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Abstract

Rural households in developing countries depend on crops, forest extraction and other
income sources for their livelihoods, but these livelihood contributions are sensitive to cli-
mate change. Combining socioeconomic data from about 8,000 smallholder households
across the tropics with gridded precipitation and temperature data, we find that house-
holds have the highest crop income at 21°C temperature and 2,000 mm precipitation. Forest
incomes increase on both sides of this agricultural maximum. We further find indications
that crop income declines in response to weather shocks while forest income increases, sug-
gesting that households may cope by reallocating inputs from agriculture to forests. Forest
production may thus be less sensitive than crop production to climatic fluctuations, gain-
ing comparative advantage in extreme climates and under weather anomalies. This suggests
that well-managed forests might help poor rural households to cope with and adapt to future
climate change.
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1. Introduction

Rural households in developing countries continuously face weather-related risks with
potentially strong effects on agricultural output (Mendelsohn et al., 2007; Nepstad et al.,
2008). In smallholder-dominated rural landscapes, households may derive about two-
thirds of their incomes directly from living resources, either cultivated or from the
wild, including agriculture and livestock, and from foraging natural forests and other
wildlands. The latter share of environmental incomes in total household income - for
subsistence or cash — may in forested tropical and subtropical landscapes be comparable
to that of crops (Angelsen et al., 2014).

Climate change with increasing weather fluctuations will also predictably increase
risks to poor rural livelihoods over time - especially for those depending heavily

© Cambridge University Press 2018

https://doi.org/10.1017/51355770X18000116 Published online by Cambridge University Press


https://doi.org/10.1017/S1355770X18000116

280 Sven Wunder et al.

on natural resources (Hallegatte et al., 2016).! Ecosystems may become permanently
altered, with systemic impacts such as changed water availability. Weather events such
as heavy rains, storms or droughts could permanently shrink the natural resource base,
for example through accelerated soil erosion (Porter et al., 2014). Seasonal variations
could also become more unpredictable, thus increasing the risk of crop harvest failures.
Both agricultural and forest-based production systems will be affected, depending on
their site-specific capacity to adapt to the new conditions.

In agriculture, the expected climatic changes with warmer future temperatures,
changing rainfall patterns, and increased frequency and/or severity of extreme weather
events are all forecasted to reduced average crop yield but increase yield variability,
threatening global food security (Wheeler and von Braun, 2013). While in colder and
temperate climates, higher temperature combined with the fertilizing effects of higher
atmospheric CO; concentrations can cause net increases in crop production (Rosen-
zweig and Parry, 1994), the predicted impacts across tropical and subtropical crops are
almost invariably negative (Thornton and Cramer, 2012). Beyond of the direct effects
on agricultural output, climate change may also increase price volatility in low-income
countries (Haile ef al., 2017). Rural incomes, investments, and development trajectories
would directly and indirectly suffer (Nelson et al., 2010).

Forests and their livelihood contributions tend to be more resilient than specialized
cropping systems, but are also far from immune to climate change (Locatelli et al., 2008).
Droughts, wildfires, flooding or pests can potentially not only diminish the returns to
forest-extractive activities, but also eventually threaten forest integrity. This, in turn,
would reduce the adaptive functions forests can perform in landscape, regions, and con-
tinents. For instance, if Amazon forests were to dry up beyond a tipping point, large-scale
die-back and ‘savannization’ could occur, especially in the eastern parts and along forest
edges, potentially causing significant climatic changes across the Americas (Malhi et al.,
2008; Nepstad et al., 2008). Recent El Nifio-Southern Oscillation (ENSO) induced events
have already raised the frequency of tropical forest fires (Locatelli et al., 2008). Strongly
modified and/or degraded forests are less resilient to climate change than near-natural,
biodiversity-rich forests (Thompson et al., 2009). The Amazon and other tropical forests
have served as important long-term net carbon sinks (Schimel et al., 2015), but this vital
climate-change mitigation function may be declining (Brienen et al., 2015).

In sum, natural resource-dependent sectors and income sources are thus both size-
able and directly susceptible to changes in temperature or precipitation, including their
variability. Nevertheless, the degree of climate and weather resilience predictably varies
widely across our two income-generating sectors, agriculture and forestry. Two distin-
guishing factors are particularly relevant: the greater resilience of diverse ecosystems
such as natural forests, and the stock versus flow dependency of the two sectors.

First, diverse ecosystems are generally more resilient to weather shocks than less
diverse ones (Thompson et al., 2009; Isbell et al., 2015). Natural forests in particular

'With regard to terminology, below we use ‘climate’ for longer-term (minimum 30 years) measures of
levels, variability and trends in temperature and precipitation. ‘Weather’ denotes shorter-term, actually
realized state of those parameters, thus including elements of randomness. ‘Climate change’ refers to ‘a
statistically significant variation in either the mean state of the climate or in its variability, persisting for
an extended period” (IPCC, 2013, Glossary). The term ‘weather anomalies’ refers to deviations from the
mean (over the 30 year period) in rainfall and temperature during the one-year period for which our house-
hold and village data were collected (see below). Empirically, we define anomalies as normalized annual
deviations from these historical means (z-values).
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are among the most diverse ecosystems in the world (MEA, 2005). Hence, we can also
expect environmental incomes to be more climate- and weather-resistant than cropping
incomes (Ngstbakken and Conrad, 2007). A diverse set of species allows forests to exist
in a wide variety of climatic conditions. We therefore suggest that, on a cross-sectional
gradient, forest extraction should provide relatively higher, and crop production rela-
tively lower, incomes in extreme climates. Furthermore, in response to weather shocks,
incomes from biologically diverse forests are likely to be less at risk than incomes from
a monoculture cropping system.

