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ABSTRACT
In order to ensure low-altitude safety, a tracking and recognition method of unmanned aerial
vehicle (UAV) and bird targets based on traditional surveillance radar data is proposed. First,
several motion models for UAV and flying bird targets are established. Second, the target
trajectories are filtered and smoothed with multiple motion models. Third, by calculating the time-
domain variance of the model occurrence probability, the model conversion probability of the
target is estimated, and then the target type is identified and classified. The effectiveness and
robustness of the algorithm is demonstrated by several groups of Monte Carlo simulation
experiments, including setting different recognition steps, different model transformation
probability, filtering and smoothing algorithm comparison. The algorithm is also successfully
applied on the ground-truth radar data collected by the low-altitude surveillance radar at airport
and coastal environments, where the targets of UAVs and flying birds could be tracked and
recognised.
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NOMENCLATURE
LSS slow speed small
RMSE root mean square error
ROC receiver operator characteristic
UAV unmanned aerial vehicle

1.0 INTRODUCTION
In recent years, with the rapid development of the unmanned aerial vehicle (UAV) industry,
the interference incidents to civil aviation by UAV frequently occur at various airports around
the world(1). The potential safety hazards caused by the illegal flight of UAVs have sounded
an alarm for the low-altitude airspace protection of airports, frontiers and important sensitive
areas, which has aroused great public concern. According to the communication between the
target and the detection equipment, the low-altitude, slow speed small (LSS) target repre-
sented by UAV can be divided into ‘co-operation’ and ‘non-co-operation’. For co-operative
UAV, its flight information can be real-time accessed to the UAV Cloud management system,
and the regulatory authorities will inquire and record the UAV mistakenly entering the
corresponding area(2). Co-operative surveillance technology can cover more than 95% of the
consumer UAV, and the remaining less than 5% of the non-co-operative UAV is the focus
and difficulty of low-altitude defence.

At present, typical non-co-operative UAV target detection technologies include pho-
toelectric, radio detection, acoustics, radar and so on, each of which has its own
advantages and short comings(3–9). Among them, radio detection technology can effec-
tively detect the UAV operator but cannot effectively find the ‘silent’ UAV without
transmitting radio signals. Although photoelectric detection has advantages in target
recognition, it is easy to be interfered by ambient light and the detection range is limited.
Audio detection technology is susceptible to noise and clutter, which has a good effect on
large UAVs, but it is difficult to detect small and medium-sized UAVs in strong back-
ground noise environment. Generally speaking, as the main means of target detection and
surveillance, radar is widely used in the fields of defence and public security, such as air
and sea target surveillance and early warning. Although the traditional radar has the
problem of insufficient detection efficiency for LSS targets, radar is still an important
means of air target detection(10).

In the low-altitude environment, flying birds are the main LSS targets besides UAVs. In the
process of UAVs and flying birds target detection, it is necessary to classify and identify
them. In general, radar can only obtain the amplitude, position, speed information of the target
as the single detection means, which is difficult to effectively classify and identify the target.
At present, the typical low-altitude surveillance system uses optoelectronic technology as a
supplement to the radar system, which identifies and confirms the target after the radar finds
it(11). However, the cost of such systems is high, and the synchronisation of radar and
optoelectronic equipment is difficult due to the limited view field of optoelectronic equipment
and the need to adjust the focal length when detecting targets at different distances. A large
number of researchers have identified UAVs and flying birds by extracting the micro-Doppler
characteristics of the target, but this kind of research is only applicable to metal-rotor UAVs
with strong radar echo(12–16). There is no relevant report on the recognition of light and small
UAVs with weak echo, such as the Phantom series of DJI.
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Aiming at the above problems, a method is proposed for the classification and recognition
of low-altitude non-co-operative UAV and flying bird targets based on motion model, using
the echo information obtained by conventional mechanical scanning radar to fully analyse the
difference between UAV and flying bird targets. The remaining of this paper is organised as
follows. In Section 2, the proposed scheme and modelling method is introduced. Then, some
analysis results for the simulated and real data are provided, respectively, in Sections 3 and 4.
Some conclusions close the paper in Section 5.

