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Abstract

This paper introduces a continuous-time allocation model for an investor facing stochastic
liability commitments indexed with respect to inflation. In the presence of funding ratio
constraints, the optimal policy is shown to involve dynamic allocation strategies that are

reminiscent of portfolio insurance strategies, extended to an asset–liability management
(ALM) context. Empirical tests suggest that their benefits are relatively robust with respect
to changes in the objective function and the introduction of various forms of market

incompleteness. We also show that the introduction of maximum funding ratio targets would
allow pension funds to decrease the cost of downside liability risk protection.

Capsule Review

Pension fund often operate under minimum funding constraints imposed by

regulators. This paper computes asset allocation strategies that are optimal in the

presence of such short-term constraints, while taking into account the presence of

interest rate and inflation risks, which are the two main risk factors faced by defined-

benefit (DB) pension funds with inflation-linked liabilities. The optimal allocation to

risky assets is shown to be a function of risk budgets that are defined as the difference
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between the current asset value and a floor, which is the minimum acceptable wealth

such as defined in terms of the minimum funding ratio requirement. Although such

strategies allow for the respect of minimum funding constraints, insurance against

downside risk has an opportunity cost : the access to the performance of stocks is

more limited than if no protection was required. One contribution of the paper is to

show that this cost can be reduced by imposing a maximum funding ratio constraint

together with the minimum constraint. Finally, we analyze the properties of the risk-

controlled dynamic strategies when they are implemented in an environment that

departs from the model assumptions, and we find that the benefits of such strategies

are robust with respect to the presence of a number of market imperfections.

1 Introduction

Most (if not all) private and institutional investors, even those with large amounts of

resources at their disposal, face a number of self-imposed or exogenously given

liability commitments. Typical examples of such explicit commitments are defined-

benefit (DB) pension obligations, which can be regarded as a short position in col-

lateralized defaultable bonds issued by the sponsor company and privately held by

employees. More generally, similar formal liability commitments are faced by in-

surance companies and commercial banks, while more implicit economic liabilities

are also often found in private wealth management (Amenc et al., 2009) or sovereign

wealth fund management (Gray et al., 2007). Not surprisingly given the high

relevance of the problem, a variety of papers have attempted to extend dynamic

portfolio selection models to account for the presence of liabilities. A first step toward

a dynamic asset-liabilitymanagement (ALM)model was taken byMerton (1993), who

studied the allocation decision of a university that manages an endowment fund that

faces a pre-defined expenditure programme. Sundaresan and Zapatero (1997) have

considered the case of a DB pension fund that is committed to make a payment

indexed on past wages. They derive an optimal portfolio policy under the assumption

that investment opportunities are constant. Rudolf and Ziemba (2004) have

formulated a continuous-time dynamic programming model of DB pension fund

management with a time-varying opportunity set, where state variables are inter-

preted as currency rates that affect the value of the pension’s asset portfolio. These

papers have provided a number of useful insights, notably including the introduction

of a specific liability-hedging demand component in the optimal allocation strategy,

as typical in intertemporal allocation decisions in the presence of stochastic state

variables (Merton, 1973). On the other hand, these papers have mostly focused on

unconstrained ALM strategies, without incorporating the presence of explicit con-

straints on asset value relative to liability value. In a pension fund context, formal

constraints on the funding ratio (formally defined as the ratio of assets relative to

liabilities) have been introduced by the regulator in most developed countries in an

attempt to protect the interests of beneficiaries. The relevance of funding ratio con-

straints has given rise to a fierce debate between advocates of a tighter regulation, not

only in the US but also in Europe, and those arguing that it would only result in a

severe welfare loss (see e.g., Pugh, 2006).
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Our paper extends this literature on asset allocation decisions with liability com-

mitments by analyzing the impact of formal funding ratio constraints in the context

of a continuous-time model for intertemporal allocation decisions by a DB pension

fund. Given that interest rate and inflation uncertainty are the two main risk factors

impacting pension liability values, we cast the problem in a setting with stochastic

interest and inflation rates and model the liabilities of the pension fund as a portfolio

of inflation-indexed bonds. We assume that preferences are expressed over the

funding ratio, so as to take the liabilities into account in the optimization problem.

This framework is similar to that of Hoevenaars et al. (2008), but the main difference

between our paper and theirs is that we do not restrict our analysis to fixed-mix

strategies. Instead, we use the martingale approach to portfolio choice (Cox &

Huang, 1989) to analytically derive optimal strategies in the presence and absence of

funding ratio constraints. In the unconstrained case, we confirm that the optimal

strategy involves a fund separation theorem that legitimates investing in a liability-

hedging portfolio, in addition to the standard performance-seeking portfolio (PSP;

speculative demand). When funding ratio constraints are introduced, optimal poli-

cies, for which we obtain analytical expressions, are shown to involve a dynamic

allocation to the PSP that is a function of the margin for error measured in terms of

the distance between the current asset value and the minimum level allowed by

funding ratio constraints.

Our paper is not the first to study the effects of minimum capital constraints on

asset allocation. In a recent paper, Van Binsbergen and Brandt (2009) impose con-

straints of the Value-at-Risk type: the probability of an underfunding must not

exceed, say, 2.5%. However, such constraints ‘ in probability ’ do not allow for

analytical solutions to be obtained. Instead, we consider a more stringent type of

constraints, by requiring that the minimum funding levels be respected almost surely.

Such ‘hard’ constraints have already been considered in the literature, often im-

plicitly through the preferences of the pension fund. For example, if the preferences

are expressed over the surplus (defined as the excess of assets over liabilities) and the

utility function precludes negative arguments (as in the case of constant relative risk

aversion (CRRA) preferences), then any optimal policy must yield an almost surely

positive surplus. A less severe funding condition can be imposed by replacing the

surplus by the partial surplus, which is defined as the excess of assets over a fraction

of liabilities (see Sharpe and Tint, 1990). This type of implicit constraints is present in

Rudolf and Ziemba (2004), and, even more recently, in Detemple and Rindisbacher

(2008). These authors introduce a general framework with stochastic investment

opportunities and derive optimal strategies for defined contribution (DC) or DB

pension funds. Our paper focuses on the special case of CRRA preferences and shows

that the policies that are optimal in the presence of minimum funding ratio con-

straints can be interpreted as risk-controlled strategies that are reminiscent of con-

stant proportion portfolio insurance (CPPI) or option-based portfolio insurance

(OBPI) strategies, which they extend to an ALM context, where risk is measured

relative to liabilities.2

2 CPPI strategies have originally been introduced by Black and Jones (1987) and Black and Perold (1992).
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None of these papers, however, has consideredmaximum funding constraints. Such

constraints are yet of practical interest, because they appear in several regulations. In

the UK, for instance, pension assets must not exceed 105% of accrued liabilities.

Explicit limits are also imposed on the size of pension assets in Canada and Japan.

Assets that are in excess of such limits must in general be spent under various forms:

contribution holidays, increase in plan benefits or negative contributions from the

pension fund to the sponsor. The US pension law also mentions a ‘ full funding

limitation’ : when it is reached, the sponsor loses part of the tax advantage to con-

tributions.3 In the Netherlands, there exists a target funding ratio that is a function of

investment risk, and reaches 130% on average. Overall, it appears that maximum

funding constraints are often imposed by tax authorities to prevent the deliberate or

accidental build-up of excessive assets within the pension fund. Even when such

constraints do not formally exist, it is unclear whether pension funds have any utility

over exceedingly large surpluses, given the uncertainty as to who owns surpluses

(Pugh, 2006). In this context, it seems reasonable to try and analyze how the intro-

duction of maximum funding ratio targets would impact the optimal strategy. One of

the contributions of our paper is to show that these targets would allow pension funds

to decrease the cost of downside liability risk protection, while giving up part of the

upside potential beyond levels where marginal utility of wealth (relative to liabilities)

is low or almost zero. To the best of our knowledge, our paper is the first to provide a

formal analysis of maximum funding ratio constraints. In addition to the literature

on ALM, our paper is also strongly related to the literature on portfolio insurance

and more generally on portfolio decisions with minimum target terminal wealth. This

literature has evolved according to at least two main directions. The first strand of the

literature, starting with Leland (1980) and extended by Benninga and Blume (1985) or

Franke et al. (1998), approaches the question from a positive angle: taking as given a

set of standard convex payoffs, these papers examine the features of investors’ pre-

ferences and market characteristics that would support a rational non-zero holding of

these derivatives contracts. They have mostly found that only severe forms of market

incompleteness and/or the presence of background risk can justify holding such

payoffs. In a related effort, but moving beyond the paradigm of expected utility

maximization, Driessen and Maenhout (2007) have shown that it is only with highly

distorted probability assessments that one can obtain positive portfolio weights for

puts (cumulative prospect theory and anticipated utility) and straddles (anticipated

utility). The second strand of the literature, initiated by Brennan and Solanki (1981),

has examined the question from a more normative angle by searching for the design

of optimal payoffs from the investor’s standpoint. To this strand of the literature are

related papers on portfolio allocation with wealth constraints, including Grossman

and Vila (1989), Cox and Huang (1989), Basak (1995), Grossman and Zhou (1996) or

Basak (2002). These papers rationalize CPPI or OBPI by showing that such strategies

are optimal in the presence of wealth constraints. Our paper extends this latter strand

of the literature by revisiting in the presence of liability commitments the question of

3 See Pugh (2006) for a more comprehensive survey of pension fund regulations.
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optimal design of non-linear payoffs and the related question of the costs and benefits

of risk management.

