-theoretic data can be used to classify various classes of Leavitt path
algebras, inspired by the Kirchberg–Phillips classification theorem for C∗-algebras [21].
One can also find conditions on graphs such that the associated Leavitt path algebras
have specific properties, as demonstrated in many papers, for instance [1–3,6].

For a finite quiver Q, Smith [23] describes the quotient category

QGr(kQ) := Gr(kQ)/Fdim(kQ)

of graded kQ-modules modulo those that are the sum of their finite-dimensional submod-
ules in terms of the category of graded modules over the Leavitt path algebra of Qo over
a field k. Here, Qo is the quiver without sources or sinks that is obtained by repeatedly
removing all sinks and sources from Q. The full subcategory qgr(kQ) of finitely presented
objects in QGr(kQ) is triangulated equivalent to the singularity category [8,20] of the
corresponding radical square zero algebra; see [23, Theorem 7.2].
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Let A be a finite-dimensional algebra over a field k. We denote by Kac(A-Proj) the
homotopy category of acyclic complexes of projective A-modules. This category is a
compactly generated triangulated category whose subcategory of compact objects is tri-
angle equivalent to the opposite category of the singularity category of the opposite
algebra Aop.

The homotopy category Kac(A-Proj) was described as a derived category of the Leavitt
path algebra of Qop viewed as a differential graded algebra with trivial differential; see
[10, Theorem 6.2]. Here, Qop is the opposite quiver of Q. The homotopy category of
acyclic complexes of injective modules over A was also described in terms of Leavitt path
algebra; see [10, Theorem 6.1].

In this paper, we construct an explicit compact generator for the homotopy category
Kac(A-Proj) in the case where A is an algebra with radical square zero. The compact
generator is called the projective Leavitt complex. We prove that the opposite differential
graded endomorphism algebra of the projective Leavitt complex of a finite quiver without
sources is quasi-isomorphic to the Leavitt path algebra of the opposite quiver. Here, the
Leavitt path algebra is naturally Z-graded and viewed as a differential graded algebra
with trivial differential.

Let Q be a finite quiver without sources, and let A = kQ/J2 be the corresponding
algebra with radical square zero. We introduce the projective Leavitt complex P• of Q
in Definition 2.4. Then we prove that P• is acyclic; see Proposition 2.7.

Denote by Lk(Q) the Leavitt path algebra of Q over k, which is naturally Z-graded.
We consider the Leavitt path algebra Lk(Qop) of Qop as a differential graded algebra
with trivial differential.

The following is the main result, which combines Theorems 3.7 and 5.2.

Theorem. Let Q be a finite quiver without sources, and A = kQ/J2 be the corres-
ponding finite-dimensional algebra with radical square zero.

(1) The projective Leavitt complex P• of Q is a compact generator for the homotopy
category Kac(A-Proj).

(2) The opposite differential graded endomorphism algebra of the projective Leavitt
complex P• of Q is quasi-isomorphic to the Leavitt path algebra Lk(Qop). �

For the construction of the projective Leavitt complex P•, we use the basis of the
Leavitt path algebra Lk(Qop) given by [4, Theorem 1].

For the proof of (1), we construct subcomplexes of P•. For (2), we actually prove
that the projective Leavitt complex has the structure of a differential graded A-Lk(Qop)-
bimodule, which is right quasi-balanced. Here, we consider A as a differential graded
algebra concentrated on degree zero, while Lk(Qop) is naturally Z-graded and viewed as
a differential graded algebra with trivial differential.

The paper is structured as follows. In § 2, we introduce the projective Leavitt complex
P• of Q and prove that it is acyclic. In § 3, we recall some notation and prove that
the projective Leavitt complex P• is a compact generator of the homotopy category of
acyclic complexes of projective A-modules. In § 4, we recall some facts of the Leavitt path
algebra and endow the projective Leavitt complex P• with a differential graded Lk(Qop)-
module structure, which makes it become an A-Lk(Qop)-bimodule. In § 5, we prove that
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The projective Leavitt complex 1157

the opposite differential graded endomorphism algebra of P• is quasi-isomorphic to the
Leavitt path algebra Lk(Qop).

2. The projective Leavitt complex of a finite quiver without sources

In this section, we introduce the projective Leavitt complex of a finite quiver without
sources, which is an acyclic complex of projective modules over the corresponding finite-
dimensional algebra with radical square zero.

2.1. The projective Leavitt complex

Recall that a quiver Q = (Q0, Q1; s, t) consists of a set Q0 of vertices, a set Q1 of arrows
and two maps s, t : Q1 −→ Q0, which associate with each arrow α its starting vertex s(α)
and its terminating vertex t(α), respectively. A quiver Q is finite if both the sets Q0 and
Q1 are finite.

A path in the quiver Q is a sequence p = αn · · ·α2α1 of arrows with t(αj) = s(αj+1)
for 1 ≤ j ≤ n − 1. The length of p, denoted by l(p), is n. The starting vertex of p, denoted
by s(p), is s(α1). The terminating vertex of p, denoted by t(p), is t(αn). We identify an
arrow with a path of length one. We associate to each vertex i ∈ Q0 a trivial path ei of
length zero. Set s(ei) = i = t(ei). Denote by Qn the set of all paths in Q of length n for
each n ≥ 0.

Recall that a vertex of Q is a sink if there is no arrow starting at it and a source if
there is no arrow terminating at it. Recall that for a vertex i that is not a sink, we can
choose an arrow β with s(β) = i, which is called the special arrow starting at vertex i;
see [4]. For a vertex i which is not a source, fix an arrow γ with t(γ) = i. We call the
fixed arrow the associated arrow terminating at i. For an associated arrow α, we set

T (α) = {β ∈ Q1 | t(β) = t(α), β �= α}. (2.1)

Definition 2.1. For two paths p = αm · · ·α2α1 and q = βn · · ·β2β1 with m,n ≥ 1, we
call the pair (p, q) an associated pair in Q if s(p) = s(q), and either α1 �= β1 or α1 = β1 is
not associated. In addition, we call (p, es(p)) and (es(p), p) associated pairs in Q for each
path p in Q.

For each vertex i ∈ Q0 and l ∈ Z, set

Λl
i = {(p, q) | (p, q) is an associated pair with l(q) − l(p) = l and t(p) = i}. (2.2)

Lemma 2.2. Let Q be a finite quiver without sources. The above set Λl
i is not empty

for each vertex i and each integer l.

Proof. Recall that the opposite quiver Qop of the quiver Q has arrows with
opposite directions. For each vertex i ∈ Q0, fix the special arrow of Qop start-
ing at i as the opposite arrow of the associated arrow of Q terminating at
i. Observe that for each vertex i and each integer l, Λl

i is one-to-one corresp-
onded to {(qop, pop) | (qop, pop) is an admissible pair in Qop with l(pop) − l(qop) = −l
and s(pop) = i}. Here, refer to [17, Definition 2.1] for the definition of an admissible pair.
By [17, Lemma 2.2], the latter set is not empty. The proof is completed. �
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Let k be a field and Q be a finite quiver. For each n ≥ 0, denote by kQn the k-vector
space with basis Qn. The path algebra kQ of the quiver Q is defined as kQ =

⊕
n≥0 kQn,

whose multiplication is given as follows: for two paths p and q, if s(p) = t(q), then the
product pq is their concatenation; otherwise, we set the product pq to be zero. Here, we
write the concatenation of paths from right to left.

