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Three-dimensional particle tracking velocimetry is applied to particle-laden turbulent
pipe flows at a Reynolds number of 10 300, based on the bulk velocity and the
pipe diameter, for developed fluid flow and not fully developed flow of inertial
particles, which favours assessment of the radial migration of the inertial particles.
Inertial particles with Stokes number ranging from 0.35 to 1.11, based on the particle
relaxation time and the radial-dependent Kolmogorov time scale, and a ratio of
the root-mean-square fluid velocity to the terminal velocity of order 1 have been
used. Core peaking of the concentration of inertial particles in up-flow and wall
peaking in down-flow have been found. The difference in mean particle and Eulerian
mean liquid velocity is found to decrease to approximately zero near the wall in
both flow directions. Although the carrier fluid has all of the characteristics of the
corresponding turbulent single-phase flow, the Reynolds stress of the inertial particles
is different near the wall in up-flow. These findings are explained from the preferential
location of the inertial particles with the aid of direct numerical simulations with the
point-particle approach.

Key words: particle/fluid flow

1. Introduction

Turbulent dispersed two-phase flows are abundant in both industry and nature.
Dispersion of pollutants in an urban environment, sediment transport and the fluidized
catalytic cracking of carbohydrates are, for example, of major importance. The ability
to predict the migration of a dispersed phase with a different velocity from the
carrier phase, with either numerical or analytical models, is required in a wide range
of disciplines. A thorough understanding of the behaviour of this type of dispersed
two-phase flow in practice is essential for model development, and facilitates scale-up
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of process equipment and improvement of mixing efficiencies. It is clear that a
consistent set of experimental data under well-known conditions is needed to validate
models. The present study aims to increase our understanding and provide such a
set of data. Before describing the main features of the approach followed, previous
experimental work and relevant theoretical studies are first reviewed.

All turbulent flows are inhomogeneous in practice. Although experiments of any
kind are useful to reveal the underlying physics of dispersed two-phase flows,
experiments on inhomogeneous flows are therefore particularly significant. The most
familiar example of such flows is turbulent flow in pipes. Although particle-laden flow
in pipes has numerous engineering applications, only restricted classes of turbulent
dispersed flows in pipes have been investigated, and to a limited extent. These will
be reviewed first.

A significant number of experimental studies have been performed with small
solid particles in wall-bounded flows, pipes or channels; small here means with a
size of the order of the Kolmogorov length scale or less. Most of the particles have
possessed a significant relaxation time scale due to high mass density ratios, as for
solid particles in gas flows. The characteristics of both the carrier fluid phase and
small solid particles have been measured in turbulent wall-bounded flows by Tsuji &
Morikawa (1982), Tsuji, Morikawa & Shiomi (1984), Kulick, Fessler & Eaton (1994),
Paris & Eaton (2001), Kussin & Sommerfeld (2002), Caraman, Borée & Simonin
(2003), Benson, Tanaka & Eaton (2005), Borée & Caraman (2005) and Yang & Shy
(2005). In these studies, attempts were made to explain particle migration, preferential
concentrations and turbulence modulation. So-called instantaneous realizations of the
fluid velocity field, instantaneous 3D snapshots of the flow field, were combined
in the analysis with considerations of particle inertia. Some of these analyses also
considered the effects of wake interaction, wall roughness and inter-particle and
particle–wall collisions. The latter are of course only significant with high particle
loadings. To avoid the need to investigate many different phenomena, it is wise to pay
attention to flows with a low concentration of particles. Flows in which the collision
frequency, breakage efficiency, agglomeration, reaction rate, deposition or entrainment
of particles is essential will therefore not be addressed in the present study.

As opposed to the above small and heavy particles, near-neutrally buoyant particles
with significant dimension have less often been investigated. In this case, the particle
diameter to Kolmogorov length-scale ratio is high, which induces a high relaxation
time once again. An example is polystyrene particles in water flows. The dynamics
of such particles in turbulent transport has been the subject of experimental research
in more recent studies by Brown, Warhaft & Voth (2009) and Volk et al. (2011).
These studies concerned counter-rotating disk flow with neutrally buoyant particles.
The particle inertia is quite high due to the added mass and the particle size. At
the expense of having large-sized particles, the relative velocity is kept limited
by selecting a particle mass density, ρp, close to that of water. Calzavarini et al.
(2009) developed a numerical model to predict features of neutrally buoyant particles
in a stationary homogeneous isotropic flow. They obtained good agreement with
the experimental data of Voth et al. (2002) and Qureshi et al. (2007) regarding
particle acceleration variances. To the best of our knowledge, there are only few
experiments with inertial particles with a notable velocity relative to the fluid in
turbulent inhomogeneous shear flows. Sato & Hishida (1996) and Suzuki, Ikenoya &
Kasagi (2000) studied flows of glass, cellulose and ceramic particles in water with a
particle to fluid mass density ratio of approximately 1.5–4. These were channel and
not pipe flows. Particle inertia and volume load effects were found to be manifested
through changes of several terms in the turbulence kinetic energy equation.
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Let UTV be the magnitude of the terminal velocity of the dispersed phase and let
urms be the root-mean-square velocity of the carrier phase. A rather complex motion
of bubbles in turbulent flows has been found (Sene, Hunt & Thomas 1994; Spelt
& Biesheuvel 1997) to result from the interaction of the turbulent flow and particle
inertia when urms/UTV = O(1). Entrapment of bubbles or particles in vortical flow
structures and transport of dispersed phase towards the flowing edges of eddies were
found to modify the mean rise velocity of bubbles in homogeneous turbulence. More
recently, Aliseda & Lasheras (2011) investigated preferential concentration of bubbles
in homogeneous turbulence. The reduction of the rising velocity of bubbles was
shown to be related to higher levels of turbulence. All of the above studies with a
lighter dispersed phase (bubbles) were performed in isotropic turbulence or in plane
shear flows. These studies raise expectations concerning flows with a heavier dispersed
phase and terminal velocities of the same magnitude as turbulent fluctuation velocities.
If not only the turbulence level but also the lift force, by definition perpendicular
to the relative velocity of the particle, were important, differences between bubbles
and particles would be expected since the relative velocity has a different sign. In
addition, up-flow and down-flow would yield opposite results. In the present study,
solid particles slightly heavier than the carrier phase are investigated in both up-flow
and down-flow in a pipe; the shape of the particles is constant, their size is well
known and the bulk Reynolds number of the fluid is taken to be constant. In particular,
the preferential concentration, mean relative velocity and Reynolds stresses of both
phases are investigated.