Finally, because it focuses on portfolio choice with a liability benchmark, our

paper is also related to the literature on dynamic asset allocation models with per-

formance benchmarks. Single-agent portfolio allocation models with benchmark

constraints include notably Browne (2000) in a complete market setting, Tepla

(2001), who also includes constraints on relative performance, and Basak et al.

(2006), who derive optimal strategies subject to the constraint that the probability of

overperforming the benchmark is equal to a given level. Another formally related

paper is Brennan and Xia (2002), who studied in an incomplete market setting asset

allocation decisions when an inflation index is used as a numeraire.4 The rest of the

paper is organized as follows. In Section 2, we introduce a formal continuous-time

model of dynamic asset allocations decisions in the presence of liability commitments.

In Section 3, we analyze the impact of formal minimum and/or maximum funding

ratio constraints on optimal allocation strategies. In Section 4, we perform a series of

numerical exercises highlighting the properties of these strategies. In Section 5, we test

for the impact of various forms of market imperfections or incompleteness on

the behavior of optimal strategies. Section 6 concludes and presents suggestions for

further research.

2 A formal model of ALM

In this section, we introduce a stylized continuous-time asset allocation model for a

long-term investor, e.g., a pension fund, facing liability commitments.

2.1 Stochastic model for state variables and risky assets

We let [0, T0] denote the (finite) time span of the economy, where uncertainty is

described through a standard probability space (V,A,P). In what follows, T0 can be

thought of as the date of the last pension payment by a pension fund (after which the

pension fund will be terminated), or as the duration of pension liabilities. It is to be

distinguished from the investment horizon, which can be some arbitrary date denoted

by TfT0. We assume that financial markets are frictionless.

Regarding the liability side, inflation risk and interest rate risk appear as the two

most relevant risk factors. This is because pension benefits are typically inflation-

indexed, and the typically long duration of liability payments make their current

value highly sensitive to changes in interest rates. In what follows, we model the

nominal short-term interest rate as an Ornstein–Uhlenbeck process (Vasicek, 1977)

and the price index as a Geometric Brownian motion

drt=a(bxrt) dt+sr dz
r
t ,

dWt

Wt
=Q dt+sW dzWt ,

4 Equilibrium implications of the presence of performance benchmarks are discussed in Cuoco and Kaniel
(2001) and Gómez and Zapatero (2003).
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where zr and zW follow standard correlated Wiener processes under P. Q represents

the instantaneous expected inflation rate, which we assume to be constant for

simplicity.5

On the asset side, we assume that the menu of asset classes includes a unit zero-

coupon bond with payoff 1 at maturity t1 and a price B(t, t1) at time t. So as to stay

within a complete market environment, we also assume that the pension fund can

trade in an inflation-indexed zero-coupon bond of maturity t2, i.e., a bond with

payoff given by Wt2 . The price at time t of the inflation-linked bond is denoted by

I(t, t2), which will be made explicit in proposition 1 below. Moreover, we assume that

the pension fund can trade in a stock index whose price St evolves as

dSt=St[(rt+sSlS) dt+sS dz
S
t ],

where lS is a constant Sharpe ratio. In addition to these assets, the pension fund can

also invest in a cash account, whose value is the continuously compounded interest

rate.

The dynamics of these state variables can be rewritten in vector form as

drt=a(bxrt) dt+skr dzt,

dWt=Wt[Qdt+skW dzt],

dSt=St[(rt+sSlS) dt+skS dzt],

(1)

where z is a three-dimensional Wiener process. Throughout the paper we assume that

the information available to the investor at time t is Ft, the augmented sigma-field

generated by z up to time t.

Assuming a complete financial market, there exist prices of interest and inflation

risks, lr and lW, hence there exists a unique price of risk vector l, given by

l=s(sk s)x1
srlr
sWlW
sSlS

0
@

1
A,

with s being the volatility matrix of traded risks, that is

s=( sr sW sS ):

The vector l defines a unique equivalent martingale measure by

dQ

dP
=exp xlkzT0x

1
2 jjljj

2T0
� �

, (2)

and a unique pricing kernel process M through

Mt=exp x
Z t

0
rs ds

� �
Et

dQ

dP

� �
: (3)

We are now able to write the prices of the nominal and indexed zero-coupon bonds

that are available for trading.

5 Brennan and Xia (2002) and Munk et al. (2004) assume that the expected inflation rate follows an
Ornstein–Uhlenbeck process.
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Proposition 1. The prices of the nominal and of the real zero-coupon bonds of

respective maturities t1 and t2 are given by

B(t, t1)=ea(t1xt)rt+b1(t1xt) and I(t, t2)=Wte
a(t2xt)rt+b2(t2xt)

where

a(s)=x
1xexas

a
, ~bb=bx

skr l
a

, ~QQ=QxskWl,

b1(s)=x~bbs+~bb
1xexas

a
+

jjsrjj2

2a2
sx2

1xexas

a
+

1xex2as

2a

� �
,

b2(s)= ~QQx
jjsWjj2

2
x~bb

� �
s+~bb

1xexas

a
+

1

2

Z s

0

1xexau

a
srxsW

����
����
2

du:

In particular, the volatility vectors of B(., t1) and I(., t1) are given by

sB(t, t1)=a(t1xt)sr and sI(t, t2)=a(t2xt)sr+sW

Proof. See appendix A.1. %

2.2 Net wealth process

We consider a pension fund managing financial assets and paying a stream of pension

payments. For simplicity, we do not model the stream of contributions from the

sponsor company, and instead assume that it can be summarized by an initial en-

dowment A0 to the pension fund. This initial wealth can be invested in the stock, the

nominal and the indexed bonds, and the cash account.

We denote with vt the vector of weights describing the portfolio at time t, and

with st the volatility matrix of the stock and the two zero-coupon bonds at time t,

defined as

st=( sS sB(t, t1) sI(t, t2) ):

The value of the financial portfolio, A, evolves as

dAt=At[rt+vktsktl] dt+Atvktskt dztxdVt, (4)

where dVt is the payment to pensioners between dates t and t+dt. This rep-

resentation can accommodate continuous payments as well as lump-sum pay-

ments at dates t1, …, tn. In this latter case, dVt should be formally written as

dVt=;n
i=1lti dH

ti
t , where Hti is an Heaviside function, Hti

t = {toti}. In what follows,

we shall sometimes consider a specific case of the discrete payment model, where a

single payment takes place, at time T0, a situation we shall refer to as the zero-coupon

case. The generic case will be the generic situation, where the continuous or discrete

nature of the payments is not specified.

Since the financial market is complete, the stream of future payments can be valued

as the dividend flow of a financial asset. Hence, for T1<T2, the quantity

LT1,T2
t =EQt

Z
T1,T2� �

e
x
R s

t
ru du dVs

" #
, tfT1<T2, (5)
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is the price that an agent would have to pay at time t to receive the payment stream

dV from date T1 excluded to date T2 included. We will also let : Lt=Lt,T0
t denote the

total liability value, i.e., the discounted value of all future liability payments, at date t.

With these notations, the budget constraint (see proposition 2.2 in Cox and Huang,

1991) becomes

At=Et
Ms

Mt
As

� �
+Lt, s

t , t<s: (6)

Throughout the paper we take lt=ntWt, where n is a non-negative deterministic

function of time representing the size of the population to which benefits will be

provided for. Since the pair (r, W) is Markov under Q, LT1,T2
t is a function LT1,T2 of

(t, rt,Wt). It’s lemma then gives the volatility vector of LT1,T2

sT1,T2
L, t =

LT1,T2
r sr+LT1,T2

W WtsW

LT1,T2
t

: (7)

We will set sL, t=st,T0
L, t .

In the zero-coupon case, it is assumed that the pension fund makes a single pay-

ment, at time T0. We thus have LT,T0
t =nT0I(t,T0) for any Ts[t,T0[ and the volatility

vector of L is sL,t=sI(t,T0). In particular, the volatility vector is deterministic in the

zero-coupon case (while it is stochastic when a stream of continuous or discrete

liability payments are considered). This property allows for explicit pricing of the

terminal optimal net wealth, and the associated dynamic asset allocation strategy, as

will be made clear below.

2.3 Objectives and optimal asset allocation decisions

The objective of this paper is to adopt the perspective of the pension fund manager,

an agent who acts on behalf of the shareholders and workers of the company.6

Preferences of the manager are expressed here on the terminal funding ratio FT,

where

Ft �
At

Lt
, t<T0: (8)

Several comments are in order. First, we assume that the pension fund is concerned

with the funding ratio rather than the asset per se. This amounts to using the liability

value process (Lt)to0, as opposed to the bank account, as a numeraire, an approach

that has already been used for example by Van Binsbergen and Brandt (2009).