2.0 MODELLING AND ANALYSIS
The scattering cross section, flying speed and flying height of low-altitude flying bird target
are close to those of light and small UAV, so the existing low-altitude surveillance radar is
difficult to distinguish them. In this section, the basic scheme flow of classification and
recognition algorithm of light and small UAV and flying bird based on motion model is
given, and then the establishment of motion model and the method of feature extraction are
described in detail.

2.1 Scheme design

In this algorithm, four steps are adopted: target tracking with multiple models, target
smoothing, model probability estimation and feature extraction of target models. Finally,
target features such as target motion model conversion frequency are extracted to distinguish
light and small UAV targets from flying birds. The algorithm flow chart is shown in Fig. 1.
Existing target tracking methods estimate target state information by establishing target
motion model and modify target state by using measurement information, whose purpose is to
improve tracking accuracy and approximate the real moving state of target. The goal of this
method is not to improve the tracking accuracy but to realise the recognition and classification
of the target, which is an extension application of the existing target tracking algorithm.

Target tracking with
multiple models

Target smoothing

Model probability
estimation

Measurements

Feature extraction of
target models

Threshold exceeded?Bird
Yes

No

UAV

Smoothed results

Filtered results

Figure 1. Classification scheme for unmanned aerial vehicle (UAV) and flying bird targets.
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2.2 Target tracking with multiple models

In each time step, the initial conditions are obtained for certain model-matched filter by
mixing the state estimates produced by all filters from the previous time step under the
assumption that this particular model is the right model at current time step. Then standard
Kalman filtering is performed for each model, and after that we compute a weighted com-
bination of updated state estimates produced by all the filters yielding a final estimate for the
state and covariance of the Gaussian density in that particular time step. The weights are
chosen according to the probabilities of the models, which are computed in filtering step of
the algorithm.

The mixing probabilities μi j jk for each model Mi and Mj are calculated as

cj =
Xn
i= 1

pijμik�1; …(1)

μi j jk =
1
cj
pijμik�1; …(2)

where μik�1is the probability of model Mi in the time step k −1 and cj a normalisation factor.
Now we can compute the mixed mean and covariance for each filter as

m0j
k�1 =

Xn
i= 1

μi j jk mi
k�1; …(3)

P0j
k�1 =

Xn
i= 1

μi j jk ´ Pi
k�1 + mi

k�1�m0j
k�1

h i
mi

k�1�m0j
k�1

h iT� �
; …(4)

where mi
k�1andP

i
k�1are the updated mean and the covariance for model i at time step k −1.

In the filtering step, for each model Mi, the filtering is done as

m�;i
k ;P�;i

k

� �
=KFpðm0j

k�1;P
0j
k�1;A

i
k�1;Q

i
k�1Þ; …(5)

mi
k;P

i
k

� �
=KFuðm�;i

k ;P�;i
k ; yk;H

i
k;R

i
kÞ; …(6)

where the prediction and update steps of the standard Kalman filter are denoted with KFp(⋅)
and KFu(⋅), correspondingly. In addition to mean and covariance, the likelihood of the
measurement is also computed for each filter as

Λi
k =Nðvik; 0; SikÞ; …(7)

where vikis the measurement residual and Sikis covariance for model Mi in the KF update step.
The probabilities of each model Mi at time step k are calculated as

c=
Xn
i= 1

Λi
kci; …(8)

μik =
1
c
Λi
kci; …(9)

where c is a normalising factor.
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Finally, the combined estimate for the state mean and covariance are computed as

mk =
Xn
i= 1

μikm
i
k …(10)

Pk =
Xn
i= 1

μik ´ Pi
k + ½mi

k�mk�½mi
k�mk�T

� �
…(11)

2.3 Target smoothing

It is useful to smooth the state estimates by using all the obtained measurements. Since the optimal
fixed-interval smoothing with n models and N measurements requires running nN smoothers, we
must resort to suboptimal approaches. One possibility is to combine the estimates of two filters,
one running forwards and the other backwards in time. This approach is restricted to systems
having invertible state dynamics, which is always the case for discretised continuous-time systems.