We observe that for any path p and vertex i, pei = δi,s(p)p and eip = δi,t(p)p. Here, δ
denotes the Kronecker symbol. It follows that the unit of kQ equals

∑
i∈Q0

ei. Denote by
J the two-sided ideal of kQ generated by arrows.

Consider the quotient algebra A = kQ/J2; it is a finite-dimensional algebra with radical
square zero. Indeed, A = kQ0 ⊕ kQ1 as a k-vector space, with its Jacobson radical radA =
kQ1 satisfying (radA)2 = 0. For each vertex i and arrow α, we identify ei and α with
their canonical images in A.

Denote by Pi = Aei the indecomposable projective left A-module for i ∈ Q0. We have
the following observation.

Lemma 2.3. Let i, j be two vertices in Q, and let f : Pi −→ Pj be a k-linear map. Then
f is a left A-module morphism if and only if⎧⎪⎨⎪⎩

f(ei) = δi,jλej +
∑

{β∈Q1 | s(β)=j,t(β)=i}
μ(β)β

f(α) = δi,jλα

with λ and μ(β) scalars for all α ∈ Q1 with s(α) = i.

For a set X and an A-module M , the coproduct M (X) will be understood as⊕
x∈X Mζx, where each component Mζx is M . For an element m ∈ M , we use mζx

to denote the corresponding element in Mζx.
For a path p = αn · · ·α2α1 in Q of length n ≥ 2, we denote by p̂ = αn−1 · · ·α1 and

p̃ = αn · · ·α2 the two truncations of p. For an arrow α, denote α̂ = es(α) and α̃ = et(α).

Definition 2.4. Let Q be a finite quiver without sources. The projective Leavitt
complex P• = (P l, δl)l∈Z of Q is defined as follows:

(1) the lth component P l =
⊕

i∈Q0
Pi

(Λl
i);

(2) the differential δl : P l −→ P l+1 is given by δl(αζ(p,q)) = 0 and

δl(eiζ(p,q)) =

⎧⎪⎨⎪⎩
βζ(p̂,q) if p = βp̂,∑
{β∈Q1 | t(β)=i}

βζ(es(β),qβ) if l(p) = 0,

for any i ∈ Q0, (p, q) ∈ Λl
i and α ∈ Q1 with s(α) = i.

Each component P l is a projective A-module. The differentials δl are A-module mor-
phisms; compare Lemma 2.3. It is straightforward to see that δl+1 ◦ δl = 0 for each l ∈ Z.
In summary, P• is a complex of projective A-modules.
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2.2. The acyclicity of the projective Leavitt complex

We will show that the projective Leavitt complex is acyclic.
In what follows, f : V −→ V ′ is a k-linear map between two vector spaces V and V ′.

Suppose that B and B′ are k-bases of V and V ′, respectively. We say that the triple
(f,B,B′) satisfies condition (X) if f(B) ⊆ B′ and the restriction of f on B is injective.
In this case, we have Kerf = 0.

We suppose further that there are disjoint unions B = B0 ∪ B1 ∪ B2 and B′ = B′
0 ∪ B′

1.
We say that the triple (f,B,B′) satisfies condition (W) if the following statements hold.

(W1) f(b) = 0 for each b ∈ B0.

(W2) f(B1) ⊆ B′
1 and (f1, B1, B

′) satisfies condition (X), where f1 is the restriction of
f to the subspace spanned by B1.

(W3) For b ∈ B2, f(b) = b0 +
∑

c∈B1(b)
f(c) for some b0 ∈ B′

0 and some finite subset
B1(b) ⊆ B1. Moreover, if b, b′ ∈ B2 and b �= b′, then b0 �= b′0.

We have the following observation. The proof of it is similar to that of [17, Lemma 2.7].
We omit it here.

Lemma 2.5. Assume that (f,B,B′) satisfies Condition (W). Then B0 is a k-basis of
Kerf and f(B1) ∪ {b0 | b ∈ B2} is a k-basis of Imf .

From now on, Q is a finite quiver without sources. We consider the differential δl :
P l −→ P l+1 in Definition 2.4. We have the following k-basis of P l:

Bl = {eiζ(p,q), αζ(p,q) | i ∈ Q0, (p, q) ∈ Λl
i and α ∈ Q1 with s(α) = i}.

Denote by Bl
0 = {αζ(p,q) | i ∈ Q0, (p, q) ∈ Λl

i and α ∈ Q1 with s(α) = i} a subset of Bl.
Set

Bl
2 = {eiζ(ei,q) | i ∈ Q0, (ei, q) ∈ Λl

i}
for l ≥ 0. If l < 0, put Bl

2 = ∅. Take Bl
1 = Bl \ (Bl

0 ∪ Bl
2). Then we have the disjoint

union Bl = Bl
0 ∪ Bl

1 ∪ Bl
2. Set B′l

0 = {βζ(es(q),q) | i ∈ Q0, (es(q), q) ∈ Λl
i such that q =

q̃β and β is associated} for l ∈ Z. We mention that B′l
0 = ∅ for l < 0. Take B′l

1 = Bl \ B′l
0

for l ∈ Z. Then we have the disjoint union Bl = B′l
0 ∪ B′l

1 for each l ∈ Z.

Lemma 2.6. For each l ∈ Z, the set Bl
0 is a k-basis of Kerδl and the set Bl+1

0 is a
k-basis of Imδl.

Proof. For l < 0, we have Bl
2 = ∅ = B′l+1

0 . We observe that the triple (δl, Bl, Bl+1)
satisfies condition (W). Indeed, δl(b) = 0 for each b ∈ Bl

0. The differential δl induces an
injective map δl : Bl

1 −→ B′l+1
1 . Then (W1) and (W2) hold. To see (W3), for l ≥ 0 and

each i ∈ Q0, eiζ(ei,q) ∈ Bl
2, we have

δl(eiζ(ei,q)) = αζ(es(α),qα) +
∑

β∈T (α)

δl(es(β)ζ(β,qβ)),

where α ∈ Q1 such that t(α) = i and α is associated. Here, recall T (α) from (2.1). Thus
(eiζ(ei,q))0 = αζ(es(α),qα) and the finite subset Bl

1(eiζ(ei,q)) = {es(β)ζ(β,qβ) | β ∈ T (α)}.
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Recall that Bl+1
0 = {αζ(p,q) | i ∈ Q0, (p, q) ∈ Λl+1

i and α ∈ Q1 with s(α) = i}. Now we
prove that Bl+1

0 = δl(Bl
1) ∪ {b0 | b ∈ Bl

2}. We mention that the set {b0 | b ∈ Bl
2} =

{αζ(es(α),qα) | q ∈ Ql and α is associated with t(α) = s(q)}. Clearly, δl(Bl
1) ∪ {b0 | b ∈

Bl
2} ⊆ Bl+1

0 . Conversely, for each i ∈ Q0 and (p, q) ∈ Λl+1
i , we have αζ(p,q) =

δl(et(α)ζ(αp,q)) ∈ δl(Bl
1) for α ∈ Q1 with s(α) = i, but αζ(p,q) /∈ {b0 | b ∈ Bl

2}. Applying
Lemma 2.5 for the triple (δl, Bl, Bl+1), the proof is complete. �

Proposition 2.7. Let Q be a finite quiver without sources. Then the projective Leavitt
complex P• of Q is an acyclic complex.

Proof. The statement follows directly from Lemma 2.6. �

Example 2.8. Let Q be the following quiver with one vertex and one loop.