Second, we choose to focus on the funding ratio because it is the variable of interest

for managers of DB pension plans and regulators of pension plans.7 Third, we assume

that the pension fund has utility from the terminal funding ratio, not from the

intermediate ones. This reduced-form objective can be interpreted in two ways. A first

6 We do not analyze the conflicts of interest that may arise between the various stakeholders involved in an
ALM problem, which include most notably the shareholders of the sponsor company and the benefici-
aries of the pension plan (workers and pensioners).

7 Optimal strategies can also be derived in closed form if the pension fund maximizes utility from surplus or
partial surplus. Such results are available from the authors upon request.
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interpretation is that the pension fund is closed, i.e., no new participants join the

pension plan between 0 and the liability horizon T0. All liability payments that take

place between 0 and the investment horizon date T are already taken into account in

the dynamics of the net asset A, so it is not necessary to consider utility from inter-

mediate funding ratios. A second interpretation is that the pension fund is in a

stationary state, has liabilities with a constant maturity T0 and does not make any

payments between dates 0 and T. Since there are no intermediate liability payments,

intermediate funding ratios do not enter the utility function. Whichever perspective is

taken, the choice of the horizon T is somewhat arbitrary, so we will let this parameter

vary in our simulations.

The reduced-form program assumed for the pension fund manager is thus

max
v

E[U(FT)]: (9)

Unless otherwise stated, we assume that the pension fund manager has CRRA pre-

ferences, with relative risk aversion c, i.e., we take U=u where8

u(x)=
x1xc

1xc
, for x>0,

xO, for xf0:

8<
:

To obtain the solution to (9), we use the martingale approach in complete markets

developed by Cox and Huang (1989). The following proposition presents the ex-

pression for the optimal policy in the zero-coupon case.9 Details of derivation are

relegated to appendices.

Proposition 2. The optimal payoff and wealth process in (9) in the generic case are

A*uT =
A0xL0,T

0

E[ (MTLT)
1x(1=c) ]

M
x1=c
T L

1x(1=c)
T , (10)

A*ut =Lt,T
t +

A0xL0,T
0

E[ (MTLT)
1x(1=c) ]

M
x1=c
t (LT,T0

t )
1x(1=c)

g(t, rt,Wt),

where

g(t, rt,Wt)=Et
MTL

T,T0
T

MTL
T,T0
T

 !1x(1=c)
2
4

3
5:

’ In the zero-coupon case, the optimal strategy reads

v*ut =
1ksx1

t l

c
vPSP

t +1ksx1
t sI(t,T0) 1x

1

c

� �
vLMP

t (T,T0),

8 Detemple and Rindisbacher (2008) consider a more general class of utility functions, encompassing the
CRRA case.

9 Solutions to the more general case with multiple liability payments can be obtained from the authors
upon request.
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where

vPSP
t � sx1

t l

1ksx1
t l

, vLMP
t (T,T0)=

sx1
t sI(t,T0)

1ksx1
t sI(t,T0)

, 1=( 1 1 1 )k:

Proof. See appendix A.2. %

We find that the solution involves the standard PSP and a liability-hedging or liab-

ility-matching portfolio (LMP). This portfolio has the following property, which is

typical of intertemporal hedging demand terms in dynamic asset allocation models

(Merton, 1973) : vt
LMP(T,T0) maximizes the correlation between the returns on the

asset portfolio and the return on the present value of future pension payment. In this

complete market setting, the maximum correlation achieved is equal to 1. In case the

maturity of the inflation-linked bond coincides with the date of the unique payment

T0, the LMP is fully invested in this bond, otherwise it involves the combination

of cash, nominal bond and inflation-linked bond needed for reaching the target

duration. It should be noted that the optimal portfolio strategy does not involve a

separate interest rate hedging component. Indeed, while interest rate risk impacts the

asset value, it also impacts liability value in such a way that the net effect at the

funding ratio level is trivial.

3 Optimal allocation decisions in the presence of funding ratio constraints

As discussed before, funding ratio constraints, whether desirable or not, are domi-

nant in pension funds’ environment. The allocation strategy presented in Section 2 is

in fact not optimal in the presence of minimum funding requirements. We now turn

to the analysis of the optimal allocation strategy when funding ratio constraints are

explicitly accounted for.

3.1 Portfolio optimization with minimum funding ratio constraint

We complement the investor’s objective by introducing the following explicit funding

ratio constraint :

max
v

E[U(FT)], s:t: ATokLT: (11)

Imposing such an explicit lower bound intuitively means that the pension fund has

infinitely low utility from funding ratios below k. In fact, it follows from the results in

Bouchard et al. (2004) that (11) is a special case of (9) for a non-smooth utility

function U :

max
v

E[ ~UU
k
(FT)], (12)

where ~UU
k
is a non-smooth utility function defined as follows:

~UU
k
xð Þ=

u(x), if xok,

xO, if x<k:

�
(13)
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It seems from program (11) that only the terminal funding ratio is constrained to be

larger than k. In fact, taking expectations on both sides of the inequality ATokLT

and using the budget constraint (6), we obtain that the constraint P(FTok)=1 is

equivalent to

AtxLt,T
t okLT,T0

t , for all t in [0,T] with probability 1:

Hence, the long-term funding ratio constraint is equivalent to a series of short-term

constraints. It can easily be seen that for k<1, these short-term constraints imply that

Ftok with probability 1 at all dates t. In particular, it is necessary that A0oL0,T
0 +

kLT,T0
T holds at time 0, for the maximization problem to be feasible. It should also be

noted that the complete market assumption is critical here, since the presence of a

non-hedgeable source of risk would make it impossible for the terminal constraint to

hold almost surely.

The following proposition provides the solution to the optimization process in the

presence of funding ratio constraints.

Proposition 3. Assume that the initial asset satisfies A0oL0,T
0 +kLT,T0

T . Then

’ In the generic case, the optimal payoff and terminal wealth in (11) are

A*kT =kLT+(jA*uT xkLT)
+, (14)

A*kt =Lt,T
t +kLT,T0

t +Ex(t, rt,Wt, j(A*
u

t xLt,T
t ), kLT,T0

t ),

where Ex(t, rt,Wt, j(A*
u

t xLt,T
t ), kLT,T0

t ) is the price at time t of an option to ex-

change the payoff jAT*
u for the payoff kLT,T0

T at time T, namely

Ex(t, rt,Wt, j(A*
u

t xLt,T
t ), kLT,T0

t )=EQt e
x
R T

t
ru du(jA*uT xkLT,T0

T )+
� �

:

The constant j is chosen so that the budget constraint A0*
k=A0 holds.

’ In the zero-coupon case, the optimal strategy is given by

v*kt =
1ksx1

t l

c
1x

kN(xd2, t)Lt

A*kt

 !
vPSP

t

+1ksx1
t sI(t,T0) 1x

1

c
1x

kN(xd2, t)Lt

A*kt

 !" #
vLMP

t (T,T0), (15)

where

d1, t=
1

1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
t jjsI(s,T0)xljj2 ds

q ln
jA*ut
kLt

+
1

2c2

Z T

t

jjsI(s,T0)xljj2 ds
� �

, (16)

d2, t=d1, tx
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

t

jjsI(s,T0)xljj2 ds

s
,

A*kt =kLt+N(d1, t)jA*
u

t xkLtN(d2, t):

(17)
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Proof. See appendix A.3. %

We thus obtain an explicit analytical representation of the relationship between

optimal strategies in the presence and absence of funding ratio constraints, expressed

both in terms of optimal payoffs and optimal portfolio weights. In terms of

payoffs, we find that the optimal terminal wealth is given by an initial long

position kLT,T0
0 in a portfolio with payoff kLT, while the remainder A0xL0,T

0 xkLT,T0
0

is invested in an exchange option, which allows the investor to exchange,

when the option expires in the money, a portfolio of terminal value kLT for a

portfolio delivering the payoff jAT*
u. The constant j is adjusted to make the

price of the option equal to A0xL0,T
0 xkLT,T0

0 . As a result, the terminal net

wealth will be the maximum of kLT and jAT*
u. The expression for the optimal

investment strategy and wealth process is reminiscent of OBPI strategies, which the

present setup extends in several dimensions. First, the underlying asset is not a

stock index but the underlying optimal unconstrained strategy. Second, the risk-free

asset is not cash but the liability-benchmark, which allows one to transport the

structure to an asset–liability relative risk management context.

A comparison between the optimal terminal wealth under the unconstrained

strategy and the constrained strategy can be found in the following proposition,

which formalizes the intuition according to which insurance of downside risk (relative

to liabilities) has a cost in terms of performance potential.

Proposition 4. For the states of the world v such that F*kT (v) � A*kT
LT

(v)>k, or equiv-

alently such that [jAT*
u (v)xkLT(v)]

+>0, we have that AT*
k (v)<AT*

u (v).

