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A slender drop in a nonlinear extensional flow
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The deformation of a slender drop in a nonlinear axisymmetric extensional and
creeping flow has been theoretically studied. This problem, which was first suggested
by Sherwood (J. Fluid Mech., vol. 144, 1984, pp. 281–295), is being revisited, and
new results are presented. The problem is governed by three dimensionless parameters:
the capillary number (Ca� 1), the viscosity ratio (λ� 1), and the nonlinear intensity
of the flow (E � 1). Contrary to linear extensional flow (E = 0), where the local
radius of the drop decreases monotonically (in the positive z direction), in a nonlinear
extensional flow (E 6= 0), two possible steady shapes exist: steady shapes (stable or
unstable) with the local radius decreasing monotonically, and steady shapes (unstable)
where the local radius of the drop has a local maximum, besides the one at the centre
of the drop. Similar to linear extensional flow, the addition of nonlinear extensional
effects does not change the end shape of the steady drop, which has pointed ends.
A stability analysis has been done to distinguish between stable and unstable steady
shapes and to determine the breakup point. Time-dependent studies reveal three
types of breakup mechanism: a centre pinching mode, indefinite elongation, and a
mechanism that remind us of tip-streaming, where a cusp is developed at the end of
the drop.

Key words: drops and bubbles, low-Reynolds-number flows, slender-body theory

1. Introduction
When a spherical drop of radius a and viscosity µin is suspended in a surrounding

fluid, of viscosity µ, undergoing shear or extensional flow, it will deform. Assuming
incompressible Newtonian fluids under creeping flow conditions, the problem is
governed by two dimensionless parameters: the capillary number Ca = µAa/σ and
the viscosity ratio λ = µin/µ. Here A is the shear or extension rate and σ is the
surface tension. At Ca� 1, the drop can be considered to be a slightly deformed
sphere. However, in this report we shall consider slender drops only, which can be
realized at Ca� 1 and λ� 1. A summary of this fundamental research topic having
many industrial applications can be found in excellent reviews by Rallison (1984),
Stone (1994), and Briscoe, Lawrence & Mietus (1999).

Like many other topics in fluid mechanics, a slender-body theory for drops in
creeping flow was first introduced by Taylor (1964). He considered the deformation
of a slender drop in an axisymmetric linear extensional flow, where the cross-section
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of the drop is circular. The theory, which was later refined by Buckmaster (1972,
1973), Acrivos & Lo (1978), Khakhar & Ottino (1986) and others, suggests that the
slender drop has a parabolic radius profile with pointed ends. Consequently, as the
capillary number increases, the drop becomes thinner, more elongated, and breaks at
a critical value of Ca λ1/6 = 0.148. Thus, breakup is not possible for a bubble or an
inviscid drop (λ= 0) in axisymmetric linear extensional creeping flow.

Several theoretical variations to the problem of a slender drop in an extensional
flow have been suggested in the literature. A slender drop in a two-dimensional
extensional flow, a case where the drop cross-section is not circular, was studied
by Hinch & Acrivos (1979). Evolution studies and breakup mechanisms of slender
drops were treated by Hinch (1980) and Favelukis, Lavrenteva & Nir (2012). Since
the Reynolds number based on the length of a long and slender drop may not be so
small, Acrivos & Lo (1978) and Brady & Acrivos (1982) suggested the inclusion of
weak inertial effects. Howell & Siegel (2004) investigated a slender non-axisymmetric
drop. Booty & Siegel (2005) studied the effect of an insoluble surfactant on the
surface of an inviscid slender drop. Finally, Favelukis & Nir (2001) and Favelukis,
Lavrenteva & Nir (2005, 2006) included non-Newtonian effects outside and inside
the drop, respectively.

One of the very interesting extensions to Taylor’s theory (1964) can be found in the
paper of Sherwood (1984), who included nonlinear terms in the extensional creeping
flow and performed experiments showing the tip-streaming phenomenon. Note that
today, the literature suggests that tip-streaming is caused by surfactants moving
towards the tips of the drop and accumulating there (De Bruijn 1993; Janssen, Boon
& Agterof 1994; Eggleton, Tsai & Stebe 2001; Renardy, Renardy & Cristini 2001).
The formation of a pointed drop in a nonlinear two-dimensional extensional creeping
flow was also considered by Antanovskii (1996), since it describes better (than the
linear flow) the outer flow which occurs in Taylor’s four-roller mill apparatus. It is
the purpose of this report to revisit, present new results, and perform a complete
stability analysis of the theoretical treatment of Sherwood (1984) on deformation and
breakup of a slender drop in a nonlinear axisymmetric extensional creeping flow.

2. The governing equations
2.1. The flow outside the drop

Figure 1 shows a slender drop, positioned at the origin of a cylindrical coordinate
system and embedded in an infinite incompressible Newtonian fluid, subjected to a
nonlinear extensional creeping flow. The undisturbed motion suggested by Sherwood
(1984) is given by

vr =− 1
2 Ar− 3

2 Brz2, vz = Az+ Bz3, p= 3µB
(
z2 − 1

2 r2
)
. (2.1a−c)

Here p is the pressure, which was defined in such a way that its value at the origin
is set to zero. According to Sherwood (1984), quadratic terms were excluded in
order to maintain the symmetry at z= 0. When B= 0, the well-known simple (linear)
extensional flow is recovered. Note that we define extensional flow with A > 0;
however, B can take both positive or negative values.
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FIGURE 1. (Colour online) A slender drop in a nonlinear extensional flow: R(z, t) is the
local radius and L(t) is the half-length of the drop.

Following Acrivos & Lo (1978), we can develop the velocity components of the
disturbed motion near the slender drop:

vr = R
r
∂R
∂t
+ A

{
−
(

1+ 3
B
A

z2

)
r
2
+ R

r

[(
1+ 3

B
A

z2

)
R
2
+
(

1+ B
A

z2

)
z
∂R
∂z

]}
,

vz = Az
(

1+ B
A

z2

)
.


(2.2)

Notice that, to a first approximation, the axial component of the velocity is not
affected by the presence of a slender drop. The radial disturbed velocity can be
found from the continuity equation and the kinematic condition.

Substituting the disturbed motion into the Stokes equations, we find that the leading
order of the pressure outside a slender drop (R/L� 1) is

pout = 3µBz2. (2.3)

2.2. The flow inside the drop
The flow inside the slender drop can be considered to be a superposition of drag flow
vz at r= R and a pressure flow in the opposite direction (Taylor 1964). Assuming an
incompressible Newtonian fluid in creeping flow we easily obtain

vz = A
(

1+ B
A

z2

)
z− 1

4µin

∂pin

∂z
R2

[
1−

( r
R

)2
]
. (2.4)

Here pin is the pressure inside the drop, assumed uniform at each cross-section.
The volumetric flow rate, through each axial cross-section along the drop, can be

found from an integral mass balance within a control volume inside the drop:

Q=− ∂
∂t

∫ z

0
πR2 dz=

∫ R

0
vz2πr dr=πR2

[
A
(

1+ B
A

z2

)
z− 1

8µin

∂pin

∂z
R2

]
. (2.5)
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From the last equation, and after some algebraic manipulation, an expression for the
internal pressure can be found:

pin = pin(0)+ 8µinA
∫ z

0

1
R

[(
1+ B

A
z2

)
z
R
+ 1

R3

∂

∂(At)

∫ z

0
R2 dz

]
dz, (2.6)

where pin(0) is the unknown pressure at the centre of the drop. At steady state, the
volumetric flow rate vanishes at every cross-section within the drop. Also, for a bubble
or an inviscid drop, µin=0, the pressure inside the drop is uniform, and at steady state
it is also constant.