Aliseda & Lasheras (2011) presented a cartoon to explain the mean relative velocity
reduction of bubbles in a simplified way. They limited the interaction of bubbles and
carrier fluid to two-dimensional (2D) large eddies and considered the residence time of
bubbles in these eddies. Adaptation of the approach of Aliseda & Lasheras to vertical
particle-laden pipe flow is straightforward and shows that the interaction of inertial
particles (with ρp/ρf ≈ 1.05, where ρf is the mass density of the fluid) with relatively
large turbulent flow structures leads to an increased residence time in regions where
the eddy velocity is upward and reduces the relative velocity, on average. However,
it is far more accurate to resolve all length and velocity scales in direct numerical
simulation (DNS) and compute trajectories of inertial particles with the aid of a
Lagrangian model of particle motion. This is the approach followed in the present
study to investigate the mechanisms that reduce the Eulerian mean relative velocity
of particles with respect to the fluid near the pipe wall. This approach increases our
understanding and facilitates interpretation of experimental findings. Because of the
Lagrangian numerical model used in this study, some relevant models in the literature
are briefly examined below.

Attempts to model particle-laden flows have been made numerically in the last
two decades. When particles with a size exceeding the Kolmogorov length scale
reside in a carrier flow, the only way to fully describe the momentum exchange
of the two phases is to resolve the stresses at the particle surfaces. This approach
obviously requires large memory and a high processing speed. Commonly, simple
geometries with a limited numbers of particles have been studied; see Tryggvason
et al. (2001) and Dijkhuizen, Van Sint Annaland & Kuipers (2010). More recently,
Picano, Breugem & Brandt (2015) performed DNS in a turbulent channel flow with
dense suspensions. Other DNS simulations have utilized significant simplifications, e.g.
neglect of the effect of the finite size of the particle on the flow and the assumption
of a point-force approach for the particle equation of motion; see Poelma (2004). To
predict trajectories in a point-particle approach, the total force on a particle must be
determined, which makes computation of particle trajectories in DNS possible. In the
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point-particle approach, a lift force is usually taken into account. After the famous
work of Saffman (1965) for laminar flows, Auton, Hunt & Prud’homme (1988)
extended the form of the lift force to high-Reynolds-number flows. As Legendre &
Magnaudet (1998) have shown, the form of the lift force given by Auton et al. (1988)
may be used for all particle Reynolds numbers provided that the lift force coefficient
is made dependent on this Reynolds number. The analysis of the present study will
focus on explanations of the trends observed experimentally and will use DNS and
the point-particle approach. To be clear about this limitation, the DNS of the present
study will be named point-particle DNS (PP-DNS). The use of one-way coupling in
this numerical model will be validated with experimental results.

Preferential concentration of particles will be seen to play an important role.
Turbophoresis, on the other hand, is a very slow process and requires a large
development length. Turbophoresis is a much weaker phenomenon than radial particle
transport by the lift force component which mainly depends on the derivative of the
mean axial velocity with respect to the radial coordinate. Moreover, turbophoresis
would yield identical concentrations in up-flow and down-flow, whereas different
concentration profiles will be shown to result from this study.

Three-dimensional particle tracking velocimetry, 3D-PTV, is applied to measure
fluid–particle interaction and preferential concentration for pipe flows with near-
neutrally buoyant particles (with ρp/ρf ≈ 1.05) with low and homogeneous inlet
concentration. The inertial nature of the particles is mainly due to their size, which
ranges from 1.3 to 3.5 times the Kolmogorov length scale. The choice of PTV is
justified for the following reasons: the presence of two differently sized particles in the
same experiment, the sparseness of the particle fields, the acquisition of simultaneous
particle information at different locations across a fairly large measurement volume
and the inhomogeneous nature of pipe flow which requires particle statistics collected
at discrete radial positions. All flows have a Reynolds number (Reb) of 10 300, based
on the bulk velocity and the pipe diameter.

The structure of the paper is as follows. In § 2, the experimental set-up is presented,
including the specifications of the flow tracers and inertial particles, a description of
the experimental conditions is given and the numerical method is described. In § 3,
results are presented and analysed with the aid of PP-DNS results. The PP-DNS
enables the calculation of statistics of fluid velocities evaluated at the particle
positions, which are relevant for analysis of the forces acting on a particle and
which are virtually impossible to obtain experimentally. The focal points are inertial
particle concentration profiles, Eulerian mean velocity differences and the Reynolds
stresses of inertial particles. Finally, the main conclusions are stated in § 4.

2. Experimental set-up
2.1. Test rig

Turbulent particle-laden pipe flows were created in a water loop driven by a
centrifugal pump; see figure 1. The in-line 3 kW centrifugal pump of type DPV18-30,
manufactured by ‘Duijvelaar pompen’, allowed Reynolds numbers, based on the bulk
velocity, Ub, and pipe diameter, D, in the range 103–105.

A set of valves was arranged in such a way that downward and upward vertical
flows were possible. A frequency controller permitted fine-tuning of the Reynolds
number by adjusting the mass flow rate. The mass flow rate was measured by means
of a Micro Motion Elite CMF300 mass flow (Coriolis meter) and mass density meter,
whose inaccuracy was less than 0.5 % of the registered flow rate. A water reservoir
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Centrifugal
pump

Coriolis flow
meter

Return
pipe

Auxiliary
pipe

Removable flow
straightener I:
bundle type

Test section

Removable pipe section
for calibration purposes

Removable flow straightener II:
bundle type

Controllable
valves (CVs)

CV1

CV2
CV3

FIGURE 1. (Colour online) Schematic of the experimental 3D-PTV set-up for downward
or upward particle-laden pipe flow.

(tank I) was located at the bottom of the set-up and contained approximately 2 m3 of
water. This volume facilitated water temperature stabilization and Reynolds number
control. The temperature during a test-run was essentially constant, varying by 0.1 ◦C
at most. Submerged pumps were placed in the reservoir tanks at the bottom and the
top (tank II, 0.15 m3) of the set-up in order to promote homogeneous dispersion of
the added tracers and inertial particles.

The measurement section consisted of a glass pipe to ensure optical accessibility.
A water-filled rectangular glass box around the pipe minimized optical distortion. The
pipe inner diameter, D= 2R, was 100 mm and its wall thickness was 10 mm. Flow
straighteners, tube bundle conditioners of ISO 5167-1:1991, see Miller (1996), were
employed to avoid secondary flows due to bends. As a result, nearly uniform fluid
velocity profiles were obtained just after the flow straighteners. In up-flow, 3D-PTV
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measurements were performed at 45D downstream of the entrance section; in down-
flows, at 20D.

