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This paper addresses the study of the variation effects of incident plane wave on a multiconductor transmission line (MTL),
using a coupling circuit model of MTL line with plane wave based on the method of characteristics (Branin method). This
model is valid in the time and frequency domains. It has also an advantage of not presupposing the conditions of the
charges applied to its ends, which allows it to be easily inserted in circuit simulators, such as SPICE, SABER, and
ESACAP. We confirm the validity of this model by comparing our simulation results under ESACAP with other results,
and we discuss the variation effects of the incident plane wave on an MTL line.
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I . I N T R O D U C T I O N

When multiconductor transmission line (MTL) is subjected to
the incident wave interference, parasite voltages manifest at its
end. This field/line coupling is represented by sources of vol-
tages and currents forced and distributed along the line. Such
sources are derived from components of the electromagnetic
(EM) field of the incident wave. The latter are determined
in the absence of the line. Traditional models of transmission
lines represent phenomena related to the EM compatibility
mode channel (near and far-crosstalk, etc.) [1–4]; by contrast,
they do not take into account the phenomena related to the
immunity radiated by an external disturbance wave (radiated
mode).

The coupling of a plane EM wave to MTL has been inves-
tigated by several authors in the time domain as well as in the
frequency domain [5–8]. In [8], Paul presents three methods
(spice model, time domain-to-frequency domain transform-
ation, and finite difference time domain method) to solve
the problem of an MTL excited by an incident EM field and
to predict the voltage and current in the time domain or in
the frequency domain.

For more than 40 years Bergeron’s model [9] has provided
a widely accepted solution for transmission line modeling, It is
used to study the ideal or coupled transmission lines, con-
nected to linear or nonlinear loads [5, 6, 10]. The graphical
method of Bergeron provides voltage and current levels at

the ends of a transmission line for each new signal reflection
at the end of the line.

But in the last 40 years electrical systems have changed
greatly. The aperture of the markets and the introduction of
renewable energy have led systems to operate at the limit of
safety. The major advantage of the graphical method is the
ability to account for nonlinear loads. However, the major
drawback of this method is that practically outside the ideal
line and lossless lines coupled, the analysis is very complex
and graphics obtained are very difficult to exploit.

However, there exist equivalent models of fields/lines coup-
ling, which are only valid in the frequency domain; namely
Taylor’s model [11] whose unknowns of the system formed
by the two telegrapher’s equations are the total voltage and
current V(z) and I(z), the Agrawal model [12] whose
unknowns of the telegrapher’s equations are the diffracted
voltage Vdif (z) and the total current I(z), and the Rachidi
model [13], which is the dual of Agrawal model, whose
unknowns of lines’ equations are the total voltage and the dif-
fracted current. We have chosen the Agrawal model for mod-
eling the field/line coupling for two reasons [12]; the first one
is that it uses a single field component and the second is that it
directly determines the total voltage and current at the line
ends.

The paper has two main objectives. The first is to present
an MTL circuit model coupling with a plane wave.
Depending on the characteristics method [1, 14, 15], this
model is valid in the time and frequency domains and is
easy to be introduced into the circuit simulators ESACAP,
SPICE, and SABER. The second objective is to study the vari-
ation effects of the incident plane wave on an MTL line.

To test the validity of the model and demonstrate the
importance and the interest of the incident variation, we are
going to confirm the validity of our model by comparing
our results of simulation under ESACAP [16] with other
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results, and we will discuss as well the incident variation
results.

I I . M T L L O S S L E S S M O D E L I N G
S U B M I T T E D T O A P L A N E W A V E

A) Coupling equation
The comportment of voltages V(z, t) and current I(z, t) in a
transmission line is described in the time domain by the equa-
tions of lines called telegraphers:

dV(z, t)
dz

+ R.V(z, t) + L
dI(z, t)
dz

= 0

dI(z, t)
dz

+ G.V(z, t) + C
dV(z, t)

dz
= 0

⎧⎪⎨
⎪⎩ , (1)

[V ] and [I], respectively, represent the voltages and cur-
rents matrices.

[R], [L], [G], and [C] represent the matrices of resistances,
inductances, conductances, and capacities, respectively. These
implicitly contain all the information concerning the trans-
verse section that permits characterizing a multiconductor
structure.

The Oz axis corresponds to the line direction (Fig. 1), V
and I are, respectively, the voltage and current at each point
of the line.

