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LOCK-IN OF EXTRAPOLATIVE
EXPECTATIONS IN AN ASSET
PRICING MODEL

KEVIN J. LANSING
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This paper examines an agent’s choice of forecast method within a standard asset pricing
model. A representative agent may choose: (1) a fundamentals-based forecast that
employs knowledge of the dividend process, (2) a constant forecast that is based on a
simple long-run average, or (3) a time-varying forecast that extrapolates from the last
observation. I show that an agent who is concerned about minimizing forecast errors may
inadvertently become “locked-in” to an extrapolative forecast. In particular, the initial use
of extrapolation alters the law of motion of the forecast variable so that the agent
perceives no accuracy gain from switching to one of the alternative forecast methods. The
model can generate excess volatility of stock prices, time-varying volatility of returns,
long-horizon predictability of returns, bubbles driven by optimism about the future, and
sharp downward movements in stock prices that resemble market crashes.

Keywords: Asset Pricing, Distorted Beliefs, Expectations, Bubbles

Nowhere does history indulge in repetitions so often or so uniformly as in Wall
Street. When you read contemporary accounts of booms or panics the one thing that
strikes you most forcibly is how little either stock speculation or stock speculators
today differ from yesterday. The game does not change and neither does human
nature.

From the thinly disguised biography of legendary speculator Jesse Livermore, by
E. Lefevére (1923, p. 180)

1. INTRODUCTION

1.1. Overview

This paper demonstrates how a simple form of extrapolative expectations might
arise and persist in a standard asset pricing model. In quantitative simulations,
the model can generate excess volatility of stock prices, time-varying volatility of
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returns, long-horizon predictability of returns, bubbles driven by optimism about
the future, and sharp downward movements in stock prices that resemble market
crashes. All of these features appear to be present in long-run U.S. stock market
data.

The framework for the analysis is a Lucas-type asset pricing model in which
a representative agent forecasts the value of a composite variable that depends
on both the growth rate of dividends and the price-dividend ratio. To make a
conditional forecast, the agent may choose one of the following: (1) a rational (or
fundamentals-based) forecast that employs knowledge of the stochastic process
governing dividends, (2) a constant forecast that is based on a simple long-run
average of the forecast variable, or (3) a time-varying forecast that extrapolates
from the last observation of the forecast variable. To ensure that the extrapolation
is “operational,” I assume that the agent employs lagged information about the
forecast variable, not the contemporaneous realization of the variable (which
depends on the agent’s own forecast).

I show that an agent who is concerned about minimizing forecast errors may
inadvertently become “locked-in” to an extrapolative forecast. In particular, the
initial use of extrapolation alters the law of motion of the forecast variable so
that the agent perceives no accuracy gain from switching to one of the alternative
forecast methods. In deciding whether to switch, the agent keeps track of the
forecast errors associated with each method. If the mean-squared forecast error
from extrapolation is less than that of the alternatives, then there is no incentive
to switch. The degree of optimism or pessimism in the extrapolation is governed
by a single parameter which influences the mean, variance, and autocorrelation
of the forecast variable. As the extrapolation parameter increases (reflecting more
optimism), the mean shift and the autocorrelation shift work in favor of lock-in
while the variance shift works against lock-in.

The extrapolation parameter can be interpreted as an index of investor sentiment.
Alternatively, a particular value of the extrapolation parameter can be justified as
a “restricted perceptions equilibrium” (RPE) of the type described by Evans and
Honkapohja (2001). Specifically, if the agent’s perceived law of motion for the
forecast variable is a geometric random walk, then the resulting RPE yields an
optimistic extrapolation that satisfies the conditions needed for lock-in. From the
agent’ perspective, a geometric random walk allows for nonstationary bubble
behavior and enforces a non-negativity constraint on the forecast variable.

Lock-in occurs because the (atomistic) representative agent fails to internalize
the influence of his own forecast on the equilibrium law of motion of the forecast
variable. Lock-in can thus be interpreted as a suboptimal competitive equilibrium
that arises in the presence of an externality, that is, feedback from the agent’s expec-
tations to the law of motion. The term “lock-in” borrows from the concept of path
dependence in problems involving the choice among competing technologies. The
original contributions of David (1985) and Arthur (1989) argue that early chance
events or “historical accidents” may give rise to irreversibilities that cause agents
to stick with an inferior technology. In this model, extrapolation can be viewed as
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an inferior forecasting technology because accuracy would improve if the repre-
sentative agent could be induced to switch to the fundamentals-based forecast.

For the case of iid dividend growth, I derive (approximate) analytical expressions
for the mean squared forecast errors and the moments of the asset pricing variables
under extrapolative expectations. I show that lock-in can occur over a wide range of
values for the extrapolation parameter and the coefficient of relative risk aversion.
As the extrapolative forecast becomes more optimistic, the mean price-dividend
ratio rises above the fundamentals-based value and the share price becomes more
volatile. The price-dividend ratio exhibits positive serial correlation whereas the
equity return can exhibit either positive or negative serial correlation, depending
on the size of the risk coefficient. The agent’s use of extrapolation gives rise to
persistent forecast errors. It turns out that the degree of serial correlation in the
model forecast errors is very similar to that found by Mankiw, Reis, and Wolfers
(2004) in their empirical study of survey-based inflation forecast errors.

The model-generated time series for the price-dividend ratio and the equity
return compare favorably in many respects to the corresponding series in long-
run U.S. data. The price-dividend ratio can drift upwards for prolonged intervals
when the agent employs an optimistic extrapolation. Oftentimes, these bubble-
like episodes are followed by sharp downward movements in stock prices that
resemble market crashes. The nonlinear law of motion that governs the forecast
variable contributes to the complicated behavior of the asset pricing variables and
the attendant time-varying volatility.

The analysis concludes with a discussion of model extensions that allow for
(1) a mixture of agent types, (2) endogenous switching between forecasts, and (3)
alternative forecast methods.

1.2. Related Literature

The model in this paper is motivated by a variety of evidence which suggests
that real-world expectations are often less than fully rational. In theory, the price
of a stock represents a consensus forecast of the discounted stream of future
dividends that will accrue to the owner of the stock. One characteristic of an
optimal forecast is that it should be less variable than the object being forecasted.
This principle appears to be clearly violated in the case of stock prices. Numerous
empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have
demonstrated that stock prices exhibit “excess volatility,” that is, observed prices
are much more variable than the discounted stream of ex post realized dividends.1

Studies that directly examine the forecasts of market participants also find
evidence of less-than-rational behavior. Arbarbanell and Bernard (1992) and
Easterwood and Nutt (1999), among others, find that security analysts’ earnings
forecasts tend to overreact to new information, particularly when the information
is positive in nature. Chan et al. (2003) find that analysts’ forecasts of long-term
earnings growth rates are consistently too optimistic and exhibit low predictive
power for the actual earnings growth rates subsequently achieved.
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An empirical study by Chow (1989) finds that an asset pricing model with
adaptive expectations outperforms one with rational expectations in accounting
for observed movements in U.S. stock prices and interest rates. Empirical studies
by Ritter and War (2002) and Campbell and Vuolteenaho (2004) find support for
the hypothesis of Modigliani and Cohn (1979) that investors are prone to inflation-
induced valuation errors.2 Survey-based measures of U.S. inflation expectations
tend to systematically underpredict actual inflation in the sample period before
October 1979 and systematically overpredict it thereafter. Rational inflation ex-
pectations would not give rise a sustained sequence of one-sided forecast errors.
Roberts (1997), Carroll (2003), Mankiw, Reis, and Wolfers (2004), and Branch
(2004) all find evidence that survey-based measures of inflation expectations do
not make efficient use of available information.

Controlled experiments on human subjects suggest that people’s decisions are
influenced by various “heuristics,” as documented by Kahneman and Tversky
(1974). The “representativeness heuristic” is a form of non-Bayesian updating
whereby subjects tend to overweight recent observations relative to the underlying
laws of probability that govern the process. The “availability heuristic” is the
tendency of subjects to overweight information that is easily recalled from memory.
Using both survey and experimental data, DeBondt (1993) finds that the forecasts
of nonprofessional investors adhere to a simple trend-following methodology;
they tend to be optimistic in bull markets and pessimistic in bear markets. Vissing-
Jorgenson (2004) finds evidence of extrapolative expectations in investor survey
data; investors who have experienced high portfolio returns in the past expect
higher returns in the future. In studies involving experimental asset markets,
researchers frequently observe bubbles and crashes that appear to be driven by
irrational expectations.3 Hong and Stein (2003) review the large body of evidence
that suggests that individuals tend to gravitate toward simple models when making
decisions or forecasts. An experimental study by Adam (2005a) finds that subjects’
inflation expectations are well described by a simple univariate forecasting rule
that can be characterized as a restricted perceptions equilibrium.