Three ‘HighSpeedStar’ cameras with 12-bit greyscale CMOS sensors and a
resolution of 1024 × 1024 pixels were utilized to capture instantaneous 3D particle
positions in a measurement volume of 10× 10× 10 cm3. The cameras could record
at 1000 Hz at full resolution, but were operated at 50 Hz to maximize the flow
measurement time. Recordings were performed until the internal memory of the
cameras became full after approximately 2 min. The maximum physically relevant
frequencies were approximately 12 Hz for Reb = 10 300, making a 50 Hz sampling
rate sufficient according to the Nyquist theorem. The lighting system comprised two
stroboscopic light sources with an output of 5 J per pulse; see figure 1. The strobes
were custom-built to maximize the light output at a maximum of 60 Hz with a light
pulse duration of approximately 40 µs.

2.2. Settings and accuracy of 3D-PTV
While a minimum depth of field of the camera and lenses must be guaranteed to
obtain sharp images of moving particles in the whole volume of the measurement
section, a certain field of view is needed to obtain trajectories long enough to measure
all relevant flow scales. A focal length of 105 mm, an exposure time of 20 µs and
a distance from the lens to the object of roughly 800 mm were selected. The sensor
resolution was 1 pixel2

= 17 µm × 17 µm, which corresponds to an actual area of
100 µm× 100 µm.

To determine the so-called calibration functions that correlate the pixel information
from the three cameras to 3D world coordinates, an in situ calibration unit was
designed. A calibration plate manufactured from a 2.5 mm thick glass plate with
a single-sided coating of chromium, 150 nm thick, was given fixed positions at 26
locations in the pipe, interspaced by 2 mm, with a position error of less than 1 µm.
Only motion perpendicular to the calibration plate was possible. A 2D array of
circular gaps with a diameter of 0.3 mm covered the plate; the centres were 5 mm
apart both horizontally and vertically. Third-order polynomials were found to be
sufficient to connect the recorded pixel coordinates to actual positions; fitting errors
were less than 0.05 pixel.

A commercial 3D-PVT imaging code from La Vision GmbH, named Davis, was
used to obtain the trajectories of the tracers and inertial particles. Algorithmic details
of the Davis PTV tracking code can be found in Dracos (1996) and Maas (1996).
Built-in imaging filters were used to improve the contrast between the tracers and the
background. The 2D determination of the centre of a particle in the camera plane was
made by a Gaussian fit. The so-called triangulation error is a measure of uncertainty
of the 3D particle position. In the present measurements, the maximum triangulation
error was 0.2 pixel, roughly 20 µm.

The particle tracking algorithm yields matrices that contain time reference and
spatial positions of particle trajectories from the flow measurement images. Before
the statistical analysis of turbulent pipe flow is carried out, the spatial positions
are converted from Cartesian to cylindrical coordinates with radial coordinate r
and azimuthal coordinate θ . In the proximity of the pipe centreline, r/R = 0, the
discontinuity of radial and tangential velocities for cylindrical coordinates can cause
wrong differentiation of displacements in time. Let dt be the timestep between
consecutive measurements and let suffix j number the time of measurement, tj. If a
particle crosses r= 0, the radial velocity, ur, may appear to be zero, and the tangential
velocity, uθ ≈ πr/dt; see (2.1) and (2.2). This problem is avoided by employing a
Cartesian frame of reference around the tube axis,
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FIGURE 2. (Colour online) One out of three simultaneous recordings of particle-laden flow
in the test section; frontal top camera. The inertial particles are the larger circles.

ur(tj)= [r(tj+1)− r(tj)]/dt, (2.1)
uθ(tj)= [θ(tj+1)− θ(tj)]r(tj)/dt. (2.2)

After the coordinate transformation, the differentiation in time of the validated
trajectories generates the velocity vectors. In a similar way, accelerations were derived
from smoothed velocity histories; see Oliveira, van der Geld & Kuerten (2015).
Velocities derived by straightforward interpolations of consecutive 3D positions of a
particle trajectory have been proved to be reliable to obtain pipe flow statistics. The
uncertainty in the magnitude of the velocity vector obtained from two consecutive
positions is for both tracers and particles approximately 0.06 mm s−1. Unrealistic
trajectories are avoided by two filters: a length filter and an outlier check of five
times the standard deviation of the velocity components. The length filter consists
of elimination of particle trajectories comprising less than 10 positions. Mean and
maximum particle trajectories consist of 30 and 81 positions respectively. More
information about the particle tracking algorithm used to obtain the trajectories of
the tracers and the inertial particles and the trajectory analysis method for individual
particle trajectories is given by Oliveira (2012) and Oliveira, van der Geld & Kuerten
(2013).

The number of tracer trajectories measured in the range r/R= 0.6–1 decreases with
increasing r. The difficulties in measuring tracer trajectories in this region were mainly
due to light reflections stemming from the difference between the refractive indices
of water, n ≈ 1.33, and glass, n ≈ 1.51, and the curvature of the glass pipe. Light
reflections deteriorate the contrast between tracers and background. However, the fluid
flow could also be measured for r/R> 0.6 despite the lower number of usable tracers
there. The measured concentration of tracers is roughly linear from r/R = 0 to 0.6
and decreases towards the wall for r/R > 0.6 for all flow cases. In Oliveira et al.
(2013), Eulerian statistics of a single-phase turbulent pipe flow acquired by 3D-PTV
were found to be trustworthy in the near-wall zone if the number of velocity vectors
per radial bin exceeded 1000. The same criterion is also applied in the present work.

In the detection of inertial particle trajectories, the above contrast problem between
particles and background did not occur. The larger imaging projection area of inertial
particles on the camera sensor, exceeding the projection of tracers by a factor
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of 16, avoided problems in the identification of particles; see figure 2. While the
projection of a tracer image covers an area of nearly 2 × 2 pixels, the projection
of an inertial particle covers 8 × 8 pixels. Roughly, every 3D inertial particle
position identified in the tracking algorithm corresponds to a real particle. On average,
approximately 3× 105 inertial particle positions were identified in each particle-laden
case. Three-dimensional particle positions were identified with a camera frame rate
of 50 Hz in average time intervals of 50 min. In this period of time, a water volume
corresponding to ≈2.3 m3 crosses the test section. In this way, accurate measurements
of concentration profiles of inertial particles were obtained.

The derivative of particle trajectories with respect to time generates on average 2×
106 velocity vectors for tracers and 3× 105 for inertial particles in each particle-laden
case. The velocity vectors are ensemble-averaged in radial bands with a width of
1r = 1 mm, except for the first bin, which extends from r = 0 to r = 0.5 mm; see
Oliveira et al. (2013). A cylindrical coordinate system (r, θ, z) with origin at the pipe
centreline and with the axial axis, z, anti-parallel to the gravitational acceleration, g,
is used for both down- and up-flow.