1· α��

The unique arrow α is associated. Set e = e1 and Λl = Λl
1 for each l ∈ Z. It follows that

Λl =

⎧⎪⎨⎪⎩
{(α−l, e)} if l < 0,
{(e, e)} if l = 0,
{(e, αl)} if l > 0.

The corresponding algebra A with radical square zero is isomorphic to k[x]/(x2). Write
A(Λl) = Aζl, where ζl = ζ(α−l,e) for l < 0, ζ0 = ζ(e,e) and ζl = ζ(e,αl) for l > 0. Then the
projective Leavitt complex P• of Q is as follows

· · · −→ Aζl−1 δl−1

−→ Aζl δl

−→ Aζl+1 −→ · · · ,

where the differential δl is given by δl(eζl) = αζl+1 and δl(αζl) = 0 for each l ∈ Z.
Observe that A is a self-injective algebra. The projective Leavitt complex P• is

isomorphic to the injective Leavitt complex I• as complexes; compare [17, Example
2.11].

Example 2.9. Let Q be the following quiver with one vertex and two loops.

1·α1 �� α2��

We choose α1 to be the associated arrow terminating at the unique vertex. Set e = e1

and Λl = Λl
1 for each l ∈ Z. A pair (p, q) of paths lies in Λl if and only if l(q) − l(p) = l

and p, q do not start with α1 simultaneously.
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We denote by A the corresponding radical square zero algebra. The projective Leavitt
complex P• of Q is as follows:

· · · δ−1

�� A(Λ0)
δ0

�� A(Λ1)
δ1

�� · · ·

We write the differential δ0 explicitly: δ0(αkζ(p,q)) = 0 and

δ0(eζ(p,q)) =

{
αkζ(p̂,q) if p = αkp̂,
α1ζ(e,qα1) + α2ζ(e,qα2) if p = e,

for k = 1, 2 and (p, q) ∈ Λ0.

3. The projective Leavitt complex as a compact generator

In this section, we prove that the projective Leavitt complex is a compact generator of
the homotopy category of acyclic complexes of projective A-modules.

3.1. The cokernel complex

Let Q be a finite quiver without sources, and let A be the corresponding algebra with
radical square zero. For each i ∈ Q0, l ∈ Z and n ≥ 0, denote

Λl,n
i = {(p, q) | (p, q) ∈ Λl

i with p ∈ Qn}.

Refer to (2.2) for the definition of the set Λl
i.

Recall the projective Leavitt complex P• = (P l, δl)l∈Z of Q. For each l ≥ 0, we denote

Kl =
⊕

i∈Q0
P

(Λl,0
i )

i ⊆ P l, where Pi = Aei. Observe that the differential δl : P l −→ P l+1

satisfies δl(Kl) ⊆ Kl+1. Then we have a subcomplex K• of P•, whose components Kl = 0
for l < 0. Let φ• = (φl)l∈Z : K• −→ P• be the inclusion chain map by setting φl = 0 for
l < 0. We set C• to be the cokernel of φ•.

We now describe the cokernel C• = (Cl, δ̃l) of φ•. For each vertex i ∈ Q0 and l ∈ Z, set

Λl,+
i =

⋃
n>0

Λl,n
i .

Observe that we have the disjoint union Λl
i = Λl,0

i ∪ Λl,+
i for l ≥ 0 and Λl

i = Λl,+
i for

l < 0. The component of C• is Cl =
⊕

i∈Q0
P

(Λl,+
i )

i for each l ∈ Z. We have Cl = P l for
l < 0 and the differential δ̃l = δl for l ≤ −2. The differential δ̃l : Cl −→ Cl+1 for l ≥ −1 is
given as follows: δ̃l(αζ(p,q)) = 0 and

δ̃l(eiζ(p,q)) =

{
0 if l(p) = 1,

δl(eiζ(p,q)) otherwise,

for any i ∈ Q0, (p, q) ∈ Λl,+
i and α ∈ Q1 with s(α) = i. The restriction of δ̃l to⊕

i∈Q0
P

(Λl,1
i )

i is zero for l ≥ −1. We emphasize that the differentials δ̃l for l ≥ −1 are
induced by the differentials δl in Definition 2.4.
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We observe the inclusions

δ̃l

( ⊕
i∈Q0

P
(Λl,n

i )
i

)
⊆

⊕
i∈Q0

P
(Λl+1,n−1

i )
i

inside the complex C• for each l ∈ Z and n ≥ 2. Then, for each n ≥ 0, the following
complex, denoted by C•

n,

· · · δn−4

−→
⊕
i∈Q0

P
(Λn−3,3

i )
i

δn−3

−→
⊕
i∈Q0

P
(Λn−2,2

i )
i

δn−2

−→
⊕
i∈Q0

P
(Λn−1,1

i )
i → 0

is a subcomplex of C• satisfying Cl
n = 0 for l ≥ n. The differential δl for l ≤ n − 2 is the

differential of P•.
We visually represent the projective Leavitt complex P• and the cokernel complex C•

of φ•. For each l ∈ Z and n ≥ 0, we denote
⊕

i∈Q0
P

(Λl,n
i )

i by P (Λl,n) for simplicity.

Remark 3.1.

(1) For each l ∈ Z, the lth component of the projective Leavitt complex P• is the
coproduct of the objects in the lth column of the above figure. The differentials
of P• are coproducts of the maps in the figure.

(2) The horizontal line of the above figure is the subcomplex K•, while the other
part gives the cokernel C• of φ• : K• −→ P•. The diagonal lines (not including the
intersection with the horizontal line) of the figure are the subcomplexes C•

n of
C•. For example, the first diagonal line on the left (not including P (Λ0,0)) is the
subcomplex C•

0 .

We have the following observation immediately.

Proposition 3.2. The complex C• =
⊕

n≥0 C•
n.
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Proof. Observe that for each n ≥ 0, the lth component of C•
n is

Cl
n =

⎧⎪⎨⎪⎩
⊕
i∈Q0

P
(Λl,n−l

i )
i if l < n

0 otherwise.

Then the lth component of
⊕

n≥0 C•
n is

⊕
n≥0 Cl

n =
⊕

i∈Q0
P

(Λl,+
i )

i = Cl. Recall the dif-

ferential δ̃l : Cl −→ Cl+1 of C•. The restriction of δ̃l to
⊕

i∈Q0
P

(Λl,1
i )

i is zero, and the

restriction of δ̃l to
⊕

i∈Q0
P

(Λl,n
i )

i for n > 1 is δl. Thus, δ̃l : Cl −→ Cl+1 is the coproduct of
the differentials δl : Cl

n −→ Cl+1
n for n ≥ 0. �

3.2. An explicit compact generator of the homotopy category

We consider the category A-Mod of left A-modules. Denote by K(A-Mod) its homotopy
category. We will always view a module as a stalk complex concentrated on degree zero.

For X• = (Xi, di
X)i∈Z, a complex of A-modules, we denote by X•[1] the complex given

by (X•[1])i = Xi+1 and di
X[1] = −di+1

X for i ∈ Z. For a chain map f• : X• −→ Y •, its
mapping cone Con(f•) is a complex such that Con(f•) = X•[1] ⊕ Y • with the differential

di
Con(f•) =

(
−di+1

X 0
f i+1 di

Y

)
.

Each triangle in K(A-Mod) is isomorphic to

X• f•
−−−−→ Y •

⎛⎝0
1

⎞⎠
−−−−→ Con(f•)

(
1 0

)
−−−−−→ X•[1]

for some chain map f•.
Denote by Ii = D(eiAA) the injective left A-module for each i ∈ Q0, where (eiA)A is

the indecomposable projective right A-module and D = Homk(−, k) denotes the standard
k-duality. Denote by {e�

i} ∪ {α� | α ∈ Q1, t(α) = i} the basis of Ii, which is dual to the
basis {ei} ∪ {α | α ∈ Q1, t(α) = i} of eiA.