The equation system (1) describes the MTL line, whatever
the type of perturbation is. The latter can be modeled by intro-
ducing forced sources into the telegrapher equations. This
perturbation can be created either by a uniform field (plane
wave) or a non-uniform field (object radiating near from the
line).

The equation system (1) becomes then:

dV(z, t)
dz

+ RI(z, t) + L
dI(z, t)

dt
= d

dt

∫a′

a
B
�inc

a�n dl

[ ]

dI(z, t)
dz

+ GV(z, t) + C
dV(z, t)

dt
= −G

∫a′

a
Et
�inc

dl

[ ]

−C
d

dt

∫a′

a
Et
�inc

dl

[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

(2)

Both B
�inc

and Et
�inc

field vectors are, respectively, the
normal magnetic field to the incident plane and the tangential
electric field. The components of these are calculated in the
absence of conductors.

The equation system (2) can be written in the following
simplified form:

dV(z, t)
dz

+ RI(z, t) + L
dI(z, t)

dt
= VF(z, t)

dI(z, t)
dz

+ GV(z, t) + C
dV(z, t)

dt
= IF(z, t)

⎧⎪⎨
⎪⎩ (3)

with

VF(z, t) = d

dt

∫a′

a
B
�inc

a�n dl

[ ]

IF(z, t) = −G
	a′

a Et
�inc

dl

[ ]
− C

d

dt

∫a′

a
Et
�inc

dl

[ ]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

. (4)

Both IF and VF source terms can be expressed through the
components of the EM field incident. These source terms can

Fig. 1. MTL Line submitted to a plane wave.
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be written solely in terms of the incident electric field using
Faraday’s law. And the source term of the voltage VF becomes:

VF(z, t) = − d

dz

∫a′

a
E
�inc

t dl
�

+

Einc
z (iémeconducteur, z, t)

−Einc
z (conducteur de réference, z, t)

EL

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭,

(5)

with Ez
inc: the component of the electric field along the axis Oz.

Thus, when we consider the line length Dz, it can be repre-
sented by a model with distributed constants R, L, C, and G
from equation (3) where the terms VF and IF are represented
by distributed sources of voltage and current (Fig. 2).

Consider the case of an illuminated line by a uniform plane
wave, as defined in the orthonormal reference frame (xyz)
Fig. 3, wherein the angle uE defines the polarization type.
The polarization is horizontal if uE is equal to zero and vertical
if it is equal to 908. The angle uP determines the elevation rela-
tive to the ground. This angle is commonly called the incident
angle. The angle FP gives the propagation direction relative to
the axis Oz.

The incident field, in the absence of the line, can be written
in the following frequency form (Ê0 complex amplitude):

E
�inc

i (x, y, z, v) = Ê0[ex�ax + ey�ay + ez�az]e−jbxxe−jbyye−jbz z.

(6)

Wherein the projection coefficients of the unit vector of the
incident field on the axes x, y, and z:

ex = sin uE sin uP

ey = − sin uE cos uP coswP − cos uE sin uP

ez = − sin uE cos uP sinwP − cos uE cos uP

⎧⎨
⎩ . (7)

The components of the wave vector are defined by its pro-
jection on different axes:

bx = b cos uP

by = −b sin uP coswP

bz = −b sin uP sinwP

⎧⎨
⎩ . (8)

b is the phase constant related to the frequency and other
properties of the medium by the following relation:

Fig. 2. Equivalent circuit of an MTL line assaulted by an EM wave.

Fig. 3. Parameters setting of the incident field for the case of a uniform plane
wave.
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b = v
����
m1

√ = 1
n0

�����
mr1r

√
, (9)

with n0 = (1/
������
m010

√
) phase speed in the space.

The medium is characterized by the permeability m ¼ m0mr

and permittivity 1 ¼ 101r.

B) MTL lossless modeling submitted to a plane
wave
In what follows, we present a model that takes into consid-
eration the field/line coupling. Depending on the Branin’s
model [14]: it permits to model the MTL lossless line, illu-
minated by a plane wave, through generators of voltage
and current placed at the ends of the line in the time
domain.

In the MTL lossless case, the system (3) becomes:

dV(z, t)
dz

+ L
dI(z, t)

dt
= VF(z, t)

dI(z, t)
dz

+ C
dV(z, t)

dt
= IF(z, t)

⎧⎪⎨
⎪⎩ . (10)

The modeling of the MTL with Branin’s model requires
decoupling of the equation system (10). This coupling is
made by the modal method [1, 17, 18].