Proof. See appendix A.4. %

3.2 Introducing maximum funding ratio constraints

As noted in the introduction, pension funds have no interest in building up exceed-

ingly large surpluses. Overfunding can be formally prohibited by pension law, or may

be simply discouraged by tax law or complexity of surplus sharing rules. The purpose

of this subsection is to introduce a maximum funding constraint along with a

minimum one. The value of the maximum can be interpreted as the funding level

beyond which the utility function of the pension fund is constant. The optimization

programme is thus given by (9) subject to the additional constraints FTok

and FTfkk :

max
v

E[U(FT)], s:t: kfFTfk0: (18)

In order to have the constraint kfFTfkk satisfied almost surely, the initial asset A0

should lie between L0,T
0 +kLT,T0

0 and L0,T
0 +k0LT,T0

0 . The following proposition pre-

sents the solution to these optimization programmes in the presence of minimum and

maximum funding ratio constraints (or targets).

560 L. Martellini and V. Milhau

https://doi.org/10.1017/S1474747212000194  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747212000194


Proposition 5. Assume that the initial asset satisfies L0,T
0 +kLT,T0

0 fA0fL0,T
0 +kkLT,T0

0 .

Then

’ In the generic case, the optimal payoff and wealth process in (18) are given by

A*k, kkT =kLT+(jkA*uT xkkLT)
+x(jkA*uT xkkLt)

+,

A*k, kkt =Lt,T
t +kLT,T0

t +Ex(t, rt,Wt, jk(A*ut xLt,T
t ), kLT,T0

t )

xEx(t, rt,Wt, jk(A*ut xLt,T
t ), kkLT,T0

t ),

where the constant jk is adjusted to make the budget constraint A0*
k,kk=A0 hold.

’ In the zero-coupon case, the optimal strategy is given by

v*k, kkt =
1ksx1

t l

c
1x[kN(xd2, t)+kkN(d k2, t)]

Lt

A*k, kkt

 !
vPSP

t

+1ksx1
t sI(t,T0) 1x

1

c
1x[kN(xd2, t)+kkN(dk2, t)]

Lt

A*k, kkt

 !" #
vLMP

t (T,T0),

where

d k1, t=
1

1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
t jjsI(s,T0)xljj2 ds

q ln
jkA*ut
kkLt

+
1

2c2

Z T

t

jjsI(s,T0)xljj2 ds
� �

,

d k2, t=d k1, tx
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

t

jjsI(s,T0)xljj2 ds

s
,

A*k, kkt =kLtN(xd 2, t)+kkLtN(d k2, t)+[N(d1, t)xN(d k1, t)]jkA*ut :

The constant jk is adjusted to make the budget constraint A0*
k,kk=A0 hold.

Proof. See appendix A.5. %

The optimal terminal net wealth is given by the payoff of a static portfolio strategy

that consists of investing kL0 in the LMP, with the remainder, A0xkL0, being

invested in a bull spread strategy extended to an exchange option context. This

strategy consists of a long position in an exchange option and a short position in an

exchange option on the same underlying payoff and a higher strike price. The former

option gives its owner the right to exchange a portfolio of terminal value kLT for a

portfolio of terminal value jkAT*
u, while the latter option gives its owner the right to

exchange a portfolio of terminal value kkLT for the same portfolio of terminal value

jkAT*
u.

A noteworthy property of the strategy of proposition 5 is that it allows for the

respect of the maximum funding constraint at all times, provided the maximum

funding level kk>1 and the initial wealth satisfies the conditions stated in the prop-

osition. The proof of this statement is straightforward: given that the terminal wealth

satisfies A*k, kkT fkkLT,T0
T with probability 1, we obtain, taking the present values of

both sides of the inequality

AtxLt,T
t fkkLT,T0

t ,
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which implies that AtfkkLt if kk>1. Similarly, the minimum funding constraint is

respected at all dates if k<1: the proof is exactly the same as for the strategy with a

lower bound only (see Section 3.1).

Finally, comparing propositions 3 and 5, it can be seen that the imposition of an

explicit upper bound involves a short position in an exchange option. This short

position allows one to reduce the cost of downside protection by giving up some

access to the upside potential beyond the funding ratio threshold kk, as shown in the

following proposition.

Proposition 6. Let F*k, k
k

T � A*k, kk
T

LT
denote the optimal terminal funding ratio when the

lower bound k and the upper bound kk are imposed. Similarly, let F*kT � A*kT =LT denote

the optimal terminal funding ratio when only the lower bound k is imposed. For those

states of the world v such that k<FT*
k,kk(v)<kk, we have that AT*

k(v)<AT*
k,kk(v).

Proof. See appendix A.6. %

4 Empirical analysis

We now turn to an empirical testing of the optimal strategies discussed in the

previous section. To this end, we use a schedule of liability payments provided for

by a Dutch pension fund and displayed in Table 1, from which we obtain that

the date of the last scheduled payment is T0=75 years. These cash-flows represent

real expected pension payments, to which a cumulative inflation factor should be

applied so as to obtain the nominal liability payment.10 The duration of the pension

fund liability is the maturity of the indexed zero-coupon bond that has the

same sensitivity to interest rates as the coupon bond that models the liability. Since

the present value at time 0 of all future payments is equal to L0, the duration t0 is

defined by

x
1xexat0

a
=

1

L0

@L0

@r0
=x

1

L0
;
75

ti=1

1xexati

a
nti I(0, ti): (19)

Numerically, we obtain that t0=11.32 years.

4.1 Unconstrained strategy

With no loss of generality, we assume that the investment opportunity set includes a

single stock index, regarded as an efficient combination of individual stocks, in

addition to a zero-coupon bond and an inflation-indexed bond with maturity

corresponding to the duration of pension payments. Our base case parameters are

taken from Munk et al. (2004), who also model the nominal interest rate as an

10 In practice, inflation indexation is sometimes conditional, with indexation conditions that can be
complex and typically depend on the funding ratio of the pension fund and the inflation rate, combined
with a minimum and maximum level of indexation. We shall assume this additional complexity in the
empirical exercise that follows, and consider for simplicity a full indexation payment.
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Ornstein–Uhlenbeck process and the price index as a Geometric Brownian motion.11

Table 2 summarizes our base case set of parameter values.

In all cases, we have assumed that the pension fund was initially fully funded, i.e.,

A0=L0, and have estimated the distribution of the final funding ratio using 5,000

points. In Table 3, we provide information regarding the distribution of the funding

ratio when no constraint is introduced. As expected, we find that the dispersion in-

creases with T and decreases with c. Indeed, a lower risk-aversion parameter implies a

higher investment in the PSP, and hence a higher performance potential coupled with

a higher funding risk. On the other hand, for a given risk-aversion parameter value,

we find that the range of funding ratio values increases with the time-horizon T as

more time is allowed for uncertainty to play a role. Even for c=10, we find that the

minimum funding ratio obtained is lower than 90% for a one-year horizon, and

lower than 70% for a 20-year horizon. This provides justification for the introduction

Table 1. Schedule of annual liability payments expressed in real terms

Year Payment Year Payment Year Payment Year Payment

1 6891.04 21 4620.24 41 1114.46 61 52.1

2 7080.01 22 4422.07 42 1008.22 62 40.86
3 7086.14 23 4233.09 43 908.11 63 32.69
4 7034.05 24 4043.1 44 814.14 64 25.54
5 6980.93 25 3822.45 45 727.31 65 19.41

6 6900.23 26 3598.74 46 646.61 66 15.32
7 6767.44 27 3383.21 47 572.04 67 11.24
8 6704.1 28 3173.8 48 503.6 68 8.17

9 6631.58 29 2976.65 49 440.27 69 6.13
10 6542.7 30 2785.63 50 383.06 70 4.09
11 6435.45 31 2597.67 51 330.97 71 3.06

12 6285.29 32 2413.8 52 283.98 72 2.04
13 6113.68 33 2240.15 53 242.1 73 1.02
14 5940.02 34 2074.67 54 205.32 74 1.02
15 5754.11 35 1914.29 55 172.63 75 1.02

16 5575.34 36 1761.06 56 144.03 76 0
17 5393.52 37 1616.01 57 119.52 77 0
18 5195.35 38 1479.13 58 98.06 78 0

19 5024.76 39 1350.42 59 79.68 79 0
20 4830.67 40 1228.86 60 64.35 80 0

This table presents the schedule of annual pension payments expressed in real terms. The data
have been provided for by a Dutch pension fund. The duration of this payment stream, as
computed in (19), is t0=11.32 years.

11 The main difference between their model and ours is that they also assume an Ornstein–Uhlenbeck
process for the expected inflation rate, whereas we take it as a constant, which we take equal to the long-
term mean level used by Munk et al. (2004). Beside, these authors provide an estimate for the market
price of interest rate risk, but neither for the market price of inflation risk nor for that of equity risk. We
set the former at 0, and we set the latter to the value found used in Brennan and Xia (2002), namely
0.343.
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of funding ratio constraints aiming at imposing a left-truncation of the final distri-

bution.