To check the accuracy of the mean axial velocity profiles, the products of the
mean axial fluid velocity and the area of each discrete bin, 〈Uz〉k Ak, were summed
to obtain the mean volumetric flow rate, Q, through the measurement volume.
Temperature measurements yielded the water mass density, ρ. The resulting product
ρQ corresponded to the mass flow rate given by the Coriolis meter within its accuracy
range.

2.3. Properties of particles
The properties of the polystyrene particles applied in the present particle-laden
experiments are given in table 1. The fluid time scale τη at the Stokes number St and
the fluid length scale η are the Kolmogorov scales for fully developed single-phase
pipe flow at Reb = 10 300, as computed from DNS results by Veenman (2004). The
Kolmogorov length varies between 0.6 mm in the pipe core and 0.2 mm at the wall,
whereas the Kolmogorov time varies between 187 ms in the core and 57 ms at the
wall. The Reynolds number based on the wall shear velocity and the pipe diameter,
Reτ , is 647. For evaluation of the particle time scale, τp, the relaxation time for
particles in stationary flow is used; see Albrecht et al. (2003):

τp = (d2
pρp/18µ)(1+ 0.5ρf /ρp), (2.3)

where µ is the dynamic viscosity of the fluid, dp is the particle diameter and ρp and
ρf are the mass densities of the particles and the fluid respectively. A relaxation time
of τp ≈ 4 ms is obtained for the tracers. It should be noted that the fluid inertia is
accounted for by the added mass coefficient 0.5, which close to a wall is increased
to approximately 0.7; see van der Geld (2002).

The terminal velocity specified in table 1 is attained in quiescent fluid when the
gravitational and drag forces are in equilibrium,

UTV = {4(ρp − ρf )dpg/3CDρf }
0.5, (2.4)

where g is the gravitational acceleration and CD is the drag coefficient; it should be
noted that UTV is positive by definition. The drag coefficient is a function of the
particle Reynolds number, Rep= dpUTV/ν, which is based on the particle diameter and
the terminal velocity. In the Stokes regime, CD is given by (2.5). For 1<Rep < 1000,
Schiller & Naumann (1935) proposed the correlation given by (2.6),
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Particles Mass Diameter Terminal Rep St= τp/τη
b St= τ+p

b Length-
density dp velocity, scale ratio:
(kg m−3) (mm) UTV

a dp/η
c

(mm s−1)

Flow tracers 1050 0.2 1.0 0.18 0.02–0.07 0.10 0.33–1
Inertial particles 1050 0.8 10.2 7.76 0.35–1.11 1.56 1.33–3.5

TABLE 1. The properties of the particles applied in the present particle-laden experiment.
aSettling velocity of a particle in an infinite stagnant pool of water.

bKolmogorov time scales for a fully developed single-phase pipe flow at Reb = 10 300 as
computed from the DNS code developed by Veenman (2004): τη ≈ 187 ms at pipe

centreline and τη ≈ 57 ms close to the wall. The Stokes number based on the wall shear
stress is given by τp/(τw/µ)= τ

+

p , with τw the wall shear stress.
cKolmogorov length scales for a fully developed single-phase pipe flow at Reb = 10 300
as computed from the DNS code developed by Veenman (2004): η≈ 0.60 mm at pipe

centreline and η≈ 0.23 mm close to the wall.

CD = 24/Rep, Rep < 1, (2.5)
CD = (24/Rep)(1+ 1/6Re2/3

p ), 1< Rep < 1000. (2.6)

The properties of the inertial particles are such that the characteristic root-mean-square
velocity representative of the turbulent carrier phase, urms, and the terminal velocity of
the dispersed phase, UTV , are approximately the same, urms/UTV =O(1).

Since the bulk flow velocity, Ub, is approximately 100 mm s−1, the ratio Ub/UTV
is of the order of 102 for seeding particles; see table 1. Since Ub � UTV , τp < τη
and dp <η, the seeding particles employed work well as flow tracers. For the inertial
particles, the ratio Ub/UTV is of the order of 10, τp ≈ τf and dp > η. Therefore, the
inertial particles have significant inertial characteristics, as is also exhibited by the
differences in the Lagrangian statistical properties, the auto- and cross-correlations
of velocities and the accelerations of tracers and inertial particles; see Oliveira et al.
(2015). These authors showed that the decay of the Lagrangian velocity correlations of
the applied inertial particles takes place in shorter times than the decay of the velocity
correlation of the flow tracers. The fluctuating velocity of a particle is coherent with
the fluid as long as it remains in a characteristic large eddy structure. However, the
inertial particles applied here cannot completely follow the large fluid scales due to
their inertia (mainly from their finite size) and the acceleration of the fluid volume,
which is named added mass. One of the reasons for the difference in tracer and
particle behaviour is the so-called crossing trajectory effect, where a particle heavier
than the surrounding fluid falls in an external force field, such as gravity, from one
eddy to another at a rate faster than the average eddy decay rate. In addition, particles
of intermediate size in shear flows experience a hydrodynamic lift.

2.4. Experimental conditions
Downward and upward vertical flows were measured at the same bulk Reynolds
number based on the tube diameter, Reb. The bulk velocity of each flow, Ub, was
adapted to temperature changes to keep Reb ≈ 10 300. Single-phase flows served
as a reference for two-phase flows. Only tracers were employed in single-phase
flow measurements. Both tracers and inertial particles were present in particle-laden
measurements. A mean volume fraction of tracers of less than 10−6 was applied to
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Case Flow direction 〈Φv〉

1S Upward 0
1A Upward 0.5× 10−5

1B Upward 1.4× 10−5

1C Upward 3.2× 10−5

2S Downward 0
2A Downward 1.8× 10−5

2B Downward 2.8× 10−5

TABLE 2. The single-phase and particle-laden flow experiments.

Reb 10 300 —
Reτ a 647 —
uτ a 6.47 (mm s−1)

ν/uτ 0.15 (mm)
Uc/Ub 1.28 —
ηa 0.23–0.60 (mm)
τη

a 187–57 (s)
uz,max

b 16.6 (mm s−1)

TABLE 3. Details of the current single-phase pipe flow in fully developed conditions for
Ub = 100 mm s−1 (1S).

aAs computed from the DNS code developed by Veenman (2004) for the pipe diameter
actually used in the experiments.

bMaximum root-mean-square fluid velocity. This occurs at r/R∼ 0.95 and for the
streamwise direction.

all experiments to prevent the enhancement of dissipation effects; see Elghobashi
(1994). Particle-laden flows with a mean volume fraction of inertial particles, 〈Φv〉,
ranging from 5.0× 10−6 to 3.2× 10−5 were tested.