First we shall review the equations for the filter running backwards in time and then the
actual smoothing equations combining the estimates of the two filters.

Our aim is now to compute the backward filtering density p(xk|yk:N) for each time step,
which is expressed as a sum of model conditioned densities

pðxk j yk :NÞ=
Xn
j= 1

μb;jk pðxjk j yk :NÞ; …(12)

where μb;jk is the backward-time filtered model probability of Mj
k . In the last time step N, this is the

same as the forward filter’s model probability, that is, μb;jN = μjN . Assuming the model conditioned
densities pðxjk j yk :NÞ are Gaussians the backward density in Fig (12) is a mixture of Gaussians,
which is now going to be approximated with a single Gaussian via moment matching.

The model conditioned backward-filtering densities can be expressed as

pðxjk j yk :NÞ=
1
c
pðyk :N j xjkÞpðxjk j yk + 1 :NÞ; …(13)

where c is the normalising constant, pðyk :N j xjkÞis the model-conditioned measurement
likelihood and pðxjk j yk + 1 :NÞ is the model-conditioned density of the state given the future
measurements. The latter density is expressed as

pðxjk j yk + 1 :NÞ=
Xn
i= 1

μb;i j jk + 1pðxjk j Mi
k + 1; yk + 1 :NÞ; …(14)

where μb;i j jk + 1 is the conditional model probability computed as

μb;i j jk + 1 =PfMi
k + 1 j Mj

k; yk + 1 :Ng=
1
aj
pb;ki;j μ

b;i
k + 1; …(15)

where aj is a normalisation constant given by

aj =
Xn
i= 1

pb;ki;j μ
b;i
k + 1 …(16)

The backward-time transition probabilities of switching from model Mi
k + 1to model Mj

k in
Figs (15) and (16) are defined aspb;ki;j =PfMj

k j Mi
k + 1g. The prior model probabilities can be

computed off-line recursively for each time step k as

CHEN ET AL CLASSIFICATION OF UAV AND BIRD TARGET IN LOW-ALTITUDE... 195

https://doi.org/10.1017/aer.2018.158 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.158


PfMj
kg=

Xn
i= 1

PfMj
k j Mj

k�1gPfMj
k�1g; …(17)

=
Xn
i= 1

pijPfMj
k�1g; …(18)

and using these we can compute pb;ki;j as

pb;ki;j =
1
bi
pjiPfMj

kg; …(19)

where bi is the normalising constant

bi =
Xn
j= 1

pjiPfMj
kg …(20)

The densitypðxjk j Mi
k + 1; y

N
k + 1 :NÞ is now approximated with a Gaussian

Nðxk j mb;i
k j k + 1;P

b;�ðiÞ
k j k + 1Þwhere the mean and the covariance are given by the Kalman filter

prediction step using the inverse of the state transition matrix

½m̂b;i
k ; P̂

b;i

k �=KFpðmb;i
k + 1;P

b;i
k + 1; ðAi

k + 1Þ�1;Qi
k + 1Þ …(21)

The densitypðxjk j yk + 1 :NÞin (14) is a mixture of Gaussians, and it is now approximated with
a single Gaussian as

pðxjk j yk + 1 :NÞ=Nðxjk j m̂b;0j
k ; P̂

b;0j

k Þ; …(22)

where the mixed predicted mean and the covariance are given as

m̂
b;0j
k =

Xn
i= 1

μb;i j jk + 1m̂
b;i
k ; …(23)

