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We give a new characterisation of integrability of a planar vector field at the origin. This

allows us to prove that the analytic systems

ẋ =

(
∂h

∂y
(x, y)K(h, yn) + yn−1Ψ (h, yn)

)
ξ(x, y), ẏ = − ∂h

∂x
(x, y)K(h, yn)ξ(x, y),

where h,K,Ψ and ξ are analytic functions defined in the neighbourhood of O with K(O)� 0

or Ψ (O)� 0 and n � 1, have a local analytic first integral at the origin. We show new families

of analytically integrable systems that are held in the above class. In particular, this class

includes all the nilpotent and generalised nilpotent integrable centres that we know.
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1 Introduction

One of the most important problems related to the analytic planar systems differential

equations

(ẋ, ẏ)T = X(x, y) = (P (x, y), Q(x, y))T (1.1)

is determining when the system has an analytic first integral defined in the neighbourhood

of a singular point (we can assume that the origin is the singular point).

We recall that a function H is said to be an analytic first integral of (1.1) in an open

subset U of �2 if H is a non-constant analytic function in U which is constant on each

solution curve of (1.1) in U. Clearly, in this case such condition is equivalent to ∇H ·X ≡ 0

in U. We say that a non-zero formal power series H = a00 + a10x+ a01y + · · · is a formal

first integral of (1.1) if it satisfies formally that ∂H/∂xP (x, y)+ ∂H/∂yQ(x, y) ≡ 0. If there

exists a formal (analytic) first integral of (1.1) in the neighbourhood of the origin, it says

(1.1) is formally (analytically) integrable. The problem of determining the existence of a

first integral is known as integrability problem. For isolated singularities, in the analytic

case, according to the result of Mattei and Moussu [20], under generic conditions, both

formal and analytic integrability are equivalent.

The existence of a first integral can be used to determine the local phase portrait

at an isolated singular point, and in particular to characterise when the monodromic
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singular point (the orbits of the system close to the isolated singular point turn around

it) is a centre or a focus (centre problem). Hence, it will be interesting to know when a

monodromic point has a first integral around it, since in such a case it is a centre.

It is known that any analytic differential system with a centre at the origin has an

analytic first integral defined in a punctured neighbourhood of it, see Li et al. [18]. Also,

Mazzi and Sabatini [21] prove that any analytic differential system with a centre in a

given singular point has a smooth first integral around it. Therefore, another interesting

problem will be to recognize when this first integral is, or is not, analytic.

Let us now do a more detailed review of the known results related to both problems. We

know that a system can have a monodromic point at the origin only if it has either linear

part of centre type, i.e. with imaginary eigenvalues (non-degenerate point), or nilpotent

linear part (nilpotent point) or null linear part (degenerate point).

When the system has linear part of centre type, it follows the classical method of seeking

the Liapunov function V gives V = x2 + y2 + O(|x, y|2) defined in the neighbourhood of

the origin. It is known (see [23]) that the function V can be constructed such that V̇ ,

its rate of change along trajectories, is of the form V̇ = η2(x
2 + y2) + η4(x

2 + y2)2 + · · · ,
where ηj are polynomials in the coefficients of the system. The critical point is a centre if

and only if all the focal values η2j are zero; in such a case, there exists an analytic first

integral defined at the origin (Non-degenerate centre theorem, due to Poincaré [24] and

Liapunov [19]).

If a nilpotent or degenerate monodromic singular point has an analytic first integral,

then it is a centre. However, there are some nilpotent and degenerate centres which are

non-integrable. If the linear part of the system is nilpotent, theoretically, Moussu [22]

characterises the centres and Strozyna and Zoladek [25] obtain the orbital normal form of

the centres with analytic first integral. Chavarriga et al. [6] prove that if a nilpotent centre

of an analytic system has a formal (analytic) first integral, then it has a formal (analytic)

first integral of the form H = y2 +F(x, y), where F starts with terms of order higher than

two. This result is used as a tool in order to detect if an analytic nilpotent centre has an

analytic first integral or not. Thus, for instance, the system ẋ = y + x2, ẏ = −x3 has a

centre at the origin, but there exists neither an analytic first integral defined at the origin

nor a formal first integral. In that paper, the authors also prove that the monodromic

nilpotent systems time reversible under the change of variables (x, y, t) → (x,−y,−t) have

a local analytic first integral at the origin, see [17] for a short proof of the same result.

