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Université de Savoie, France

(e-mail: gervetec@univ-savoie.fr)

submitted 14 February 2014; revised 25 March 2014; accepted 18 April 2014

Abstract

This paper introduces a new constraint domain for reasoning about data with uncertainty.

It extends convex modeling with the notion of p-box to gain additional quantifiable

information on the data whereabouts. Unlike existing approaches, the p-box envelops an

unknown probability instead of approximating its representation. The p-box bounds are

uniform cumulative distribution functions (cdf) in order to employ linear computations in the

probabilistic domain. The reasoning by means of p-box cdf-intervals is an interval computation

which is exerted on the real domain then it is projected onto the cdf domain. This operation

conveys additional knowledge represented by the obtained probabilistic bounds. The empirical

evaluation of our implementation shows that, with minimal overhead, the output solution

set realizes a full enclosure of the data along with tighter bounds on its probabilistic

distributions.

KEYWORDS: convex structures, reliable constraint reasoning, probability box, cdf interval,

constraint satisfaction problem, constraint programming, constraint reasoning, uncertainty

1 Introduction

In this paper, we propose a novel constraint domain for reasoning about data with

uncertainty. Our work was driven by the practical usage of reliable approaches

in Constraint Programming (CP). These approaches tackle large scale constraint

optimization (LSCO) problems associated with data uncertainty in an intuitive and

tractable manner. Yet they have a lack of knowledge when the data whereabouts are

to be considered. These whereabouts often indicate the data likelihood or chance

of occurence, which in turn, can be ill-defined or have a fluctuating nature. It is

important to know the source and type of the data whereabouts in order to reason

about them. The purpose of our framework is to intuitively describe data coupled

with uncertainty or following unknown distributions without losing any knowledge
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given in the problem definition. We extend the cdf-intervals approach (Saad et al.

2010) with a p-box structure (Ferson et al. 2003) to obtain a safe enclosure.

This enclosure envelops the data along with its whereabouts with two distinct

quantile values, each is located on a cdf-uniform distribution (Saad et al. 2012). This

paper contains the following contributions: (1) a new uncertain data representation

specified by p-box cdf-intervals, (2) a constraint reasoning framework that is used

to prune variable domains in a p-box cdf-interval constraint relation to ensure their

local consistency, (3) an experimental evaluation, using an inventory management

problem, to support our argument by comparing the novel framework with existing

approaches in terms of expressiveness and tractability. The expressiveness, in our

comparison, measures the ability to model the uncertainty provided in the original

problem, and the impact of this representation on the solution set realized. On the

other hand, the tractability measures the system time performance and scalability.

The experimental work shows how this novel domain representation yields more

informed results, while remaining computationally effective and competitive with

previous work.

2 Preliminaries

Models tackling uncertainty are classified under the set of plausibility measures

(Halpern 2003). They are categorized as: possibilistic and probabilistic. Convex

models, found in the world of fuzzy and interval/robust programming, are favored

when ignorance takes place. They are adopted in the CP paradigm in fuzzy

Constraint Satisfaction Problems (CSPs) (Dubois et al. 1996), soft CSPs (Bistarelli

et al. 2002), numerical CSPs (Benhamou and Older 1997) and uncertain CSPs

(UCSPs) (Yorke-Smith and Gervet 2009). Probabilistic models are best adopted

when the data has a fluctuating nature. They are the heart of the probabilistic CP

modeling found in valued CSP (Schiex et al. 1995), semirings (Bistarelli et al. 1999),

stochastic CSPs (Walsh 2002), scenario-based CSPs (Tarim et al. 2006), mixed CSPs

(Fargier et al. 1996) and dynamic CSPs (Climent et al. 2014). Techniques adopting

convex modeling are characterized to be more conservative. They can often consider

many unnecessary outcomes along with important ones. Due to this conservative

property, operations exerted on convex models are tractable and scalable because

they are exerted on the convex bounds only. On the other hand, probabilistic

approaches add a quantitative information that expresses the likelihood, yet these

approaches impose assumptions on the distribution shape in order to conceptually

deal with it in a mathematical manner. Moreover, probabilistic mathematical com-

putations are very expensive because they often depend on the non-linear probability

shape.