Second, rural households in developing countries typically use assets such as sav-
ings and livestock to cope with negative income shocks (Deaton, 1989; Rosenzweig and
Parry, 1994). Households can sell these assets when facing income shortfalls to smooth
consumption (Wunder et al., 2014b). Here, we argue that forests partially can have a
similar role for income smoothing. In contrast to crop production that is mainly based
on annual biomass growth, most forest products such as timber and firewood rely on
biomass growing over multiple years.? For those, fluctuations in annual biomass growth
therefore tend to average out over the years. We thus expect forest extraction on average
to be more resistant to weather shocks than crop production.’

Bearing in mind these two differences, we scrutinize to what extent rural house-
holds use forests to compensate for weather-related income shocks, and how crops
versus forest incomes change relatively along the climate gradients. To answer these
questions, we use a unique data set of around 8,000 rural households from across the
tropics and subtropics, with a large spatial coverage, and detailed information about
income sources. This socioeconomic data, combined with gridded temperature and pre-
cipitation data, allows us to estimate the impact of weather and climates on forest and
crop incomes. In the estimation, we allow the impact of weather shocks on income to
vary with the baseline climate. For example, our specification takes into account that a
warm year in a cool climate may benefit crop yield while in hot climates it may harm
crops.

Our study relates to the body of literature estimating the impact of weather and cli-
mate on agricultural production (e.g., Mendelsohn et al., 1994, 2007; Kurukulasuriya
etal.,2006; Deschénes and Greenstone, 2007; Dell et al., 2012; Burke and Emerick, 2016).
However we feature particularly the reallocation of factors across sectors, comparable to,
for example, Colmer (2017) and Emerick (2016), who consider the impact of agricultural
shocks on manufacturing in India. Our research complements these studies by focusing
on extractive natural resources in coping with climate shocks.*

The remainder of this paper is organized as follows. Section 2 outlines our conceptual
framework on both the ecological and the household economics side. Section 3 describes
the socioeconomic and climate data that we are to combine, while section 4 gives the
descriptive statistics. Section 5 outlines the empirical estimation strategy for the econo-
metrics, followed by the multivariate regressions results in section 6. We conclude and
discuss in section 7.

ZHowever, this does not hold true for non-wood forest products (NWFP) depending primarily on annual
growth, such as fruits, nuts, mushrooms, medicinal plants and fodder. In our data set (see section 3), together
these make up slightly more than one-fourth of households’ forest income (Angelsen et al., 2014, table 2).

3Most models of stochastic resources assume that weather shocks affect biomass growth directly, and
biomass stocks only through the impact on growth (Reed, 1975, 1979; Reed and Clarke, 1990; Gotelli, 1998).

4We are thus refining and extending the approach taken in the report by Noack et al. (2015).
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2. Conceptual framework

In this section, we describe our theoretical framework, which is then used to derive
testable predictions and to develop our empirical specifications. Consider a rural house-
hold making production choices based on weather expectations or climate and weather
realizations. Building on Mendelsohn et al. (1994), we consider the technology choice
of rural households to depend on the long-term climate, but differ conceptually by
assuming that households can reallocate some production factors after having observed
weather realizations. We therefore not only consider expected temperature and pre-
cipitation levels as climate variables, but also observed deviations from the expected
levels to understand household responses. Following Burke et al. (2015), we assume
that the global production frontier, defined as the maximum attainable profits for
a given climate and an optimal technology choice, is concave and has an interior
maximum. We further assume that the same holds true for all individual production
technologies. Profit-maximizing households choose technologies that are tangential
to the global production frontier. From these assumptions it follows that production
technologies are tangential to the left of their individual maxima in areas below the
maximum of the global production frontier, and to the right in areas above the max-
imum of the global production frontier (see figure 1). Hence, a weather shock that
moves the weather closer to the global optimum, such as a warm year in cold cli-
mates or a cold year in warm climates, will always increase profits for profit-maximizing
households.

Production technologies not only differ in their maxima with respect to tempera-
ture and precipitation, but also in their sensitivity to variations in weather and climate.
Forests may be more resilient to climate variations than crops, yielding positive revenues
for a larger range of temperature and precipitation levels. Less climate-sensitive produc-
tion technologies may therefore gain comparative advantage in extreme climates and
after large weather shocks. Figure 1 illustrates this stylized relationship between rural
production and climate, using temperature as an illustrative example. The dotted black

Revenues

T T T

B A Temperature C

Figure 1. Global production frontier (dotted line) and production frontiers for technologies T1, T2, T3 (black,
dark grey and light grey line, respectively) in dependence of temperature levels.

https://doi.org/10.1017/51355770X18000116 Published online by Cambridge University Press


https://doi.org/10.1017/S1355770X18000116

Environment and Development Economics 283

line demarcates the global production frontier for an infinite number of production
technologies; a smaller selected set T1, T2, T3 (e.g., wheat, forest, livestock) is shown
by the black, dark grey and light grey lines, respectively.