P̂
b;0j

k =
Xn
i= 1

μb;i j jk + 1 � P̂
b;i

k + ðm̂b;i
k �m̂

b;0j
k Þðm̂b;i

k �m̂
b;0j
k ÞT

� 	
…(24)

Now, the filtered density pðxjk j yk :NÞ is a Gaussian Nðxk j mb;j
k ;Pb;j

k Þ, and solving its mean
and covariance corresponds to running the Kalman filter update step as follows:

½mb;j
k ;Pb;j

k �=KFuðm̂b;0j
k ; P̂

b;0j

k ; yk;H
j
k;R

j
kÞ …(25)

The measurement likelihoods for each model are computed as

Λb;i
k =Nðvb;ik ; 0; Sb;ik Þ; …(26)

where vb;ik is the measurement residual and Sb;ik is covariance for model Mi in the KF update
step. With these, we can update the model probabilities for time step k as

μb;jk =
1
a
ajΛb;i

k ; …(27)
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where a is a normalising constant

a=
Xm
j= 1

ajΛb;i
k …(28)

Finally, we can form the Gaussian approximation to overall backward filtered distribution as

pðxk j yk :NÞ=Nðxk j mb
k ;P

b
kÞ; …(29)

where the mean and the covariance are mixed as

mb
k =

Xn
j= 1

μb;jk mb;j
k ; …(30)

Pb
k =

Xn
j= 1

μb;jk Pb;j
k + ðmb;j

k �mb
kÞðmb;j

k �mb
kÞT

h i
…(31)

We can now proceed to evaluate the fixed-interval smoothing distribution

pðxk j y1 :NÞ=
Xn
j= 1

μs;jk pðxjk j y1 :NÞ; …(32)

where the smoothed model probabilities are computed as

μs;jk =PfMj
k j y1 :Ng; …(33)

=
1
d
djμjk; …(34)

where μjk is the forward-time filtered model probability, the density dj = pðyk + 1 :N j Mj
k; y1 : kÞ

and d the normalisation constant given by

d =
Xn
j= 1

djμjk …(35)

The model-conditioned smoothing distributionspðxjk j y1 :NÞ in Fig (32) are expressed as
mixtures of Gaussians

pðxjk j y1 :NÞ=
Xn
i= 1

μs;i j jk + 1pðxi j Mj
k + 1; y1 : nÞ; …(36)
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where the conditional probability μs;i j jk + 1is given by

μs;i j jk + 1 =PfMi
k + 1 j Mj

k; y1 : ng; …(37)

=
1
dj
pjiΛji

k ; …(38)

and the likelihood Λji
kby

Λji
k = pðyk + 1 :N j Mj

k;M
j
k + 1; y1 : kÞ …(39)

We approximate this now as

Λji
k � pðx̂b;ik j Mj

k;M
j
k + 1; x

j
kÞ; …(40)

which means that the future measurements yk + 1:N are replaced with the n model-conditioned

backward-time one-step predicted means and covariances m̂
b;i
k ; P̂

b;i

k

� �n

r = 1

, and y1:k will be

replaced by the n model-conditioned forward-time filtered means and covariances
mi

k j Pi
k

� �n

r= 1. It follows then that the likelihoods can be evaluated as

Λji
k =NðΔji

k j 0;Dji
k Þ; …(41)

where

Δji
k = m̂

b;i
k �mj

k; …(42)

Dji
k = P̂

b;i

k +Pj
k; …(43)

The terms dj can now be computed as

dj =
Xn
i= 1

pjiΛji
k …(44)

The smoothing distribution of the state matched to the modelsMj
kandM

i
k + 1over two

successive sampling periods can be expressed as

pðxjk j Mi
k + 1; y1 :NÞ=

1
c
pðyk + 1 :N j Mi

k + 1; xkÞpðxjk j y1 : kÞ; …(45)

where pðyk + 1 :N j Mi
k + 1; xkÞis the forward-time model-conditioned filtering distribution,

pðxjk j y1 : kÞ the backward-time one-step predictive distribution and c a normalising constant.
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Thus, the smoothing distribution can be expressed as

pðxjk j Mi
k + 1; y1 :NÞðxk j m̂b;i

k ; P̂
b;i

k Þ � Nðxk j mi
k;P

i
kÞ; …(46)