We denote by M• the following complex

0 →
⊕
i∈Q0

I
(Λ0,0

i )
i

d0

−→
⊕
i∈Q0

I
(Λ1,0

i )
i −→ · · · −→

⊕
i∈Q0

I
(Λl,0

i )
i

dl

−→
⊕
i∈Q0

I
(Λl+1,0

i )
i −→ · · ·

of A-modules satisfying Ml = 0 for l < 0, where the differential dl for l ≥ 0 is given by
dl(e�

iζ(ei,p)) = 0 and dl(α�ζ(ei,p)) = e�
s(α)ζ(es(α),pα) for i ∈ Q0, (ei, p) ∈ Λl,0

i and α ∈ Q1

with t(α) = i. Consider the semisimple left A-module kQ0 = A/radA.

Lemma 3.3. The left A-module kQ0 = A/radA is quasi-isomorphic to the complex
M•. In other words, M• is an injective resolution of the A-module kQ0.

https://doi.org/10.1017/S001309151800007X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151800007X


1164 H. Li

Proof. Define a left A-module map f0 : kQ0 −→ M0 such that f0(ei) = e�
iζ(ei,ei) for

each i ∈ Q0. Then we obtain a chain map f• = (f l)l∈Z : kQ0 −→ M• such that f l = 0
for l �= 0. We observe the following k-basis of Ml for l ≥ 0:

Γl = {e�
iζ(ei,q), α

�ζ(ei,q) | i ∈ Q0, (ei, q) ∈ Λl,0
i and α ∈ Q1 with t(α) = i}.

Set Γl
0 = {e�

iζ(ei,q) | i ∈ Q0, (ei, q) ∈ Λl,0
i }, Γl

1 = Γl \ Γl
0, and Γ′l

1 = Γl. We have the dis-
joint union Γl = Γl

0 ∪ Γl
1. The triple (dl,Γl,Γl+1) satisfies condition (W). By Lemma 2.5,

the set Γl
0 is a k-basis of Kerdl and the set dl(Γl

1) is a k-basis of Imdl. For each
l ≥ 0, i ∈ Q0 and (ei, q) ∈ Λl+1,0

i , write q = q̃α with α ∈ Q1. Then we have e�
iζ(ei,q) =

dl(α�ζ(et(α),q̃)). Thus dl(Γl
1) = Γl+1

0 . Hence Imdl = Kerdl+1 for each l ≥ 0 and Kerd0 ∼=
kQ0. The statement follows directly. �

We now recall some terminology and facts on triangulated categories. For a triangulated
category T , a thick subcategory of T is a triangulated subcategory of T which is closed
under direct summands. Let S be a class of objects in T . We denote by thick〈S〉 the
smallest thick subcategory of T containing S. If T has arbitrary coproducts, we denote
by Loc〈S〉 the smallest triangulated subcategory of T which contains S and is closed
under arbitrary coproducts. By [7, Proposition 3.2], we have that thick〈S〉 ⊆ Loc〈S〉.

For a triangulated category T with arbitrary coproducts, an object M in T is compact
if the functor HomT (M,−) commutes with arbitrary coproducts. Denote by T c the full
subcategory consisting of compact objects; it is a thick subcategory.

A triangulated category T with arbitrary coproducts is compactly generated [13,18]
if there exists a set S of compact objects such that any non-zero object T satisfies
HomT (S, T [n]) �= 0 for some S ∈ S and n ∈ Z. This is equivalent to the condition that
T = Loc〈S〉, in which case we have T c = thick〈S〉; see [18, Lemma 3.2]. If the above set
S consists of a single object S, we call S a compact generator of T .

The following is [17, Lemma 3.9].

Lemma 3.4. Suppose that T is a compactly generated triangulated category with a
compact generator X. Let T ′ ⊆ T be a triangulated subcategory closed under arbitrary
coproducts. Assume that there exists a triangle

X −−−−→ Y −−−−→ Z −−−−→ X[1]

such that Y ∈ T ′ and Z satisfies HomT (Z, T ′) = 0 for each T ′ ∈ T ′. Then Y is a compact
generator of T ′.

Let A-Inj and A-Proj be the categories of injective and projective A-modules, respec-
tively. Denote by K(A-Inj) and K(A-Proj) the homotopy categories of complexes of
injective and projective A-modules, respectively. These homotopy categories are triangu-
lated subcategories of K(A-Mod) which are closed under coproducts. By [15, Proposition
2.3(1)], K(A-Inj) is a compactly generated triangulated category.

Recall that the Nakayama functor ν = DA ⊗A − : A-Proj −→ A-Inj is an equiva-
lence, whose quasi-inverse ν−1 = HomA(D(AA),−). Thus we have a triangle equivalence
K(A-Inj) ∼−→ K(A-Proj). The category K(A-Proj) is a compactly generated triangulated
category; see [12, Theorem 2.4] and [19, Proposition 7.14].
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Lemma 3.5. The complex K• is a compact generator of K(A-Proj).

Proof. Recall that HomA(D(AA), Ii) ∼= Aei for each i ∈ Q0. Then we have K• =
(ν−1(Mi), ν−1(di))i∈Z. By Lemma 3.3, M• = ikQ0 in K(A-Mod). It follows from [15,
Proposition 2.3] that M• is a compact object in K(A-Inj) and Loc〈M•〉 = K(A-Inj).
Since K(A-Inj) ∼−→ K(A-Proj) is a triangle equivalence which sends M• to K•, we have
Loc〈K•〉 = K(A-Proj). �

Lemma 3.6. Suppose that P• ∈ K(A-Proj) is a bounded-above complex. Then we
have

HomK(A-Mod)(P•,X•) = 0

for any acyclic complex X• of A-modules.

Proof. Directly check that any chain map f• : P• −→ X• is null-homotopic. �

Denote by Kac(A-Proj) the full subcategory of K(A-Mod) which is formed by acyclic
complexes of projective A-modules. Applying [19, Propositions 7.14 and 7.12] and the
localization theorem in [14, 1.5], we have that the category is a compactly generated
triangulated category with the triangle equivalence

Dsg(Aop)op ∼−→ Kac(A-Proj)c.

Here, for a category C, we denote by Cop its opposite category; the category Dsg(Aop) is
the singularity category of algebra Aop in the sense of [8,20].

Theorem 3.7. Let Q be a finite quiver without sources. Then the projective Leavitt
complex P• of Q is a compact generator of the homotopy category Kac(A-Proj).

Proof. Recall from Proposition 2.7 that P• is an object of Kac(A-Proj). The complex
C• = Coker(φ•), where φ• : K• −→ P• is the inclusion chain map. Then we have the
following exact sequence

0 �� K•
φ•

�� P• �� C• �� 0,

which splits in each component. This gives rise to a triangle

K• φ•
−−−−→ P• −−−−→ C• −−−−→ X[1] (3.1)

in the category K(A-Proj).
By Proposition 3.2 and Lemma 3.6, the following equality holds

HomK(A-Proj)(C•,X•) =
∏
n≥0

HomK(A-Proj)(C•
n,X•) = 0

for any X• ∈ Kac(A-Proj). Recall from Lemma 3.5 that K• is a compact generator of
K(A-Proj). By the triangle (3.1) and Lemma 3.4, the proof is completed. �
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4. The projective Leavitt complex as a differential graded bimodule

In this section, we endow the projective Leavitt complex with a differential graded
bimodule structure over the corresponding Leavitt path algebra.