2.3. The normal stress balance
We start this section by writing a normal stress balance at the surface of the slender
drop:

pin − pout − τrr,in + τrr,out = σR , (2.7)

where the subscripts in and out denote inside and outside of the drop respectively.
Since slender drops can be realized when the viscosity of the drop is much smaller
than the viscosity of the external fluid, we can neglect the normal viscous stress inside
the drop.

Let all the pressures and stresses be rendered dimensionless with respect to
the characteristic stress outside the drop (µA), all the lengths with respect to the
equivalent radius (a, the radius of a sphere of an equal volume), and the time with
respect to 1/A. Substituting the expressions for the external and internal pressures,
given by (2.3) and (2.6), and the external normal stress, which can be obtained from
(2.2) and Newton’s viscosity law, we arrive in a dimensionless form:

pin(0)+ 8λ
∫ z

0

1
R

[
(1+ Ez2)

z
R
+ 1

R3

∂

∂t

∫ z

0
R2 dz

]
dz

− 2
R
∂R
∂t
− 2

(
1+ 9

2
Ez2

)
− 2(1+ Ez2)

z
R
∂R
∂z
= 1

Ca R
. (2.8)

Equation (2.8) is governed by three dimensionless parameters: the capillary number,
the viscosity ratio and the nonlinear intensity of the flow, which contrary to the other
two parameters can be positive or negative:

Ca= µAa
σ
, λ= µin

µ
, E= Ba2

A
. (2.9a−c)

The solution also requires three conditions: an initial drop shape: R(z, 0), a radius at
the end of the drop, R(L, t)= 0, and an equation for volume conservation:∫ L

0
R2 dz= 2

3
. (2.10)

Equations (2.8)–(2.10) suggest that R ∼ O(1/Ca), L ∼ O(Ca2), pin(0) ∼ O(1), and
t ∼ O(1). In terms of the small parameter ε = R/L � 1, the theory is valid for
large capillary numbers Ca ∼ 1/ε1/3, small viscosity ratios λ ∼ ε2, and a small
nonlinear intensity of the flow E ∼ ε4/3. From the above discussion, and following
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A slender drop in a nonlinear extensional flow 341

our previous report (Favelukis et al. 2006), we redefine the local radius and the
coordinate z as follows: y= R Ca and x= z/Ca2, both having an order of magnitude
of 1. Equations (2.8) and (2.10) take the following form:

pin(0)+ 8f 6
∫ x

0

1
y

[
(1+Gx2)

x
y
+ 1

y3

∂

∂t

∫ x

0
y2 dx

]
dx

− 2
y
∂y
∂t
− 2

(
1+ 9

2
Gx2

)
− 2(1+Gx2)

x
y
∂y
∂x
= 1

y
(2.11)∫ xL

0
y2 dx= 2

3
, (2.12)

with xL = L/Ca2. Note that the number of governing dimensionless parameters has
been reduced from three (Ca, λ, E) to two having an order of magnitude of 1: the
positive viscous strength of the flow ( f ) and the nonlinear strength of the flow (G),
which can be positive or negative:

f =Ca λ1/6, G=Ca4E. (2.13a,b)

Following Hinch (1980), the pressure at the centre of the drop can be obtained by
combining (2.11) and (2.12):

pin(0)= 1+

∫ xL

0

(
y+ 2Gx3y

∂y
∂x
+ 9Gx2y2

)
dx− 8f 6

∫ xL

0
y2

{∫ x

0

1
y

[
(1+Gx2)

x
y
+ 1

y3

∂

∂t

∫ x

0
y2 dx

]
dx
}

dx∫ xL

0
y2 dx

,

(2.14)
where, according to Hinch (1980), the numerical integration of the last equation, for
the case of an inviscid drop in creeping flow, becomes unstable if the integral in the
denominator is replaced, according to (2.12), by the value 2/3. We found this advice
to be wise here and for our previous case as well (Favelukis et al. 2012).

The unknown internal pressure at the centre of the drop in (2.11) can be eliminated
by differentiating the equation with respect to x, to give

2
∂2y
∂x∂t
− 2

y
∂y
∂x
∂y
∂t
+ 2x(1+Gx2)

∂2y
∂x2
− 2

x
y
(1+Gx2)

(
∂y
∂x

)2

+
[

2(1+ 3Gx2)− 1
y

]
∂y
∂x
+ 18Gxy= 8f 6

[
x
y
(1+Gx2)+ 1

y3

∂

∂t

∫ x

0
y2 dx

]
. (2.15)

The last equation needs to be solved with an initial drop shape, y(x, 0), a vanishing
drop radius at the end of the drop, y(xL, t)= 0, and the conservation of volume, given
by (2.12).

When G= 0, (2.15) reduces to the one presented in the literature for simple (linear)
extensional flow. Furthermore, the 18Gxy term (positive or negative) on the left-hand
side of (2.15) reminds us of a similar term (negative) which needs to be added when
external inertia is taken into account (Favelukis et al. 2006). Thus, we anticipate that
some of the results of nonlinear extensional creeping flow, when G<0, will be similar
to those of linear extensional flow under the influence of a weak amount of external
inertia.

In the next three sections we shall revisit the results of Sherwood (1984), for the
steady deformation of inviscid and viscous drops, as well as present new contributions
to this interesting subject.
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342 M. Favelukis

3. Steady state

We start this section by examining the steady-state equation (2.15), which reveals
an interesting finding. Contrary to the linear extensional flow case (G = 0), where
the local radius of the drop y(x) decreases monotonically, for z > 0, in a nonlinear
extensional flow (G 6= 0), the local radius of the drop may (or may not) achieve a
maximum, besides the one at the centre of the drop.