4.2 Minimum funding ratio constraints

In Table 4, we test for the introduction of explicit funding ratio constraints, with a

minimum set at k=90%. In this case, we find that the minimum funding ratio is

indeed limited to k, a value that is reached with a relatively high probability, sug-

gesting that the margin for error is fully utilized with these strategies. In fact, the

dispersion of the funding ratio distribution is narrower on both sides when the pen-

sion fund follows the strategy with explicit constraints than when it chooses the

unconstrained counterpart. For instance, in the case T=20 years and c=5, the

maximum funding ratio is 3.1 in the explicit constraint case, while it reaches 4.01 in

the unconstrained case. That downside protection comes at the cost of a more limited

access to the upside potential can also be seen from the fact that the expected terminal

funding ratio conditional upon being larger than the constraint k, E[FTjFTok], is

always strictly lower in the constrained case than in the unconstrained case. For

example, when T=20 years and c=5, the conditional mean reaches 1.16 in the con-

strained case, while it is 1.51 in the unconstrained case. On the other hand, the

average deficit is also significantly higher in the latter case (13%, as opposed to 8%

in the constrained case).

Table 2. Base case parameters

Parameter Estimate

Interest rate process

a 0.0395
b 0.0369
�ssr 0.0195

Price index process
Q 0.0357
�ssW 0.0081

Stock value process
�ssS 0.1468

Correlation parameters
rrW x0.0032

rSr x0.0845
rSW x0.0678

Risk premium parameters
lr x0.2747

lW 0
lS 0.343

This table contains parameter values for interest rate, price index and stock return processes.
These parameter values, as well as the price for interest rate risk, are borrowed fromMunk et al.
(2004), while the equity risk premium parameter is taken from Brennan and Xia (2002) and the
inflation risk premium is set to zero.
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Table 3. Distribution of the final funding ratio when utility is from terminal funding

ratio and no lower bound is imposed

Horizon T of strategy
(years)

Risk aversion c=2

1 10 20

Min 0.58 0.25 0.16
2.5% 0.74 0.52 0.51
25% 0.92 1.03 1.33
50% 1.03 1.46 2.16
75% 1.16 2.10 3.61
97.5% 1.45 4.18 9.37
Max 1.88 9.58 30.22
Mean 1.05 1.68 2.84
Vol. 0.18 0.94 2.41
P(F*u

T <1) 0.42 0.23 0.14

E(1xF*u
T jF*u

T <1) 0.11 0.24 0.28

E(F*u
T jkfF*u

T ) 1.11 1.89 3.12

E(F*u
T jkfF*u

T f1:1) 1.00 1.00 1.00

c=5

Min 0.80 0.58 0.49
2.5% 0.89 0.78 0.79
25% 0.97 1.02 1.15
50% 1.01 1.18 1.4
75% 1.06 1.36 1.72
97.5% 1.16 1.79 2.51
Max 1.29 2.5 4.01
Mean 1.01 1.2 1.46
Vol. 0.07 0.25 0.44
P(F*u

T <1) 0.43 0.22 0.12

E(1xF*u
T jF*u

T <1) 0.05 0.11 0.13

E(F*u
T jkfF*u

T ) 1.02 1.24 1.51

E(F*u
T jkfF*u

T f1:1) 1.01 1.01 1.01

c=10

Min 0.89 0.75 0.69
2.5% 0.94 0.87 0.87
25% 0.98 1.00 1.05
50% 1.00 1.07 1.15
75% 1.03 1.15 1.28
97.5% 1.07 1.32 1.55
Max 1.13 1.56 1.96
Mean 1.00 1.08 1.17
Vol. 0.03 0.11 0.17
P(F*u

T <1) 0.47 0.26 0.16

E(1xF*u
T jF*u

T <1) 0.03 0.06 0.07

E(F*u
T jkfF*u

T ) 1.00 1.09 1.18

E(F*u
T jkfF*u

T f1:1) 1.00 1.02 1.02

This table reports the minimum and the maximum of the distribution of the terminal funding
ratio, the 2.5%, 25%, 50%, 75% and 97.5% quantiles, the mean and the volatility. Also
reported are the shortfall probability, the expected shortfall and the conditional mean of the
funding ratio given it lies above k=0.9, or between 0.9 and kk=1.1. Parameters are fixed at
their base case values (see Table 2). The pension fund is initially fully funded, and liability
payments are given in Table 1.
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Table 4. Distribution of the final funding ratio when utility is from terminal funding

ratio and a lower bound is imposed

Horizon T of strategy
(years)

Risk aversion c=2

1 10 20

Min 0.90 0.90 0.90
2.5% 0.90 0.90 0.90
25% 0.90 0.90 0.90
50% 0.99 0.98 0.93
75% 1.11 1.4 1.56
97.5% 1.39 2.8 4.04
Max 1.81 6.41 13.04
Mean 1.03 1.24 1.39
Vol. 0.14 0.54 0.93
P(F*k

T <1) 0.52 0.52 0.54

E(1xF*k
T jF*k

T <1) 0.08 0.09 0.09

E(F*k
T jkfF*k

T ) 1.03 1.24 1.39

E(F*k
T jkfF*k

T f1:1) 0.96 0.93 0.92

c=5

Min 0.90 0.90 0.90
2.5% 0.90 0.90 0.90
25% 0.96 0.93 0.90
50% 1.01 1.07 1.07
75% 1.06 1.23 1.32
97.5% 1.16 1.63 1.93
Max 1.28 2.27 3.10
Mean 1.01 1.11 1.16
Vol. 0.07 0.21 0.30
P(F*k

T <1) 0.44 0.37 0.40

E(1xF*k
T jF*k

T <1) 0.05 0.08 0.08

E(F*k
T jkfF*k

T ) 1.01 1.11 1.16

E(F*k
T jkfF*k

T f1:1) 1.00 0.97 0.95

c=10

Min 0.90 0.90 0.90
2.5% 0.94 0.90 0.90
25% 0.98 0.97 0.95
50% 1.00 1.05 1.05
75% 1.03 1.12 1.16
97.5% 1.07 1.29 1.41
Max 1.13 1.52 1.78
Mean 1.00 1.05 1.07
Vol. 0.03 0.10 0.14
P(F*k

T <1) 0.47 0.34 0.37

E(1xF*k
T jF*k

T <1) 0.03 0.06 0.07

E(F*k
T jkfF*k

T ) 1.00 1.05 1.07

E(F*k
T jkfF*k

T f1:1) 1.00 1.00 0.98

This table reports the minimum and the maximum of the distribution of the terminal funding
ratio, the 2.5%, 25%, 50%, 75% and 97.5% quantiles, the mean and the volatility. Also
reported are the shortfall probability, the expected shortfall and the conditional mean of the
funding ratio given that it lies between k=0.9 and kk=1.1. Parameters are fixed at their base
case values (see Table 2). The lower bound k is set to 0.9. The pension fund is initially fully
funded, and liability payments are given in Table 1.
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4.3 Minimum and maximum funding ratio constraints

In Table 5, we introduce an additional upper bound constraint, with a maximum

funding ratio value set at kk=110%. Giving up access to the upside potential above

110% allows one to decrease the cost of downside protection, as can be seen from the

fact that the average of terminal funding ratio values conditional upon being in

the range between 90% and 110% are higher when the upper bound is imposed

than when it is not introduced. In fact, focusing again on T=20 years and c=5,

we have that the conditional expected funding ratio E[F*k, kkT jkfF*k, kkT fkk]=1:04

when both constraints are imposed, while it merely reached 0.95 when only the

lower constraint was imposed. In the unconstrained case, we had that

E[F*k, kkT jkfF*k, kkT fkk]=1:01<1:04. Hence, the addition of the short option position

allows for an improvement of the mean funding ratio over the range of values be-

tween 0.9 and 1.1, not only with respect to the case with minimum funding require-

ment only, but also with respect to the unconstrained case.

4.4 Dynamic properties of the funding ratio

As noted in the theoretical section of this paper, the optimal strategies presented in

propositions 3 and 5 allow for the respect of minimum funding constraints at all times

if the minimum funding level k<1, kk>1, and the initial funding ratio is compatible

with the respect of these constraints (see conditions in the propositions).

Nevertheless, given the regulatory focus on intermediate funding ratios, it is useful

to consider the evolution of this variable over time. In order to keep the analysis as

simple as possible, we assume that there is a single liability payment at the terminal

date T0, which corresponds to the zero-coupon case. We take T0 to be the duration of

the payments in Table 1 (see equation (19)), numerically equal to 11.32 years, and we

set the horizon to 10 years.12 Then it follows from propositions 2, 3 and 5 that the

unconstrained funding ratio and the two constrained wealth funding ratios are

given by

F*ut =
A0

L
1x1=c
0

L
x1=c
t M

x1=c
t exp

Z t

0
jjsI(s,T0)xljj2 ds

� �
,

F*kt =
jA*ut
Lt

N(d1, t)+kN(xd2, t),

F*k, kkt =
jkA*ut
Lt

N(d1, t)x
jkA*ut
Lt

N(dk1, t)+kN(xd2, t)+kkN(d k2, t),

where j, jk, di,t and dki ,t are defined in propositions 3 and 5.