Consider now a region with temperatures below the global optimum. This region is
represented by the mean temperature A in figure 1. For the mean temperature level A,
technology T1 (e.g., wheat) yields the highest returns. A negative temperature anomaly
curbing temperature to the level B reduces the output from technology T1. The tech-
nology T2 (e.g., forest), is less temperature-sensitive, and yields higher returns for the
realized temperature level B. A factor reallocation from technology T1 to technology
T2 would increase revenues for the temperature realization level B. At the same time,
a small temperature increase from temperature level A would increase the yields of T1.
However, for higher temperatures T1 may lose comparative advantage, and the house-
hold may want to reallocate production factors to more heat-tolerant technologies. To
the right of the global production maximum at a mean temperature level C, T3 (e.g.,
livestock) maximizes the expected revenues and households prefer T3 over T1. For all
temperature levels above the global maximum, such as level C, the responses of yields
and factor reallocations to weather anomalies are reversed, compared to the temperature
levels below the global optimum.

So far, we have discussed the relation between yields, technology choices, climate and
weather realizations for risk-neutral households and the single technology case. In real-
ity, risk-averse households may invest in portfolios of technologies. The same reasoning
for single technologies also applies to portfolios of production technologies within their
common support.” First, more climate robust technologies gain comparative advantage
in extreme climates and under weather anomalies that move the weather further from
the global optimum. For example, crops yield expectedly higher incomes in interme-
diate climatic conditions, where they would dominate. Forest incomes would be more
resistant to climate extremes and weather anomalies, due to their larger species diversity,
and harvestable accumulated biomass stocks. Forest extraction thus gains comparative
advantage over crop income in extreme climates, and under weather anomalies that
increase the distance of weather from the global optimum.

Second, the impact of weather anomalies on revenues depends on the baseline cli-
mate. For example, positive temperature deviations have positive impacts revenues in
areas with expected temperatures below the global temperature optimum, and nega-
tive impacts on revenues in climates above the temperature optimum. We will test these
predictions in the following sections.

3. Data
3.1 Household income and socioeconomic conditions

Our income data draw on the pan-tropical Poverty and Environment Network
(PEN) database, from the Center for International Forestry Research (CIFOR)
(http://wwwl.cifor.org/pen/). Data gathered covered 24 countries, spread over Sub-
Saharan Africa, Asia, and Latin America, with 59 sites, 334 villages, and more than 8,000
households. The PEN sample can be regarded as representative of rural smallholders in

The main reason for the analogy of arguments is that the weighted sum of concave functions is a concave
function, e.g., the weighted sum of second order polynomials is a second order polynomial. The curves in
figure 1 would then represent the revenues of portfolios and the production frontier a slice of the expected
returns-risk (e.g., variance) plane.
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developing countries with decent access to forests (Angelsen et al., 2014; Wunder et al.,
2014a).°

Notably, PEN data collection featured four quarterly income surveys, enabling short
recall periods (1-3 months) and analysis of seasonal income patterns. Household adult
equivalent units (AEU) enabled adequate welfare comparisons across households, with
different compositions of productive earners versus non-earners, and size-dependent
economies of scale in the per-capita provision of intra-household services.” All incomes
are transformed to US dollar (US$) purchasing power parity (PPP) rates of the survey
year.

Environmental income is defined as incomes from the harvesting of resources pro-
vided through natural processes, not requiring intensive management. It includes
income from natural forests (forest environmental income) and non-forest wildlands
such as grass-, bush- and wetlands, fallows, but also wild plants and animals har-
vested from croplands (non-forest environmental income). Forests are defined as by FAO
(2000), and all forest income but plantation income is environmental income. On aver-
age, the households in the PEN sample generate 27.5 per cent of their income from
environmental resources (Angelsen et al., 2014).

Correspondingly, crops refer to production values generated with intensive manage-
ment efforts. Obviously, some borderline cases exist. Agroforestry, including silvipas-
ture, is defined as agriculture, following FAO definitions (FAO, 2000).

3.2 Climate data and contextual variables

To relate these household data to climatic conditions, we use the gridded climate data of
the Climate Research Unit of the University of East Anglia (CRU TS3.21). The CRU data
contain monthly time series of temperature, precipitation and other climate variables
spanning from 1901 to 2012, and global coverage with 0.5 x 0.5 degree resolution, based
on analysis of over 4,000 individual weather station records (Harris et al., 2014). Many
of the more remote sites do not have close-by weather station data; linear extrapolations
are used. We compute village-level climate and weather data using linear interpolations
from surrounding grid cells. Interpolations may not always be precise, but the data are
commonly used in economic studies (Aufthammer et al., 2013; Dell et al., 2014).