3.1. The solution near the centre of the drop
At steady state, and according to (2.11), we shall follow the suggestion of Acrivos &
Lo (1978) by defining the radius at the centre of the drop as follows:

y(0)= 1
2ν
, v = 1

2
pin(0)− 1. (3.1a,b)

Near the centre of the drop (x→ 0), we assume that the local radius of the drop
changes according to

y(x)= 1
2ν
− ε(x), ε(x)� 1. (3.2)

Substituting the above definition into the steady-state equation (2.15) and neglecting
terms of O(ε2), results, at a first approximation, in

−x
d2ε

dx2
+ (ν − 1)

dε
dx
+ 9

2ν
Gx= 8νf 6x. (3.3)

Together with the condition that ε(0)= 0 we obtain

ε= (16ν2f 6 − 9G)x2

4ν(ν − 2)
+C

xν

ν
, (3.4)

dy
dx
=− (16ν2f 6 − 9G)x

2ν(ν − 2)
−Cxν−1, (3.5)

where C is an integration constant. The last two equations suggest that there is a
singular point at ν = 2. However, one should remember that ν = 2 corresponds to
an inviscid drop ( f = 0) in linear (G= 0) extensional flow. In this case, the last term
on the left-hand side and the term on the right-hand side of (3.3) vanish, so that the
first terms on the right-hand side of (3.4) and (3.5) do not exist. When ν = 2, the
solution is analytic, and we shall see later that C= 1/800. When ν > 2, the last term
on the right-hand side of (3.5) can be neglected when compared to the first term. If
ν < 2, the last term on the right-hand side of (3.5) is the leading one, suggesting a
non-analytical solution at x= 0. However, following Acrivos & Lo (1978) for the case
of an inviscid drop with external inertia, the coefficient of this non-analytical term can
be made to vanish by a proper choice of ν.

3.2. The solution near the end of the drop
Near the end of the drop (x→ xL), we assume a local radius profile of the form

y=Mεα, ε= xL − x� 1, (3.6)
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A slender drop in a nonlinear extensional flow 343

where both M and α are defined as positive. Equation (3.6) suggests three possible
shapes for the end of the slender drop: a cusped end (α > 1), a pointed end
(α = 1) and a rounded end (α < 1). Substituting (3.6) into the steady-state equation
(2.15) reveals that only the case α = 1, where the end is pointed, is possible. This
finding is equivalent to the linear extensional flow case, with or without a weak
amount of external inertia (Favelukis et al. 2005, 2006).

At the end of the drop, the steady-state equation (2.15) reduces to

−2(1+Gx2)
x
y

(
dy
dx

)2

− 1
y

dy
dx
= 8f 6(1+Gx2)

x
y
. (3.7)

Combining the last two equations (with α = 1) and applying a Taylor series for ε
around ε= 0 results in an algebraic equation, to which the first approximation solution
is

M = 1±
√

1− 64f 6(xL +Gx3
L)

2

4(xL +Gx3
L)

,
dy
dx
=−M. (3.8a,b)

The following numerical results suggest that the (+) solution is the correct one. This
might be expected when we explore (3.8) for the limiting case of an inviscid drop
( f = 0).

Despite the discussion presented here and in the previous section, one should
remember that the slender-body approximation equations may not be accurate at the
centre and at end of the drop.

4. Inviscid drop (λ= 0)

4.1. Steady-state shapes
For a bubble or an inviscid drop, λ = f = 0, the internal pressure is uniform and at
steady state it is also constant. Combining the steady-state form of (2.11) with (3.1)
results in

(1+Gx2)x
dy
dx
−
(
ν − 9

2
Gx2

)
y=−1

2
. (4.1)

The solution of (4.1) together with the boundary condition y(xL) = 0 requires a
trial and error procedure in order to connect the parameters ν, xL and G via the
conservation of volume. The trial and error procedure can be avoided if one defines
variables θ = Gx2 and θL = Gx2

L, which can be positive or negative depending on
the sign of G. With this definition, equation (4.1) and the conservation of volume,
equation (2.12), become

2θ(1+ θ) dy
dθ
−
(
ν − 9

2
θ

)
y=−1

2
, (4.2)

G=
(

3
4

∫ θL

0
y2θ−1/2 dθ

)2

. (4.3)

For a choice of ν, θL can be found by solving (4.2) from y(0)= 1/(2ν) until y(θL)= 0.
Then, the parameter G can be obtained from the conservation of volume in (4.3).
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An exact solution in a closed form can be found for (4.2) and its boundary
condition at the end of the drop:

y = 1
4(1+ θ)−(ν+9/2)/2θ

−ν/2
L

[
−(−θ)ν/2θ ν/2L B[−θ,−ν/2, (ν + 9/2)/2]

+ θ ν/2(−θL)
ν/2B[−θL,−ν/2, (ν + 9/2)/2]

]
, (4.4)

where B is the incomplete beta function defined by

B(z, a, b)=
∫ z

0
ta−1(1− t)b−1 dt. (4.5)

Following Sherwood (1984), the solution can be obtained by expressing (4.2) as a
power series in the form

y=
∞∑

k=0

akθ
k, (4.6)

where the first few coefficients are given by

a0 = 1
2ν
, a1 = 9

4ν(ν − 2)
, a2 = 117

8ν(ν − 2)(ν − 4)
. (4.7a−c)

A general expression for the coefficients is

ak =

k−1∏
j=0

(2j+ 9/2)

2
k∏

j=0

(ν − 2j)

. (4.8)

For the specific case of j=0, the numerator is defined as 1. Note that ν=0,2,4,6, . . .
are singular points and the solution contains many branches depending on values of ν.
Following Acrivos & Lo (1978) and Favelukis et al. (2006), we shall concentrate on
solutions having low values of ν, in the range 0< ν < 4, as there we expect to find
the stable solutions of physical interest.

Figure 2(a) shows the deformation curve of an inviscid drop for the range 0<ν < 4,
where 30 terms have been used in (4.6). First, let us observe the solid line, starting
from the right-hand side of the plot at low ν, large G and small xL. As the parameter
ν increases, the positive G decreases and xL increases, until we reach the case of an
inviscid drop in creeping linear flow (ν = 2, G= 0, xL = 20). Note that the literature
suggests that an inviscid drop in linear extensional creeping flow is always stable and
cannot be broken (Acrivos & Lo 1978). As the parameter ν continues to increase, the
solid line enters a region with negative values of G, which are very close to zero and
therefore are difficult to observe in figure 2(a). The solid line turns back on itself at
a bifurcation turning point (ν = 2.51), and finally terminates at ν = 4, G = −0 and
xL = 60.0. An enlargement of the turning point zone is depicted in figure 2(b).

Based on previous works (Acrivos & Lo 1978; Favelukis et al. 2006), steady stable
shapes are probably located at the lower branch (low ν) until the bifurcation turning
point at ν = 2.51, while steady unstable shapes should be found at the upper branch
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FIGURE 2. (Colour online) The deformation curve of an inviscid drop: (a) overall view;
(b) enlargement of the turning point zone. Solid line: dy/dx < 0 as x→ 0 (x > 0) with
breakup point at ν=2.51; dashed line: dy/dx>0 as x→0 (x>0); dotted line: approximate
solution. Solid circles are placed at different values of ν.

and in other branches having higher values of ν which are not plotted in this figure. At
the bifurcation turning point, which is considered as the breakup point, the numerical
results suggest ν = 2.51, G=−9.62× 10−5 and xL = 28.7. We shall prove later, via
a stability analysis, that our predictions are correct. Thus, contrary to the linear case
(G = 0), where the inviscid drop is always stable and breakup is not possible, the
addition of nonlinear terms (G 6= 0) can cause the bubble to break. The solid lines
in figure 3 show steady shapes (stable or unstable) corresponding to the solid line of
figure 2. Note that all cases have a local radius which decreases monotonically (for
x > 0), and when ν < 1.68, the shapes also have an inflection point.