Using these expressions, we simulate the intermediate funding ratios at dates

t=1, 3, 5, 7 and 9 years for a strategy with horizon T=10 years. Table 6 reports the

volatility, mean, minimum and maximum after t years. It appears that the increase in

volatility over time is larger for the unconstrained strategy than for the strategies that

12 The general case, with multiple liability payments, raises a technical difficulty due to the computation of
the conditional expectation denoted by g(t, rt,Wt) in proposition 2. This computation is only feasible in
closed form when t=T (then g(t, rt,Wt) equals 1), or when there is a single payment at date T0, in which
case g(t, rt,Wt) is the expectation of a log-normally distributed random variable.
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Table 5. Distribution of the final funding ratio when utility is from terminal funding

ratio and lower and upper bounds are imposed (kk=1.1)

Horizon T of strategy
(years)

Risk aversion c=2

1 10 20

Min 0.90 0.90 0.90
2.5% 0.90 0.90 0.90
25% 0.93 0.95 0.90
50% 1.04 1.10 1.10
75% 1.10 1.10 1.10
97.5% 1.10 1.10 1.10
Max 1.10 1.10 1.10
Mean 1.02 1.04 1.04
Vol. 0.08 0.09 0.09
P(F*k, kk

T <1) 0.41 0.28 0.31
E(1xF*k, kk

T jF*k, kk
T <1) 0.07 0.09 0.09

E(F*k, kk
T jkfF*k, kk

T ) 1.02 1.04 1.04

E(F*k, kk
T jkfF*k, kk

T f1:1) 1.02 1.04 1.04

c=5

Min 0.90 0.90 0.90
2.5% 0.90 0.90 0.90
25% 0.97 0.97 0.95
50% 1.01 1.10 1.10
75% 1.06 1.10 1.10
97.5% 1.10 1.10 1.10
Max 1.10 1.10 1.10
Mean 1.01 1.04 1.04
Vol. 0.06 0.08 0.08
P(F*k, kk

T <1) 0.43 0.29 0.32
E(1xF*k, kk

T jF*k, kk
T <1) 0.05 0.07 0.08

E(F*k, kk
T jkfF*k, kk

T ) 1.01 1.04 1.04

E(F*k, kk
T jkfF*k, kk

T f1:1) 1.01 1.04 1.04

c=10

Min 0.90 0.90 0.90
2.5% 0.94 0.90 0.90
25% 0.98 0.98 0.96
50% 1.00 1.05 1.06
75% 1.03 1.10 1.10
97.5% 1.07 1.10 1.10
Max 1.10 1.10 1.10
Mean 1.00 1.03 1.03
Vol. 0.03 0.07 0.08
P(F*k, kk

T <1) 0.47 0.32 0.34
E(1xF*k, kk

T jF*k, kk
T <1) 0.03 0.05 0.07

E(F*k, kk
T jkfF*k, kk

T ) 1.00 1.03 1.03

E(F*k, kk
T jkfF*k, kk

T f1:1) 1.00 1.03 1.03

This table reports the minimum and the maximum of the distribution of the terminal funding
ratio, the 2.5%, 25%, 50%, 75% and 97.5% quantiles, the mean and the volatility. Also
reported are the shortfall probability, the expected shortfall and the conditional mean of the
funding ratio given that it lies between k=0.9 and kk=1.1. Parameters are fixed at their base
case values (see Table 2). The pension fund is initially fully funded, and liability payments are
given in Table 1. The lower bound k is set to 0.9 and the upper bound kk to 1.1.
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impose at least one bound: when c=2, volatility ranges from 0.18 after 1 year to 0.78

after 9 years with no constraint, and from 0.06 to 0.41 with a lower bound only. This

effect is straightforward: by cutting either the left tail or both tails of the distribution,

these strategies reduce the volatility. Similarly, the mean, the minimum and the

maximum vary less over time for the two constrained strategies. The unconstrained

strategy is found to respect neither the minimum funding constraint nor the maxi-

mum one, whatever the horizon. The violations of these constraints are, however,

more limited in size at short horizons and for high levels of risk aversion.

5 Robustness checks

The strategies that have been studied in the previous sections have been derived under

the assumption of perfect and dynamically complete financial markets. A natural

question is whether they still have good properties outside this idealized framework.

The purpose of this section is therefore to assess their robustness with respect to

various forms of imperfection or incompleteness, such as the inability for pension

funds to implement continuous trading, as well as incompleteness arising from jump

risk in the stock or from unspanned liability risk. We do not tackle the problem of

computing optimal strategies in these imperfect settings, and we focus on the question

whether the constrained strategy of Section 3.1 still respects a minimum funding

constraint with reasonably high probability.

5.1 Introducing dynamic incompleteness

The optimal terminal net wealth obtained in proposition 3 can only be generated

through dynamic trading in continuous-time. In practice, continuous trading is im-

possible because of transaction costs or liquidity constraints. It is therefore relevant

to test whether the strategy described in the proposition satisfies the minimum

funding constraints when it is implemented in discrete time. We focus on the zero-

coupon case, because it leads to a fully analytical expression for the optimal strategy

in continuous time. Hence, there is a single liability payment at the terminal date

T0=11.32 years.

We assume that trading takes place at dates 0<t1< . . .<tn<T, where the time

step Dt=ti+1xti can be either one week, one month, two months or one year. The

portfolio is rebalanced at each date ti, and is buy-and-hold over the period [ti, ti+1].

The weights allocated to the stock index, the nominal bond and the indexed bond at

date ti are given by the vector v*kti , where v*k is the portfolio rule that has been

shown to be optimal in continuous time (see equation (15)). The weight allocated to

cash is one minus the sum of the weights allocated to the other assets. This strategy

generates a certain terminal wealth, and panel (a) of Table 7 summarizes the distri-

bution of the terminal funding ratio. It also reports descriptive statistics on the dis-

tribution of the terminal funding ratio when the strategy is implemented in

continuous time. The continuous-time distributions have been obtained through direct

simulation of the terminal payoff (14). All the results in this table have been obtained

assuming an investment horizon of T=10 years, and a lower bound k=0.9.
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Table 6. Distribution of intermediate funding ratios

(a) Optimal strategy with no lower bound

Horizon t
(years)

Risk aversion c=2

1 3 5 7 9

Vol. 0.18 0.33 0.47 0.61 0.78
Mean 1.03 1.09 1.16 1.24 1.33
Min 0.53 0.35 0.25 0.22 0.14
Max 1.88 3.57 5.11 5.85 9.12

c=5

Vol. 0.07 0.12 0.16 0.20 0.23
Mean 1.00 1.01 1.02 1.03 1.04
Min 0.77 0.65 0.56 0.53 0.44
Max 1.28 1.65 1.89 1.97 2.34

c=10

Vol. 0.03 0.06 0.08 0.10 0.11
Mean 1.00 1.00 1.00 1.01 1.01
Min 0.88 0.80 0.75 0.73 0.66
Max 1.13 1.28 1.37 1.40 1.52

(b) Optimal strategy with lower bound

Horizon t
(years)

c=2

1 3 5 7 9

Vol. 0.06 0.13 0.21 0.30 0.41
Mean 1.02 1.05 1.09 1.14 1.20
Min 0.91 0.90 0.90 0.90 0.90
Max 1.41 2.52 3.59 4.12 6.41

c=5

Vol. 0.04 0.07 0.10 1.12 0.15
Mean 1.01 1.02 1.03 1.04 1.06
Min 0.92 0.90 0.90 0.90 0.90
Max 1.21 1.53 1.75 1.84 2.17

c=10

Vol. 0.02 0.05 0.06 0.07 0.09
Mean 1.00 1.02 1.01 0.02 1.02
Min 0.93 0.91 0.90 0.90 0.90
Max 1.12 1.26 1.35 1.38 1.50

(c) Optimal strategy with lower and upper bounds

Horizon t
(years)

c=2

1 3 5 7 9

Vol. 0.02 0.04 0.04 0.05 0.06
Mean 1.00 1.00 1.01 1.01 1.01
Min 0.93 0.91 0.90 0.90 0.90
Max 1.88 3.58 5.11 5.85 9.12

c=5

Vol. 0.02 0.04 0.04 0.05 0.06
Mean 1.00 1.00 1.00 1.00 1.01
Min 0.93 0.91 0.90 0.90 0.90
Max 1.2 1.65 1.89 1.97 2.34
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We find that the introduction of dynamic incompleteness leads to a positive

probability of violating the minimum funding constraint. Indeed, the minimum value

for the funding ratio happens to be lower than the minimum funding value k when

trading is yearly or bimonthly. On the other hand, these violations are very limited in

probability, since the minimum funding level is respected in at least 97.5% of the

scenarios, except for the somewhat extreme assumption of annual rebalancing. For a

reasonable trading frequency of one month, we find that the constraint is violated

with positive probability only in the case c=10, but is respected at the 2.5% level.

Overall, these results show that discrete trading does not lead to worrying dete-

riorations of the performance of the continuous-time strategy, as far as the objective

of respecting a minimum funding level is concerned.