4.1. The Leavitt path algebra and module structure

Let k be a field and Q be a finite quiver. We will endow the projective Leavitt complex
of Q with a Leavitt path algebra module structure. Recall from [1,5] the notion of the
Leavitt path algebra.

Definition 4.1. The Leavitt path algebra Lk(Q) of Q is the k-algebra generated by
the set {ei | i ∈ Q0} ∪ {α | α ∈ Q1} ∪ {α∗ | α ∈ Q1} subject to the following relations:

(0) eiej = δi,jei for every i, j ∈ Q0;

(1) et(α)α = αes(α) = α for all α ∈ Q1;

(2) es(α)α
∗ = α∗et(α) = α∗ for all α ∈ Q1;

(3) αβ∗ = δα,βet(α) for all α, β ∈ Q1;

(4)
∑

{α∈Q1 | s(α)=i} α∗α = ei for i ∈ Q0 which is not a sink.

Here, δ is the Kronecker symbol. The relations (3) and (4) are called Cuntz–Krieger
relations. The elements α∗ for α ∈ Q1 are called ghost arrows.

There is an alternative description of Lk(Q). Let Q be the double quiver obtained
from Q by adding an arrow α∗ in the opposite direction for each arrow α in Q. Then the
Leavitt path algebra Lk(Q) is isomorphic to the quotient algebra of the path algebra kQ of
Q modulo the ideal generated by {αβ∗ − δα,βet(α),

∑
{γ∈Q1 | s(γ)=i} γ∗γ − ei | α, β ∈ Q1,

i ∈ Q0}.
If p = αn · · ·α2α1 is a path in Q of length n ≥ 1, we define p∗ = α∗

1α
∗
2 · · ·α∗

n. By con-
vention, we set e∗i = ei for i ∈ Q0. We observe by (2) that for paths p, q in Q, p∗q = 0 for
t(p) �= t(q). Consider the relation (3). We have the following fact; see [24, Lemma 3.1].

Lemma 4.2. Let p, q, γ and η be paths in Q with t(p) = t(q) and t(γ) = t(η). Then
in Lk(Q) we have

(p∗q)(γ∗η) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(γ′p)∗η if γ = γ′q,

p∗η if q = γ,

p∗(q′η) if q = q′γ,

0 otherwise.

Here, γ′ and q′ are some non-trivial paths in Q.

By the above lemma, we deduce that the Leavitt path algebra Lk(Q) is spanned by
the following set: {p∗q | p, q are paths in Q with t(p) = t(q)}; see [1, Lemma 1.5], [24,
Corollary 3.2] or [9, Corollary 2.2]. By (4), this set is not k-linearly independent in
general.
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For each vertex which is not a sink, we fix a special arrow starting at it. The following
result is [4, Theorem 1].

Lemma 4.3. The following elements form a k-basis of the Leavitt path algebra
Lk(Q):

(1) ei, i ∈ Q0;

(2) p, p∗, where p is a non-trivial path in Q;

(3) p∗q with t(p) = t(q), where p = αm · · ·α1 and q = βn · · ·β1 are non-trivial paths of
Q such that αm �= βn, or αm = βn that is not special.

From now on, Q is a finite quiver without sources. For notation, Qop is the opposite
quiver of Q. For a path p in Q, denote by pop the corresponding path in Qop. The starting
and terminating vertices of pop are t(p) and s(p), respectively. By convention, eop

j = ej

for each vertex j ∈ Q0. The opposite quiver Qop has no sinks.
For the opposite quiver Qop of Q, choose αop to be the special arrow of Qop starting

at vertex i, where α is the associated arrow in Q terminating at i. By Lemma 4.3,
there exists a k-basis of the Leavitt path algebra Lk(Qop), denoted by Γ. Define a map
χ :

⋃
l∈Z,i∈Q0

Λl
i −→ Γ such that χ(p, q) = (pop)∗qop. Here, (pop)∗qop is the multiplication

of (pop)∗ and qop in Lk(Qop). The map χ is a bijection. We identify Γ with the set of
associated pairs in Q. A non-zero element x in Lk(Qop) can be written in the unique form

x =
m∑

i=1

λi(p
op
i )∗qop

i

with λi ∈ k non-zero scalars and (pi, qi) pairwise distinct associated pairs in Q.
In what follows, B = Lk(Qop). We write ab for the multiplication of a and b in

B for a, b ∈ B. Recall that the projective Leavitt complex P• = (P l, δl)l∈Z and P l =⊕
i∈Q0

Pi
(Λl

i).
We define a right B-module action on P•. For each vertex j ∈ Q0 and each arrow α ∈

Q1, define right actions ‘·’ on P l for any l ∈ Z as follows. For any element xζ(p,q) ∈ Piζ(p,q)

with i ∈ Q0 and (p, q) ∈ Λl
i, we set

xζ(p,q)·ej = δj,t(q)xζ(p,q); (4.1)

xζ(p,q)·αop =

⎧⎪⎨⎪⎩xζ(p̃,et(α)) −
∑

β∈T (α)

xζ(p̃β,β)
if l(q) = 0, p = p̃α

and α is associated,

δs(α),t(q)xζ(p,αq) otherwise;

(4.2)

xζ(p,q)·(αop)∗ =

{
δα,α1xζ(p,q̂) if q = α1q̂

δs(p),t(α)xζ(pα,es(α)) if l(q) = 0.
(4.3)

Here, regarding the notation, a path p = αn · · ·α2α1 in Q of length n ≥ 2 has two
truncations, p̂ = αn−1 · · ·α1 and p̃ = αn · · ·α2. For an arrow α, α̂ = es(α) and α̃ = et(α).
The set T (α) = {β ∈ Q1 | t(β) = t(α), β �= α} for an associated arrow α.

https://doi.org/10.1017/S001309151800007X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151800007X


1168 H. Li

We observe the following fact:{
xζ(p,q)·αop = 0 if s(α) �= t(q),
xζ(p,q)·(αop)∗ = 0 if t(α) �= t(q).

(4.4)

Lemma 4.4. The above actions make the projective Leavitt complex P• of Q a right
B-module.

Proof. We prove that the above right actions satisfy the defining relations of the
Leavitt path algebra Lk(Qop). We fix xζ(p,q) ∈ Piζ(p,q) ⊆ P l.

For (0), we observe that xζ(p,q)·(ej ◦ ej′) = δj,j′xζ(p,q)·ej .
For (1), for each α ∈ Q1 we have

xζ(p,q)·(αopet(α)) = (xζ(p,q)·αop)·et(α)

= xζ(p,q)·αop.

We have

xζ(p,q)·(es(α)α
op) = (xζ(p,q)·es(α))·αop

= δs(α),t(q)xζ(p,q)·αop

= xζ(p,q)·α
op,

where the last equality uses (4.4). Similar arguments prove the relation (2).
For (3), we have that for α, β ∈ Q1

xζ(p,q)·(αop(βop)∗) = (xζ(p,q)·αop)·(βop)∗

=

⎧⎨⎩ δt(α),t(β)xζ(p̃β,es(β)) −
∑

γ∈T (α)

δγ,βxζ(p̃γ,es(γ))
if l(q) = 0, p = p̃α
and α is associated,

δs(α),t(q)δα,βxζ(p,q) otherwise,

= δs(α),t(q)δα,βxζ(p,q)

= xζ(p,q)·(δα,βes(α)).