=Nðxk j ms;ji
k ;Ps;ji

k Þ; …(47)

where

ms;ji
k =Ps;ji

k ðPi
kÞ�1mi

k + ðP̂
b;i

k Þ�1m̂
b;i
k

� 	
; …(48)

Ps;ji
k = ðPi

kÞ�1 + ðP̂b;i

k Þ�1
� 	�1

…(49)

The model-conditioned smoothing distributions pðxjk j y1 :NÞ, which were expressed as
mixtures of Gaussians in (36), are now approximated by a single Gaussians via moment
matching to yield

pðxjk j y1 :NÞ � Nðxjk j ms;j
k ;P

s;j
k Þ; …(50)

where

ms;j
k =

Xn
i= 1

μs;i j jk + 1m
s;ji
k ; …(51)

Ps;j
k =

Xn
i= 1

μs;i j jk + 1 � Ps;ij
k + ms;ij

k �ms;j
k


 �
ms;ij

k �ms;j
k


 �Th i
…(52)

With these, we can match the moments of the overall smoothing distribution to give a single
Gaussian approximation

pðxk j y1 :NÞ � Nðxk j ms
k;P

s
kÞ; …(53)

where

ms
k =

Xn
j= 1

μs;jk m
s;j
k ; …(54)

Ps
k =

Xn
j= 1

μs;jk � Ps;j
k + ms;j

k �ms
k


 �
ms;j

k �ms
k


 �Th i
…(55)

2.4 Model probability estimation and feature extraction

The feature extraction could be applied with the filtered results and smoothed results sepa-
rately. Based on the filtered results that exist at the same time k, the model Mi with the highest
probability μik is selected as the target motion mode Ik at the moment, which is recorded as

Ik = IjμIk = max μik; i= 1; :::; n

 �� �

…(56)
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The estimation value F of the conversion frequency of target motion model is computed with

F =
1
n

Xn
i= 1

var μik
��k = 1; 2; :::; T

� �
; …(57)

which is the estimation of the motion pattern of a target at successive T time steps measured
by the mean variancevar �f gof the occurrence probability μik of n models.

Based on the smoothed results, the smoothed occurrence probability μs;jk is used to replace
μik, so the smoothed estimation value F s of the conversion frequency of target motion model
is obtained.

The manoeuvrability of the flying bird target is usually higher than that of the light and
small UAV. If the estimation value of conversion frequency is higher than the threshold S, it
is the flying bird target, otherwise, it is the light and small UAV target.

3.0 SIMULATION DATA ANALYSIS
In this section, the effectiveness of the proposed algorithm is evaluated by Monte Carlo
experiments on the simulation data of UAV and bird targets. The evaluation methods include
the estimation probability, detection rate (Pd), false alarm rate (Pfa), root mean square error
(RMSE) and receiver operator characteristic (ROC) of different models.

3.1 Simulated model

In this paper, two kinds of simulation models of uniform linear motion and manoeuvring
variable speed motion are established. The target of UAV is simulated by uniform linear
motion model, and the bird motion is simulated by uniform linear motion model and
manoeuvring variable speed motion model.