We use annual means of precipitation and temperatures for the reference period
(1981-2010). We chose the ending year so as to coincide with the last year of PEN
data collection. Our squared climate terms account for nonlinear responses of income
to climate fluctuations (Mendelsohn et al., 1994, 2007; Kurukulasuriya et al., 2006).
Temperature anomalies were calculated using the mean temperature of the survey year
(temp_survey) minus the average temperature of the reference period (temp_mean),
dividing the difference by the standard deviation (SD) of temperature in the reference

SThe initial sample of 8,305 households was reduced by an attrition of 3.9 per cent. Looking at the
distribution of forest cover and population density in rural developing countries, the PEN sample pro-
vides good coverage, except for the most population-dense, forest-scarce areas (e.g., in South or Central
Asia).

7OECD  (http://www.oecd.org/eco/growth/OECD-Note-EquivalenceScales.pdf) discusses different
options for using equivalence scales. We used the following adult equivalence scale: the first adult counts
as 1 unit, the following adults (> 15 years) count as 0.7, while children count as 0.5.

8We used the PENN World Tables, version 7.0 http://pwt.econ.upenn.edu/php_site/pwt_index.php.
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period (temp_sd) (e.g., Lobell et al., 2011), as shown in equation (1):

temp_survey — temp_mean

(1)

temp_anomaly = . 3
emp_s

By dividing the deviation by the SD, we obtain a relative anomaly indicator, i.e., relative
to the historical fluctuations in temperature in the area. The precipitation anomalies
are calculated correspondingly. We define the survey year as the year that starts with
the surveyed period.” In contrast to Mendelsohn et al. (1994), using seasonal climate
variables, we use annual climate variables, since the timing of the cropping seasons may
vary greatly between sites located across the tropics and subtropics, many of which have
year-round crop production.

We employed other contextual variables to control for their impacts on agricultural
returns and other income-generating processes. Soil data are from the Harmonized
World Soil Database v. 1.2 (Nachtergaele et al., 2008). Distance to the nearest city, as
indicator of market remoteness, was calculated from ESRI’s 2008 world cities shape
file (http://www.baruch.cuny.edu/geoportal/data/esri/esri_intl.htm). Similarly, for dis-
tance to major roads, we used the world data on major roads shape file available online
(http://www.vdstech.com/world-data.aspx). The distance in km refers to both secondary
and primary roads in the datasets.!

4. Descriptive statistics

In this section, we summarize both the income and climate data. Table 1 shows the mean,
standard deviation (SD), the lowest (Q20), median (Q50) and the highest quintile (Q80)
of sector and total income — all in 2005 US$ PPP per AEU/year. The mean income in our
sample is US$1,692; the median is US$857. More than one-fifth of our sample house-
holds earn less than US$1 per day and per AEU. The mean forest income share is 20 per
cent, while the median share is 11 per cent, implying a fairly skewed forest income distri-
bution. However, high forest income shares are associated with low absolute household
income; thus forest income (and environmental income more generally) reduces overall
income inequality (Angelsen et al., 2014).!! For comparison, the mean and median crop
income shares are 30 per cent and 25 per cent, respectively.

Figure 2a-d shows the distribution of climate and weather in our sample villages. The
mean annual temperature of sites (top left panel) ranges between 9 and 30°C, and the dis-
tribution is right-skewed: most sites are hot, yet the average is pulled down by some low-
temperature locations at high elevations (mostly >2,000 m.a.s.l.). Precipitation ranges
(top right panel) are between 500 and 4,000 mm, and the distribution is left-skewed:
more sites have low mean rainfall, yet a long right-hand side tail of high-precipitation
sites increases the mean. Most temperature (bottom left panel) and precipitation anoma-
lies are smaller than 2 SD, yet exceptions exist especially for precipitation (bottom right
panel).

°It starts three month before the first interview round, as the households were asked about their incomes
in the previous three months.
19The authors thank Martin Herold at Wageningen University for providing us with the infrastructure
data.
" Our average natural forest income share is slightly lower, compared to Angelsen et al. (2014), due to
different ways of aggregating sample-wide household income averages, and our slightly smaller sample.
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Table 1. Income summary

Mean SD Q0.2 Q0.5 Q0.8
Total income (USS$/AEU/year) 1692 3334 357 857 2148
Forest income (US$/AEU/year) 338 1040 17 80 318
Forest income share (%) 20 21 2 11 33
Crop income (US$/AEU/year) 434 1367 48 179 515
Crop income share (%) 30 24 7 25 51
Other income (US$/AEU/year) 921 2618 128 375 1071
Other income share (%) 50 26 26 51 76

Source: PEN data.
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villages.
Source: UEA data.
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5. Estimation strategy

This section presents our regression framework for estimating the impact of climate
and weather anomalies on forest, crop and total income, using cross-sectional data.
Our approach rests on the assumption that no omitted variables bias the estimates. The
standardization of weather anomalies roughly equalizes their probability of occurrence
across space. The occurrence of weather anomalies may therefore be treated as ran-
dom. Climate may be correlated with historic events that have shaped current economic
environments of geographical regions. We therefore only use climatic variations within
regions to estimate the effects of climate on rural production.