Next we discuss the dashed line in figure 2 which covers the range 2 < ν < 4. It
starts at ν just above 2 with large positive values of G and low values of xL. As
the parameter ν increases, G decreases (always positive) and xL increases, until the
dashed line meets the solid line at ν = 4, G = +0 and xL = 60.0. At the centre of
the slender drop, dy/dx= 0. Near the centre of the drop (x→ 0) and if x is positive,
equation (3.5) with f = 0 suggests a negative slope, dy/dx< 0, for the solid line, and
a positive slope, dy/dx> 0, for the dashed line. Therefore, the dashed line represents
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FIGURE 3. (Colour online) Steady-state shapes of inviscid drops, having dy/dx < 0 as
x → 0 (x > 0), for different values of ν. Solid lines: exact solution; dotted lines:
approximate solution. ν = 1 (stable), ν = 2 (stable), ν = 2.51 (breakup point) and ν = 3
and (unstable).
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FIGURE 4. (Colour online) Steady-state shapes of inviscid drops, having dy/dx > 0 as
x→ 0 (x > 0), for different values of ν, according to the exact solution. All cases are
unstable.

steady shapes having a maximum in the local radius, besides the one at the centre of
the drop (see figure 4). In the next section we shall prove through a stability analysis
that these strange steady shapes are unstable. It should be noted that, contrary to the
solid lines in figures 2 or 3, for these strange drops the numerical solution of the
power series does not give a good prediction of the slope at the end of the drop,
especially at the lower values of the parameter ν.

An approximate solution can be obtained by considering the first two terms of (4.6).
Together with the boundary condition at the end of the drop y(xL) = y(θL) = 0, and
the conservation of volume, expressed by (2.12) or (4.3), we find that

y= 1
2ν

[
1−

(
x
xL

)2
]
, xL = 5ν2, (4.9)

θL = 2(2− ν)
9

, G= 2(2− ν)
225ν4

. (4.10a,b)

Notice that the two-term approximation suggests a parabolic radius profile; therefore,
it cannot represent the unstable dashed line, which is characterized by having a
maximum radius, besides the one at the centre. The two-term approximation is
depicted in figure 2 by the dotted line. It closely follows the solid line, especially
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when ν > 2, and its bifurcation turning point is located at ν = 8/3 = 2.67,
G = −1.17 × 10−4 and xL = 35.6. For the case of linear extensional flow (G = 0),
equation (4.9) also represents the exact solution after substituting ν = 2, leading to
xL = 20. Steady shapes of deformed drops according to the approximate solution are
represented by the dotted lines in figure 3. Despite the fact that the approximate
solution underestimates the half-length of the drop when ν < 2 and overestimates the
half-length at ν > 2 (see figure 3), it represents a simple and excellent alternative to
the cumbersome numerical solution.

4.2. The stability of the solution
In this section we perform a stability analysis to small disturbances of the steady
shapes in order to find the location of the stable and unstable regions. For an inviscid
drop f = 0, and (2.15) in terms of our new variable θ =Gx2 takes the following form:

2
∂2y
∂θ∂t
− 2

y
∂y
∂θ

∂y
∂t
+ 4(1+ θ)θ ∂

2y
∂θ 2
− 4

(1+ θ)θ
y

(
∂y
∂θ

)2

+
[

4(1+ 2θ)− 1
y

]
∂y
∂θ
+ 9y= 0.

(4.11)
Let a long-wave axisymmetric disturbance be defined as

y(θ, t)= y0(θ)+ y1(θ, t). (4.12)

Here y0 is the steady-state solution and y1 is a time-dependent small axisymmetric
perturbation such that y1� y0. Combining the last two equations and neglecting terms
of O(y2

1) or higher we obtain

2
∂2y1

∂θ∂t
− 2

y0

dy0

dθ
∂y1

∂t
+ 4(1+ θ)θ ∂

2y1

∂θ 2
+
[

4(1+ 2θ)− 8(1+ θ)θ
y0

dy0

dθ
− 1

y0

]
∂y1

∂θ

+
[

4(1+ θ)θ
y2

0

(
dy0

dθ

)2

+ 1
y2

0

dy0

dθ
+ 9

]
y1 = 0. (4.13)

As always, the perturbation is described as y1 = g(θ) exp(δt), where negative real
values of δ denote stable steady shapes while positive real values of δ denote unstable
steady shapes. Thus, the point where the real part δ vanishes can be considered as the
breakup point. Substituting this definition into (4.13) gives

4(1+ θ)θ d2g
dθ 2
+
[

4(1+ 2θ)+ 2δ − 1
y0
− 8(1+ θ)θ

y0

dy0

dθ

]
dg
dθ

+
[

4(1+ θ)θ
y2

0

(
dy0

dθ

)2

+ 1
y2

0

dy0

dθ
+ 9− 2δ

y0

dy0

dθ

]
g= 0. (4.14)

We are looking for a solution to (4.14) in the form of a power series:

g(θ)=
∞∑

k=0

ckθ
k, (4.15)
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FIGURE 5. (Colour online) The stability of the solution of an inviscid drop. Solid line:
dy0/dx< 0 as x→ 0 (x> 0), with breakup point at ν = 2.51; dashed line: dy0/dx> 0 as
x→ 0 (x> 0).

where we set c0= 1 without loss of generality (Acrivos & Lo 1978). We find for the
first coefficients:

c1 = 9(2ν − 2− δ)
2(ν − 2)(ν − 2− δ) , c2 = 117[3ν2 − 3ν(4+ δ)+ (2+ δ)(4+ δ)]

4(ν − 2)(ν − 4)(ν − 2− δ)(ν − 4− δ) . (4.16a,b)

The conservation of volume, given by (2.12), can be differentiated with respect to time
to give ∫ xL

0
y0y1 dx=

∫ θL

0
y0gθ−1/2 dθ = 0. (4.17)

The eigenvalues δ are determined by solving this last equation. For each ν there are
many possible values of δ, and we are interested in δ with the highest real part.

In figure 5 we show the highest real value of δ as a function of the parameter ν that
was obtained with k= 12 in (4.6) and (4.15). The solid and dashed lines in this figure
correspond to the solid and dashed lines in figure 2, respectively. We find that for all
cases δ is real. As expected, the solid line (dy0/dx< 0, x→ 0, x> 0) contains both
a stable region (ν < 2.51, δ < 0) and an unstable region (ν > 2.51, δ > 0), confirming
our prediction that the breakup point (δ= 0) is located at the bifurcation turning point
at ν = 2.51. On the other hand, the dashed line (dy0/dx> 0, x→ 0, x> 0) represents
an unstable physical situation (δ > 0) everywhere. It should be mentioned that δ was
found to be positive for all branches with ν > 4, suggesting that no other steady stable
shapes are expected.