For the uniform linear motion, the state at the time k includes the target position and
velocity, which is expressed as

xk = xk yk _xk _ykð Þ …(58)

The target dynamic model is expressed as

xk + 1 =

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

0
BB@

1
CCAxk + qk; …(59)

where Δt is the data update interval for the system, qk is Gaussian process noise with zero
mean, and the covariance is

E½qkqTk �=

1
3Δt

3 0 1
2Δt

2 0
0 1

3Δt
3 0 1

2Δt
2

1
2Δt

2 0 Δt 0
0 1

2Δt
2 0 Δt

0
BB@

1
CCAq; …(60)

where q is the spectral density of noise.
For manoeuvring variable speed motion, the acceleration state variables are also considered

as well as the target position and speed. Therefore, the state of the moving target can be
represented by
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xk = xkyk _xk _yk€xk€ykð Þ …(61)

The target dynamic model is expressed as

xk + 1 =

1 0 Δt 0 1
2Δt

2 0
0 1 0 Δt 0 1

2Δt
2

0 0 1 0 Δt 0
0 0 0 1 0 Δt
0 0 0 0 1 0
0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
xk + qk; …(62)

where Δt is the data update interval for the system, qk is Gaussian process noise with zero
mean, and the covariance is

E½qkqTk �=

1
20Δt

5 0 1
8Δt

4 0 1
6Δt

3 0
0 1

20Δt
5 0 1

8Δt
4 0 1

6Δt
3

1
8Δt

4 0 1
6Δt

3 0 1
2Δt

2 0
0 1

8Δt
4 0 1

6Δt
3 0 1

2Δt
2

1
6Δt

3 0 1
2Δt

2 0 Δt 0
0 1

2Δt
3 0 1

2Δt
2 0 Δt

0
BBBBBB@

1
CCCCCCA
q; …(63)

where q is the spectral density of noise.
In this paper, the time step of the two motion models is set to Δt= 0.1, and the power

spectral density of process noise is set to q= 0.1. The trajectories of all UAVs and flying bird
targets are distributed randomly in the space of [ −100,100] × [ −100,100], as shown in Fig. 2,
including the global view and the partial enlargement of a bird’s target trajectory.

The parameters of UAV and flying bird target motion model are set as follows:

1. The UAV target starts randomly in the space of [ −100,100] × [ −100,100], with the
starting speed amplitude of 3.6 and 240 steps of simulation.

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

X

Y

Measurements
Real trajectory
Filtered
Smoothed

-35 -30 -25 -20

48

50

52

54

56

58

60

62

64

X

Y

UAV target

Zoom area

Measurements
Real trajectory
Filtered
Smoothed

(a) (b)

Figure 2. Simulated trajectories of UAV and flying bird targets.
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2. The starting point of each bird’s target trajectory are distributed randomly in the space of
[ −100,100] × [ −100,100].

3. The initial velocity amplitude of each bird target is 2, and the initial direction is randomly
generated in the range of 0°–360°.

4. The number of simulation steps of each bird target trajectory is randomly generated in the
range of 20–60.

5. The moving model of the flying bird is switched between the uniform linear motion
model and the manoeuvring variable motion model, and the switching frequency is
controlled by p, which is to generate random numbers between 0 and 1, and when it is
less than p, it will switch the motion model once.

6. The UAV and the flying bird target trajectories are all generated by 1,000 times of Monte
Carlo simulations.

3.2 Simulation results

Based on the Monte Carlo simulation data of UAV and bird trajectory, the target recognition
effect of this algorithm is analysed and verified.

Figure 3 compares the RMSE of UAV and bird target tracking by one Monte Carlo
experiment. It is clear that the smoothed algorithm significantly reduce the RMSE of the
tracking results for both targets. Table 1 provides a more accurate quantitative comparison by
the mean value of 1,000 Monte Carlo experiments, where N represents the number of time
steps.

With the increase in the number of time steps, the RMSE of the UAV filtered results is
reduced while that of the bird filtered results is increased. For the smoothed results, the RMSE
of UAV and bird tracking results both decrease with the increase of simulation steps. The
tracking result of UAV is better than that of flying birds due to its smoother flight path. From
the comparison data, it can be seen that if the general filter tracking algorithm is used, for
more manoeuvrable targets such as birds, more simulation steps often lead to worse tracking
results. As for the smoothing algorithm, more simulation steps will improve the tracking
results for different manoeuvring targets such as birds and UAVs.