Based on the discussion in the previous section, we include climate variables as
second-order polynomials to account for nonlinear responses of income to climate (see
also, for example, Mendelsohn et al., 1994). As described in our conceptual framework,
we also allow the impact of weather anomalies to differ depending on the baseline climate
by interacting the weather anomalies with the climate means. We estimate the following
regression equation:

Yik = a1 Tk + a2 Tfk + a3Pjy + Ot4Pj2k + asApjk + acApjk X Pk + a7 Atk + agAtjk
X Tik + Xk + vk + €ijk> (2)

where y;; is the sector income of household i in village j in World Bank region k; Tjx
is the 30 year average temperature level of village j; Pj is the 30 year average precipi-
tation level; Apjx denotes precipitation anomalies and Atj; temperature anomalies; and
X are village-level controls including soil types,'? distance to nearest road, distance to
nearest city, and elevation. World Bank regions’ fixed effects are denoted by yx, while &;;
denotes the error term. We cluster the standard errors on village level as most explana-
tory variables are measured at this level and errors within villages may therefore be
correlated.!

The dependent variables - forest, crop, and total income — were inverse hyperbolic
sine (ihs) transformed, to account for the log-normal distribution of incomes and zeros
in sector incomes (Burbidge et al., 1988). The interpretation of the coefficients as semi-
elasticities is similar to regressions with log-transformed dependent variables.

Parameters «; to a4 measure the impacts of climate on sector incomes, given house-
hold optimization with respect to expected weather or climate. Parameters o5 to ag
measure the impact of weather shocks on incomes for given production technologies
(set of crop types, forest composition, etc.). An interior climate optimum for produc-
tion implies that o; > 0, a3 < 0, @3 > 0, and oy < 0, so that the production frontier
becomes inverted U-shaped in the two-dimensional temperature-precipitation space.
The predictions from our theoretical framework are further that the marginal impact of
a positive weather shock on production declines with the mean temperature and precipi-
tation levels, i.e., that a5 > 0,06 < 0,7 > Oand g < 0. Such a parameter combination
implies that a wet year increases production in dry climates, but reduces production in
wet climates, and vice versa.

We have further argued that forest extraction is less affected by climate anomalies
than crop production. If households, as a coping response to the weather shock, allo-
cate more labor and other production factors to the less declining, more stable forest

12We specified the content of, respectively, sand, clay, gravel, carbon, pH, and lime.
13T estimate the equation, we use the R package Ife version 2.5 by Gaure (2013).
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sector, the impact on absolute forest income becomes indeterminate. However, in rel-
ative terms we would expect forest income to increase when crop incomes decline, so
we would see opposite signs on a5 to «g for the temperature and precipitation shocks.
Further, if crop income has a comparative advantage in intermediate climates while for-
est production is more robust with respect to climate extremes, we would expect that
forest incomes increase towards the climate extremes relative to crop incomes. Again,
the absolute effect of climate on forest income is undetermined as the effect of increas-
ing comparative advantage may be opposite to the direct effect of climates on forest
production.

Climate and weather shocks may affect poor and rich households differently. We
therefore estimate the impact of weather and climate on income quantiles using quan-
tile regressions.!* Again, we cluster the standard errors on village level to account for the
correlation of error terms.

6. Regression results

The results from the baseline regressions are presented in table 2, with the absolute
sectoral (forest, crops) and total incomes as dependent variables. The parameter esti-
mates for the climate variables (first four lines) confirm our expectations from section 2:
crop income proves to have an interior temperature optimum, estimated at 20.7°C.!°
Conversely, we note that absolute forest income increases towards the temperature
extremes: a negative coefficient is estimated for the linear, and a positive coefficient for
the squared term, with the minimum forest income occurring at around 23°C. Forest
income has the opposite and bell-shaped pattern with respect to precipitation, peaking
at around 2,500 mm. For crop income, both precipitation coefficients are insignificant.
Total income is bell-shaped in precipitation, and estimated to have an interior peak at
about 2,000 mm, while the temperature coefficients are insignificant.

The results for temperatures suggest that crop and forest incomes may be partial
substitutes, and that forests gain comparative advantage as we move towards temper-
ature extremes (the coefficients for forest and crop income have opposite signs). The
effect of precipitation means on incomes is less clear. The statistically insignificant
impact of precipitation on crop incomes seems surprising, as yield is heavily affected
by water availability. However, water availability is a function of both precipitation and
evapotranspiration, with the latter being highly dependent on temperature. As a result,
the impact of water availability may be captured by the temperature, rather than the
precipitation coefficients.