Giacomini et al. [12, 13] prove that the analytic nilpotent systems with a centre can

be expressed as limit of non-degenerate systems with a centre, and consequently the

Poincaré-Liapunov method can be used to find the nilpotent centres.

Others papers related to the analytic integrability problem of nilpotent centre are [7–10

and 15] and related to the nilpotent centres are [3] and [11].

Analogously, in general, if the linear part of the system is null, we cannot expect to have

integrability at a centre. An example of a degenerate centre (null linear part) which does

not have an analytic first integral at the centre is given in [23] (p. 122). The proof of this

fact can be seen in [14]. The above example is a reversible system. Recently, Algaba et al.

([1] p. 426, Proposition 12) gave a family of systems with a degenerate singular point.

This family contains, in particular, non-integrable, non-Hamiltonian and non-reversible

centres.
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On the other hand, there are also integrable systems with a non-monodromic critical

point. In this sense, Algaba et al. [2], using the normal form theory, solve the integrability

problem of a family of planar systems that can be expressed as a perturbation of a

Hamiltonian quasi-homogeneous system with high-degree quasi-homogeneous terms and

whose Hamiltonian satisfies some generic conditions.

Others papers related to integrability of degenerate systems are [14] and [16].

The next section contains our contribution. We give a new characterisation of ana-

lytically integrable systems (Theorem 2.1). This fact allows us to find a wide family of

systems (Theorem 2.2), which includes, among others, the above-mentioned vector fields.

Furthermore, we give some new families of analytically integrable non-degenerate, nilpo-

tent and degenerate systems (Theorem 2.3). We conclude that all the integrable nilpotent

or generalised nilpotent centres that we know belong to the family (2.2).

2 Some families of analytically integrable planar systems

Now we prove the main results obtained. The first is a new characterisation of analytically

integrable systems.

Theorem 2.1 System (1.1) has a local analytic first integral defined in a neighbourhood

of O if and only if there exist two analytic functions u and v with ∂(u,v)
∂(x,y)

(x, y) � 0 in a

neighbourhood of O, except possibly in a null Lebesgue measure set, such that ∇u · X =

F(u, v)∇v · X where F is an analytic function in a neighbourhood of (u(O), v(O)).

Proof We assume that (1.1) has an analytic first integral H. Choosing u = H(x, y), v any

analytic function defined in a neighbourhood of the origin satisfying ∂(u,v)
∂(x,y)

(x, y)� 0 except

perhaps in the null Lebesgue measure set, and F(u, v) ≡ 0, the result follows.

Conversely, making the change of variables (possibly singular), u = u(x, y), v = v(x, y),

the system (1.1) becomes

u̇ = ∇u · X = F(u, v)∇v · X,

v̇ = ∇v · X.

If ∇v · X ≡ 0, then v(x, y) is a first integral of X, otherwise, by redefining the time variable

by dτ = ∇v · Xdt and by denoting d
dτ

=′ it turns out that

u′ = F(u, v), v′ = 1. (2.1)

From the Cauchy–Arnold’s theorem (see [5], p. 98), the system (2.1) has an analytic first

integral H(u, v) defined in the neighbourhood of (u(O), v(O)), that is, ∇H · (F, 1)(u, v) =
∂H
∂u
F + ∂H

∂v
= 0. We define H̃(x, y) := H(u(x, y), v(x, y)), which is an analytic function in

a neighbourhood N of the origin, since it is a composition of analytic functions. Also,

∇H̃ ·X(x, y) = ∂H
∂u

(∇u ·X) + ∂H
∂v

(∇v ·X) = ∇v ·X(x, y)[∇H · (F, 1)(u, v)] = 0, for all (x, y) ∈ N

(by reducing N if necessary). Moreover, H̃ is non-constant since H is non-constant and
∂(u,v)
∂(x,y)

(x, y) = 0 except possibly in the null Lebesgue measure set. Therefore, H̃ is an analytic

first integral of (1.1) in N. �

The next result provides a new class of systems with a local analytic first integral.
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Theorem 2.2 The family of systems of differential equations

ẋ =

(
∂h

∂y
(x, y)K(h, yn) + yn−1Ψ (h, yn)

)
ξ(x, y),

ẏ = − ∂h

∂x
(x, y)K(h, yn)ξ(x, y),

(2.2)

where h,K,Ψ and ξ are analytic functions defined in a neighbourhood of O with n �
1, ∂h

∂x
(x, y) � 0 and K(O)� 0 or Ψ (O)� 0 is analytically integrable at the origin.