5.2 Introducing jump risk on the asset side

As a second robustness check, we now test the behavior of the strategy in the presence

of jumps in the dynamics of stock returns. Jumps make the market incomplete, since

they cannot be hedged. Formally, we followMerton (1976) in assuming that the stock

price evolves as a mixture of a pure diffusion process and a Poisson process

dSt=St[rt+sSlSx�x] dt+StskS dzt+Stxx dNt: (20)

In this equation, N denotes a Poisson process with constant intensity under P de-

noted by i, a process that we assume to be independent of z. x represents the jump

size. This quantity is negative, but ensuring that the price remains positive requires

x>x1. The price process is right continuous, but no longer continuous, hence the

Stx in the above equation.

The presence of jump risk introduces a form of dynamic incompleteness. As

pension cash-flows are not impacted by the presence of jumps in the stock price, the

no-arbitrage value of liabilities equals the same L0 as in the complete market case. On

the other hand, the optimal strategies that were derived with or without funding

Table 6. (cont.)

Horizon t
(years)

c=2

1 3 5 7 9

c=10

Vol. 0.02 0.03 0.04 0.05 0.05
Mean 1.00 1.00 1.00 1.01 1.01
Min 0.93 0.91 0.90 0.90 0.90
Max 1.07 1.09 1.10 1.10 1.10

This table reports descriptive statistics on the intermediate optimal funding ratio in three
situations: no lower bound is imposed, a lower bound k=0.9 is imposed, and a lower bound
and an upper bound kk=1.1 are simultaneously imposed. The pension fund is initially fully
funded, and liabilities are represented by a single payment of WT0 at date T0=11.32 years, and
the horizon of the strategy is T=10 years. Other parameters are fixed at their base case values
(see Table 2).
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Table 7. Summary of robustness checks

(a) Discrete-time trading

Trading frequency

Risk aversion c=2

Yearly Bi-monthly Monthly Weekly Continuous

Min 0.73 0.84 0.90 0.90 0.90
2.5% 0.89 0.91 0.91 0.92 0.90

c=5
Min 0.81 0.89 0.90 0.91 0.90
2.5% 0.91 0.91 0.92 0.92 0.90

c=10

Min 0.90 0.89 0.89 0.91 0.90
2.5% 0.93 0.92 0.91 0.91 0.90

(b) Jump risk in stock index

Risk aversion c=2

Average time between two
jumps (years)

5 5 5 1 1 1

Size of jumps (in %) 20 10 5 20 10 5

Min 0.75 0.88 0.90 0.51 0.79 0.87
2.5% 0.87 0.91 0.91 0.71 0.88 0.91

c=5
Min 0.85 0.88 0.90 0.77 0.84 0.89
2.5% 0.89 0.91 0.92 0.83 0.90 0.91

c=10
Min 0.88 0.89 0.89 0.81 0.87 0.90
2.5% 0.90 0.91 0.91 0.87 0.90 0.91

(c) Unspanned liability risk

Volatility of specific liability
risk (in %)

Risk aversion c=2

5 1 0

Min 0.76 0.89 0.90
2.5% 0.87 0.91 0.91

c=5

Min 0.79 0.89 0.90
2.5% 0.88 0.91 0.92

c=10

Min 0.80 0.89 0.89
2.5% 0.90 0.91 0.91

In panel (a), we study the impact of the rebalancing frequency. In panel (b), we introduce
downside jumps in the price process of the stock index. In panel (c), liabilities include a specific
risk component orthogonal to all traded risks. Liabilities are paid at date T0=11.32 years, the
investment horizon is T=10 years, and the lower bound k is set to 0.9. Other parameters are
fixed at their base case values (see Table 2).
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constraints in the absence of jumps (see propositions 2, 3 and 5) are now suboptimal.

We do not attempt here to compute optimal strategies in the presence of jumps.13

Instead, we use the same weights as in the complete market case, and we apply them

to the two zero-coupon bonds and the stock with jump risk. These weights are given

by (15). They involve, in particular, the constant j which is solution to the equation

jA0N(d1, 0)xkL0N(d2, 0)=A0xkL0, (21)

where d1,0 and d2,0 are given by equations (16) and (17). It should be noted that

because of market incompleteness, the left side is no longer the no-arbitrage price of

the payoff [jAT*
uxkLT]

+ ; therefore (21) is taken here as a definition, rather than a

property, of j. We then implement strategy (15) with monthly rebalancings, which

corresponds to a commonly chosen frequency in practice.

Panel (b) of Table 7 summarizes the distribution of the terminal funding ratio. We

find that jumps of exceedingly large size or frequency are needed for the strategy to

exhibit severe and frequent violations of the minimum funding ratio requirements.

For example, assuming that a jump takes place on average every 5 years, with a

x20% intensity, we find for c=2 that the minimum funding ratio is 75%, with the

2.5% bottom percentile already very close to the minimum funding requirement,

with the value 87%. If a jump of the same size were to occur on average every year,

the strategy would not perform as well : for c=2, the probability of not satisfying the

minimum funding requirement would be more than 50%. However, a x20% jump

on average every year appears to be an extreme assumption.14 For c=2, in each but

this particular case, the probability of not breaching the floor is greater than 75%.

For greater values of the relative risk aversion, the terminal net wealth is less im-

pacted by jump risk since stocks receive a lower allocation. For instance, when c=10,

the constraint is satisfied with a probability of 2.5% in all cases, except if a x20%

jump occurs on average every year.

5.3 Introducing specific liability risk

So far we have assumed that pension payments were only subject to interest rate and

inflation risks. Since nominal and indexed bonds are assumed to be traded on the

financial market, liability risk is therefore entirely spanned by existing securities. In

practice, however, the presence of specific liability risk related, in particular, to

actuarial uncertainty induces a particular form of market incompleteness. We do

not attempt here to present a realistic model for the dynamics of the work force

demography, but instead to introduce a stylized model that will allow us to test the

robustness of the dynamic strategies in the presence of actuarial risk that is not

spanned by traded securities. Formally, we assume that the amount to be paid at time

T0 is equal to eT0WT0 , where

eT0=exp[xs2
eT0+se~zzT0 ]:

13 See e.g. Liu et al. (2003) for examples of utility-maximizing strategies in a jump model.
14 Liu et al. (2003) consider a model in which a x25% jump takes place at the average frequency of

25 years.
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In this equation, ~zz is a P-Brownian motion independent of z that represents actuarial

risk. This risk is therefore assumed to be independent of financial risk, which

is arguably a reasonable approximation of reality. As the traded assets only span

interest rate, inflation and stock price risks, the market is no longer complete.

Technically speaking, there exist infinitely many equivalent martingale measures (see

Harrison and Kreps, 1979). To each martingale measure corresponds a pricing kernel

through equation (3), and one price process for the liability payment LT0 . As shown

by He and Pearson (1991), the solution to the utility maximization problem (9)

involves the ‘minimax’ pricing kernel. In this section, we do not solve for minimax

pricing kernel, and we fix the martingale measure exogenously by taking the

‘minimal ’ martingale measure (see Föllmer and Schweizer, 1990) : this measure,

which assigns a zero price to non-traded risks, leads to the same price process for the

liability as in the complete market setting:15

Lt=Et
MT

Mt
eT0WT0

� �
=etI(t,T0):

We then solve for j in equation (21), and we implement the dynamic strategy (15) on

a monthly basis, using the minimal entropy price Lt for the liability wherever needed.

Panel (c) in Table 7 reports summary statistics on the distribution of the terminal

funding ratio for different values of se, which is the parameter driving the uncertainty

on eT0 through the equality :

V[eT0 ]=exp[s2
eT0]x1:

Since there is a specific risk factor in the liability payment, the payoff LT is not

replicable, so it is impossible to ensure that the terminal funding ratio is greater than

k with probability 1. The results confirm that the introduction of unspanned liability

risk causes a deterioration of the performance of the risk-controlled strategy. For

reasonable parameter values leading to 5% standard deviation in eT0 , we find that

minimum funding requirement is respected with a 2.5% probability when c=10, and

close to being respected at the 2.5% confidence level for c=2 and c=5. Overall, it

appears that the benefits of the risk-controlled strategies are relatively robust with

respect to the introduction of various forms of market incompleteness.

6 Conclusion and extensions

DB pension funds are currently facing a serious challenge and dilemma. On the one

hand, the desire to alleviate the burden of contributions leads them to invest signifi-

cantly in equity markets and other classes poorly correlated with liabilities but

offering superior long-term performance potential. On the other hand, stricter regu-

latory environments and accounting standards give them more incentive to invest

a dominant fraction of their portfolios in assets highly correlated to liabilities.

15 Föllmer and Schweizer (1990) also show that this measure is the martingale measure that is chosen by an
investor who replicates LT0 by continuously infusing or withdrawing infinitesimal amounts of cash and
attempts to minimize the expected sum of squared contributions. This strategy is coined by the authors
‘ local risk minimization’.
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Although there is a general agreement about the fact that some regulatory constraints

are needed, there is a fierce debate regarding whether it makes sense to impose strict

short-term funding constraints to long-term investors. The point of our paper is not

to question whether minimum funding ratio constraints are desirable or not, but

instead to analyze what exact strategies are optimal given such constraints. We cast

this question in the context of a continuous-time dynamic asset allocation model for

an investor facing liability commitments subject to inflation and interest rate risks.