Moving to weather anomalies and sector incomes (last four lines in table 2), all coef-
ficients of the interaction terms of weather anomalies with climate are significant. This
indicates, as we had expected in section 2, that the effects of temperature and precip-
itation anomalies depend on the average temperature and precipitation levels in the
area. Notably, the effects are again opposite for forest and crop incomes. To calculate
the marginal effects of anomalies, we take the partial derivative of equation (2) with
respect to anomalies. Note that the marginal effect is a function of climate. Above-
normal hot years in cool climates increase crop income, while forest incomes are being
reduced. Conversely, hot years in warm climates are harmful to crop production, but

14We use the R package quantreg (Koenker, 2017).
15To derive the income maximum with respect to temperature, take the first derivative of equation (2)
with respect to climate and set it equal to zero. Then solve for temperature.
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Table 2. Climate and weather impacts on household incomes. OLS regression

Forestincome Crop income Totalincome
(ihs) (1) (ihs) (2) (ihs) (3)
Mean temperature (°C) —0.326* 0.290* —0.127
(0.169) (0.167) (0.089)
Mean temperature squared (°C) 0.007* —0.007* 0.003
(0.004) (0.004) (0.002)
Mean precipitation (m) 1.810™* 1.126 1.724%**
(0.861) (0.706) (0.474)
Mean precipitaton squared (m) —0.370* —0.139 —0.439%**
(0.210) (0.169) (0.117)
Temperature anomaly (sd) —1.540 2.526™** —0.222
(0.959) 0.772) (0.366)
Temp anomaly x Mean temperature 0.099** —0.109%** 0.007
(0.040) (0.034) (0.017)
Precipitation anomaly (sd) —0.789*** 0.875™** 0.191*
(0.269) (0.218) (0.114)
Precipitation anomaly x Precipitation mean 0.350* —0.593*** —0.049
(0.186) (0.162) (0.076)
Observations 7,978 7,978 7,978

Notes: Regression specification includes soil characteristics, infrastructure variables, elevation, and region-fixed effects as
controls. Standard errors are clustered at the village level. ***Significant at 1% level, **significant at 5% level, *significant
at 10% level.

increase absolute forest incomes. The two opposed effects partially cancel out, such that
the impact of temperature anomalies on total income is insignificant. The same is true
for precipitation shocks. These findings, in particular the opposed signs between crop
and forest estimates, suggest that the direct effects on production (which would indi-
cate the same sign for both) are being dominated by substitution effects in forestry, most
likely through the reallocation of production factors from cropping to forest extraction.

However, one might expect that the effect of weather on incomes may depend on
household income: households with high incomes may have better means to adapt, mak-
ing them less susceptible to both weather and climate impacts than poor households.
In table 3 we thus replicate the model from table 2, but using quantile regressions for
the lowest income quintile, the median and the highest income quintile. We use boot-
strapping to estimate the standard errors using 500 replications clustered at the village
level (Hagemann, 2017). While the coefficients expectedly are estimated with the same
signs as in table 2, we see that lower-income households are more sensitive to weather-
and climate-induced effects: most coefficients are larger in absolute terms (and typically
more significant) for lower than for higher income households.

In the following we report the estimates of equation (2) with income shares as depen-
dent variables. This specification therefore addresses the question of relative changes, i.e.,
whether forest income is more or less affected by climate variations and weather shocks
than crop income. Table 4 shows our regression results with crop and forest income
shares as dependent variable. The results are even clearer than in table 2 with log of
absolute income as dependent variables: all eight pairs of climatic variables are estimated
with opposed signs between the two sectors (13 out of 16 coefficients are significant).
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Table 3. Climate and weather impacts on household incomes. Quantile regression %
=
Forest income Crop income Total income =
c
Q0.2 Q0.5 Q0.8 Q0.2 Q0.5 Q0.8 Q0.2 Q0.5 Q0.8 8_
o
Mean temperature (°C) —0.489** —0.222 —0.044 0.242 0.290** 0.323*** —0.173* —0.105 —0.007 :
(0.238) (0.138) (0.123) (0.243) (0.128) (0.115) (0.094) (0.102) (0.094) N
Mean temperature 0.011* 0.006 0.002 —0.006 —0.006** —0.005* 0.004* 0.003 0.001
squared (°C) (0.006) (0.004) (0.003) (0.005) (0.003) (0.003) (0.002) (0.003) (0.003)
Mean precipitation (m) 1.428 2.416™* 3.241%* 0.246 1.772%* 1,997 1.709%** 1.739%** 1.4827%+*
(1.241) (0.868) (0.753) (1.079) (0.855) (0.772) (0.564) (0.607) (0.512)
Mean precipitation —0.228 —0.504** —0.736™** 0.146 —0.372* —0.502*** —0.395™** —0.438*** —0.431%**
squared (m) (0.297) (0.210) (0.185) (0.263) (0.202) (0.180) (0.137) (0.143) (0.129)
Temperature anomaly (sd) —1.978 —2.081** —1.799* 3.650%** 1.404** 1.290* —0.541 —0.049 0.304
(1.644) (0.958) (0.969) (1.323) (0.562) (0.718) (0.365) (0.378) (0.498)
Temperature mean x 0.154** 0.115%* 0.081** —0.142** —0.071%* —0.078** 0.027 —0.000 —0.022
temperature anomaly (0.067) (0.040) (0.039) (0.056) (0.025) (0.031) (0.018) (0.017) (0.022)
Precipitation anomaly (sd) —1.637*** —0.794** —0.487xx 1.517%* 0.686™** 0.513%** 0.155 0.101 0.078
(0.541) (0.269) (0.232) (0.376) (0.163) (0.161) (0.109) (0.114) (0.161)
Precipitation anomaly x 0.726* 0.369™* 0.226 —1.165™** —0.394"** —0.273** —0.040 0.006 0.035
mean precipitation (0.425) (0.172) (0.157) (0.309) (0.123) (0.112) (0.071) (0.073) (0.107)
Observations 7978 7978 7978 7978 7978 7978 7978 7978 7978