In the modal base the system of equations (10) becomes:

dVm(z, t)
dz

+ Lm
dIm(z, t)

dt
= VFm(z, t)

dIm(z, t)
dz

+ Cm
dVm(z, t)

dt
= IFm(z, t)

⎧⎪⎨
⎪⎩ . (11)

Lm and Cm are diagonal matrices of dimension N × N:

Lm = T−1
V .L.TI

Cm = T−1
I .C.TV

{
. (12)

And VFm, IFm are the voltage and current “forced” source
victors in the modal base:

VFm(z, t) = T−1
V VF(z, t)

IFm(z, t) = T−1
I IF(z, t)

{
. (13)

Matrices TV and TI are selected, so that the matrices Lm and
Cm are diagonals.

After calculating the matrices Lm and Cm we determine the
characteristic impedance and the delay associated with each
line.

As in the case of conducted mode [4, 11, 17], the modal
electrical variables Vm and Im of the MTL are related to
each other by:

Vm(0, t) − ZCmIm(0, t) = Vrm(l, t) + E0m(l, t), (14.a)

Vm(l, t) − ZCmIm(l, t) = Vrm(0, t) + Elm(l, t). (14.b)

With E0m and Elm are the voltage generators that model the
plane wave coupling with the transmission line to the input
and to the output line (Fig. 4):

where

Vrm(l, t) = Vm(l, t − Tm) − ZCmIm(l, t − Tm), (15.a)

Vim(l, t) = Vm(0, t − Tm) − ZCmIm(0, t − Tm), (15.b)

and

E0m (l, t) = VFTm (l, t − Tm) − ZCmIFTm (l, t − Tm), (16.a)

ELm (l, t) = VFTm (l, t) − ZCmIFTm (l, t). (16.b)

If we know the expression of the modal characteristic
impedance ZCm of the line and the delay Tm associated with
this line, then it will be easy to determine the “forced” genera-
tors E0m and Elm that model the influence of the incident field
in the time domain. Their expressions are defined by [1]:

E0m (l, t) = a0
10(t) − 10(t − Trm − TZ)

Trm + TZ

[ ]
, (17.a)

ELm (l, t) = aL
10(t − Trm) − 10(t − TZ)

Trm − TZ

[ ]
, (17.b)

where 10(t) is the amplitude of the electric field in the time
domain, a0 and aL are the coefficients depending on the para-
meters of the line defined by:

a0 =
∑n

k = 1

{[ezTxykl − (exxk + eyyk)(Trml + TZ)][Tt
I ]ik},

(18.a)

aL =
∑n

k = 1

{[ezTxykl + (exxk + eyyk)(Trml − TZ)][Tt
I ]ik},

(18.b)

Fig. 4. Line model submitted to a plane wave in the modal basis.
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with

Txyk =
xk

nx
+ yk

ny
.

Tz ¼ l/nz ¼ lkz/v, if a component wave that propagates
along the axis Tz ¼ Trm, in the opposite case Tz ¼ 0.

If we insert equations (17.a) and (17.b) into equations
(14.a) and (14.b), then we obtain:

Vm(0, t) − ZCmIm(0, t) = Vrm(l, t)

+ a0
10(t) − 10(t − Trm − TZ)

Trm + TZ

[ ]
︸�����������������︷︷�����������������︸

E0m(l,t)

,

(19.a)

Vm(l, t) − ZCmIm(l, t) = Vrm(0, t)

+ aL
10(t − Trm) − 10(t − TZ)

Trm − TZ

[ ]
︸�����������������︷︷�����������������︸

Elm(l,t)

.

(19.b)

From equations (19.a) and (19.b) we can deduce the
equivalent circuit of Fig. 4.

The relationship between the voltage and current modal
vectors and real ones is given by the following expressions
in the form of the voltage and current generators placed at
the ends of each conductor:

V(z, t) =
∑n

k = 1

TVikVm(z, t),

Im(z, t) =
∑n

k = 1

T−1
I

I(z, t).

(20)

Equations (19a), (19b), and (20) provide a representation
of an equivalent circuit model. The advantage of this model
is that it is valid in both the time and frequency domains
for linear and nonlinear loads.

I I I . S I M U L A T I O N A N D R E S U L T S

In this part of simulation, we will first discuss the case of a refer-
enced MTL line in relation to a reference conductor submitted
to a plane wave to validate the coupling model line/wave. Later,
we will see the incident variation effects on an MTL line.