Here, we use the fact that in the case where l(q) = 0, p = p̃α and α is associated, if α = β,
then s(α) = t(q) and γ �= β for each γ ∈ T (α); and if α �= β with t(α) = t(β), then there
exists an arrow γ ∈ T (α) such that γ = β.

For (4), for each j ∈ Q0, we have that if α ∈ Q1 with t(α) = j is associated, then

xζ(p,q)·((αop)∗αop) = (xζ(p,q)·(αop)∗)·αop

=

⎧⎪⎪⎨⎪⎪⎩
δα,α1xζ(p,q) if q = α1q̂,

δj′,s(p)

(
xζ(p,es(p)) −

∑
β∈T (α)

xζ(pβ,β)

)
if l(q) = 0.

If α ∈ Q1 with t(α) = j is not associated, then

xζ(p,q)·((αop)∗αop) =

{
δα,α1xζ(p,q) if q = α1q̂,

δj,s(p)xζ(pα,α) if l(q) = 0.

https://doi.org/10.1017/S001309151800007X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151800007X


The projective Leavitt complex 1169

Thus, we have the following equality

xζ(p,q)·
( ∑

{α∈Q1 | t(α)=j}
(αop)∗αop

)

=
{

δj,t(q)xζ(p,q) if q = α1q̂,
δj,s(p)xζ(p,es(p)) if l(q) = 0,

= δj,t(q)xζ(p,q)

= xζ(p,q)·ej . �

The following observation gives an intuitive description of the B-module action on P•.

Lemma 4.5. Let (p, q) be an associated pair in Q.

(1) We have
∑

i∈Q0
eiζ(ei,ei) · (pop)∗qop = et(p)ζ(p,q).

(2) For each arrow β ∈ Q1, the following equality holds:

βζ(es(β),es(β)) · (pop)∗qop = δs(β),t(p)βζ(p,q).

Proof. Since (p, q) is an associated pair in Q, we are in the second subcases of (4.3)
and (4.2) for the right action of (pop)∗qop. Then the statements follow from direct
calculation. �

4.2. The differential graded bimodule

We first recall from [13] some notation on differential graded modules. Let A =⊕
n∈Z

An be a Z-graded algebra. For a (left) graded A-module M =
⊕

n∈Z
Mn, elements

m in Mn are said to be homogeneous of degree n, denoted by |m| = n.
A differential graded algebra (dg algebra) is a Z-graded algebra A with a differential

d : A −→ A of degree one such that d(ab) = d(a)b + (−1)|a|ad(b) for homogeneous elements
a, b ∈ A.

A (left) differential graded A-module (dg A-module) M is a graded A-module
M =

⊕
n∈Z

Mn with a differential dM : M −→ M of degree one such that dM (a·m) =
d(a)·m + (−1)|a|a·dM (m) for homogeneous elements a ∈ A and m ∈ M . A morphism of
dg A-modules is a morphism of A-modules preserving degrees and commuting with
differentials. A right differential graded A-module (right dg A-module) N is a right
graded A-module N =

⊕
n∈Z

Nn with a differential dN : N −→ N of degree one such that
dN (m · a) = dN (m) · a + (−1)|m|m · d(a) for homogeneous elements a ∈ A and m ∈ N .
Here, we use central dots to denote the A-module action.

Let B be another dg algebra. Recall that a dg A-B-bimodule M is a left dg A-module
as well as a right dg B-module such that (a · m) · b = a · (m · b) for a ∈ A, m ∈ M and
b ∈ B.

Recall that Q is a finite quiver without sources. In what follows, we write B = Lk(Qop),
which is naturally Z-graded by the length of paths. We view B as a dg algebra with trivial
differential.
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Consider A = kQ/J2 as a dg algebra concentrated on degree zero. Recall the projective
Leavitt complex P• =

⊕
l∈Z

P l, which is a left dg A-module. By Lemma 4.4, P• is a right
B-module. We observe from (4.1)–(4.3) that P• is a right graded B-module.

The following result states that P• is a dg A-B-bimodule. It is evident that P• is a
graded A-B-bimodule. Recall that the differentials on P• are denoted by δl.

Proposition 4.6. For each l ∈ Z, let xζ(p,q) ∈ Piζ(p,q) with i ∈ Q0 and (p, q) ∈ Λl
i.

Then for each vertex j ∈ Q0 and each arrow β ∈ Q1, we have:

(1) δl(xζ(p,q)·ei) = δl(xζ(p,q))·ei;

(2) δl+1(xζ(p,q)·βop) = δl(xζ(p,q))·βop;

(3) δl−1(xζ(p,q)·(βop)∗) = δl(xζ(p,q))·(βop)∗.

In other words, the right B-action makes P• a right dg B-module and thus a dg A-B-
bimodule.

We make some preparation for the proof of the above proposition. There is a unique
right B-module morphism φ : B −→ P• with φ(1) =

∑
i∈Q0

eiζ(ei,ei). Here, 1 is the unit
of B. For each arrow β ∈ Q1, there is a unique right B-module morphism φβ : B −→ P•

with φβ(1) = βζ(es(β),es(β)). By Lemma 4.5, we have

φ((pop)∗qop) = et(p)ζ(p,q) and φβ((pop)∗qop) = δs(β),t(p)βζ(p,q) (4.5)

for (pop)∗qop ∈ Γ. Here, we emphasize that Γ is the k-basis of B = Lk(Qop). Then φ is
injective and the restriction of φβ to es(β)B is injective. Observe that both φ and φβ are
graded B-module morphisms.

Lemma 4.7. For each i ∈ Q0, l ∈ Z and (p, q) ∈ Λl
i, we have

(δl ◦ φ)((pop)∗qop) =
∑

{α∈Q1 | t(α)=i}
φα(αop(pop)∗qop).

From this, we conclude that (δl ◦ φ)(b) =
∑

α∈Q1
φα(αopb) for b ∈ Bl.

Proof. For each arrow α ∈ Q1 and (pop)∗qop ∈ Γ, we observe that

αop(pop)∗qop =

{
δα,α1(p̂

op)∗qop if p = α1p̂;
(qα)op if l(p) = 0,

(4.6)

which are combinations of basis elements of Lk(Qop). Then we have that

(δl ◦ φ)((pop)∗qop) = δl(eiζ(p,q))

=

⎧⎪⎨⎪⎩
α1ζ(p̂,q) if p = α1p̂;∑
{α∈Q1 | t(α)=i}

αζ(es(α),qα) if l(p) = 0,

=
∑

{α∈Q1 | t(α)=i}
φα(αop(pop)∗qop).

The last equality uses (4.6). �
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Proof of Proposition 4.6. Recall that δl(αζ(p,q)) = 0 for α ∈ Q1 with s(α) = i. It
follows that (1–3) hold for x = α. It suffices to prove that (1–3) hold for x = ei. We recall
that (p, q) ∈ Λl

i, and thus t(p) = i.
For (1), we have that

δl(eiζ(p,q)·ej) = δl(φ((pop)∗qop)ej)

= (δl ◦ φ)((pop)∗qopej)

=
∑

{α∈Q1 | t(α)=i}
φα(αop(pop)∗qopej)

=
∑

{α∈Q1 | t(α)=i}
φα(αop(pop)∗qop)·ej

= δl(eiζ(p,q))·ej .