Notes: Regression specification includes soil characteristics, infrastructure variables, elevation, and region-fixed effects as controls. Standard errors are clustered at the village level. *** Significant
at 1% level, **significant at 5% level, *significant at 10% level.
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Table 4. Climate and weather impacts on household incomes shares. OLS regression

Forestincome Crop income
share (1) share (2)
Mean temperature (°C) —0.038** 0.064***
(0.015) (0.018)
Mean temperature squared (°C) 0.001** —0.001%**
(0.000) (0.000)
Mean precipitation (m) 0.323%** —0.004
(0.084) (0.098)
Mean precipitation squared (m) —0.064"** 0.010
(0.020) (0.023)
Temperature anomaly (sd) —0.271%* 0.260***
(0.078) (0.079)
Temperature anomaly x mean temperature 0.014%** —0.013***
(0.003) (0.003)
Precipitation anomaly (sd) —0.077** 0.116™**
(0.024) (0.026)
Precipitation anomaly x precipitation mean 0.022 —0.062***
(0.016) (0.018)
Observations 7,975 7,975

Notes: Regression specification includes soil characteristics, infrastructure variables, elevation, and region-fixed effects as
controls. Standard errors are clustered at the village level. ***Significant at 1% level, **significant at 5% level.

Again, the forest income share increases towards the temperature extremes, and peaks
at 2,500 mm annual precipitation under normal weather conditions. It increases with
weather anomalies that intensify the climate extremes in our sample. Generally, the
reverse is true for the crop income share, although the estimates for precipitation are sta-
tistically insignificant. These results cannot be explained by ecological reasoning as forest
productivity may suffer — similar to crop productivity — from weather extremes, but are
rather due to the way humans adapt to climatic extremes, and cope with weather shocks.

Figure 3 graphically presents the results from table 4. The figure highlights the inter-
action of climate and weather anomalies. The top panels of the figure depict the impact of
climate means and temperature anomalies on crop incomes. Moving from the optimum
of around 21°C (see above), warm years in cold climates and cold years in hot climates
increase crop production. The effects are similar for precipitation, except for the drier
areas where results are mixed. Due to the linear shock terms, incomes either increase
monotonously or decline with shocks, which seems only plausible for a restricted range
of weather shocks.

For forest incomes (bottom panels), effects tend to be the opposite: temperature and
precipitation anomalies that intensify the climate extremes, such as hot years in warm
climates increase forest incomes. The panels show clearly that the response of crop and
forest income shares to weather and climate are opposite, as the color pattern reverses
from the top panels of the figure to the bottom panels of the figure.

7. Discussion and conclusion

The purpose of this study is to look at the links between climate, weather, and smallholder
livelihoods in rural areas of developing countries. For this, we combined 30 years of
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Figure 3. Theimpact of climate and weather on crop (top panels) and forest income shares (bottom panels).

village-level climate data with a large cross-sectional socioeconomic dataset. In principle,
this allowed us also to distinguish between two aspects: the income differences observed
across climatic regions with different temperature and precipitation conditions (‘climate
gradients’), and the implications of deviations in realized weather from expected climate
means in the particular survey year for income generation across sector sources (‘weather
anomalies’).

First, with respect to differences in climate across the cross-section dataset (‘climate
gradients’), we showed that crop income is relatively more important under intermedi-
ate climates that are close to optimal plant growing conditions. In turn, forest income
becomes relatively more important for rural households under more extreme climate
conditions. These differences are slightly more accentuated for the temperature than for
the precipitation variables.

Second, the analysis of impacts from fluctuating weather (‘weather anomalies’) comes
out complementarily to the structural climate gradient picture. Other things being equal,
households experiencing weather shocks (with negative impacts on crop income) tend
to cope by engaging more in forest-foraging activities than households that have faced
normal weather conditions. We argue that this pattern emerges because forest extrac-
tion is relatively less sensitive to weather variation than crop production, which tends to
be a more attractive income source to households close to optimal weather conditions.
As explained above, this relative resilience of forests vis-a-vis crops may be due both
to their greater biological diversity and to their greater reliance on multi-annually accu-
mulated biomass stocks than annual biomass increments. Consequently, although forest
products may also simultaneously face deteriorating biophysical growth conditions in
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absolute terms, forest extraction might gain attraction under both climate extremes and
in coping with negative weather shocks, inducing households to allocate more produc-
tion factors such as labor to it. This pattern was found to be particularly relevant to the
poorest income quintile of households, which are likely more exposed to climatic vari-
ations (e.g., by living in environmentally more fragile areas) and/or have lesser material
means and assets to adapt to climate change and shocks.