Figures 4 and 5 show the model probability estimation results in a certain tracking
simulation of UAV and flying bird target, respectively, in which the model switching fre-
quency of flying bird target is p= 0.3. In the 240-step tracking simulation of UAV target, the
filtering estimation probabilities of models 1 and 2 are about 0.8 and 0.2, respectively, and the
smoothed estimation probabilities are close to 1 and 0, which indicates that the uniform linear
motion model is used only. In the 60-step tracking simulation of bird, the target is switched
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Figure 3. RMSE of target tracking.
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five times between models 1 and 2, and the filtered and smoothed estimation probability of
the two models both fluctuates greatly, obviously higher than that of UAV target, which
characteristic could be used to distinguish these two targets.

Table 1
RMSE of simulated target tracking by 1,000 Monte Carlo experiments

RMSE

N Target Filtered Smoothed

50 UAV 0.1645 0.0922
Bird 0.2143 0.1198

100 UAV 0.1595 0.0831
Bird 0.2188 0.1175

150 UAV 0.1567 0.0803
Bird 0.2210 0.1160

200 UAV 0.1556 0.0789
Bird 0.2220 0.1158
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Figure 4. Estimation of model probability in the tracking of UAV target.
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Figure 5. Estimation of model probability in the tracking of flying bird target.

CHEN ET AL CLASSIFICATION OF UAV AND BIRD TARGET IN LOW-ALTITUDE... 203

https://doi.org/10.1017/aer.2018.158 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.158


Figures 6–9 show the ROC curves based on 1,000 Monte Carlo simulation data under
different parameters, where the UAV is the target and the bird is the false alarm.

Figure 6 shows the ROC curves with the filtering algorithm by different number of recog-
nition steps N. It can be seen that more steps led to better recognition effect. The reason is simple
that the more recognition steps, the more obvious the stability of the UAV flight path and the
manoeuvrability of the flying bird target be exposed, so it is naturally easier to identify.

Figures 7 and 8 show the ROC curves with the filtering and smoothing algorithm under
different probabilities of model change. The number of recognition steps is set to N= 50.The
larger the p value, the higher the transformation frequency of the bird target motion model is,
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Figure 6. ROC curves with the filtering algorithm by different number of recognition steps.
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Figure 7. ROC curves with the filtering algorithm under different probabilities of model change.

10-3 10-2 10-1 100
0

0.2

0.4

0.6

0.8

1

Pfa

P
d

P = 0.5
P = 0.4
P = 0.3
P = 0.2

Figure 8. ROC curves with the smoothing algorithm under different probabilities of model change.
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the easier it is to identify it. As can be seen from the figures, the false alarm rate for flying
birds is less than 15% when the detection rate of UAV target is close to 100%, regardless of
filtering or smoothing algorithm.
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Figure 9. Comparison of the ROC curves between the filtered and smoothed algorithm.

Figure 10. Surveillance radar at airport.

UAV target

Figure 11. Radar surveillance data at airport.
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Figure 12. Classification of UAV and bird targets with case 1.
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Figure 9 gives the comparison of the ROC curves between the filtered and smoothed
algorithm with the parameter p= 0.2. Compared with the filtering algorithm, the smoothing
algorithm enlarges the gap between the estimations of target model conversion frequency for
the flying bird and UAV, improving the accuracy of target recognition.

4.0 REAL DATA ANALYSIS
Based on the low-altitude radar surveillance system installed at airport and coastal area, a
large number of radar data containing UAVs and flying birds have been collected, and the
previous research has realised the detection and tracking of all kinds of targets(1,17–20).
This section will process and analyse the radar data collected from the above two
outfields.

4.1 Case 1

An example of airport application is given in this section. Figure 10 shows a radar system
installed on the roof of an airport light station. Figure 11 is the radar measurements col-
lected at a certain period of time with the coverage radius of 5km. The measured data are
overlaid on the satellite map and expressed by ‘°’, which includes a test UAV of DJI
Phantom series and some flying birds in the natural environment of the airport. The flying
birds in the radar data shown in Fig. 11 are mostly local resident birds in the foraging state,
with short flying distance and high manoeuvrability. The proposed algorithm is used to
track and classify the UAV and flying bird targets. The number of recognition steps is set to
N= 50.