Proof If Ψ (O)� 0, by taking

u = yn, v = h, F(u, v) =
−nK(u, v)

Ψ (u, v)

and by applying Theorem 2.1 the result follows. In the case Ψ (O) = 0, K(O)� 0, and we

can choose

u = h, v = yn, F(u, v) =
−Ψ (u, v)

nK(u, v)
.

�

This class is wide enough and includes some systems and families of interest. We now

give several subfamilies of (2.2).

Theorem 2.3 The following systems have a local analytic first integral at the origin:

(a)

ẋ = x + a1y + a2xy + a3y
2 + a4x

2y + a5xy
2 + a6y

3,

ẏ = −y + (b1 + b2x + b3y)y
2,

(2.3)

with ak and bk being arbitrary constants such that a4 + b2 = 0.

(b)

ẋ = y3 + a1x
2 + a1(4a4 − b2)x

2y2 + a3y
5 + a4x

4y,

ẏ = −x3 − 2a1xy + b2x
3y2 + 2a1b2xy

3,
(2.4)

with a1, a3, a4 and b2 being arbitrary constants.

(c)

ẋ = yn−1Ψ̄ (xm, yn), ẏ = xm−1K̄(xm, yn), (2.5)

with Ψ̄ and K̄ being analytic functions such that Ψ̄ (O)� 0 or K̄(O)� 0 and n, m � 1.

(d)

ẋ = y +
∂h2m

∂y
h
p
2m +

p∑
k=0

akh
p−k
2m y2m(k+1)−1, ẏ = −∂h2m

∂x
h
p
2m, (2.6)

where p � 0, h2m is a homogeneous polynomial of degree 2m and ak are an arbitrary

constants, k = 0, . . . , p.

(e)

ẋ = yl−1 + Ω(xm), ẏ = −xm−1, (2.7)

where Ω is an analytic function and m, l � 1.
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Proof

(a) For n = 1, ξ ≡ 1, h(x, y) = xy and

K(h, y) = 1 + a4h − b1y − b3y
2,

Ψ (h, y) = a1 + (a2 + b1)h + a3y
2 + (a5 + b3)hy + a6y

3,

in (2.2) becomes (2.3). Therefore, the origin of these systems is an integrable saddle point.

(b) Taking n = 2, ξ ≡ 1 and

h(x, y) =
1

4
x4 +

1

4
y4 + a1x

2y,

K(h, y2) = 1 − b2y
2,

Ψ (h, y2) = 4a4h + (a3 + b2 − a4)y
4

in (2.2) becomes (2.4).

We note that if a1 = 0, the origin is a monodromic point and therefore it is a centre.

Otherwise, O is a saddle point.

(c) For h(x, y) = xm, ξ ≡ 1, Ψ (h, yn) = Ψ̄ (mh, yn) and −mK(h, yn) = K̄(h, yn) in (2.2)

becomes (2.5).

(d) Taking n = 2, ξ ≡ 1, h(x, y) = h2m(x, y) and

K(y2, h) = h
p
2m, Ψ (y2, h) = 1 +

p∑
k=0

akh
p−k
2m y2m(k+1)−2

in (2.2) becomes (2.6).

(e) Taking K ≡ 1, n = 1, ξ ≡ 1 and

h(x, y) =
1

l
yl +

1

m
xm, Ψ (h, y) = Ω(mh − m

l
yl)

in (2.2) becomes (2.7). �

3 Conclusions

In the following remarks, we emphasise the wideness of the family (2.2).