In terms of policy implications, our analysis of anomalies could thus also be relevant
to future climate change, which, inter alia, is predicted to cause higher average tem-
peratures, changes in precipitation regimes, and generally more unpredictable weather.
Weather anomalies, so we find, seem to matter most when they accentuate climatic
conditions that are already fairly detached from mean temperatures and mean precipita-
tion, compared to levels that are nearly optimal for crop production. Our results suggest
that forests and extractive resources, typically managed as common pool resources, can
potentially be important coping mechanisms, especially for poor rural households with
little access to formal insurance.'® This coping function will likely gain importance under
the threat of future climate change.

This resilience of forest incomes compared to crop income stresses the potential
importance of maintaining vital forest resources in developing countries under the threat
of climate change. Rural households that face less favorable climate conditions might
compensate some crop losses by increasing forest production. However, a large increase
in forest-based extraction might often not be sustainable. Another recently published
study, drawing also on the PEN data set, found that greater pressure on forest resources,
including that due to a greater number of people relying on their extraction, is typically
increasing forest degradation levels. This happens over a fairly short time span of just five
years, significantly diminishing the availability of key forest products in these villages
(Hermans-Neumann et al., 2016). Extractive systems thus can probably not provide a
large supply increment to long-term climate change, in line with what our cross-section
based models predicted that a forest ‘subsidy from nature’ could be in response to crop
damages. That is, increased extraction from the environment could in some cases likely
be a temporal pathway of adaptation to temporal shocks and in coping with incipient
effects of climate change, but it is much less likely that forests can serve as medium-
or long-term income substitutes. In this study, we cannot make any informed temporal
extrapolation.

This also raises a caveat regarding the arguably most important limitation of our
results: we derive our conclusions from a cross-sectional snapshot, rather than observing
impacts of climate change over time in the same sites. Of course, there is always consider-
able interest in interpreting the former for predicting the latter, including as we have seen
for the Environmental Kuznets Curve literature on pollution or deforestation (Mather
et al., 1999; Bhattarai and Hammig, 2004; Stern, 2004). While it is tempting to also use
our results for a prediction of climate change effects, this interpretative transition may be
particularly controversial. Many projected damaging effects of climate change will occur
through the disturbance of long-term adapted ecological systems. By ‘walking along a
climate gradient’, as we have done here (e.g., from a temperate to a slightly hotter sub-
tropical site), we are comparing two near-equilibrium long-term adapted systems with
each other. This is bound to differ from what climate change would look like in that

16Gee Baland and Francois (2005) and Delacote (2009) on the formal mechanisms of common pool
resources as insurance.
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temperate site, because the latter will be exposed to systemic shocks and disequilibria,
rather than being able to transition smoothly to the adapted hotter site’s ecological and
production systems. Likewise, the anthropic systems in the warmer site may also have
already adapted historically in ways that make it non-comparable to the temperate site,
e.g., in terms of population density being lower in the former than in the latter. Finally,
as discussed in section 3, the PEN sample has a somewhat less ample coverage in forest-
scarce, population dense areas, which is probably where forest-based coping effects are
more difficult to achieve.

Nevertheless, our results could help to fine-tune the hypotheses that researchers
would want future time-series studies to answer. Notably, a certain degree of substitu-
tive relationship between agricultural and environmental incomes, and between annual
biomass increment and perennial biomass production, would be pertinent to expect. We
did find several indications that environmental extraction from forests is a less fluctuat-
ing and more climate-resilient activity than cropping, providing a potential stabilizing
function for the livelihoods of rural smallholders.

Iftrue, three forest policy implications follow. First, conserving the integrity of natural
forests and wildlands will be key to rural livelihoods in low-income countries, potentially
sustaining an income stream that especially the poorest households rely disproportion-
ally on. Conversely, resource extraction that in many of our sites is already of a degrading
nature (Hermans-Neumann et al, 2016) might intensify under climate change scenar-
ios where rural people try to make up for crop shortfalls by increasing environmental
extraction. This will call for additional conservation efforts. In the future, finer-scale
panel data analyses about the role of different leading forest products in different geo-
graphic regions could give us a more consolidated diagnosis of what type of ecological
pressures we should expect in what places.

Second, future forests should be managed according to precautionary principles.
While here we focused on the direct income effects on rural livelihoods, the ecologically
protective functions of forests at multiple scales may in addition help rural households
adapt to climate change, e.g., in terms of preserving cooler local temperature and/or
more regular precipitation patterns. Long-term forest resilience is in turn closely tied
to biodiversity conservation at multiple scales (Thompson et al., 2009). Given the large
uncertainties about the degree and effects of climate change, future forest manage-
ment strategies should preferably mix adaptation and mitigation goals, in ways that are
incremental, flexible and, if possible, reversible over time (Millar et al., 2007).

Third, as a flip side of this coin, securing local people’s access to extract, consume,
and trade extractive resources will also be important: as our results indicate, too strict
conservation policies that completely exclude access could have high costs for local liveli-
hoods, impairing the ability of especially poor households to effectively cope with climate
change and fluctuations. It will thus be necessary to walk a fine line of balanced forest
conservation and sustainable use strategies to support local livelihoods and biodiversity
conservation goals in a future of further global climate change and more local weather
anomalies.
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