It is well known that the introduction of irrational “noise traders” or agents with
distorted beliefs into asset pricing models can help account for various features
of real-world data.4 Research in this area typically postulates the existence of
irrational behavior but does not explain how this behavior might arise and persist
over time. These models are often criticized on the grounds that irrational agents
would eventually learn from their systematic forecast errors, thereby restoring
a fully rational environment. The model set forth in this paper is intended to
address this criticism, at least in part.5 The model relates to the growing body
of literature in which agents are modeled as choosing among a finite number of
available forecasting methods, each exhibiting a different degree of sophistication
or computational cost. Examples within a wide variety of economic settings in-
clude: Kirman (1991), Brock and Hommes (1997, 1998), LeBaron et al. (1999),
Gaunersdorfer (2000), Hommes (2001), Branch (2004), and Adam (2005b), among
others.
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2. THE MODEL

The analysis is conducted using the frictionless pure exchange model of Lucas
(1978). There is a representative agent who can purchase equity shares to transfer
wealth from one period to another. Each equity share pays an exogenous stream
of stochastic dividends in perpetuity.

The agent’s problem is to maximize

Ê0

∞∑
t=0

βt

[
c1−α
t − 1

1 − α

]
, (1)

subject to the budget constraint

ct + ptst = (pt + dt )st−1, (2)

where ct is the agent’s consumption in period t, β is the subjective time dis-
count factor, and α is the coefficient of relative risk aversion (the inverse of
the intertemporal elasticity of substitution). When α = 1, the within-period utility
function can be written as log(ct ). The symbol Êt represents the agent’s subjective
expectation conditioned on information that is available at time t . Under rational
expectations, Êt corresponds to the mathematical expectation operator evaluated
using the objective distribution of dividend growth (which is presumed known to
the agent). The symbol pt denotes the ex-dividend price of the equity share, dt is
the dividend, and st is the number of shares purchased in period t.

The level of dividends dt follows a geometric random walk with drift such that

xt ≡ log

(
dt

dt−1

)
= x + εt , εt ∼ N

(
0, σ 2

ε

)
, (3)

where xt denotes the iid growth rate in period t, and x and σ 2
ε are the mean and

variance of the growth rate distribution.
The first-order condition that governs the agent’s share holdings is given by

pt = Êtβ

(
ct+1

ct

)−α

(pt+1 + dt+1). (4)

Equation (4) can be rearranged to obtain

1 = Êt {Mt+1Rt+1}, (5)

where Mt+1 = β(ct+1/ct )
−α is the so-called stochastic discount factor and Rt+1 =

(pt+1 + dt+1)/pt is the gross return from holding the equity share from period t

to t + 1. Defining the price-dividend ratio as yt ≡ pt/dt , the gross equity return
can be written as

Rt+1 =
(

yt+1 + 1

yt

)
exp(xt+1). (6)
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Without loss of generality, shares are assumed to exist in unit net supply. Market
clearing therefore implies st = 1 for all t. Substituting this equilibrium condition
into (2) yields, ct = dt for all t. In equilibrium, equation (4) can now be written
as

yt = Êt {β exp(θxt+1)(yt+1 + 1)}, (7)

where θ ≡ 1 − α. Equation (7) shows that the price-dividend ratio in period t

depends on the agent’s subjective joint forecast of next period’s dividend growth
rate xt+1 and next period’s price-dividend ratio yt+1. For the analysis that follows,
it is convenient to transform equation (7) using a change of variables to obtain

zt = β exp(θxt )[Êt zt+1 + 1], (8)

where zt ≡ β exp(θxt )(yt + 1). Under this formulation, zt represents a composite
variable that depends on both the growth rate of dividends and the price-dividend
ratio. Equation (8) shows that the value of zt in period t depends on the agent’s
conditional forecast of that same variable.6

2.1. Rational Expectations

Under rational expectations, the current share price is uniquely pinned down by
the agent’s forecast of the discounted value of all future dividends, adjusted for
risk. A crucial assumption is that the agent knows the stochastic process governing
dividends. To derive the unique rational expectations solution, we first replace Êt

in (8) with the mathematical expectation operator Et . Equation (8) can then be
iterated forward to substitute out zt+1+k for k = 0, 1, 2, . . . Applying the law of
iterated expectations and imposing a transversality condition yields the following
present-value pricing equation

zre
t = Et {β exp(θxt ) + β2 exp(θxt+θxt+1)+ β3 exp(θxt+θxt+1 + θxt+2)+ · · ·},

= Et

{ ∞∑
i=t

[
βi−t+1 exp

(
i∑

j=t

θxj

)]}
, (9)

where zre
t represents the value of the forecast variable under rational expectations.

Because xt is iid and normally distributed, equation (9) admits the following
closed-form solution

zre
t = β exp(θxt )

1 − β exp
(
θx + θ2σ 2

ε /2
) , (10)

provided β exp(θx + θ2σ 2
ε /2) < 1. Given zre

t , we can recover the price-dividend
ratio by applying the definitional relationship yre

t = zre
t exp(−θxt )/β − 1. This
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procedure yields

yre
t = β exp

(
θx + θ2σ 2

ε /2
)

1 − β exp
(
θx + θ2σ 2

ε /2
) , (11)

which shows that the rational (or fundamentals-based) price-dividend ratio is
constant for all t. This result provides a convenient benchmark for evaluating
alternative solutions of the model. If an alternative solution delivers a time-varying
price-dividend ratio, then the resulting share price can be said to exhibit “excess
volatility.”

Equation (10) can be used to compute the following conditional forecast

Etz
re
t+1 = β exp

(
θx + θ2σ 2

ε /2
)

1 − β exp
(
θx + θ2σ 2

ε /2
) , (12)

which shows that a rational agent will employ a constant forecast that depends
only on economic fundamentals.

2.2. Expectations Based on a Long-Run Average

The fundamentals-based forecast derived above assumes that agents know the
stochastic process governing dividends. Moreover, the imposition of a transver-
sality condition assumes that agents are extremely forward-looking—to the point
of respecting an arbitrage relationship applied to distant future periods.7 As an al-
ternative to these strong assumptions, I now consider the case in which the agent’s
subjective forecast Êt zt+1 takes the form of a simple average of past observed
values of the forecast variable zt . After a long time-series of observations, the
agent’s subjective forecast would be given by

Êt zt+1 = E(zt ), (13)

where E(zt ) is the unconditional mean of the stochastic process that governs zt .

2.3. Extrapolative Expectations

During the early stages of the time horizon, the agent will not have had sufficient
time to discover the fundamentals of the dividend process. Moreover, there will
be very few observations of zt from which to construct a forecast based on a past
average. These limitations motivate consideration of an alternative forecasting
algorithm, one in which the agent simply extrapolates from the last observation of
the forecast variable. The formulation used here is intended to capture the spirit of
the representativeness and availability heuristics documented by Kahneman and
Tversky (1974). The formulation also captures the idea that individuals tend to
employ simple rules or models in decision making or forecasting.

The agent’s extrapolative forecast is given by

Êt zt+1 = Azt−1, A ∈ (0, Amax), (14)
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where A is a positive extrapolation parameter. Equation (14) can be viewed
as a simplified version of a more general setup where the agent’s forecast is
constructed from a weighted moving average of past values of the forecast
variable.8 The upper bound Amax ensures that zt remains stationary as explained
later. The value of A governs the nature of the extrapolation, where A= 1 can
be viewed as “neutral,” A> 1 can be viewed as “optimistic” and A< 1 can be
viewed as “pessimistic.” Notice that the agent’s forecast does not make use of the
contemporaneous realization zt . The agent’s use of lagged information ensures that
the extrapolation is “operational.” Because equation (8) implies that zt depends
on the agent’s own forecast, it is difficult to see how the agent could make use of
zt when constructing the forecast in real time. A lagged information assumption
is commonly used in adaptive learning models because it avoids simultaneity in
the determination of the actual and expected values of the forecast variable.9

In contrast to the fundamentals-based forecast and the long-run average fore-
cast that are both constant for all t , the extrapolative forecast is forever changing,
depending on the most recent observation. Importantly, the extrapolative forecast
does not nest the fundamentals-based forecast as a special case. When A �= 1,

the extrapolative forecast is biased because the unconditional mean of the forecast
E(Êtzt+1)= AE(zt ) does not coincide with the unconditional mean of the variable
being forecasted.10 When A> 1 the extrapolative forecast is clearly suboptimal be-
cause the unconditional variance of the forecast Var(Êt zt+1)= A2 Var(zt ) exceeds
the variance of the variable being forecasted.