Here, the second and fourth equalities hold because φ and φα are right B-module
morphisms; the third and last equalities use Lemma 4.7. Similar arguments prove (2)
and (3). �

5. The differential graded endomorphism algebra of the projective Leavitt
complex

In this section, we prove that the opposite differential graded endomorphism algebra of
the projective Leavitt complex of a finite quiver without sources is quasi-isomorphic to
the Leavitt path algebra of the opposite quiver. Here, the Leavitt path algebra is naturally
Z-graded and viewed as a differential graded algebra with trivial differential.

5.1. The quasi-balanced dg bimodule

We first recall some notation on quasi-balanced dg bimodules. Let A be a dg algebra
and M,N be (left) dg A-modules. We have a Z-graded vector space HomA(M,N) =⊕

n∈Z
HomA(M,N)n such that each component HomA(M,N)n consists of k-linear maps

f : M −→ N satisfying f(M i) ⊆ N i+n for all i ∈ Z and f(a · m) = (−1)n|a|a · f(m) for all
homogenous elements a ∈ A. The differential on HomA(M,N) sends f ∈ HomA(M,N)n

to dN ◦ f − (−1)nf ◦ dM ∈ HomA(M,N)n+1. Furthermore, EndA(M) := HomA(M,M)
becomes a dg algebra with this differential and the usual composition as multiplication.
The dg algebra EndA(M) is usually called the dg endomorphism algebra of M .

We denote by Aopp the opposite dg algebra of a dg algebra A. More precisely, Aopp = A
as graded spaces with the same differential, and the multiplication ‘◦’ on Aopp is given
by a ◦ b = (−1)|a||b|ba.

Let B be another dg algebra. Recall that a right dg B-module is a left dg Bopp-module.
For a dg A-B-bimodule M , the canonical map A −→ EndBopp(M) is a homomorphism of
dg algebras, sending a to la with la(m) = a · m for a ∈ A and m ∈ M . Similarly, the
canonical map B −→ EndA(M)opp is a homomorphism of dg algebras, sending b to rb

with rb(m) = (−1)|b||m|m · b for homogeneous elements b ∈ B and m ∈ M .
A dg A-B-bimodule M is called right quasi-balanced provided that the canonical

homomorphism B −→ EndA(M)opp of dg algebras is a quasi-isomorphism; see [10, 2.2].
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Denote by K(A) the homotopy category and by D(A) the derived category of left dg
A-modules; they are triangulated categories with arbitrary coproducts. For a dg A-B-
bimodule M and a left dg A-module N , HomA(M,N) has a natural structure of a left
dg B-module.

The following lemma is [10, Proposition 2.2]; compare [13, 4.3] and [15, Appendix A].

Lemma 5.1. Let M be a dg A-B-bimodule that is right quasi-balanced. Recall that
Loc〈M〉 ⊆ K(A) is the smallest triangulated subcategory of K(A) which contains M and
is closed under arbitrary coproducts. Assume that M is a compact object in Loc〈M〉.
Then we have a triangle equivalence

HomA(M,−) : Loc〈M〉 ∼−→ D(B).

In what follows, Q is a finite quiver without sources and A = kQ/J2 is the correspond-
ing algebra with radical square zero. Consider A as a dg algebra concentrated on degree
zero. Recall that the Leavitt path algebra B = Lk(Qop) is naturally Z-graded, and that
it is viewed as a dg algebra with trivial differential.

Recall from Proposition 4.6 that the projective Leavitt complex P• is a dg A-
B-bimodule. The following statement establishes a connection between the projective
Leavitt complex and the Leavitt path algebra.

Theorem 5.2. Let Q be a finite quiver without sources. Then the dg A-B-bimodule
P• is right quasi-balanced.

In particular, the opposite dg endomorphism algebra of the projective Leavitt complex
of Q is quasi-isomorphic to the Leavitt path algebra Lk(Qop). Here, Qop is the opposite
quiver of Q; Lk(Qop) is naturally Z-graded and viewed as a dg algebra with trivial
differential.

We will prove Theorem 5.2 in § 5.2. The following equivalence has been given by [10,
Theorem 6.2].

Corollary 5.3. Let Q be a finite quiver without sources. Then there is a triangle
equivalence

HomA(P•,−) : Kac(A-Proj) ∼−→ D(B)

such that HomA(P•,P•) ∼= B in D(B).

Proof. Recall from Theorem 3.7 that Kac(A-Proj) = Loc〈P•〉. Then the triangle
equivalence follows from Theorem 5.2 and Lemma 5.1. The canonical map B −→
EndA(P•)opp, which is a quasi-isomorphism, identifies HomA(P•,P•) with B in
D(B). �

5.2. The proof of Theroem 5.2

We follow the notation in § 5.1.

Lemma 5.4 (see [24, Theorem 4.8]). Let A be a Z-graded algebra and ϕ : Lk(Q) −→
A be a graded algebra homomorphism with ϕ(ei) �= 0 for all i ∈ Q0. Then ϕ is injective.
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Let Zn and Cn denote the nth cocycle and coboundary of the dg algebra EndA(P•)opp.
We have the following observation.

Lemma 5.5. Any element f : P• −→ P• in Cn satisfies f(P l) ⊆ Kerδn+l for each
integer l and n.

Proof. For any f ∈ Cn there exists h = (hl)l∈Z ∈ EndA(P•)opp such that f l =
δn+l−1 ◦ hl − (−1)n−1hl+1 ◦ δl for each l ∈ Z. By Proposition 2.7, we have Imδn+l−1 ⊆
Kerδn+l and Imδl ⊆ Kerδl+1. Then it suffices to prove that h(Kerδl+1) ⊆ Kerδn+l.
Recall from Lemma 2.6 that {αζ(p,q) | i ∈ Q0, (p, q) ∈ Λl+1

i and α ∈ Q1 with s(α) = i} is
a k-basis of Kerδl+1. By Lemma 2.3, the proof is complete. �

Recall that the projective Leavitt complex P• is a dg A-B-bimodule; see Proposition
4.6. Let ρ : B −→ EndA(P•)opp be the canonical map which is induced by the right B-
action. Since B is a dg algebra with trivial differential, we have that ρ(Lk(Qop)n) ⊆ Zn

for n ∈ Z. Taking cohomologies, we have the graded algebra homomorphism

H(ρ) : B −→ H(EndA(P•)opp). (5.1)

Lemma 5.6. The graded algebra homomorphism H(ρ) is an embedding.

Proof. By Lemma 5.4, it suffices to prove that H(ρ)(ei) �= 0 for all i ∈ Q0. For each
vertex i ∈ Q0, H(ρ)(ei)(eiζ(ei,ei)) = eiζ(ei,ei). By Lemma 2.6, we have eiζ(ei,ei) /∈ Kerδ0.
By Lemma 5.5, H(ρ)(ei) /∈ C0. This implies H(ρ)(ei) �= 0. �

We will prove that the graded algebra homomorphism H(ρ) is surjective. For each
y ∈ Zn, we will find an element x ∈ Bn with y − ρ(x) ∈ Cn.

In what follows, we fix y ∈ Zn for n ∈ Z. Then y ∈ Zn implies δ• ◦ y − (−1)ny ◦ δ• = 0.