4.3. Time-dependent studies
In order to further confirm our stability analysis conclusions regarding the location of
the stable and unstable steady shapes, here we shall perform a time-dependent study,
which can also reveal the type of breakup mechanism. Following Sherwood (1984),
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FIGURE 6. (Colour online) The evolution of an inviscid drop originally located at the
stable branch with a sudden change in G. The drop is originally located at ν = 1.5, G=
+0.00102 and xL= 12.7. At t= 0 G is changed to G= 0 before the breakup point. (a) The
local radius of the drop; (b) the half-length of the drop; (c) the pressure inside the drop;
(d) the volume of the drop.

we suggest a solution for the evolution of the inviscid drop in terms of a series
expansion about the centre of the drop:

y(x, t)=
∞∑

k=0

yk(t)x2k, (4.18)

which, after substitution into the partial differential (2.11) (with f = 0), results in the
following system of ordinary differential equations:

dy0

dt
= 1

2
[−1+ (p− 2)y0]; k= 0, (4.19)

dyk

dt
= 1

2
[−(5+ 4k)Gyk−1 + (p− 2− 4k)yk]; k > 1. (4.20)

Note that for an inviscid drop the internal pressure is uniform and can be obtained
from (2.14), with f =0. Clearly, the accuracy of the solution depends on the maximum
value of k used in (4.18). We used k = 15 (16 terms) for figures 6 and 7, and the
accuracy of the solution can be verified by the conservation of the volume. In all of
the following simulations, we choose a stationary shape (stable or unstable) for the
initial conditions.

In the first type of simulation experiments, we keep the nonlinear strength of the
flow (G positive or negative) constant. If the inviscid drop is located at the stable
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FIGURE 7. (Colour online) The evolution of an inviscid drop originally located at the
stable branch with a sudden change in G. The drop is originally located at ν = 1.5, G=
+0.00102 and xL= 12.7. At t= 0 G is changed to G=−0.001 beyond the breakup point.
(a) The local radius of the drop; (b) the half-length of the drop; (c) the pressure inside
the drop; (d) the volume of the drop.

lower branch corresponding to ν < 2.51 (G positive or negative) and depicted in
figure 2 by the solid line, no change in the drop is observed. On the other hand, if
we place the drop at the unstable branch corresponding to 2.51< ν < 4 (G negative,
solid line in figure 2), changes in the drop will occur with time. An example of such
a case at ν = 3, G=−7.54× 10−5 and xL = 38.3 is presented in figure 12(d). Note
that the steady inviscid drop is unstable and, after an incubation time, the drop breaks
via a centre pinching mechanism. This mode of breakup mechanism has also been
observed for the case of an inviscid drop under a small amount of external inertia
(Favelukis et al. 2012). As we further increase the number of terms in (4.18), the
initial steady shape is more accurate, and the evolution process takes longer. For this
reason, in this type of simulation, no time is indicated.

The next type of simulation is what we call the Sherwood (1984) experiment. Here
we study the evolution of the drop when at t = 0 a sudden change in the nonlinear
strength of the flow is introduced. Figures 6 and 7 correspond to an inviscid drop
originally located at the steady stable branch at ν = 1.5, G=+0.00102 and xL= 12.7.
In figure 6 we show the results of changing at t = 0 the nonlinear strength of the
flow from G = +0.00102 to G = 0. As expected, the original stable drop moves to
another stable location at ν = 2, G= 0 and xL= 20, corresponding to an inviscid drop
in a linear extensional flow. Note that, contrary to the previous experiment depicted
in figure 12(d), in this case we can indicate the times in our simulations. In figure 7,
the change is made from G=+0.00102 to G=−0.001, which is beyond the breakup
point located at the bifurcation turning point at G = −9.62 × 10−5. As expected,
breakup takes place, once again via a centre pinching mechanism.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

64
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.646


A slender drop in a nonlinear extensional flow 351

5. Viscous drop (λ 6= 0)

We start this section by introducing a parameter characterizing the nonlinearity of
the flow:

H = G
f 6
= E
λCa2

. (5.1)

Here −∞<H <+∞. When H = 0 the linear extensional flow (G= 0) is recovered,
and H→±∞ corresponds to an inviscid drop ( f = 0) under the influence of nonlinear
(G 6= 0) extensional effects.

Similar to our discussion in § 4.1, we define new variables φ = f 6x2 and φL =
f 6x2

L, which avoids the need of a trial and error solution. The governing equation,
equation (2.15), and the conservation of volume, equation (2.12), take now the form

2
∂2y
∂φ∂t

− 2
y
∂y
∂φ

∂y
∂t
+ 4(1+Hφ)φ

∂2y
∂φ2
− 4(1+Hφ)φ

y

(
∂y
∂φ

)2

+
[

4(1+ 2Hφ)− 1
y

]
∂y
∂φ
+ 9Hy

= 4
[
(1+Hφ)

y
+ 1

2φ1/2y3

∂

∂t

∫ φ

0
y2φ−1/2 dφ

]
, (5.2)

f =
(

3
4

∫ φL

0
y2φ−1/2 dφ

)1/3

. (5.3)

Note that, contrary to the inviscid case, where θ can be positive or negative, this time
φ > 0.

5.1. Steady-state shapes
At steady state, the first two terms on the left-hand side and the last term on the right-
hand side of (5.2) vanish. The solving procedure is identical to the one we applied
for the inviscid drop. We first chose a value for the parameter ν, and the end of the
drop φL can be evaluated by solving the steady form of (5.2) from y(0)= 1/(2ν) until
y(φL)= 0. Finally, the parameter f is obtained from the conservation of volume given
by (5.3).

As before, we are looking for a solution to the steady-state equation (5.2) in the
form of a power series:

y=
∞∑

k=0

bkφ
k (5.4)

and the first few coefficients are

b0 = 1
2ν
, b1 = 9H − 16ν2

4ν(ν − 2)
, b2 = H[117H − 16ν2(11+ ν)]

8ν(ν − 2)(ν − 4)
. (5.5a−c)

Once again, ν= 0, 2, 4, 6, . . . are singular points, the solution has many branches; we
shall focus our search of the stable solution in the region of 0< ν < 4.

Contrary to the inviscid case, for a viscous drop there are many possible solutions,
depending on the combination of the parameters ν and H. Therefore, and in order
to facilitate the search, we will examine first the two-term approximate solution.
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FIGURE 8. (Colour online) The deformation curve of viscous drops, according to the
approximate solution, for different values of H. Solid circles are placed at bifurcation
turning points. The solid square is placed at ν = 2.