A particle-laden experimental case is represented here by a number indicating the
flow direction (1 or 2) and a letter indicating the mean concentration of inertial
particles (A, B or C); see table 2. The reference single-phase flows are 1S and 2S.
Details on the single-phase pipe flow based on the scales of the current experiment
and in fully developed conditions (case 1S) are presented in table 3. The variables
Reb, Reτ , Ub, η and τη have already been defined above; Uc is the centreline velocity
and ν is the fluid kinematic viscosity. The wall shear velocity, uτ , was derived from
DNS data provided by Veenman (2004) by implementing the actual pipe diameter. In
the remainder of this work, the bulk velocity Ub is chosen as a normalization quantity
instead of the wall shear velocity, uτ , which is often used in the literature, because
Ub can be determined more accurately in our experimental set-up; see § 2.2. The
single-phase flow experimental results of Oliveira et al. (2013) at Reb = 10 300 were
in accordance with the DNS results. The significance of the pipe flow in relation to
the particle motion can be inferred by comparing tables 1 and 3, and by the graphical
results in § 3. The maximum root-mean-square fluid velocity occurs at r/R ∼ 0.95
and for the streamwise direction.
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2.5. Point-particle DNS
This paper is focused on experimental findings and the interpretation thereof. However,
in order to be able to interpret some of the results, we also performed numerical
simulations of particle-laden turbulent pipe flow at the same Reynolds number for
up-flow. These simulations are not intended to cover the complete physics of the
problem, but to complete the understanding of the experimental findings.

In a real DNS, all scales of the flow around each particle should be resolved, which
is computationally unfeasible with many particles. Usually, PP-DNS is performed in
cases where the number of particles or the range of scales is too large, although
PP-DNS is often assumed to be only valid in cases where the particles are small
compared with the Kolmogorov scale (Bagchi & Balachandar 2003; Balachandar &
Eaton 2010; Vreman 2016), which is certainly not true in our experiments. However,
since the particle volume fraction in our experiments is so small that the effects of
the particles on the continuous phase are negligible, one-way coupled PP-DNS and a
force balance on each particle that includes all relevant forces exerted by the fluid on
the particles will be used here. One of the advantages of the one-way coupling is that
the liquid velocity and liquid vorticity at the centre of the particle, needed for some
of the forces on the particle, are well-defined.

The present section briefly describes the numerical method of the PP-DNS. An
Eulerian–Lagrangian approach is applied, where the continuous phase is described
in an Eulerian way by the incompressible Navier–Stokes equations in cylindrical
coordinates and each particle is tracked in a Lagrangian way by solving its equation
of motion. The numerical method for the continuous phase is the same as in Walpot,
van der Geld & Kuerten (2007). A pipe with a length equal to 5D is used together
with periodic conditions in the axial direction. Naturally, the boundary conditions in
the tangential direction are periodic as well. A Fourier–Galerkin method is applied
in the two periodic directions, and in the radial direction a Chebyshev collocation
method is applied, but the radial direction is divided into several elements with a
Chebyshev distribution of grid points in each of them to avoid excessive clustering
of grid points near the axis of the pipe. The nonlinear terms in the Navier–Stokes
equation are calculated in Fourier space making use of the 3/2 rule to avoid aliasing.
For the present bulk Reynolds number of 10 300, the numbers of grid points are 150
in the radial direction, 256 in the tangential direction and 384 in the axial direction.
It has been shown by Oliveira et al. (2013) that this resolution is sufficient to obtain
good agreement with experimental results for single-phase flow. Time integration is
performed with a second-order-accurate time-splitting method, in which the nonlinear
terms are treated explicitly and the viscous and pressure terms implicitly.

At the low particle–fluid mass density ratio considered here, all forces exerted by
the fluid on a particle need to be taken into account, but for computational reasons
we omit the Basset history force. Therefore, the equation of motion on each particle
comprises the buoyancy force, the pressure gradient force, the added mass force, the
drag force and the shear lift force,

ρpVp
dvp

dt
= Vp(ρp − ρf )g+ ρf Vp

DU
Dt
+ ρf VpCAM

[
DU
Dt
−

dvp

dt

]
− (1/8)ρf CDπd2

p|vp −U|(vp −U)− ρf VpCL(vp −U)×ω. (2.7)

The vorticity of the flow field, ∇ × U, is denoted by ω, and DU/Dt represents the
Lagrangian fluid acceleration, which is the sum of the pressure gradient acceleration
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and a viscous deceleration,

DU
Dt
=
∂U
∂t
+U · ∇U. (2.8)

The undisturbed fluid velocity, U(x p), is by definition at the location of the centre
of mass of the particle, x p. The coefficients CAM, CD and CL denote the added mass,
drag and lift coefficients respectively. The coefficient CAM is taken to be 0.5, CD is
computed with the Schiller & Naumann (1935) correlation given by (2.5) and (2.6),
and CL is given by the following correlation, valid for low Reynolds numbers Res =

d2
p|ω|ρf /µ (van der Geld 1997):

CL = 3.084/
√

Res. (2.9)

In order to obtain the fluid velocity, vorticity and acceleration at the particle position,
tri-linear interpolation is applied. Stability problems near the pipe axis are prevented
by using the equations for the Cartesian components of particle position and velocity.
Moreover, for the particles, periodic conditions are applied in the axial direction.
Particles collide elastically with the wall of the pipe. The number of particles tracked
in the simulation is larger than in the experiments. Since only one-way coupling is
applied, this does not change the results but does increase the statistical accuracy of
the results.

The simulation is started from a fully developed turbulent flow to which particles
are added at random positions, uniformly distributed over the whole volume of the
pipe. The initial velocity of a particle is equal to the velocity of the fluid at the
position of the particle. Statistical results for the particle properties are gathered after a
statistically steady particle volume fraction distribution in the radial direction has been
reached. Simulations are only performed for up-flow. For down-flow, the lift force
leads to a strong motion of particles towards the wall of the pipe, resulting in a locally
high particle concentration, so that two-way coupling and particle collisions cannot be
disregarded.

3. Results and discussion
In this section, the experimental results will be presented and an interpretation will

be given which is also based on a comparison with PP-DNS results and experimental
results for single-phase flow. The focal points are the particle volume fraction profile,
the mean axial relative velocity profile and the Reynolds stress tensors of the fluid and
the particles. First, it will be investigated to what extent the velocity statistics obtained
in the measurement section correspond to fully developed conditions.