When (regulatory or self-imposed) constraints on the funding ratio are introduced,

the optimal policy is shown to involve dynamic trading strategies that allow investors

to hedge out downside risk beyond the minimum funding level, at the cost of a less

than 100% access to the upside generated by the otherwise comparable uncon-

strained strategy. We also find that the introduction of maximum funding ratio tar-

gets would allow pension funds to decrease the cost of downside protection while

giving up part of the upside potential beyond levels where marginal utility of wealth

(relative to liabilities) is low or almost zero.

This analysis can be extended in a number of directions. In particular, we have

focused on the pension fund situation, mostly taken in isolation from the sponsor

company. Abstracting away from the sponsor company allows for a dramatic sim-

plification of the problem, and it would be desirable to develop a more integrated

approach to ALM, with a focus on optimal allocation and contribution policies from

the shareholders ’ standpoint. This would, however, require a formal capital structure

model, with an analysis of the rational valuation of liability streams as defaultable

claims, as well as an analysis of the impact of asset allocation decisions on the sponsor

company credit ratings. It would also require a careful analysis of the agencies issues

among the various stakeholders, including equity holders and bondholders of the

sponsor company, but also workers and pensioners, as well as managers of the pension

funds and their trustees. Regarding default on pension obligations, it should also be

noted that in some countries such as the US, there exists a pension insurance system,

which is in charge of (partially) compensating for the deficit, if any, in pension pay-

ment in case of default of the sponsor company.16 Analyzing the impact of these

additional sources of complexity is beyond the scope of the present paper, and is left

for further research.
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Appendix A: Proof of the main propositions

A.1 Proof of proposition 1

The expression for the nominal zero-coupon bond is standard (Vasicek, 1977). For

the inflation-linked bond, we proceed as follows. First it follows from Girsanov’s

theorem that the process ẑ defined by dẑt =dzt+ldt is a Q-Brownian motion. The

dynamics of r and W under Q are

drt=a(~bbxrt)dt+skr dẑt,

dWt=Wt[~QQdt+skW dẑt]:

Hence

Wt2=Wt exp

Z t2

t

~QQx
jjsWjj2

2

� �
du+

Z t2

t

skW dẑu

� �
,

Z t

t

rudu=~bb t2xtx
1xexa(t2xt)

a

� �
+

1xexa(t2xt)

a
rt+

1

a

Z t2

t

(1xexa(t2xu))skr dẑu :

Standard computations of expectations of log-normal random variables yield the

result.
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A.2 Proof of proposition 2

Following Cox and Huang (1989), we write (9) as a static maximization program

whose control variable is the terminal wealth

max
AT

E
1

1xc

AT

LT,T0
T

 !1xc" #

subject to constraint E[MTAT]=A0xL0,T
0 . The associated first-order condition reads

A*uT =LT,T0
T n1MTL

T,T0
T


 �x1=c
:

The optimal wealth process A*u is then given by

A*ut =Lt,T
t +n

x1=c
1 M

x1=c
t (LT,T0

t )
1xð1=cÞ

Et
MTL

T,T0
T

MtL
T,T0
t

� �1xð1=cÞ" #
:

The process X=MLT,T0 follows a martingale under P, so that

dXt

Xt
= sT,T0

L, t xl
h i

k
dzt:

The volatility vector is a function of (t, rt, Wt), hence the triplet (r, W, X) has the

Markov property under P. In particular, there exists some function h of (t, rt,Wt, Xt)

such that

Et
XT

Xt

� �1xð1=cÞ
" #

=h(t, rt,Wt,Xt):

Let us set H(t, rt,Wt,Xt)=X
1xð1=cÞ
t h(t, rt,Wt,Xt). The process (H(t, rt, Wt, Xt))t fol-

lows a martingale under P. Assuming that h is smooth, this implies that the function

H solves the following partial differential equation (p.d.e.) :

0=Hra(bxr)+HWWp+1
2Hrrs

2
r+

1
2HWWs

2
WW

2

+1
2HXXjjsXjj2X2+HrXXskrsX+HWXWXskWsX+HWrWskWsr,

where sX=sT,T0
L, t xl. The terminal condition is H(T, r,W,X)=X1xð1=cÞ. It is easily

verified that this p.d.e. has a solution of the form X1xð1=cÞh1, where h1 is a function of

(t, r,W) only. Therefore, we have that g=h1, and

A*ut =Lt,T
t +n

x1=c
1 M

x1=c
t (LT,T0

t )1xð1=cÞg(t, rt,Wt):

In the zero-coupon case, we have Lt
t,T=0 for any tfT, and sT,T0

L =sL is determi-

nistic, which allows for analytical computation of g(t, rt, Wt) :

g(t, rt,Wt)=exp x
1

2c
1x

1

c

� �Z T

t

jjsL, sxljj2 ds
� �

: (A:1)

In particular, we have that gr=gW=0. Moreover, we have that

LT,T0
r =a(T0xt)LT,T0

t and LT,T0
W =

LT,T0
t

Wt
:
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Applying Ito’s lemma to the process A*u, we obtain the optimal strategy v*u written

in proposition 2.

A.3 Proof of proposition 3

The first-order optimality condition reads

1

LT

A*kT
LT

 !xc

xn2MT+
n3
LT

=0,

where n3o0, n3((A*
k

T =LT)xk)=0 and A*kT okLT. Hence, the optimal terminal net

wealth and the optimal wealth process

A*kT =kLT+ [LT(n2MTLT)
x1=cxkLT]

+
, (A:2)

A*kt =Lt,T
t +kLT,T0

t +EQt [e
x
R T

t
ru du(jA*uT xkLT)

+], (A:3)

where A*uT is the optimal final net wealth in the absence of constraints on the

funding ratio, j is equal to (n2/n0)
x1/c and n0 is the Lagrange multiplier associated

with the budget constraint in (9). The expectation in equation (A.3) is the price at

time t of the option to exchange the payoff kLT for the payoff jAT*
u at time T. Since

the process ((rt,Wt,A*
u

t xLt,T
t ,LT,T0

t ))t has the Markov property underQ, there exists

some measurable function Ex such that

EQt [e
x
R T

t
ru du(jA*uT xkLT)

+]=Ex(t, rt,Wt, j(A*
u

t xLt,T
t ), kLT,T0

t ):

It is only in the zero-coupon case that the volatility vector of A*u=LT,T0 is determi-

nistic, which allows for the use of Margrabe’s formula to price the exchange option

A*kt =kLt+j(A*ut xLt,T
t )N(d1, t)xkLT,T0

t N(d2, t),

where d1,t and d2,t are given in the statement of the proposition. We then apply Ito’s

lemma

dA*kt =rtA*
k

t dt+kLtsI(t,T0)kd ẑt+(A*kt xkLt)sI(t,T0)kdzt

+
j(A*kt xLt,T

t )N(d1, t)

c
[lxsI(t,T0)]k d ẑt:

Writing jAt*
uN(d1,t) as At*

kxkLtN(xd2,t) and rearranging terms leads to the opti-

mal portfolio strategy given in proposition 3.

A.4 Proof of proposition 4

First note that for k>0, the price of the exchange option lies between the no-

arbitrage bounds given on the one hand by the intrinsic value of the option

[j(A0xL0,T
0 )xkLT,T0

0 ]
+

and on the other hand by the underlying price j(A0xL0
0,T ) :

j(A0xL0,T
0 )xkLT,T0

0

� �+
<A0xL0,T

0 xkLT,T0
0 <j(A0xL0,T

0 ),
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which implies that j<1 and also that j>1x(kLT,T0
0 =A0xL0,T

0 ).

A.5 Proof of proposition 5

We just explain how to derive the optimal terminal net wealth. The first-order

optimality condition for the optimization program reads

1

LT

A*k, kkT

LT

 !xc

xn4MT+
n5
LT

x
n6
LT

=0,

where kLTfAT*fkkLT, n5 and n6 are non-negative and n5(A*
k, kk

T xkLT)=n6(A*
k, kk

T x
kkLT)=0. This implies that

A*k, kkT =k+[(n4MTLT)
x1=cxk]+x[(n4MTLT)

x1=cxkk]+:

Having written the optimal payoff under this form, we are back to the proof of

proposition 13 (see appendix A.3).

A.6 Proof of proposition 6

By definition of jk, we have that

Ex(0, r0,W0, j(A0xL0,T
0 ), kLT,T0

0 )=Ex(0, r0,W0, jk(A0xL0,T
0 ), kLT,T0

0 )

xEx(0, r0,W0, jk(A0xL0,T
0 ), kkLT,T0

0 ):

Since Ex is a strictly increasing function of its fourth argument, we obtain that

j(A0xLT,T0
0 )<jk(A0xLT,T0

0 ), which implies that j<jk.
Assume now that k<F*k, kkT <kk. Then F*k, kkT =jkF*, uT . If FT*

k=k, then it is clear

that FT*
k,kk>FT*

k. If FT*
k=jFT*

,u, then we have that FT*
k,kk>FT*

k as well.
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