Taking the first two terms of (5.4) and applying the boundary condition at the end of
the drop y(xL)= y(φL)= 0, and the conservation of volume, (2.12) or (5.3), we find

y= 1
2ν

[
1−

(
x
xL

)2
]
, xL = 5ν2, (5.6)

φL = 2(ν − 2)
16ν2 − 9H

, f = 21/6

51/3ν2/3

(
ν − 2

16ν2 − 9H

)1/6

. (5.7a,b)

As before, the two-term approximation suggests a parabolic radius profile with
dy/dx< 0 as x→ 0 (x> 0), and cannot represent possible shapes with dy/dx> 0 as
x→ 0, which, similar to the inviscid drop case, are probably unstable. Note that the
two-term approximation equals the exact solution when the extensional flow is linear
(H = 0).

Figure 8 describes the deformation curve according to the approximate solution for
different values of H. The figure can be divided into two regions: a region to the left
of the H = 64/9= 7.11 line, having solutions for positive and negative values of H,
and a region to the right of this curve, having solutions for positive values of H only.

To the left of the H= 64/9= 7.11 curve, we can locate the linear extensional case
(H = 0), where (5.6)–(5.7) also describes the exact solution, with 2 6 ν < 2.4 being
the steady stable branch and ν > 2.4 the steady unstable branch. The breakup point
located at the bifurcation turning point at ν= 2.4 is depicted by the solid circle. Other
curves having H< 64/9 (positive or negative), xL > 20 and ν > 2, behave in a similar
manner. That is, two branches separated by a bifurcation turning point at the solid
circle. We can predict that the lower branch represents the steady stable shape and
the upper branch represents the unstable steady shape.
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H ν G f xL

−∞ 2.51 −9.62× 10−5 0 28.7
−1000 2.51 −9.53× 10−5 0.0676 28.7
−100 2.50 −8.78× 10−5 0.0978 28.6
−10 2.44 −4.95× 10−5 0.131 28.4
0 2.4 0 0.148 28.8
+1 2.39 +1.18× 10−5 0.151 29.0

TABLE 1. Parameters at breakup point, according to the exact solution, for the family of
solutions having: H < 64/9 (positive or negative), xL > 20, ν > 2, with bifurcation turning
points.

To the left of the H = 64/9 = 7.11 line, there is another family of solutions,
corresponding to H > 64/9, xL < 20 and ν < 2. These curves remind us of the lower
solid branch in figure 2 (G> 0, ν < 2), which was found to be stable all along the
curve; later we shall prove, via a stability analysis, that these curves are stable as
well. Note that all lines to the left of the H= 64/9= 7.11 line concentrate to a single
point at f = 0 and xL = 20, corresponding to an inviscid drop in linear extensional
creeping flow (ν = 2).

To the right of the H= 64/9= 7.11 line, there are some curves presenting solutions
for positive values of H, where cases having very large values of H exist, but cannot
be shown as they are outside the range of the plot. These curves are located in a
region in which the combination of the parameters H and ν predicts, according to the
exact solution, given by (3.5), that dy/dx> 0 as x→ 0 (x> 0). Thus, all the curves
to the right of the H = 64/9= 7.11 line are expected to be unstable.

Finally, the H = 64/9= 7.11 curve is actually composed of two branches. A lower
branch (ν < 2, xL < 20) and an upper branch (ν > 2, xL > 20) merging at ν = 2, f =
0.207 and xL = 20, represented by the solid square. Clearly, this case cannot exist,
since ν = 2 corresponds to an inviscid drop in linear extensional flow where f = 0
and xL = 20.

We now proceed to the exact solution represented by (5.4), calculated with k= 16
and presented in figure 9. We start again with the family of curves corresponding to
H < 64/9 (positive or negative), xL > 20, ν > 2 and, according to (3.5), dy/dx < 0
as x→ 0 (x > 0). Here we easily locate the linear extensional case (H = 0), where
the approximate solution is also the exact solution given by (5.6)–(5.7). To the left
of H = 0, we find the solutions having H < 0. These curves behave in a very similar
manner to the approximate solution. That is, two branches separated by a bifurcation
turning point (solid circle). However, contrary to the approximate solution, the upper
unstable branch does not extend to infinity, but rather turns back and ends up at f = 0
and xL = 60. To the right of the H = 0 case we find some curves with H > 0 but
still under the H < 64/9 condition. Some of these lines stop after the turning point
(H= 1) and some stop before the turning point is achieved (H= 5). Later, our stability
analysis will reveal that lines with bifurcation turning points are, as expected, stable at
the lower branch and unstable at the upper branch, confirming that the turning point is
the breakup point (see table 1). Lines without a bifurcation turning point, for example
H = 5, are stable everywhere.

The next family of lines corresponds to H> 64/9, xL < 20, ν < 2 and, according to
(3.5), dy/dx< 0 as x→ 0 (x> 0). These lines closely follow the approximate solution.
However, it is difficult to determine the end point of these lines since, close to the end
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FIGURE 9. (Colour online) The deformation curves of viscous drops with dy/dx < 0 as
x→ 0 (x> 0), according to the exact solution, for different values of H. Solid circles are
placed at bifurcation turning points.

points, the slope of the radius at the end of the drop, according to the series solution,
deviates from the asymptotic value given by (3.8). Thus, we cannot conclude if these
lines extend to infinity or they just stop as a result of our numerical procedure. The
stability analysis in the next section will confirm that this family of curves is stable
everywhere.

The third family of lines with H> 64/9, ν > 2 and dy/dx> 0 as x→ 0 (x> 0) is not
shown in the figure. Remember that in this family the local radius of the drop achieves
a maximum, besides the one at the centre of the drop; similar to the inviscid case, we
expect this family to be unstable. Their numerical solution results in non-smooth lines
in the deformation curve, and the slope of the radius at the end of the drop deviates
completely from the asymptotic value given by (3.8).

Steady shapes (stable and unstable) for the two families of solutions with dy/dx< 0
as x→ 0 (x> 0) are shown in figure 10. For comparison, the case of an inviscid drop
in linear extensional flow (ν = 2, G= 0) is also plotted. Drops having H=+100 and
ν < 2 are shorter and fatter than the ν = 2 case, and may have an inflection point,
while for H =−100 and ν > 2 they are longer and thinner than the ν = 2 case. Note
also that the approximate solution closely follows the exact one. The approximate
solution (compared at the same ν) underestimates the half-length of the drop when
ν < 2 and overestimates the half-length at ν > 2. However, since the approximate
solution is represented by a very simple mathematical expression, it can provide an
excellent tool for fast and practical estimations.
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FIGURE 10. (Colour online) Steady-state shapes of inviscid and viscous drops with
dy/dx< 0 as x→ 0 (x> 0), for different values of ν, G and H. Solid lines: exact solution;
dotted lines: approximate solution. ν = 1.1 and H = 100 (stable), ν = 1.5 and H = 100
(stable), ν = 2 and G= 0 (stable), ν = 2.50 and H=−100 (breakup point), and ν = 3 and
H =−100 (unstable).