3.1. Assessment of the extent of flow development
Especially for the experiments in down-flow, the distance between the flow straightener
and the measurement section might be too small to obtain fully developed flow in
the measurement section. Therefore, we will first investigate to what extent the
velocity statistics obtained for single-phase flow correspond to fully developed
results obtained by means of DNS (Veenman 2004; Walpot et al. 2007) at the
same Reynolds number. The diagonal components of the Reynolds stress tensor of
the single-phase results for up-flow will be seen to correspond well with the DNS
results, which indicates that this flow is indeed fully developed; see also Oliveira
et al. (2013). However, deviations of up to 15 % will be seen to occur in the results
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FIGURE 3. Volume fraction profiles of inertial particles, φv(r/R), for various values of
the mean particle volume fraction. (a) Up-flow; (b) down-flow.

for down-flow, which can only be explained by a too small distance between the
flow straightener and the measurement section, which equals 20D. The deviations
are restricted to the regions close to their maxima, i.e. 0.6 < r/R < 0.9. Moreover,
the mean axial velocity profiles differ by only 2 % at most. Although a well-known
correlation predicts that the entrance length equals approximately 20D in the present
experiment (Hinze 1975), this distance is apparently insufficient for a fully developed
flow in all respects. Nevertheless, the magnitude and extent of the deviations of
the experimental single-phase down-flow results from fully developed flow (DNS or
up-flow) are sufficiently small to discriminate important trends in the behaviour of
inertial particles, as will be shown in this paper. In addition, the results of the present
research can be applied to validate DNS results on particle-laden flow.

It should be noted that the development length of two-phase flow is generally
larger than that of single-phase flow. Therefore, the observation that the single-phase
up-flow is fully developed does not imply that the particle concentration in the
corresponding two-phase flow is fully developed in the measurement section. This
will be investigated in the next section.

3.2. Volume fraction profiles of inertial particles
In this section, we will first investigate the particle volume fraction profiles for both
up-flow and down-flow and then give an explanation for the observed behaviour
by considering the particle equation of motion. Figure 3 shows the particle volume
fraction as a function of the radial coordinate for up-flow and down-flow and for
all mean particle volume fractions studied. The error bars have a size of ±2 times
the standard error. A sample corresponds to the instantaneous volume fraction found
in one measurement for a given radial position, and the mean volume fraction
corresponds to the time-averaged volume fraction of particles at this same location.

The results presented in figure 3 are consistent: the volume fraction profiles are
hardly affected even when half of the total number of samples is used. Figure 3(a)
shows that in up-flow, the particle volume fraction is smaller close to the pipe wall,
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i.e. for r/R > 0.85, than in the centre. For down-flow, on the other hand, a distinct
large peak at r/R ≈ 0.97 is observed. This shows that the volume fraction profile
strongly depends on the direction of the flow, in particular in the near-wall zone. The
results for down-flow also show a second peak at r/R = 0 but with a significantly
smaller magnitude than the peak near the wall. This central peak finds its origin
in the development of the flow. Just after the flow straightener on top, the velocity
profile is close to being uniform. Subsequent development of the flow requires motion
towards the centre. This flow carries particles along. Further downstream, this peak
will disappear. It should be noted that turbophoresis, particle motion towards the wall
of a pipe by the effect of turbulence, cannot explain the concentration results. If
this effect was dominant, the concentration profiles in up- and down-flows should be
similar.

The observed differences in particle volume fraction profiles between up-flow and
down-flow can be explained by the forces exerted on the particles. If the three main
forces of the particle equation of motion are retained, equation (2.7) reduces to

0= Vp(ρp − ρf )g+ (1/8)ρf CDπd2
p|vp −U|(vp −U)− ρf VpCL(vp −U)×ω. (3.1)

The main contribution from the vorticity to this equation is through the contribution
to its tangential component from the mean axial velocity d〈Uz〉/dr close to the
wall. The axial component of (3.1) therefore results in vp,z = Uz − UTV . The radial
component provides a balance between lift and drag and can be simplified to
vp,r = 4dp(CL/CD)d〈Uz〉/dr/3. For up-flow, this radial particle velocity is directed
towards the centre of the pipe, whereas for down-flow, it is directed towards the
wall. Point-particle DNS simulations without lift force resulted in uniform particle
concentrations, which confirms the above explanation. Next, we will use force balance
(3.1) to estimate the magnitude of the mean radial particle velocity.

If only the dominant forces are retained, the radial component of (3.1) can be
written as

−(1/8)ρf CDπd2
p|vp − 〈U〉L|〈vrel,r〉L − ρf VpCL〈vrel,z〉Lωθ = 0. (3.2)

Let sgn(〈Uz〉) denote the sign of the mean axial velocity component. As will be shown
below, the mean value of |vp − 〈U〉L| is close to UTV . We use the notation 〈 〉L to
indicate a Lagrangian average, i.e. the average value taken over all particles located
at a certain radial coordinate. Now, suppose that an inertial particle is moving towards
the centre of the tube. The drift velocity of the inertial particles in the radial direction
can be defined as the value of 〈vrel,r〉L that follows from (3.2),

Udrift = sgn(〈Uz〉)4dp(CL/CD)d〈Uz〉/dr/3. (3.3)

If the lift force coefficient is taken to be 0.5 and the mean value of d〈Uz〉/dr for
0< r/R< 0.6 is employed, a drift velocity of 0.1 mm s−1 is found, directed towards
the wall for down-flow and towards the centre of the pipe for up-flow. The measured
mean radial particle velocity is indeed of the order of Udrift for 0< r/R< 0.6, while
for 0.8< r/R< 1.0, it is systematically negative in up-flow and positive in down-flow,
with absolute maxima of approximately 0.6 mm s−1 in both cases.

Upstream of the measurement section, just behind the flow straightener, the inertial
particles are still homogeneously distributed over the cross-section of the pipe and
no preferential concentration is present yet. At this position, the mean radial fluid
velocity evaluated at the particle positions is still equal to the Eulerian mean radial
fluid velocity, which is equal to zero. As a result of (3.3), the mean radial particle
velocity is directed towards the axis of the pipe for up-flow and towards the pipe wall
for down-flow. The measured non-zero radial particle velocity shows that the particle
concentration is not yet fully developed in the measurement section.
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FIGURE 4. Mean axial velocity profiles, 〈Uz〉 and 〈vp,z〉, of the particle-laden case 1B and
the single-phase flow 1S (up-flow), (a) in the range 0< r/R< 0.85 and (b) in the range
0.85< r/R< 1. The velocities are normalized by the bulk velocity of each flow, Ub. The
lines are added to guide the eye. The difference in scales should be noted.

0 0.2

2S (single-phase)
2B (trackers)
2B (internal particles)

Down-flow, 2B/2S

0.4 0.6 0.8 0.80 0.85 0.90 0.95 1.00

1.2

1.1

1.0

0.9

1.3

1.4
1.0

0

0.2

0.4

0.6

0.8

(a) (b)

FIGURE 5. Mean axial velocity profiles, 〈Uz〉 and 〈vp,z〉, of the particle-laden case 2B and
the single-phase flow 2S (down-flow), (a) in the range 0< r/R< 0.8 and (b) in the range
0.8< r/R< 1. The velocities are normalized by the bulk velocity of each flow, Ub. The
lines are added to guide the eye. The difference in scales should be noted.