Substituting the extrapolative forecast (14) into equation (8) yields the following
nonlinear law of motion for the forecast variable:

zt = β exp(θxt )[Azt−1 + 1], (15)

which is autoregressive. For zt to remain stationary, we require E[Aβ exp(θxt )] <

1, which implies the following upper bound on the extrapolation parameter

A < Amax = β−1 exp
(−θx − θ2σ 2

ε /2
)
. (16)

Using equation (15), the price-dividend ratio can be recovered by applying the
definitional relationship yt = zt exp(−θxt )/β − 1, yielding

yt = Azt−1,

= Aβ exp(θxt−1)[yt−1 + 1], (17)

which is also nonlinear and autoregressive. Taking the mathematical expectation
of both sides of (17) and noting that xt−1 is not correlated with yt−1(= Azt−2),

we obtain the following expression for the mean price-dividend ratio

E(yt ) = Aβ exp
(
θx + θ2σ 2

ε /2
)

1 − Aβ exp
(
θx + θ2σ 2

ε /2
) . (18)
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As A increases, the agent becomes more optimistic and the mean price-dividend
ratio rises. When A > 1, the mean price-dividend ratio exceeds the fundamentals-
based value given by equation (11). Thus, irrational optimism about the future
gives rise to a “bubble” in which the share price is persistently above the intrinsic
value implied by the underlying fundamentals of the dividend process. This fea-
ture of the model is consistent with historical interpretations of bubble episodes.
Shiller (2000) argues that occurrences of major speculative bubbles have generally
coincided with periods of widespread investor optimism about a “new era.” Indeed,
the law of motion (15) captures the basic form of a feedback mechanism which
Shiller (1990) argues is the basic driving force of speculative bubbles.11

In the Appendix, I show that the variance of the price-dividend ratio can be
approximated by the following expression:

Var(yt ) = E(yt )
2

[
exp

(
θ2σ 2

ε

1 − â 2

)
− 1

]
, (19)

where E(yt ) is given by (18) and â = Aβ exp(θx) < 1. As the extrapolation
parameter A increases, the price-dividend ratio becomes more volatile. Equation
(19) implies Var(yt )> 0 whenever θ �= 0, that is, whenever the utility function is
not logarithmic. Given that Var(yre

t )= 0, equation (19) shows that the agent’s use
of an extrapolative forecast generates excess volatility whenever θ �= 0.

2.4. Restricted Perceptions Equilibrium

One interpretation of the extrapolation parameter A is that it represents an index
of investor sentiment. Alternatively, the value of A can be endogenized as part
of “restricted perceptions equilibrium” (RPE) in which the representative agent’s
forecasting rule is optimized for a perceived law of motion (PLM) that does
not nest the actual law of motion (ALM) as a special case.12 For example, a
neutral extrapolation (A= 1) could be justified as an RPE if the agent’s PLM
is a random walk, i.e., zt = zt−1 + vt , where vt is a perceived iid shock with
zero mean. Proposition 1 below shows that an optimistic extrapolation (A> 1)

can be justified as an RPE if the agent’s PLM is a geometric random walk, i.e.,
log(zt )= log(zt−1)+ vt . From the agent’s perspective, a geometric random walk
is a versatile candidate PLM because it allows for nonstationary bubble behavior
and it also enforces the economic constraint zt > 0 for all t.13

PROPOSITION 1. If the representative agent’s PLM is log(zt )= log(zt−1)+
vt , where vt ∼ N(0, σ 2

v ) is a perceived iid shock, then a restricted perception
equilibrium is given by the ALM (15) with A = A∗ ≡ exp(θ2σ 2

ε ) ≥ 1.

Proof. Iterating the PLM ahead two periods (which is the agent’s forecast horizon)
yields zt+1 = zt−1 exp(vt+1 + vt ). The agent’s optimal forecast using lagged
information is Êt zt+1 = zt−1 exp(σ 2

v ). Comparing this forecast to the form of
the extrapolative expectation (14) implies that the RPE value of the extrapolation
parameter is given by A∗ = exp(σ 2

v ). The perceived shock variance σ 2
v can
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be computed directly from sample observations of log(zt ) using the formula
2σ 2

v = Var[log(zt+1) − log(zt−1)]. An approximation of the ALM for log(zt ) is
derived in the appendix. Straightforward computations yield

2σ 2
v = Var{log(zt+1) − log(zt−1)}

= Var{θxt+1 + â log(zt ) − log(zt−1) + constant terms}
= Var{θxt+1 + âθxt + (̂a 2 − 1)log(zt−1) + constant terms},
= θ2σ 2

ε (1 + â 2) + (̂a 2 − 1)2 Var[log(zt )],

= 2θ2σ 2
ε ,

where I have made repeated substitutions of the approximate ALM for log(zt ).

From the appendix, we have Var[log(zt )] = θ2σ 2
ε /(1 − â 2) which yields

the result σ 2
v = θ2σ 2

ε . The RPE value is thus given by A∗ = exp(σ 2
v ) =

exp(θ2σ 2
ε ) ≥ 1. �

3. LOCK-IN OF EXTRAPOLATIVE EXPECTATIONS

This section shows how an agent who is concerned about minimizing forecast
errors may inadvertently become locked-in to the use of an extrapolative forecast.

3.1. Forecast Errors

Suppose that the agent initially adopts the extrapolative forecast given by (14).
The forecast error observed by the agent is

erre
t+1 = zt+1 − Azt−1︸ ︷︷ ︸

Êt zt+1

, (20)

where the superscript “e” stands for “extrapolation.” The ALM for zt is governed
by (15). Given a sufficiently long time-series of forecast errors, the agent could
compute a fitness measure for the forecast. One commonly used fitness measure
is the mean-squared error, which is given by

MSEe ≡ E
[(

erre
t+1

)2] = E
(
z2
t+1 − 2Azt+1 zt−1 + A2z2

t−1

)
,

= (1 + A2)E
(
z2
t

) − 2AE(zt+1 zt−1),

= (1 + A2 − 2Aρ̂ 2)Var(zt ) + (1 − A)2E(zt )
2 (21)

where ρ̂ 2 = A2β2 exp(2θx + θ2σ 2
ε ) is the unconditional correlation coefficient

between zt+1 and zt−1, as derived in the appendix. In deriving equation
(21), I have made use of the relationships E(z2

t )= Var(zt )+ E(zt )
2 and

E(zt+1zt−1)= ρ̂ 2 Var(zt )+ E(zt )
2. The unconditional moments of zt (also
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derived in the Appendix) are given by

E(zt ) = β exp
(
θx + θ2σ 2

ε /2
)

1 − Aβ exp
(
θx + θ2σ 2

ε /2
) , (22)

Var(zt ) = E(zt )
2

[
exp

(
θ2σ 2

ε

1 − â 2

)
− 1

]
, (23)

where â = Aβ exp(θx) < 1.

Now consider an agent who is contemplating a switch to either the fundamentals-
based forecast or a forecast based on a long-run average. Before the switch occurs,
the actual law of motion for zt is governed by (15). For simplicity, assume that
enough time has gone by to allow the agent to have discovered the stochastic
process for dividends. The fundamentals-based forecast is thus given by equation
(12). The long-run average forecast is given by equation (22). In deciding whether
to switch forecasts, the agent keeps track of the forecast errors associated with
each method. If the mean-squared forecast error associated with extrapolation is
less than that of the other two methods, then there is no incentive to switch; the
agent is said to be locked-in to the extrapolative forecast.

For the fundamentals-based forecast, the agent’s perceived forecast error is
given by

errf
t+1 = zt+1 − β exp

(
θx + θ2σ 2

ε /2
)

1 − β exp
(
θx + θ2σ 2

ε /2
)︸ ︷︷ ︸

zf

, (24)

where the superscript “f” stands for “fundamentals.” The symbol zf ≡ Etz
re
t+1

will henceforth be used to represent the fundamentals-based forecast, which is
constant for all t . Given a sufficiently long time-series of forecast errors, the agent
could compute the following fitness measure for the fundamentals-based forecast

MSEf ≡ E
[(

errf
t+1

)2] = Var
(
errf

t+1

) + [
E

(
errf

t+1

)]2

= Var(zt ) + [
E(zt ) − zf]2

, (25)

where E(zt ) and Var(zt ) continue to be given by equations (22) and (23).
For the long-run average forecast, the agent’s perceived forecast error is given

by

erra
t+1 = zt+1 − β exp

(
θx + θ2σ 2

ε /2
)

1 − Aβ exp
(
θx + θ2σ 2

ε /2
)︸ ︷︷ ︸

E(zt )

, (26)

where the superscript “a” stands for “average.” Notice that the long-run average
forecast is identical to the fundamentals-based forecast in the special case when
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A = 1. The fitness measure for the long-run average forecast is given by

MSEa ≡ E
[(

erra
t+1

)2] = Var
(
erra

t+1

)
= Var(zt ), (27)

where Var(zt ) is again given by equation (23).