5.2. The stability of the solution
We repeat the procedure used in the case of an inviscid drop by defining the steady
solution y0(φ) and a small axisymmetric disturbance y1(φ, t), such that

y(φ, t)= y0(φ)+ y1(φ, t), (5.8)

which can be substituted into the governing (5.2) and by neglecting terms of O(y2
1)

or higher we obtain

2
∂2y1

∂φ∂t
− 2

y0

dy0

dφ
∂y1

∂t
+ 4(1+Hφ)φ

∂2y1

∂φ2
+
[

4(1+ 2Hφ)− 8(1+Hφ)φ
y0

dy0

dφ
− 1

y0

]
∂y1

∂φ

+
[

4(1+Hφ)φ
y2

0

(
dy0

dφ

)2

+ 1
y2

0

dy0

dφ
+ 9H + 4(1+Hφ)

y2
0

]
y1

= 4
φ1/2y3

0

∂

∂t

∫ φ

0
y0y1φ

−1/2 dφ. (5.9)

Setting y1 = g(φ) exp(δt) into the last equation gives

4(1+Hφ)φ
d2g
dφ2
+
[

2δ − 8(1+Hφ)φ
y0

dy0

dφ
+ 4(1+ 2Hφ)− 1

y0

]
dg
dφ

+
[
−2δ

y0

dy0

dφ
+ 4(1+Hφ)φ

y2
0

(
dy0

dφ

)2

+ 1
y2

0

dy0

dφ
+ 9H + 4(1+Hφ)

y2
0

]
g

= 4δ
φ1/2y3

0

∫ φ

0
y0gφ−1/2 dφ. (5.10)
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FIGURE 11. (Colour online) The stability of the solution of viscous drops with dy0/dx< 0
as x→ 0 (x> 0), for different values of H.

Let

g(φ)=
∞∑

k=0

dkφ
k, (5.11)

where, once again, d0 = 1 and the next coefficient is

d1 = 9H(2ν − 2− δ)− 16ν2[2+ (2ν − 5)δ]
2(ν − 2)(ν − 2− δ) . (5.12)

Already the expression for d2 is so long that it is not presented here. The eigenvalues
δ are determined by solving the conservation of volume, given by (2.12), differentiated
with respect to time: ∫ xL

0
y0y1 dx=

∫ φL

0
y0gφ−1/2 dφ = 0. (5.13)

In figure 11 we show the highest real value of δ as a function of the parameter ν,
obtained with k= 9, for the two families of lines plotted in figure 10 having dy/dx< 0
as x→ 0 (x> 0), where we expect to find the stable steady shapes. We find that, for
all cases, the largest δ is real. As expected the stability analysis reveals that the family
of curves corresponding to H< 64/9 (positive or negative), xL> 20 and ν > 2 is stable
at the lower branch and unstable at the upper branch, with the turning point being the
breakup point and located at δ= 0. Lines without a bifurcation turning point, such as
H = 5, are stable everywhere. The other family of lines, having H > 64/9, xL < 20,
ν < 2, is stable everywhere.

A few lines were omitted from figure 11 in order to make the figure more readable.
Lines corresponding to H =±1000 do not appear since they are almost identical to
the H = ±100 lines. Also, the linear extensional case H = 0 is absent since, at this
range of ν, it is almost identical to the H = 1 line. Other cases with dy/dx > 0 as
x→ 0 (x> 0) that were not shown in figure 9 are also not shown here for the same
reasons as discussed there. However, their non-smooth curves show positive values of
δ, predicting unstable steady shapes.
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FIGURE 12. (Colour online) The evolution of inviscid and viscous drops originally located
at the unstable branch with dy0/dx< 0 as x→ 0 (x> 0), with no change in G (inviscid
drop) or f (viscous drop). At t= 0 all drops are located at ν= 3: (a) H=+1; (b) H=−1;
(c) H =−10; (d) H =−∞.

5.3. Time-dependent studies
As before, we assume a solution to the evolution of the viscous drop in the form

y(x, t)=
∞∑

k=0

yk(t)x2k. (5.14)

But, contrary to the inviscid drop case, this time we find it more convenient to
substitute the above equation into the differentiated governing equation, equation (2.15),
to obtain

dy0

dt
= y0[−4f 6 + 9Hf 6y2

0 − y1 + 2y0(2y1 + dy1/dt)]
8f 6 + 2y0y1

; k= 0, (5.15)

where already the case k=2 is so long that cannot be presented here. However, similar
to (5.15), the dyk/dt equation involves yk+1 and dyk+1/dt terms. Thus, when choosing a
maximum value of k=n for the simulations, we need to assume that yn+1=0. We used
n= 6 (7 terms) for the simulations, which were performed using Mathematica 9. Once
again, stationary shapes (stable or unstable) were chosen for the initial conditions.

In figure 12(a–c), we explore viscous drops belonging to the family of solutions
having H < 64/9 (positive or negative), xL > 20 and dy/dx< 0 as x→ 0 (x> 0). All
cases in figure 12 are initially at ν = 3, which according to table 1 are beyond the
bifurcation turning point and therefore represent steady unstable physical situations. In
figure 12(a–c) (viscous drops) we keep the viscous strength of the flow ( f ) constant;
for comparison in figure 12(d) (inviscid drop), a case previously discussed, G was
kept constant. As explained in § 4.3, in this type of simulation, exact values of the
time are not indicated, as they depend on the number of terms used in (5.14).
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FIGURE 13. (Colour online) The evolution of viscous drops originally located at the stable
branch with a sudden change in f beyond the breakup point. At t= 0 all drops are located
at ν = 2.3: (a) H=+1, f changes from 0.150 to 0.155; (b) H= 0, f changes from 0.147
to 0.155; (c) H=−1, f changes from 0.144 to 0.150; (d) H=−10, f changes from 0.129
to 0.135.

Figure 12(a), where H = +1, is very surprising. Originally the drop is located
at the unstable branch at f = 0.141, beyond the breakup point, with a half-length
slightly smaller than xL = 50 (see figure 9). As time passes, the drop does not break,
but jumps down to the stable branch at the same f (since we kept it constant), but
corresponding to a half-length slightly larger than xL = 20. The next two figures,
figure 12(b,c), corresponding to negative values of H, are not so surprising, since we
already mentioned below (2.15) that we anticipate some of the results of nonlinear
extensional creeping flow, when G < 0 (H < 0), to be similar to those of linear
extensional flow under the influence of a small amount of external inertia (Favelukis
et al. 2012). According to Favelukis et al. (2012), at low values of external inertia
(including a viscous drop in creeping flow) the breakup mechanism is indefinite
elongation, while at larger values of inertia (including an inviscid drop) the mode of
breakup is centre pinching. A similar picture is discovered here. At low values of
the nonlinearity of the flow (for example, figure 12(b), where H=−1 and f = 0.136),
the drop breaks via an indefinite elongation mechanism; but when the nonlinearity of
the flow is significant (for example, figure 12(c), where H = −10 and f = 0.123, or
figure 12(d), with H =−∞ and f = 0), a centre pinching breakup mode is observed.