3.3. Mean axial velocity profiles
Figures 4 and 5 show the mean axial velocity profiles of the fluid, 〈Uz〉, and the
inertial particles, 〈vp,z〉, for up- and down-flow. All velocities in this paper are
normalized with the bulk fluid velocity, Ub, which varies from case to case. The bulk
flow velocity was adjusted to keep the bulk Reynolds number for each experiment
equal to 10 300. The error bars have sizes comparable to the dimensions of the
symbols and are not shown.

The mean axial fluid velocity in two-phase up-flow is slightly smaller than the
corresponding single-phase velocity in most of the cross-section of the pipe. This
is caused by the particles, which have a smaller velocity, dragging the fluid along.
The opposite is observed in figure 5 for down-flow. It should be noted that the
cross-sectional average fluid velocity is the same in all cases. Therefore, this small
difference in axial velocities is compensated close to the wall (figures 4b and 5b).
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FIGURE 6. The difference between the mean axial particle and fluid velocities, 〈vrel,z〉, for
up-flow (a) and down-flow (b).

The relative velocity is approximately constant in the range 0 < r/R < 0.5. This
difference is approximately equal to 10.2 mm s−1, which is the value of UTV ; see
table 1. The difference decreases further away from the pipe axis. For r/R > 0.90,
the mean fluid and particle velocities are almost equal; see figure 6, where the
difference between the relative velocity and the terminal velocity, UTV , is shown as
a function of the radial coordinate. Understanding of this finding is facilitated by a
study of the PP-DNS results for the same flow. Figure 7 shows various mean axial
velocity profiles obtained in the PP-DNS for up-flow. The mean fluid velocity, 〈Uz〉,
the mean particle velocity, 〈vp,z〉, the mean fluid velocity at the particle positions,
〈Uz〉L, and the absolute value of the mean relative velocity, which is defined as
〈vrel,z〉L = 〈vp,z〉 − 〈Uz〉L, are included (mean is here defined as the average over time
and the two homogeneous directions). It should be noted that this relative velocity
is not accessible in measurements, since it requires the fluid velocity at the particle
position, which is not defined. In particle-resolved DNS, this quantity is not defined
either, but for this reason we applied PP-DNS.

Figure 7 shows that if r/R<0.7, the difference between 〈Uz〉 and 〈Uz〉L is negligible,
which implies that the mean relative velocity as seen by the particle is equal to UTV .
Closer to the wall, the Lagrangian averaged axial fluid velocity starts to deviate from
its Eulerian averaged value. Apparently, particles are preferentially located in regions
where the axial fluid velocity component has a higher absolute value than the mean
fluid velocity. This can be understood in the following way. Consider an inertial
particle in developed upward pipe flow outside the core of the pipe. It is driven there
by a positive radial fluid velocity fluctuation. Since the Reynolds stress of the fluid
is positive, the axial fluid velocity fluctuation must also be positive on average. The
instantaneous axial velocity of the particle, vpz, is the sum of the constant −UTV and
the fluid velocity, as shown by the PP-DNS results of figure 7. The value of vpz is
therefore preferentially shifted to positive values of fluid velocity fluctuations. The
lower Eulerian mean relative velocity near the wall also results from this.

A similar finding to that in figure 6(b) for the range r/R<0.6, where −UTV ≈〈vrel,z〉,
was observed by Suzuki et al. (2000) in downward channel flow of water with
ceramic beads with mass density exceeding the carrier phase by a factor of 3.85.
The ratios of the root-mean-square (RMS) fluid velocity to the terminal velocity
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FIGURE 7. Point-particle DNS computations of local mean axial velocity components. The
dashed line gives the component of the inertial particles and the dotted line the mean
liquid velocity at the particle position. The mean fluid velocity (solid) and the absolute
value of the local mean relative velocity as sampled by the particles, |〈vrel,z〉L| (symbols),
are also given.

of the inertial particles, urms/UTV , in their experiments are close to 0.2, which is
different from the value of approximately 1 in the present study. A maximum
concentration of inertial particles occurred near the channel walls, similarly to the
down-flow measurements presented here, and |〈vrel,z〉| was also found to decrease with
decreasing distance from the wall. Suzuki et al. (2000) observed that the velocity
difference between the carrier phase and the inertial particles is approximately equal
to the terminal velocity. Near the wall, they observed a reduction of the relative
velocity of approximately 10 % of UTV .

In the next section, it will be shown that the above explanation of the relative
velocity is consistent with the interpretation of the particle Reynolds stress tensor.

3.4. Reynolds stress tensors of the fluid and the dispersed phase
In this section, the components of the Reynolds stress tensor, Rij, which are averages
of the products of velocity fluctuations, with i and j denoting cylindrical coordinates
(r, θ , z), are assessed for both phases. We use R f

ij = 〈uiuj〉 for the fluid phase and
Rp

ij=〈v
′

piv
′

pj〉 for the dispersed phase. In fully developed pipe flow, the only decoupled
direction is the tangential one, which implies that all cross-correlations involving the
tangential velocity are zero, which is confirmed by the experimental results.

The non-zero components of the Reynolds stress tensor are presented in figures
8–10. All results are normalized by the square of the bulk flow velocity of the
corresponding experiment. In each plot, the single-phase results are also shown.

In Oliveira et al. (2013), the non-zero components of the Reynolds stress tensor of
the fluid of case 1S were shown to agree with the DNS results of Veenman (2004).
While at the centre of the tube (r/R< 0.2) turbulence is nearly homogeneous, highly
inhomogeneous behaviour is seen closer to the wall (0.8 < r/R < 1); see figures 8
and 9.
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FIGURE 8. Radial and tangential components of the Reynolds stress tensor, R f
rr, Rp

rr, R f
θθ

and Rp
θθ , for upward cases 1B/1S (a) and downward cases 2B/2S (b). The results are

normalized by the square of the bulk velocity of each flow, U2
b . The lines are added to

guide the eye.
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2B (inertial particles)
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2S (single-phase)
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FIGURE 9. Axial components of the Reynolds stress tensor, R f
zz and Rp

zz, for upward
cases 1B/1S (a) and downward cases 2B/2S (b). The results are normalized by the square
of the bulk velocity of each flow, U2

b . The lines are added to guide the eye.