Recall that P l =
⊕

i∈Q0
P

(Λl
i)

i for each l ∈ Z. The set {eiζ(p,q), αζ(p,q) | i ∈ Q0, (p, q) ∈
Λl

i and α ∈ Q1 with s(α) = i} is a k-basis of P l. For each i ∈ Q0, l ∈ Z and (p, q) ∈ Λl
i,

we have {
(δn+l ◦ y)(eiζ(p,q)) = (−1)n(y ◦ δl)(eiζ(p,q))
(δn+l ◦ y)(αζ(p,q)) = 0,

(5.2)

where α ∈ Q1 with s(α) = i.
Observe that y is an A-module morphism. By Lemma 2.3, we may assume that⎧⎪⎨⎪⎩

y(eiζ(p,q)) = φ(y(p,q)) +
∑

{γ∈Q1 | t(γ)=i}
φγ(μγ

(p,q))

y(αζ(p,q)) = φα(y(p,q)),
(5.3)

where y(p,q) ∈ eiLk(Qop)n+l and μγ
(p,q) ∈ es(γ)Lk(Qop)n+l.
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By (5.3) and Lemma 4.7, we have that

(δn+l ◦ y)(eiζ(p,q)) = δn+l(φ(y(p,q))) =
∑

{γ∈Q1 | t(γ)=i}
φγ(γopy(p,q))

and that

(y ◦ δl)(eiζ(p,q)) = y

( ∑
{γ∈Q1 | t(γ)=i}

φγ(γop(pop)∗qop)
)

.

By (5.2), we have∑
{γ∈Q1 | t(γ)=i}

φγ(γopy(p,q)) = (−1)ny

( ∑
{γ∈Q1 | t(γ)=i}

φγ(γop(pop)∗qop)
)

. (5.4)

We recall that for each arrow β ∈ Q1, the restriction of φβ to es(β)B is injective. If
l(p) = 0, then by (5.4) and (5.3), for any γ ∈ Q1 with t(γ) = i we have

y(es(γ),qγ) = (−1)nγopy(p,q). (5.5)

If l(p) > 0, write p = ap̂ with a ∈ Q1 and t(a) = i. By (5.4) and (5.3), we have aopy(p,q) =
(−1)ny(p̂,q) and γopy(p,q) = 0 for γ ∈ Q1 with t(γ) = i and γ �= a. The following equality
holds:

y(p,q) =
∑

{γ∈Q1 | t(γ)=i}
(γop)∗γopy(p,q) = (−1)n(aop)∗y(p̂,q). (5.6)

Lemma 5.7. Keep the notation as above. Take x =
∑

j∈Q0
y(ej ,ej) ∈ L(Qop)n. Then

y(p,q) = (−1)nl(pop)∗qopx in Lk(Qop) for each (p, q) ∈ Λl
i.

Proof. Clearly, we have y(ei,ei) = eix in Lk(Qop). For l(p) = 0 and l(q) > 0, write
q = q̃γ with γ ∈ Q1. We use (5.5) to obtain y(es(q),q) = (−1)nlqopx in Lk(Qop) by induction
on l(q). For l(p) > 0, write p = βm · · ·β1 with all βk arrows in Q. By (5.6), we have y(p,q) =
(−1)n(βop

m )∗y(p̂,q). We obtain y(p,q) = (−1)nm(βop
m )∗ · · · (βop

1 )∗y(es(q),q) by iterating (5.6).
Then, by y(es(q),q) = (−1)n(m+l)qopx in Lk(Qop), the proof is complete. �

We will construct a map h : P• −→ P• of degree n − 1, which will be used to prove
y − ρ(x) ∈ Cn. To define h, we first assign to each pair (p, q) ∈ Λl

i an element θ(p,q) in
Lk(Qop).

For each i ∈ Q0, define θ(ei,ei) =
∑

{γ∈Q1 | s(γ)=i} μγ
(γ,es(γ))

∈ eiLk(Qop)n−1. Here, refer
to (5.3) for the element μγ

(γ,es(γ))
. We define θ(es(q),q) inductively by

θ(es(q),q) = (−1)n−1(γopθ(es(q̃),q̃) − μγ
(es(q̃),q̃)

) ∈ es(q)Lk(Qop)n+l−1, (5.7)

where q = q̃γ with l(q) = l and γ ∈ Q1. Let (p, q) ∈ Λl
i with l(p) > 0. We define θ(p,q) by

induction on the length of p as follows:

θ(p,q) = (−1)n−1(βop)∗θ(p̂,q) +
∑

{γ∈Q1 | t(γ)=i}
(γop)∗μγ

(p,q) ∈ eiLk(Qop)n+l−1, (5.8)

where p = βp̂ with β ∈ Q1 is of length l(q) − l.
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We define a k-linear map h : P• −→ P• such that

h(eiζ(p,q)) = φ(θ(p,q)) and h(αζ(p,q)) = φα(θ(p,q))

for each i ∈ Q0, l ∈ Z, (p, q) ∈ Λl
i and α ∈ Q1 with s(α) = i.

Lemma 5.8. Let x be the element in Lemma 5.7, and let h be the above map. For
each i ∈ Q0, l ∈ Z, (p, q) ∈ Λl

i, we have{
(y − ρ(x))(eiζ(p,q)) = (δn+l−1 ◦ h − (−1)n−1h ◦ δl)(eiζ(p,q))
(y − ρ(x))(αζ(p,q)) = (δn+l−1 ◦ h − (−1)n−1h ◦ δl)(αζ(p,q)) = 0,

where α ∈ Q1 with s(α) = i.

Proof. Recall from (4.5) the right B-module morphisms φ and φβ for β ∈ Q1. By (5.3)
and Lemma 5.7, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(x)(eiζ(p,q)) = (−1)nlφ(pop∗qop)·x = φ(y(p,q))
ρ(x)(αζ(p,q)) = (−1)nlφα(pop∗qop)·x = φα(y(p,q))
(y − ρ(x))(eiζ(p,q)) =

∑
{γ∈Q1 | t(γ)=i}

φγ(μγ
(p,q)).

Recall that δl ◦ φβ = 0 for each arrow β ∈ Q1. It remains to prove (δn+l−1 ◦ h −
(−1)n−1h ◦ δl)(eiζ(p,q)) =

∑
{γ∈Q1 | t(γ)=i} φγ(μγ

(p,q)).
By the definition of δl, we have

(h ◦ δl)(eiζ(p,q)) =

⎧⎪⎨⎪⎩
φβ(θ(p̂,q)) if p = βp̂,∑
{γ∈Q1 | t(γ)=i}

φγ(θ(es(γ),qγ)) if l(p) = 0.

By Lemma 4.7, we have (δn+l−1 ◦ h)(eiζ(p,q)) =
∑

{γ∈Q1 | t(γ)=i} φγ(γopθ(p,q)). Then the
following equalities hold:

(δn+l−1 ◦ h)(eiζ(p,q)) − (−1)n−1(h ◦ δl)(eiζ(p,q))

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

{γ∈Q1 | t(γ)=i}
φγ(γopθ(p,q)) − (−1)n−1φβ(θ(p̂,q)) if p = βp̂

∑
{γ∈Q1 | t(γ)=i}

φγ(γopθ(p,q) − (−1)n−1θ(es(γ),qγ)) if l(p) = 0

=
∑

{γ∈Q1 | t(γ)=i}
φγ(μγ

(p,q)).

The last equality uses (5.7) and (5.8). �

Proof of Theorem 5.2. It suffices to prove that H(ρ) in (5.1) is an isomorphism. By
Lemma 5.6, it remains to prove that Hn(ρ) is surjective for any n ∈ Z. For any element
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y = y + Cn with y ∈ Zn, take x =
∑

j∈Q0
y(ej ,ej) ∈ Bn = Lk(Qop)n. By Lemma 5.8, we

have y − ρ(x) ∈ Cn. Then it follows that y = ρ(x) in Hn(EndA(P•)opp). �
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