3.2. Factors Influencing Lock-In

Definition. Lock-in of extrapolative expectations occurs for the forecast variable
zt ≡ β exp(θxt )(yt + 1) such that

(i) The ALM for zt is given by equation (15),
(ii) A ∈ (0, Amax), and

(iii) MSEe = min{MSEe, MSEf, MSEa}.
A comparison of the forecast fitness measures given by equations (21), (25),

and (27), reveals three factors that influence whether lock-in will occur.
First, the agent’s use of an extrapolative forecast can shift the mean of the fore-

cast variable relative to that which prevails under a fundamentals-based forecast.
This factor, which is captured by the term [E(zt )− zf]2 in equation (25), works in
favor of lock-in because it increases the mean-squared error of the fundamentals-
based forecast. When A = 1, the mean shift term vanishes, making lock-in less
likely to occur. In the case of the long-run average forecast, equation (27) shows
that the mean shift term is absent for any value of A. This occurs because a
long-run average is based on the observed times-series of zt itself. In contrast,
the fundamentals-based forecast zf is a theoretical construct that depends only on
preference parameters and the observed stochastic process for dividends.

Second, the use of an extrapolative forecast imparts self-fulling autocorrelation
to the forecast variable. This factor, which is captured by the term −2Aρ̂ 2 Var(zt )

in (21), also works in favor of lock-in because it reduces the mean-squared error
of the extrapolative forecast. The other two forecasts are constant for all t and thus
do not exploit the autocorrelation in zt .

Third, the use of a time-varying forecast raises the variance of the forecast
relative to the other two methods, which employ constant forecasts. This factor,
which is captured by the term (1 + A2)Var(zt ) in (21), works against lock-in
because it increases the mean-squared error of the extrapolative forecast relative
to the alternatives.

Lock-in occurs if the first two factors dominate the third factor. In general, the
outcome will depend on the values of some key parameters, namely A, θ, and
β. Analytical results are derived below for the case of log utility, which implies
θ = 0. Other cases are explored numerically.

The intuition for why lock-in occurs is straightforward. In computing the fore-
cast fitness measures, the representative agent views the evolution of zt as being
determined outside of his control. In equilibrium, of course, the chosen forecast
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method does in fact influence the evolution of zt . When the agent chooses the ex-
trapolative forecast, the resulting law of motion for zt is such that the fundamentals-
based forecast is no longer the most accurate.14 Similar to the lock-in phenomena
described by David (1985) and Arthur (1989), externalities that arise from an
initial choice can lead to irreversibilities that may cause agents to stick with
an inferior technology. In this case, extrapolation can be viewed as an inferior
forecasting technology because the mean-squared forecast error could be lowered
relative to MSEe if the representative agent could be induced to switch to the
fundamentals-based forecast.

3.3. Analytical Results for Log Utility

The case of log utility (θ = 0) provides some useful insight into the conditions
needed to achieve lock-in of extrapolative expectations. Imposing θ = 0 in the
law of motion (15) removes any influence of stochastic dividends on the forecast
variable. The unconditional moments of zt are now given by E(zt ) = β/(1 −Aβ)

and Var(zt ) = 0. Substituting these moments into the forecast fitness measures
(21), (25), and (27) yields

MSEe = β2(1 − A)2

(1 − Aβ)2
, (28)

MSEf = β4(1 − A)2

(1 − β)2(1 − Aβ)2
=

(
β

1 − β

)2

MSEe, (29)

MSEa = 0, (30)

where A∈ (0, β−1). When A= 1, all three fitness measures equal zero. In this
case, all three forecast methods are identical and fully rational.

When A �= 1, equations (28) and (29) imply MSEe < MSEf for β > 0.5. Thus,
a sufficiently patient agent would refrain from switching to a fundamentals-based
forecast because the switch would appear to result in a larger mean-squared
forecast error. This result can be attributed to the mean shift in zt that is induced
whenever A �= 1. With log utility, the autocorrelation and variance of zt are not
shifted because the forecast variable is constant for all t. When A �= 1, equations
(28) and (30) imply MSEe > MSEa. Thus, an agent with log utility would be
inclined to abandon extrapolation in favor of the long-run average forecast. This
result can be attributed to the absence of a mean shift relative to the alternative
forecast.

3.4. Numerical Results for General Power Utility

In the case of general power utility, analytical comparisons of the mean squared
forecast errors are not tractable. Figures 1A through 1F present numerical compar-
isons for three different risk coefficients: α = {1.5, 3.0, 6.0}, which correspond
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to the values θ = {−0.5,−2.0,−5.0}. These risk coefficients are below the max-
imum level of 10 considered plausible by Mehra and Prescott (1985). Throughout
the paper, the agent’s discount factor is assumed to be β = 0.999. As shown further
later, the parameter combination β = 0.999 and α = 6 yields model-generated
statistics that are reasonably close to those observed in long-run U.S. data.15 The
parameters of the consumption/dividend process are calibrated to match the first
two moments of U.S. annual data on the growth of real per capita consumption of
nondurables and services from 1889 to 1997. This procedure yields x = 0.0173
and σε = 0.0324.16

For scaling purposes, I plot a monotonic transformation of the fitness measure,
that is, the logarithm of the root mean-squared error. A lower value for the fitness
measure implies a more accurate forecast. The fitness measure is plotted over a
range of values for A, where vertical lines mark the RPE value A∗ from Proposition
1 and the upper bound Amax from equation (16). In each figure, the fitness measure
for the extrapolative forecast (solid line) is compared to the fitness measure for
the alternative forecast (dotted line).

Figures 1A and 1B plot the results for α = 1.5, which represents a utility function
with a bit more risk aversion than log utility. In Figure 1A, the extrapolative fore-
cast is more accurate than the fundamentals-based forecast for all A∈ (0, Amax).

The downward spike at A= 1 results from taking the logarithm of a small pos-
itive number. In Figure 1B, the extrapolative forecast is more accurate than the
long-run average forecast for A∈ (0.96, Amax). Higher values of A increase the
autocorrelation of the forecast variable thus allowing the extrapolative forecast to
dominate the long-run average forecast which ignores any autocorrelation. Recall
that the unconditional correlation coefficient between zt+1 and zt−1 is given by
ρ̂ 2 = A2β2 exp(2θx + θ2σ 2

ε ), which is increasing in the value of A. The RPE value
is A∗ = 1.0003, which satisfies the conditions needed for lock-in. As A→ Amax,

the actual law of motion for zt becomes nonstationary and the mean-squared error
of all forecasts explodes.

Figures 1C and 1D plot the results for α = 3.0, which magnifies the influence of
stochastic dividends on the forecast variable zt . Again, the extrapolative forecast is
always more accurate than the fundamentals-based forecast. Now the extrapolative
forecast is more accurate than the long-run average forecast over a wider range
of values for the extrapolation parameter, that is, for A∈ (0.91, Amax). In general,
as the risk coefficient increases, the extrapolative forecast dominates the long-run
average forecast over a wider range of values for A. The RPE value is A∗ = 1.0042,

which satisfies the conditions needed for lock-in.
Figures 1E and 1F plot the results for α = 6.0 The extrapolative forecast is

always more accurate than the fundamentals-based forecast. Now the extrapolative
forecast is more accurate than the long-run average forecast for A∈ (0.85, Amax).

The RPE value is A∗ = 1.0266, which again satisfies the conditions needed for
lock-in.

Overall, the numerical results show that lock-in of extrapolative expectations
is more likely to occur for higher degrees of risk aversion (as measured by α)
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FIGURE 1. Forecast fitness measures (1A–1E).

and higher levels of investor optimism (as measured by A). Equation (16) shows
that the upper bound Amax is decreasing in the agent’s discount factor β. As β

increases, the qualitative features of the figures remain unchanged but the vertical
asymptote which marks Amax shifts to the left.
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3.5. Moments of Asset Pricing Variables

Figures 2A through 2H show how changes in the value of the extrapolation
parameter A influence the unconditional moments of the asset pricing variables.
In each figure, the moment obtained under extrapolative expectations (solid line)
is compared to the corresponding moment under rational expectations (dotted
line). The expressions that govern the moments are derived in the Appendix. For
illustrative purposes, I focus on a particular risk coefficient with α = 6.