Figures 8–10 show that the results for the tracers in particle-laden flow are almost
indistinguishable from the single-phase flow results. This shows that the particle
concentration in the experiments is so low that the particles do not significantly
affect the carrier phase. Therefore, the modification of flow turbulence is not of
concern in the present study due to the low concentration of particles applied. The
noisy character of the symbols for the Reynolds stresses of the inertial particles in
figures 8–10 can be attributed to the number of velocity samples: 2 × 106 velocity
vectors for tracers and only 3× 105 for inertial particles in each particle-laden case;
see § 2.2.
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1B (inertial particles)
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1S (single-phase)
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FIGURE 10. Non-diagonal components of the Reynolds stress tensor, R f
rz and Rp

rz, for
upward cases 1B/1S (a) and downward cases 2B/2S (b). The results are normalized by
the square of the bulk velocity of each flow, U2

b . The lines are added to guide the eye.

The radial and tangential diagonal components of the Reynolds stress tensor of the
dispersed phase are almost equal to the corresponding results for the carrier phase for
both up-flow (figure 8a) and down-flow (figure 8b). However, the diagonal axial and
non-zero non-diagonal components of the Reynolds stress tensor of the fluid and the
dispersed phase are not equal. In the range r/R< 0.8, Rp

zz exceeds R f
zz by more than

20 % for up-flow (figure 9a) and by more than 15 % for down-flow (figure 9b). For
r/R> 0.8 in up-flow, both Rrz and Rzz for the particles are significantly smaller than
for the fluid.

In order to explain this observed behaviour of the Reynolds stress tensor of the
dispersed phase for r/R> 0.8, we invoke the concept of turbulent diffusion. Turbulent
diffusion theory establishes a relation between the non-diagonal component of the
Reynolds stress tensor and the radial derivative of the axial fluid velocity of the form

〈uruz〉 =−ΓT∂〈Uz〉/∂r. (3.4)

The closure (3.4) is only approximate but offers a convenient way to qualitatively
understand the phenomenon of turbulent diffusion. Since d〈Uz〉/dr < 0 in pipe flow,
this relation shows that R f

rz > 0. Next, we turn to the particle Reynolds stress. Due to
the direction of the lift force from the wall to the centre of the pipe, particles near
the wall in up-flow are mainly driven by sweeps from the centre to the wall. For
r/R> 0.7, these particles are therefore in eddies that carry a lower absolute value of
the velocity gradient d〈Uz〉/dr. This is why the Lagrangian sampled average of this
gradient, |〈dUz/dr〉L|, is smaller than the Eulerian average. The results of the PP-DNS,
shown in figure 11(a), confirm this.

The probability density function (p.d.f.) of the Lagrangian sampled ∂Uz/∂r at
r/R=0.9, shown in figure 11(b), is a further illustration of this. This figure also shows
the Eulerian average (approximately −2Ub/R, indicated by the vertical line). Diffusion
theory for both the fluid and particle Reynolds stresses (3.4) now explains why
Rp

rz < R f
rz close to the wall.
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FIGURE 11. Comparison of 〈∂Uz/∂r〉L and ∂〈Uz〉/∂r, made dimensionless with the tube
radius (R) and bulk velocity (Ub), as computed by PP-DNS (a); probability density, P, of
(∂Uz/∂r)R/Ub (b).
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FIGURE 12. Reynolds stress tensor components measured in up-flow (symbols) and
computed for the particles with the point-force model in PP-DNS (solid line).

At the same time, the Reynolds stress Rzz of inertial particles outside the core of
the pipe is less than for fluid particles (figure 9a). This is substantiated by the PP-
DNS results, which indeed showed that 〈Uz〉L exceeds the Eulerian counterpart 〈Uz〉

(figure 7), while the Reynolds particle stresses are close to the experimental values;
see figure 12.

In contrast to up-flow, in down-flow and close to the wall, particles are not mainly
driven by sweeps from the wall to the centre, since other mechanisms force particles
away from the wall. Because of the large local particle concentration, diffusion is
stronger near the wall than in the core. In addition, an inertial particle must also
bounce at the wall. The Lagrangian average of dUz/dr is therefore about the same as
the Eulerian average. As a consequence, the Reynolds stresses Rp

rz and Rp
zz of inertial

particles are close to the corresponding fluid Reynolds stresses.
For r/R< 0.8, the particle Reynolds stresses are 15 % larger (figures 9b and 10b).

The reason for this is probably that the down-flow case is not fully developed.
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This has been verified by the observation that upon removing the flow straightener at
the inlet, as presented in Oliveira (2012), the turbulent stresses become higher.

4. Conclusions
In this paper, turbulent particle-laden pipe flow has been studied by means of 3D-

PTV. We considered particles that have a slightly larger mass density than the fluid
and a size larger than the Kolmogorov scale. The ratio of the RMS fluid velocity to
the terminal velocity of the inertial particles is of order 1; urms/UTV = O(1). Results
have been obtained for both up-flow and down-flow, and for both tracer and inertial
particles. For up-flow, the results have been compared with results of PP-DNS, using
particle tracking and including all forces.

Two major findings were made:

(i) the inertial particle concentration is high near the wall in down-flow and high
near the centre in up-flow;

(ii) the axial component of the mean relative velocity decreases to zero near the wall
in both cases.

We showed that the shear lift force is the only possible explanation for the first
finding. The second finding is explained by the preferential location of inertial
particles in upward moving parts of near-wall eddies. Other findings concern the
turbulent stresses of both fluid and inertial particles and are consistent with these two
explanations.
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Appendix. State of development in up-flow and down-flow
In this appendix, we will discuss the state of development of the up-flow and down-

flow measured at the test location. In Oliveira et al. (2013), it has already been shown,
by comparison of the velocity profile and Reynolds stress tensors with those of DNS,
that the up-flow is fully developed. In the up-flow case, the distance between the flow
straightener and the measurement section is 45D, whereas this distance is only 20D
for down-flow. In the down-flow case, the inlet section contains a flow straightener
consisting of a set of parallel tubes; each tube has an inner diameter of 5 mm and a
length of 40 cm; see figure 13.

The state of development was investigated by comparing the flow characteristics of
down-flow with and without a flow straightener with results from DNS and up-flow.
As a typical example, R f

zz is shown for all of these cases in figure 14. The figure
shows that the up-flow results agree very well with the DNS results, in agreement with
the conclusion in Oliveira et al. (2013). Down-flow with a flow straightener results
in somewhat higher velocity fluctuations, particularly in the peak close to the wall.
Removal of the flow straightener leads to a significant further increase of the velocity
fluctuations over the whole radius of the pipe. It is obvious that the less developed
the flow is, the higher the velocity fluctuations are. The relatively small difference
between the up-flow and down-flow cases with a flow straightener indicates that the
down-flow is close to being fully developed.
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FIGURE 13. (Colour online) Schematics of the flow straighteners and inlet sections for
up-flow (a) and down-flow (b).
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FIGURE 14. Comparison of the axial diagonal component of the Reynolds stress tensor
between DNS, up-flow and down-flow.
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