A) Coupling mode validation
We consider a cable of three conductors from length 2m
immersed in a dielectric. The conductor “0” is used as a

Fig. 5. Geometric configuration of a mono-wire line submitted to a horizontally polarized plane wave.

Fig. 6. Induced voltage on conductor n81:Esacap2000 simulation results and
analytical method results taken from [8].

Fig. 7. Induced voltage amplitude on the conductor n81 simulated by
Esacap2000 and analytical method results taken from [8].
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reference (Fig. 5). They are loaded by a 500 V impedance
network. These three conductors are submitted vertically to
polarized plane wave (Ex), with kz propagation horizontal dir-
ection. The variation of the electric field is defined by a ramp
rise time tr ¼ 1 ns (Fig. 5).

In this example, we have studied the influence of the per-
turbation wave on the two conductors in the time and fre-
quency domains.

The linear line parameters L and C were calculated from
the geometry of the mono-wire line (Fig. 5).

L = 7485 2408
2408 7485

[ ]
(nH/m)

C = 24 982 −6266
−6266 24 982

[ ]
(pF/m).

1) transit analysis

In Fig. 6, we visualize the observed voltage through the con-
ductor ends n81 and the results are obtained by the analytical
method [8]. Figure. 6 shows a good agreement, the far-
crosstalk voltage resembles a form of stairs due to the phe-
nomenon of reflection. The width of each level is equal to
twice the propagation time of the line (come-back signal).

2) frequency analysis

In Figs 7 and 8, we visualize the amplitude and phase of the
far-crosstalk voltage on the conductor no. 1 and the results
are obtained by [8] using the analytical method. This time,
the three conductors are submitted to a sinusoidal incident
field of amplitude 1 V/m. Figures 7 and 8 are in good agree-
ment. The near-crosstalk voltage presents anti-resonances
that occur when the length line is a multiple of the wavelength.

B) Incident angle variation
To study the influence of the incident variation of the perturb-
ation wave on the transmission line, we take a referenced line
in relation to a ground plane (Fig. 9), a conductor of radius
rw ¼ 10 mils and of length L ¼ 1 m suspended at a height
h ¼ 2 cm above a ground plane.

Terminators are resistive with RS ¼ 500 V and RL ¼ 1000
V. This conductor is submitted to a uniform plane wave (Ex).

The variation of the electric field is defined by a ramp rise
time tr and the amplitude E0 ¼ 1 V/m (Fig. 10).

The characteristic impedance of the line Zc ¼ 303.34782 V

and the delay Tr ¼ 3.33564 ns.
In Fig. 11, we represent the amplitude variation voltage at

the input of the line as a function of frequency by setting the
angle that gives the direction of propagation in relation to the
axis Oz (wp ¼ cte), and vary the incident angle between +908.
Figure 12 shows the zoom in the maximum amplitude voltage
from Fig. 11 to visualize the difference between the curves.

uL = −p

2
, uJ =

−p

3
, uI =

−p

4
, uH = −p

6
, uG = 0,

uF = p

6
, uE = p

4
, uD = p

3
, uB = p

2

Figure 12 shows the maximum amplitude voltage variation
at the line input in function of the angle up. We note that the
voltage is more important for the case where the angle equals
zero, this value decreases in the case where the angle tends to
+908. We note that there is a symmetry in the values of the
angle to 08 (Fig. 12). The amplitude distribution indicates
that the voltage is greater toward the central value of 08 and
less important toward the ends.

I V . C O N C L U S I O N

In this paper, a variation effect of the incident angle on an
MTL line is presented through the use of a model coupling
of a transmission line with a plane wave valid in both the
time and the frequency domains. This model is based on the
characteristics method (Branin method), and is implemented
by the ESACAP circuit simulator. The model of a transmis-
sion line referenced to a ground plane, which is excited by
an external plane wave, has been studied, and the amplitude

Fig. 8. Induced voltage phase on the conductor n81 simulated by Esacap2000
and analytical method results taken from [8].

Fig. 9. Geometric configuration of a referenced line in relation to a ground
plane is submitted to a horizontally polarized plane wave.

Fig. 10. Electric field variation is defined by ramp rise time tr ¼ 1 ns.
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distribution has shown that the voltage is more important
toward the center value of 08 and less important toward the
ends.
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