Figure 2A plots the mean price-dividend ratios computed from equations (11)
and (18). Under extrapolative expectations, higher values of A cause the mean
price-dividend ratio to increase in a nonlinear fashion. A check of figures 1E and 1F
shows that the conditions needed for lock-in are satisfied at the RPE value of A∗ =
1.0266. When A = A∗, the model implies E(yt ) = 20.4, which is reasonably
close the U.S. average of 25.2 for the period 1871 to 2002.17 Under rational
expectations, the model implies a much lower price-dividend ratio of yre

t = 13.0
for all t. Because the agent forecasts the value of zt+1 using the observation zt−1,

the RPE value of A∗ = 1.0266 implies that the agent optimistically projects about
a 3% increase in the forecast variable over the next two periods.

Figure 2B plots the mean equity return computed using the following expres-
sions:

E
(
Rre

t+1

) = β−1 exp
[
αx + (1 − θ2)σ 2

ε /2
]
, (31)

E(Rt+1) = (Aβ)−1 exp
[
αx + (1 + θ2)σ 2

ε /2
]
, (32)

which are derived in the Appendix. Under extrapolative expectations, a higher
value of A, reflecting more optimism, results in a lower mean return. Under both
types of expectations, a higher value of the discount factor β also results in a
lower mean return. The intuition is straightforward. Increased optimism about
future payoffs or increased patience about future payoffs make the agent more
willing to defer current consumption and increase saving, thereby driving up the
share price and reducing the realized return. At the RPE value of A∗ = 1.0266,

the mean net return is 9.6%, which is somewhat above the U.S. arithmetic average
real return of 8.2% over the period 1871 to 2002. Interestingly, the mean net
return under rational expectations is also 9.6%. It turns out that equations (31) and
(32) are identical when the extrapolation parameter A is set to the RPE value of
A∗ = exp(θ2σ 2

ε ).

Figure 2C plots the volatility (standard deviation) of the price-dividend ratio
computed from the approximate expression (19). Under extrapolative expectations,
volatility increases with A in a nonlinear fashion whereas volatility is always zero
under rational expectations. At the RPE value of A∗ = 1.0266, the standard
deviation of yt predicted by equation (19) is 10.3. This value is reasonably close
to the corresponding U.S. value of 12.4 for the period 1871 to 2002. As A→ Amax,

the actual law of motion (17) implies that yt becomes nonstationary and volatility
increases without bound.
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FIGURE 2. Analytical moments of asset pricing variables (2A–2H).
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Figure 2D plots the volatility of the equity return computed from the expressions:

Var
(
Rre

t+1

) = E
(
Rre

t+1

)2[
exp

(
σ 2

ε

) − 1
]
, (33)

Var(Rt+1) = E(Rt+1)
2{exp

[
(1 + θ2)σ 2

ε

] − 1
}
, (34)

where E(Rre
t+1) and E(Rt+1) are given by equations (31) and (32). For any given

value of A, the figure shows that return volatility is substantially higher under
extrapolative expectations. This result is not surprising given that equation (6)
shows that the change in the price-dividend ratio from period t to t + 1 represents
one component of the equity return, with dividend growth representing the other
component. At the RPE value of A∗ = 1.0266, the standard deviation of Rt+1

predicted by equation (34) is 18.2%. Under rational expectations, the standard
deviation of Rre

t+1 is 3.55%. Over the period 1871 to 2002, the standard deviation
of real U.S. equity returns is 17.8%. In equation (34), a higher value of the
risk coefficient implies a higher value of θ2, thereby magnifying the impact of
stochastic dividend growth on return volatility.

Figure 2E plots the persistence of the price-dividend ratio, as measured by the
unconditional correlation coefficient between yt and yt−1. Under extrapolative
expectations, the correlation coefficient is given by ρ̂ = Aβ(θx + θ2σ 2

ε /2) which
increases with A in a linear fashion. At the RPE value of A∗ = 1.0266, we have
ρ̂ = 0.95. This figure is a bit higher than the corresponding U.S. value of 0.87 for
the period 1871 to 2002. Under rational expectations, the price-dividend ratio is
constant which technically implies that the correlation coefficient is undefined. In
this case, the figure plots a horizontal line at 1.0 to indicate the result yre

t = yre
t−1

for all t.

Figure 2F plots the persistence of the equity return computed from the expres-
sions:

Corr
(
Rre

t+1, R
re
t

) = 0, (35)

Corr(Rt+1,Rt ) = exp
(̂
a θσ 2

ε

) − 1

exp
[
(1 + θ2)σ 2

ε

] − 1
, (36)

where Corr(·, ·) denotes the unconditional correlation coefficient and â =
Aβ exp(θx). Under extrapolative expectations, the sign of the correlation co-
efficient depends on the degree of risk aversion via the parameter θ ≡ 1 − α. The
value of θ governs the co-movement between the price-dividend ratio and lagged
dividend growth, as shown by the ALM for yt (17). When utility is logarithmic
(θ = 0), we have Corr(Rt+1,Rt ) = 0 for any value of A. Decreased risk aversion
relative to log utility causes the numerator of equation (36) to become positive
such that Corr(Rt+1,Rt ) > 0. Increased risk aversion relative to log utility causes
the numerator to become negative such that Corr(Rt+1,Rt ) < 0. In this case, an
increase in the extrapolation parameter A causes the correlation coefficient to
become more negative, as shown in Figure 2F. When α = 6 and A = A∗, we have
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Corr(Rt+1,Rt ) = −0.18. Using annual data for the period 1871 to 2002, real U.S.
equity returns exhibit slightly positive serial correlation, with a correlation coeffi-
cient of 0.04. Experiments with the model indicate that a small positive correlation
coefficient can be obtained if the law of motion for consumption/dividend growth
(3) is modified to allow for an AR(1) process with positive serial correlation.18

Figure 2G plots the autocorrelation of the agent’s two-step ahead forecast errors.
Figure 2H plots the autocorrelation of the agent’s perceived exogenous shock vt

when the PLM for the forecast variable is a geometric random walk. Straightfor-
ward computations yield the following expressions:

Corr
(
erre

t+1, erre
t

) = ρ̂ [1 + A2 − 2Aρ̂ 2 − A(1 − ρ̂ 2)]

(1 + A2 − 2Aρ̂ 2)
, (37)

Corr(vt+1,vt ) = − (1 − â)

(1 + â)
, (38)

where erre
t+1 is defined by equation (20) and vt = log(zt )− log(zt−1) from Propo-

sition 1. At the RPE value of A∗ = 1.0266, we have Corr(erre
t+1, erre

t )= 0.48,
which shows that extrapolation gives rise to persistent forecast errors. Interest-
ingly, Mankiw, Reis, and Wolfers (2004, p. 219) find that survey-based measures
of inflation forecast errors exhibit similar persistence properties, with autocorre-
lation coefficients ranging from 0.37 to 0.64. In a theoretical study using a sticky
price model, Adam (2005b) solves for an RPE in which the autocorrelation of
forecast errors is also around 0.5. He shows that it would take more than 33 data
points on average for the agent to reject the hypothesis of no autocorrelation. At
the RPE value of A∗ = 1.0266, we have Corr(vt+1,vt )= −0.03, which is very
close to the agent’s perception of no autocorrelation in the shock term.

3.6. Model Simulations

Table 1 presents unconditional moments of the asset pricing variables computed
from a long simulation of the model. The table also reports the corresponding
statistics from U.S. data over the period 1871 to 2002. For the model with extrap-
olative expectations, the statistics reported in Table 1 may differ slightly from the
values computed from the approximate analytical expressions that were used to
construct Figures 2A through 2F.

The model price-dividend ratio under extrapolative expectations exhibits high
volatility, positive skewness, and excess kurtosis, all of which are also present
in long-run U.S. data. The model equity return under extrapolative expectations
exhibits high volatility, but only small amounts of positive skewness and excess
kurtosis. Annual U.S. equity returns exhibit neither skewness nor excess kurtosis,
but there is evidence of positive skewness and excess kurtosis at quarterly and
monthly frequencies.