In engineering applications, first, the UAV and bird targets are identified by artificial
methods, and the model transformation probability estimates of different targets are calcu-
lated, then the classification thresholds of UAV and bird targets are set. In different test
environments, the thresholds are often different and need to be measured by experimental
methods to ensure the recognition effect of the system. Figure 12 shows the tracking and
recognition results of UAV and bird targets under different thresholds, and the local enlar-
gement drawings. The UAV trajectory is represented by a solid line and the bird trajectory is
represented by ‘□’. When the threshold is high, some flying birds are mistaken for UAV.
Only when the threshold is low enough (Fig. 12(d), S= 0.06) can all the flying birds be

Table 2
Recognition results of UAV and bird targets for case 1

S UAV Bird

0.04 1 20
0.06 1 20
0.08 3 18
0.10 5 16
0.12 6 15
0.14 12 9
0.16 17 4
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Radar system Flight trajectory of UAV displayed on PDA

(a) (b)

Figure 13. Surveillance radar at coastal area.
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Figure 14. Classification of UAV and bird targets with case 2.
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recognised correctly. Referring to Fig. 12, Table 2 shows the quantitative identification results
under different thresholds.

4.2 Case 2

An example of coastal application is given in this section. Figure 13 shows a radar system
installed on high-rise buildings near the coast and the flight trajectory of UAV displayed on
personal digital assistant (PDA). The test UAV target flew back and forth, reaching the
longest distance of 3 km. In addition to UAV, the targets in radar data are mostly coastal
waterfowls. Figure 14 and Table 3 give the classification results of UAV and bird targets with
case 2. The difference between this case and the above one is that in this case, the flying mode
of waterfowl over the sea is mostly gliding, whose manoeuvrability is slightly lower and
closer to that of UAVs. Therefore, only when the threshold is set low enough (Fig. 14(b),
S= 0.0001) can the birds and UAVs in radar data be distinguished completely right.

5.0 CONCLUSIONS
In this paper, a classification and recognition method of light and small UAV and flying bird
targets is proposed, which is based on the non-co-operative target information obtained by
conventional low-altitude radar and is characterised by the conversion frequency of target
motion model. The effectiveness of the algorithm is verified by simulation and radar data, and
the following conclusions are drawn:

(a) This algorithm is suitable for conventional mechanical scanning surveillance radar data
and can distinguish UAV and flying bird target by using less echo information such as
moving direction, velocity and position of the target.

(b) According to the simulation data, the variance mean of the estimated frequency of UAV
target motion model conversion is more than one order of magnitude lower than that of
the bird target with high manoeuvrability.

(c) The smoothing algorithm enlarges the gap between the estimations of target model
conversion frequency for the flying bird and UAV, outperforming the filtering algorithm
in target recognition accuracy.

Table 3
Recognition results of UAV and bird targets

for case 2

S UAV Bird

0.0001 1 20
0.001 2 19
0.01 5 16
0.05 5 16
0.1 8 13
0.12 8 13
0.14 12 9
0.16 15 6
0.18 17 4
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(d) For some flying birds with low manoeuvrability, the moving mode is similar to that of
UAV, and the false alarm is easy to be caused by the proposed algorithm. It is necessary
to recognise and classify the flying birds with other refined processing techniques such
as target micro-Doppler characteristics.

(e) The micro-Doppler characteristics of the target reflect the inherent motion properties of
the target to a certain extent and are closely related to the structure of the target and the
electromagnetic scattering characteristics. Therefore, with the gradual improvement of
the detection performance of low-altitude surveillance radar, micro-Doppler character-
istics will become an important means and way for the detection and recognition of LSS
targets such as UAVs.
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