• In [16] Giné studies the systems called generalised nilpotent systems, (ẋ, ẏ)T = (yr +

Ps, Qs)
T with a formal first integral of the form yk + F(x, y), where Ps and Qs are

homogeneous polynomials of degree s = 2, 3, 4, 5, r = 1, 2, 3, r < s and, F starts with

terms of order higher than k = 1, 2, 3, 4, 5, 6, 7. All are included in the family (2.5).

In particular, if m = 1, n = 2 and Ψ̄ (x, y2) = 1 + f(x, y2), the system (2.5) turns out to

be

ẋ = y + yf(x, y2), ẏ = K̄(x, y2). (3.1)

So the nilpotent systems time reversible under the change of variables (x, y, t) → (x,−y,−t)

are analytically integrable. In the case of a centre, this fact is proved in [6]. If the singular

point is non-monodromic, Chavarriga’s [6] result is also true. For instance, system

ẋ = y + yf(x, y2), ẏ = x2 + g(x, y2),
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where f and g are analytic functions with f(O) = g(O) = 0, has an integrable cuspidal

point, see [17].

Furthermore, the integrable systems (ẋ, ẏ)T = (y + Pn, Qn)
T , where Pn and Qn are

homogeneous polynomials of degree n = 2, 3, 4, 5, studied in [15], also belong to the

family (3.1).

• Algaba et al. [3] study the centre problem of the analytic system of differential equations

on the plane whose origin is a nilpotent singular point

ẋ = y +

∞∑
i=1

Pq−p+2is(x, y), ẏ =

∞∑
i=1

Qq−p+2is(x, y), (3.2)

where p, q, n ∈ �, p � q, s = (n + 1)p − q > 0, and Fi = (Pi, Qi)
T is a quasi-homogeneous

vector field of type (p, q) and degree i with Q(2n+1)p−q(1, 0) < 0 (necessary condition of

monodromy). In particular, the authors solve the centre problem for several subfamilies

of (3.2) and show that the centres obtained have an analytic first integral at the origin.

We note that these systems with a centre are Hamiltonian, time-reversible (of the form

(3.1)) or can be expressed as systems (2.2) with K, ξ,Ψ and h polynomials.

• Systems (2.6) include the analytically integrable nilpotent family given in Lemma 2

of [4].

• Systems (2.7) are a family of generalised nilpotent systems. If l = 2 and m = 2M, we

have the systems

ẋ = y + Ω(x2M), ẏ = −x2M−1. (3.3)

Hence, nilpotent systems (3.3) are analytically integrable.

We conjecture that, in general, the integrable nilpotent systems and the integrable

generalised nilpotent systems are included in family (2.2).

• If a vector field has a local analytic inverse integrating factor V , i.e. ∇V · X = div(X).V ,

with V (O)� 0, its associated system can be written as

ẋ =
∂H

∂y
(x, y)V (x, y), ẏ = −∂H

∂x
(x, y)V (x, y),

where H =
∫
P/Vdy + g(x) is an analytic first integral with ∂g

∂x
(x, y) = −Q/V . These

systems are included in family (2.2), taking K ≡ 1, Ψ ≡ 0, h = H and V = ξ.

Also, a normal form of a non-degenerate centre is

(ẋ, ẏ)T = (−y, x)T

(
1 +

∞∑
i=1

βj(x
2 + y2)j

)
, (3.4)

where βj are real numbers. This normal form is analytic, since it satisfies Brunos’s

conditions ‘A’ and ‘ω’, see [5]. Furthermore, it is included in family (2.2); concretely, for
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the case K ≡ 1, Ψ ≡ 0 and

h(x, y) = − (x2 + y2)

2
, ξ(x, y) = 1 +

∞∑
i=1

βj(x
2 + y2)j .

Therefore, the non-degenerate centres have a local analytic first integral (Non-degenerate

centre theorem, see [19, 24]).
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[17] Giné, J. & Maza, S. (2011) The reversibility and the centre problem. Nonlinear Anal. 74(2),

695–704.

[18] Li, W., Llibre, J., Nicolau, M. & Zhang, X. (2002) On the differentiability of first integrals

of two-dimensional flows. Proc. Am. Math. Soc. 130, 2079–2088.
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