Figures 3A through 3H plot U.S. stock market data together with the
corresponding model-generated series. Under extrapolative expectations, the
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TABLE 1. Unconditional momentsa

Model Simulations

U.S. Data Rational Extrapolative
Variable Statistic 1871–2002 Expectations Expectations

µt Mean — 0 1

yt = pt/dt Mean 25.2 13.0 20.2
Std. Dev. 12.4 0 10.6
Skewness 2.82 — 2.64
Kurtosis 12.77 — 21.8
Corr. Lag 1 0.87 — 0.94
Corr. Lag 2 0.71 — 0.87
Corr. Lag 3 0.57 — 0.80

Rt+1 − 1 Mean 8.17% 9.60% 9.44%
Std. Dev 17.8% 3.54% 18.1%
Skewness 0.00 0.10 0.51
Kurtosis 2.84 3.04 3.41
Corr. Lag 1 0.04 0.01 −0.17
Corr. Lag 2 −0.16 −0.01 0.02
Corr. Lag 3 0.08 −0.02 0.01

a Model statistics are based on a 4,000-period simulation after dropping 100 periods, with x = 0.0173, σε = 0.0324,

α = 6, β = 0.999, and A = A∗ = exp(θ2σ 2
ε ) = 1.0266.

model-generated series compare favorably in many respects to the U.S. coun-
terparts. Figure 3A shows the sharp run-up in the U.S. price-dividend ratio during
the stock market bubble of the late 1990s. The bubble episodes in the model
are somewhat less extreme (Figure 3B), but larger bubbles can be observed with
different draws for the dividend growth shocks. Figure 3C shows that the real
stock price in U.S. data exhibits long upward swings which are often punctuated
by sharp, short-lived declines. Similar behavior can be observed in the model with
extrapolative expectations (Figure 3D). The complicated behavior of the asset
pricing variables under extrapolative expectations derives from the nonlinear law
of motion (15). Coakley and Fuertes (2004) and Bohl and Siklos (2004) fit nonlin-
ear time series models to U.S. stock market valuation ratios over the period 1871
to 2001. Both studies find evidence that valuation ratios drift upward into bubble
territory during bull markets, but these persistent departures from fundamentals
are eventually eliminated via swift downward adjustments during bear markets.

Figure 3E illustrates the extreme volatility of U.S. equity returns, a feature
that is captured by the model under extrapolative expectations (Figure 3F).
Figure 3G provides evidence of time-varying volatility in U.S. equity returns.
As noted by Schwert (1989), U.S. equity returns exhibit high volatility during the
middle part of the sample which includes the Great Depression. From 1871 to
2002, the 20-year rolling standard deviation of returns varies from a minimum
of 12.5% to a maximum of 27.9%. The full-sample standard deviation is 17.8%.
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FIGURE 3. Comparison of U.S. data versus model simulations (3A–3H).

Figure 3H provides evidence of time-varying return volatility in the model with
extrapolative expectations. Table 2 provides a quantitative comparison of the return
volatilities in the data and the model.
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TABLE 2. 20-Year rolling volatility of returnsa

Model Simulations

U.S. Data Rational Extrapolative
Std. Dev. 1871–2002 Expectations Expectations

Min 20-Yr. 12.5% 1.88% 9.20%
Max 20-Yr. 27.9% 6.02% 29.4%
Full Sample 17.8% 3.54% 18.1%

a Model statistics are based on a 4,000-period simulation after dropping 100 periods, with
x = 0.0173, σε = 0.0324, α = 6, β = 0.999, and A = A∗ = exp(θ2σ 2

ε ) = 1.0266.

Numerous empirical studies starting with Fama and French (1988) and
Campbell and Shiller (1988) have demonstrated that the log price-dividend ratio
forecasts aggregate U.S. equity returns in excess of the risk-free rate over long
horizons. Cochrane (2001, p. 394) points out that long-horizon predictability is
directly related to the phenomenon of excess volatility. Table 3 shows that the
model-generated returns under extrapolative expectations are highly forecastable
over long horizons. As usual, predictability is demonstrated using a simple re-
gression of the holding period return on a constant and the logarithm of the price-
dividend ratio that prevails at the beginning of the period. Similar to the behavior
observed in U.S. data, the R2 of the regression increases with the forecast horizon
as does the magnitude of the estimated slope coefficient. The intuition for long-
horizon predictability in the model is straightforward. A high price-dividend ratio
implies that the ratio is more likely to be above its long-run mean. Because the
price-dividend ratio is stationary, the ratio will eventually revert to its long-run
mean. The inevitable drop in the price-dividend ratio over a long horizon produces
a lower realized return. Under rational expectations, the price-dividend ratio is
constant for all t and thus provides no information about future returns.

TABLE 3. Long-Horizon predictability regressionsa

Model with
U.S. Data Extrapolative

1871–2002 Expectations
Horizon
(Years) Slope R2 Slope R2

1 −0.07 0.02 −0.11 0.10
2 −0.16 0.06 −0.21 0.23
4 −0.27 0.08 −0.41 0.45
6 −0.39 0.10 −0.58 0.60
8 −0.58 0.15 −0.73 0.70

a The results shown are for the regression equation
∑j

1 log(Rt+j ) = b0 + b1log(yt ), where b1 is
the estimated slope. Model regressions are based on a 4,000-period simulation after dropping 100
periods, with x = 0.0173, σε = 0.0324, α = 6, β = 0.999, and A = A∗ exp(θ2σ 2

ε ) = 1.0266.
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4. EXTENSIONS OF THE BASIC MODEL

4.1. Mixture of Agent Types

In the basic model, a representative agent initially adopts the extrapolative fore-
cast given by (14) and then contemplates switching to either the fundamentals-
based forecast or the long-run average forecast. A simple extension allows for
a mixture of agent types, with each type initially employing a different fore-
cast method. Following Kirman (1991) and others, I assume that the govern-
ing market expectation that enters the law of motion of the forecast variable
is the average expectation across agents. For an economy initially populated
by extrapolators and fundamentalists, the ALM for the forecast variable be-
comes zt = β exp(θxt )[λ(Azt−1)+ (1 − λ)zf + 1], where λ ∈ [0, 1] is the pro-
portion of agents who employ the extrapolative forecast. For an economy ini-
tially populated by extrapolators and long-run averagers, the ALM becomes
zt = β exp(θxt )[λ(Azt−1)+ (1 − λ)E(zt )+ 1], where E(zt ) is no longer given
by (22) but instead now depends on λ. In both versions of the heterogenous agent
economy, the introduction of the parameter λ shifts the unconditional moments of
zt that appear in the expressions for the forecast fitness measures MSEe, MSEf,
MSEa. In either case, as λ declines, the extrapolative forecast becomes less accurate
relative to the alternatives, making lock-in less likely to occur. This result is not
surprising because λ governs the influence that the extrapolators have on the ALM
for zt . In this context, lock-in can be interpreted as a type of suboptimal Nash equi-
librium in which the extrapolators choose not to deviate from their initial forecast
given that a sufficient number of other agents are forecasting in the same way.

4.2. Endogenous Switching Between Forecasts

A slight modification of the model allows for the possibility of endogenous switch-
ing between forecast methods. This occurs when the agent’s metric for assessing
performance is the forecast error observed in the most-recent period (which corre-
sponds to a year in the model calibration). From a modeling perspective, a tendency
to overweight recent forecast performance is consistent with the availability and
representativeness heuristics. From an individual agent’s perspective, an emphasis
on recent data appears to be justified, given the (self-induced) regime-switching
that is evident in observable variables.

The setup is similar to the “adaptive belief systems” examined by Brock and
Hommes (1997, 1998) and Hommes (2001), among others. To keep things simple,
I abstract from heterogeneity of beliefs among agents but allow the representative
agent’s beliefs to vary over time. I also abstract from any costs of collecting and
processing information that might be expected to increase with the degree of
sophistication of the forecast method.

Simulations of the adaptive belief system give rise to endogenous switches
between forecasts at intervals of varying length. Each forecast regime exhibits
persistence even though the underlying forecast fitness measures depend only on
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the forecast errors in the most recent period.19 The price-dividend ratio and the
equity return both exhibit regime-switching behavior where the means, variances,
and autocorrelations vary across regimes. When the agent switches to an optimistic
extrapolation, the price-dividend ratio starts drifting up from below to fluctuate
around a higher mean while the equity return becomes more volatile. Eventually,
there is a correction and the price-dividend ratio falls sharply back to the level
implied by fundamentals. The sharp downward movement can be interpreted as a
crash-like event.20

4.3. Alternative Forecast Methods

In the basic model, a representative agent considers only two alternatives to
the extrapolative forecast, that is, a fundamentals-based forecast and a long-run
average forecast. A more sophisticated agent might consider an expanded set
of alternatives. One possibility is a first-order autoregression on the observed
time-series of zt . Given a long time-series of observations and assuming that the
agent employs lagged information, an autoregressive forecast would take the form
Êt zt+1 = ρ̂ 2zt−1 + (1 − ρ̂ 2)E(zt ), where E(zt ) is given by equation (22) and
ρ̂ 2 = A2β2 exp(2θx + θ2σ 2

ε ) is the correlation coefficient between zt+1 and zt−1.
Unlike the other two alternatives, this forecast method exploits the autocorrelation
in zt .