We continue with this family (H< 64/9 positive or negative, xL > 20 and dy/dx< 0
as x→ 0 (x> 0), and at t= 0 we introduce a sudden change in the viscous strength
of the flow ( f ). All cases in figure 13 start at ν = 2.3, representing steady stable
drops (see table 1). Figure 13(a) corresponds to H =+1, where the bifurcation point
is located at ν = 2.39 and f = 0.151. At t = 0, the stable drop, located at ν = 2.3
and f = 0.150, is subjected to a sudden change to f = 0.155 beyond the breakup
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point. Note that the breakup mechanism reminds us of tip-streaming, where a cusp
is developed at the end of the drop. This mode of breakup was also reported by
Sherwood (1984). In figure 13(b) we have a drop in linear extensional flow with
H = 0 and the sudden change is from ν = 2.3 and f = 0.147 to f = 0.155. Here
the breakup mode is by indefinite elongation, in accordance with previous studies
(Sherwood 1984; Favelukis et al. 2012). Note that a breakup mechanism by indefinite
elongation with no tip-streaming was experimentally observed by Bentley & Leal
(1986) in a four-roll mill apparatus which produced a two-dimensional extensional
flow. In their experiments the flow was near creeping, and the critical capillary number
was less than one, while the condition for slender drops is Ca3 � 1. Figure 13(c)
corresponds to a small negative nonlinear contribution of H = −1, and the sudden
change is from ν = 2.3 and f = 0.144 until f = 0.150. As in figure 13(b), the breakup
mechanism is by indefinite elongation, yet its shape, at long times, suggests a more
uniform local radius than the linear case. Finally, in figure 13(d) a large negative
nonlinear contribution of H = −10 is studied. At t = 0 the change is from ν = 2.3
and f = 0.129 until f = 0.135, and breakup is by centre pinching.

6. Conclusions

The deformation and breakup of a slender drop in a nonlinear axisymmetric
extensional and creeping flow has been the subject of this theoretical report. This
interesting problem, which was first suggested by Sherwood (1984), is revisited, new
results are presented, and a complete stability analysis is performed. The problem
is governed by three dimensionless parameters: the capillary number (Ca � 1),
the viscosity ratio (λ� 1), and the nonlinear intensity of the flow (E � 1), which
contrary to the other two parameters can be positive or negative. A further exploration
of the governing equation shows that the number of dimensionless parameters can
be reduced from three to two, both having an order of magnitude of 1: the viscous
strength of the flow f =Ca λ1/6 and the nonlinear strength of the flow G=Ca4E.

When the extensional flow is linear (G= 0), the literature suggests that the steady
shape of the slender drop has a parabolic radius profile with pointed ends. As the
capillary number increases, the drop becomes thinner and longer, and its surface area
increases. Following Acrivos & Lo (1978), the radius at the centre of the drop is
defined as 1/(2ν), where ν is related to the steady pressure at the centre of the drop.
The steady deformation curve is composed of a stable branch at 2 6 ν < 2.4 and an
unstable branch at ν > 2.4, which are separated by a bifurcation turning (breakup)
point. At this point ν = 2.4 and f =Ca λ1/6 = 0.148. Thus, it is not possible to break
a bubble or an inviscid drop (λ= 0, ν = 2) in linear extensional creeping flow.

The solution near the centre of the drop, together with a stability analysis, reveals
that, contrary to the linear extensional flow case (G= 0), where the local radius of the
drop decreases monotonically (at z > 0), in a nonlinear extensional flow (G 6= 0), two
possible steady shapes exist. Steady shapes (stable or unstable) with the local radius
decreasing monotonically, and steady shapes (unstable) where the local radius of the
drop achieves a maximum, besides the one at the centre of the drop. On the other
hand, the solution close to the end of the drop suggests that steady slender drops with
or without nonlinear effects have pointed ends.

Two types of solutions are presented for the case of an inviscid drop (λ= 0) in a
nonlinear (G 6= 0) extensional creeping flow. A closed form involving the incomplete
beta function and, as suggested by Sherwood (1984), a solution in the form of a
power series, where here we suggest a simple and general expression for all the
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coefficients. The deformation curve and the stability analysis reveal that the solution,
where the local radius decreases monotonically, has the form of a lobe, composed
of two branches, and separated by a bifurcation turning (breakup) point at ν = 2.51
and G = −9.62 × 10−5. In the first branch at ν < 2 and G > 0, and at 2 < ν < 2.51
and G < 0, the solution is stable. The second branch at 2.51 < ν < 4 and G < 0
corresponds to unstable steady shapes. Steady shapes involving higher values of the
parameter ν are unstable. Thus, contrary to linear extensional flow, where an inviscid
drop cannot be broken, the addition of nonlinear terms to the external flow can cause
an inviscid drop to break.

Next, we considered the case of a viscous drop (λ 6= 0) in a nonlinear (G 6= 0)
extensional creeping flow and find, as suggested by Sherwood (1984), that the solution
is described as a power series. For simplicity we defined a parameter H=G/f 6, where
H= 0 corresponds to linear extensional flow (G= 0), and H→±∞ suggests a bubble
or an inviscid drop ( f = 0) under the influence of nonlinear extensional effects. As
before, we shall summarize our conclusions on steady shapes with the local radius
decreasing monotonically, as there, according to the stability analysis, steady stable
shapes were found. In the first family of solutions, corresponding to ν > 2 and H <
64/9 (positive or negative), we find two types of deformation curves, with and without
bifurcation turning points. As expected and validated by the stability analysis, lines
with turning points are stable at the lower branch and unstable at the upper branch.
Thus, the bifurcation turning point is the breakup point. Lines without a bifurcation
turning point are always stable. The second family of lines, corresponding to ν < 2
and H > 64/9, is stable everywhere.

For both inviscid and viscous drops, we suggest approximate solutions by taking the
first two terms of the exact power series solution. These solutions, having a parabolic
radius profile, are equivalent to the exact solution when nonlinear effects are absent.
Fortunately, the approximate solution, having a monotonically decreasing local radius,
can predict steady shapes curves where stable shapes can be located. These solutions
are found to be in excellent agreement with the exact results at the steady stable
branch. Also, since they are represented by simple mathematical expressions, without
performing heavy numerical calculations, they can provide excellent, fast and practical
estimations for steady stable drop deformations.

Finally, time-dependent studies were performed for both inviscid and viscous drops
where the local radius decreases monotonically (z > 0). Two types of evolution
simulations from originally steady (stable or unstable) drop shapes are presented:
when the intensity of the flow was kept constant or was subjected to a sudden
change. In agreement with Sherwood’s (1984) report, the results here reveal three
types of breakup mechanism: (i) a centre pinching mode for inviscid drops or viscous
drops, both with large negative nonlinear effects (H→−∞); (ii) indefinite elongation
for viscous drops with zero or small negative nonlinear effects (H→−0); and (iii) a
mechanism that remind us of tip-streaming, where a cusp is developed at the end of
a viscous drop having relative small positive nonlinear effects (0<H < 64/9).
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