21 It is straightforward to show that the fitness measure for the autoregressive
forecast is given by MSEar = (1− ρ̂ 4)Var(zt ), where Var(zt ) is given by equation
(23).22 Comparing this expression to equation (27) shows that the autoregres-
sive forecast improves accuracy over the long-run average forecast, which yields
MSEa = Var(zt ). It turns out that this improvement is sufficient to induce the
agent to abandon the extrapolative forecast in favor of the autoregressive forecast,
if available. Of course, adoption of the autoregressive forecast would then cause
the ALM for zt to shift, thereby altering the performance of the autoregressive
forecast.23 More generally, if an alternative forecast does a better job of capturing
the actual dynamics of the forecast variable, then the agent will have an incentive
to adopt that method. In this case, the two-parameter autoregressive forecast does
a better job of capturing the actual dynamics of zt than does the single-parameter
extrapolative forecast for any A ∈ (0, Amax). It should be noted, however, that
the foregoing analysis abstracts from any increased computation costs associated
with the autoregressive forecast. David (1985) emphasizes how the occurrence of
technological lock-in is greatly influenced by conversion costs that can lead to the
irreversibility of an initial choice. In this model, the introduction of an explicit com-
putation cost that increases with the degree of sophistication of the forecast algo-
rithm could restore lock-in against the autoregressive forecast or other alternatives.

5. CONCLUDING REMARKS

Theories about expectations have long played a role in efforts to account for the
observed behavior of equity prices. Keynes (1936, p. 156) likened the stock market
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to a “beauty contest,” in which participants devoted their efforts not to judging the
underlying concept of beauty, but instead to “anticipating what average opinion
expects the average opinion to be.” Keynes readily acknowledged the concept
of irrational, herd-like behavior among investors in stating (p. 157): “There is
no clear evidence from experience that the investment policy which is socially
advantageous coincides with that which is most profitable.” He cautioned that it
may be “scarcely practicable” to employ a rational, long-term investment strategy
in a market dominated by short-term “game-players.” More recently, Federal
Reserve Chairman Alan Greenspan (1999) warned that “an unwarranted, perhaps
euphoric, extension of recent developments can drive equity prices to levels that
are unsupportable.”

The flavor of the above ideas is clearly evident in the model set forth in this paper.
The main contribution is to show that an individual agent can become locked-in
to the use of a suboptimal, extrapolative forecast if other agents ( i.e., “game-
players”) are following the same approach. From the perspective of an individual
agent, switching to a fundamentals-based forecast would appear to reduce forecast
accuracy, so there is no incentive to switch. A reasonably calibrated version of the
model is capable of generating excess volatility, time-varying volatility, bubbles,
crashes, and other well-documented features of long-run U.S. stock market data.

In the model, the representative agent’s choice of forecast method is guided by
the principle of minimizing forecast errors. In this sense, the agent can be viewed
as boundedly rational. The use of a forecast algorithm that extrapolates from the
last observation also can be viewed as boundedly rational because it economizes
on the costs of collecting and processing information. As noted by Nerlove (1983,
p. 1255): “Purposeful economic agents have incentives to eliminate errors up to a
point justified by the costs of obtaining the information necessary to do so. . . . The
most readily available and least costly information about the future value of a
variable is its past value.”

Further extensions of the basic model to include bond pricing may provide
insight into other observed features of real-world asset markets.

NOTES

1. The finding of excess volatility is robust to a variety of discounting methods, as demonstrated
by Shiller (2003).

2. For a summary of this research, see Lansing (2004).
3. See Smith, Suchanek, and Williams (1988), Lei, Noussair, and Plott (2001), and Hommes et al.

(2005).
4. See, for example, Delong et al. (1990), Barsky and Delong (1993), Barberis, Schleifer, and

Vishney (1998), Hansen, Sargent, and Tallarini (1999), Cecchetti, Lam, and Mark (2000), Kurz and
Motolese (2001), Abel (2002), and Abreu and Brunnermeier (2003), among others.

5. It should be noted that rational models of asset pricing are not immune to criticism either.
Reasonably calibrated versions of recent models fail to capture some important features of the data, as
noted by Otrok, Ravikumar, and Whiteman (2002) and Polkovnichenko (2004).

6. The general form of equation (8), whereby the current value of an endogenous variable de-
pends on its expected future value, appears in a wide variety of economic models. Examples include
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the cobweb model and the New Keynesian Phillips curve. Brock and Hommes (1998) derive an
asset pricing equation that is similar to (8) in a model in which agents are myopic mean-variance
optimizers.

7. The transversality condition and other technical arguments are often cited to rule out the existence
of so-called rational bubbles. But, as noted by LeRoy (2004, p. 801), “[C]ommitting to the full
neoclassical paradigm produces an argument against bubbles that, although logically airtight, is simply
not plausible. It is a testament to economists’ capacity for abstraction that they have accepted without
question that an intricate theoretical argument against bubbles has somehow migrated from the pages
of Econometrica to the floor of the New York Stock Exchange.”

8. The more general setup would take the form Êt zt+1 =A[zt−1 + δ zt−2 + δ2zt−3 + · · ·] =
Azt−1 + δÊt−1zt , where δ is a discount factor applied to past observations. Traditional adaptive
expectations corresponds to the special case where A ≤ 1 and δ = 1 − A. Equation (14) allows A > 1
but imposes δ = 0.

9. Recent examples of this approach in the context of asset pricing models include Brock and
Hommes (1998), Gaunersdorfer (2000), Hommes (2001), and Sögner and Mitlöhner (2002), among
others.

10. Gu and Wu (2003) show that a biased forecast can be optimal when the forecaster’s objective
is to minimize the mean absolute error of the forecast. In this case, the optimal forecast is given by
median of the forecast variable rather than the mean. If the distribution of the forecast variable is
negatively (positively) skewed, then the optimal forecast exhibits optimism (pessimism).

11. For additional discussion of bubble mechanisms and applications to historical episodes, see the
symposium in Journal of Economic Perspectives, Spring 1990.

12. The terminology in this section follows Evans and Honkapohja (2001, Chapter 13).
13. Froot and Obstfeld (1991) demonstrate how a nonstationary “rational bubble” solution may

help account for some observed features of U.S. stock prices.
14. Adam (2005b, p. 13) shows that similar intuition accounts for the existence of a restricted

perceptions equilibrium in a representative agent version of a sticky price model.
15. I follow the common practice of restricting attention to the case where β < 1. However, it

should be noted that an equilibrium with positive interest rates can still exist with β > 1, as shown by
Kocherlakota (1990).

16. Over the period from 1889 to 1997, U.S. consumption growth exhibits weak serial correla-
tion with an AR(1) coefficient of −0.128. The data are available from John Campbell’s Web site:
http://kuznets.fas.harvard.edu/˜campbell/data/newdata.

17. The long-run historical data for the U.S. stock market cited in the paper were obtained from
Robert Shiller’s Web site: http://www.econ.yale.edu/˜shiller/.

18. Over the shorter sample period from 1926 to 1997, U.S. consumption growth exhibits positive
serial correlation, with an AR(1) coefficient of 0.268. During this same period, inflation-adjusted U.S.
equity returns continue to exhibit slightly positive serial correlation, with a correlation coefficient of
0.07.

19. Lengthening the forecast evaluation window (or alternatively, imposing geometrically declining
weights on past squared forecast errors) imparts more inertia to the fitness measures which has the
effect of increasing the average interval between regime switches.

20. An interesting issue for future research, suggested by a referee, would be to characterize the
basins of attraction of each forecast method when equal weights are assigned to past squared forecast
errors.

21. Another closely related possibility is an adaptive forecast, which takes the form Êt zt+1 =
A zt−1 + (1 − A)Êt−1zt , where A < 1.

22. We have errar
t+1 = zt+1 − ρ̂ 2zt−1 − (1 − ρ̂ 2)E(zt ). The expression for MSEar ≡ E[(errar

t+1)
2],

is derived using the relationships E(z2
t ) = Var(zt ) +E(zt )

2 and E(zt+1 zt−1) = ρ̂ 2 Var(zt ) + E(zt )
2.

23. One can show that the new law of motion for zt will become nonstationary when the agent
switches to an autoregressive forecast that is parameterized using the sample moments of zt generated
by the original law of motion (15). More generally, one can show that an autoregressive forecast cannot
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be justified as a stationary consistent expectations equilibrium (CEE) of the type described by Sögner
and Mitlöhner (2002).
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APPENDIX A

This appendix derives analytical expressions for the unconditional moments of the price-
dividend ratio and the equity return.

A.1. RATIONAL EXPECTATIONS

Equation (11) shows that yre
t is constant for all t. This result implies

E
(
yre

t

) = β exp
(
θx + θ2σ 2

ε /2
)

1 − β exp
(
θx + θ2σ 2

ε /2
) , (A.1)

Var
(
yre

t

) = 0 (A.2)

Corr
(
yre

t , yre
t−1

) = undefined, (A.3)

where Corr(yre
t , yre

t−1) denotes the unconditional correlation coefficient between yre
t and

yre
t−1.

Making use of equations (6) and (11), the gross equity return is given by

Rre
t+1 =

(
yre

t + 1

yre
t

)
exp(xt+1),

= exp(xt+1)

β exp
(
θx + θ2σ 2

ε /2
), (A.4)
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where yre
t is the constant price-dividend ratio from (11). Equation (A.4) implies that the

mean and variance of the equity return are given by

E
(
Rre

t+1

) = β−1 exp
[
αx + (1 − θ2)σ 2

ε /2
]
, (A.5)

Var
(
Rre

t+1

) = E
(
Rre

t+1

)2 [
exp

(
σ 2

ε

) − 1
]
, (A.6)

where I have made use of the properties of the log-normal distribution. In particu-
lar, if x ∼ N(x, σ 2

ε ), then E[exp(θx)] = exp(θx + θ2σ 2
ε /2), where θ is a con-

stant. Also, as Var[exp(θx)] = E[exp(θx)2] − {E[exp(θx)]}2, we have Var[exp(θx)] =
{E[exp(θx)]}2[exp(θ2σ 2

ε ) − 1].
The first two moments of the log equity return are given by

E
[
log

(
Rre

t+1

)] = −log(β) + αx − θ2σ 2
ε /2, (A.7)

Var
[
log

(
Rre

t+1

)] = σ 2
ε . (A.8)

The unconditional correlation coefficient between Rre
t+1 and Rre

t is given by

Corr
(
Rre

t+1, R
re
t

) = E
(
Rre

t+1R
re
t

) − E
(
Rre

t+1

)2

Var
(
Rre

t+1

) ,

= E[exp(xt+1) exp(xt )] − E[exp(xt+1)]2

Var[exp(xt+1)]
,

= 0, (A.9)

where I have made use of the relationship E[exp(xt+1) exp(xt )] = E[exp(xt+1)]E[exp(xt )]
because xt is iid.

A.2. EXTRAPOLATIVE EXPECTATIONS

Taking the unconditional expectation of both sides of (15) and noting that xt is not correlated
with zt−1, we obtain the following expression for the mean of the forecast variable

E(zt ) = β exp
(
θx + θ2σ 2

ε /2
)

1 − Aβ exp
(
θx + θ2σ 2

ε /2
) . (A.10)

To obtain a simple expression for the variance of the forecast variable, I approximate
the law of motion for log(zt ) using a first-order Taylor-series expansion around the point
ẑ0 = E[log(zt )]. Specifically,

log(zt ) = log β + θxt + log[Azt−1 + 1],


 log β + θxt + â[log(zt−1) − ẑ0 ] + b̂, (A.11)

where the Taylor-series coefficients are given by â = Aβ exp(θx) and b̂ = −log(1 − â).

Taking the unconditional variance of both sides of equation (A.11) yields

Var[log(zt )] = θ 2σ 2
ε

1 − â 2
. (A.12)
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Assuming that the distribution of zt is approximately log-normal, we can make use of
the relationship

Var(zt ) = E(zt )
2{exp(Var[log(zt )]) − 1},

= E(zt )
2

[
exp

(
θ2σ 2

ε

1 − â 2

)
− 1

]
, (A.13)

where E(zt ) is given by (A.10). Given that yt = Azt−1 from (17), the unconditional moments
of the price-dividend ratio can be computed using the relationships, E(yt ) = AE(zt ) and
Var(yt ) = A2 Var(zt ).

The unconditional correlation coefficient between zt and zt−1 is defined as

Corr(zt , zt−1) = E(ztzt−1) − E(zt )
2

Var(zt )
. (A.14)

The expectation E(ztzt−1) can be computed from the law of motion (15) as follows:

E(ztzt−1) = E{β exp(θxt )[Azt−1 + 1] zt−1},
= β exp

(
θx + θ2σ 2

ε /2
){

AE
(
z2

t

) + E(zt )
}
,

= Aβ exp
(
θx + θ2σ 2

ε /2
)
E(zt )

2

{
Var(zt )

E(zt )2,
+ 1 + 1

AE(zt )

}
= ρ̂ Var(zt ) + E(zt )

2, (A.15)

where I have made use of the relationship E(z2
t ) = Var(zt ) + E(zt )

2 and equation (A.10).
Substituting the above expression for E(ztzt−1) into equation (A.14) yields the result that
Corr(zt , zt−1) = ρ̂ = Aβ exp(θx + θ2σ 2

ε /2). A similar procedure can be used to show that
Corr(zt+1, zt−1) = ρ̂ 2 = A2β2 exp(2θx+θ2σ 2

ε ). Given that yt = Azt−1, the price-dividend
ratio has the same autocorrelation structure as the forecast variable.

The gross equity return can be written as

Rt+1 =
(

yt+1 + 1

yt

)
exp(xt+1),

=
(

zt+1

Aβzt−1

)
exp(αxt+1), (A.16)

where I have eliminated yt+1 using the definitional relationship yt+1 = zt+1 exp(−θxt+1)/

β − 1 and eliminated yt using the relationship yt = Azt−1 from (17). From the above
expression, it follows directly that

E[log(Rt+1)] = −log(Aβ) + αx. (A.17)

Using equation (A.16), straightforward computations yield

Var[log(Rt+1)] = Var{αxt+1 + log(zt+1) − log(zt−1) − log(Aβ)}
= Var{αxt+1 + log β + θxt+1 + â[log(zt ) − ẑ0] + b̂ − log(zt−1)}
= Var{xt+1 + âθxt + (̂a2 − 1)log(zt−1) + constant terms}
= σ 2

ε (1 + â 2θ 2) + (̂a 2 − 1)2 Var[log(zt )],

= (1 + θ2)σ 2
ε , (A.18)
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where I have again made use of the Taylor-series approximation in (A.11) and the expression
for Var[log(zt )] in (A.12).

Given the unconditional moments of log(Rt+1) from (A.17) and (A.18), and assuming
that the distribution of Rt+1 is approximately log-normal, the moments of Rt+1 can be
computed using the following relationships

E(Rt+1) = exp

{
E[log(Rt+1)] + 1

2
Var[log(Rt+1)]

}
,

= (Aβ)−1 exp
[
αx + (1 + θ2)σ 2

ε /2
]
, (A.19)

Var(Rt+1) = E(Rt+1)
2{exp(Var[log(Rt+1)]) − 1},

= E(Rt+1)
2
{
exp

[
(1 + θ2)σ 2

ε

] − 1
}
. (A.20)

To compute the unconditional correlation coefficient between Rt+1 and Rt, we must first
obtain an expression for E(Rt+1Rt). Assuming that the distribution of the product term
Rt+1Rt is approximately log-normal, we can make use of the relationship

E(Rt+1Rt) = exp

{
E[log(Rt+1Rt)] + 1

2
Var[log(Rt+1Rt)]

}
, (A.21)

where (A.16) implies that log(Rt+1Rt) is given by

log(Rt+1Rt) = αxt+1 + αxt − 2log(Aβ) + log(zt+1) + log(zt ) − log(zt−1)

− log(zt−2). (A.22)

Using (A.22), straightforward computations yield the following unconditional moments:

E[log(Rt+1Rt)] = 2αx − 2 log(Aβ), (A.23)

Var[log(Rt+1Rt)] = 2σ 2
ε (1 + âθ + θ2), (A.24)

where (A.24) is obtained by repeated substitution of the approximate law of motion for
log(zt ) given by (A.11). Substituting the above moments into (A.21) and collecting terms
yields E(Rt+1Rt) = E(Rt+1)

2 exp(̂a θσ 2
ε ). This moment can be combined with the mo-

ments given by (A.19) and (A.20) to yield the following expression for the correlation
coefficient:

Corr(Rt+1,Rt ) = E(Rt+1Rt) − E(Rt+1)
2

Var(Rt+1)
,

= E(Rt+1)
2
[
exp

(̂
a θσ 2

ε

) − 1
]

Var(Rt+1)
,

= exp
(̂
a θσ 2

ε

) − 1

exp
[
(1 + θ2)σ 2

ε

] − 1
, (A.25)

where θ ≡ 1 − α and â = Aβ exp(θx).
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