Our objective is to introduce a novel framework (the p-box cdf-intervals) that

combines techniques from the convex models, to take advantage of their tractability,

with approaches revealing quantifiable information from the probabilistic and

stochastic world, to take advantage of their expressiveness. Our framework is based

on CP concepts (Jaffar and Lassez 1987) because they proved to have a considerable

flexibility in formulating real-world combinatorial problems. In the CP paradigm,

we aim at building descriptive algebraic structures which are easily embedded

into declarative programming languages. These structures are heavily used in the

https://doi.org/10.1017/S1471068414000143 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000143


The P-Box CDF-Intervals 463

problem solving environment by specifying conditions that need to be satisfied

and allow the solver to search for feasible solutions. Next we demonstrate how to

intuively represent the uncertainty already given in the problem definition in order

to reason about it by means of the p-box cdf-intervals. We also compare our novel

representation of the data uncertainty with existing possibilistic and probabilistic

approaches in order to demonstrate the model expressiveness. This representation is

input to the solver with a new domain specification. We consequently define how to

reason about this new specification and show how reasoning by means of p-box cdf-

intervals proved to be tractable. Accordingly, we can claim that combining reasoning

techniques from convex models with quantifiable information from probabilistic

models yields a novel model that is together tractable and expressive.

3 Input Data Representation

Quantifiable information is often available during the data collection process, but

lost during the reasoning because it is not accounted for in the representation of the

uncertain data. This information however is crucial to the reasoning process, and

the lack of its interpretation yields erroneous reasoning because of its absence in the

produced solution set. It is always necessary to quantify uncertainty that is naturally

given in the problem definition in order to obtain robust and reliable solutions.

In this section, we show how to compute the confidence interval in the modeling

approaches of the convex, possibilistic and probabilistic worlds, then we compare

them with the input representation of the cdf-intervals and the p-box cdf-intervals.

Given a data set of n distinct values, the generic construction of the confidence

possibilistic/probabilistic interval, in a measurement process of a population m,

m �= n, follows the steps below:

1. Data is collected and n quantiles (data values) are distinguished, each is

represented by xi.

2. The probability distribution function (pdf) of the genuine observations is derived

from
(xiFreqi)∑n

1 xiFreqi

, where Freqi is the number of times xi is observed.

3. The average value of the observations, x̄ =
x1Freq1+...+xnFreqn∑n

1 xiFreqi

and their standard

deviation, σ =
√

1
n

∑n
1(xi − x̄)2 are computed.

4. The probabilistic/ possibilistic distributions are derived from the average and the

standard deviation values. Based on the (Gum 1995) any probability distribution

(parametric/non-parametric) is typically approximated to the nearest Normal

distribution.

5. Computation and reasoning are based on the derived distributions since point-

wise operations are computationally expensive.

Example 3.1. Consider, as a running example, the varying cost observations of a

steel stud manufacturing item. Fig. 1(a) illustrates the cost variations along with

their corresponding frequencies of occurrence. For instance, the point (5.17, 4) is the

amount of the cost/item, equal to 5.17, and observed 4 times during the past 2 years

(corresponding to a population m = 40). Nine is the number of distinct measured
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(a) (b) (c)

Fig. 1. (Colour online) Varying cost of the steel stud item and its probability histogram: (a)

genuine observations (b) Normal distribution (c) fuzzy distribution

(a) (b) (c)

(d) (e) (f)

Fig. 2. (Colour online) Derived probabilities and cdf distributions of the steel stud item

varying cost

quantiles. The minimum and the maximum observed values, in this example, are

5.17 and 6.36 respectively.

Computing the probabilistic/ possibilistic distribution. The genuine pdf of the ob-

served data, and its corresponding Normal distribution as well as its approximated

possibilistic distribution are computed using the average and standard deviation.

Recall from Example 3.1, the point (5.17, 4) has a probability
(xiFreqi)∑n

1 xiFreqi

= 0.1. The

calculated average and standard deviation of the observed population are 5.6 and

0.28 respectively. From the two calculated values, we can derive the nearest Normal

probability distribution and the fuzzy membership function as shown in Fig. 1 (b)

and (c).

Projecting the distributions onto the cdf-domain. By definition, the cdf keeps the

probabilistic information in an aggregated manner. Information obtained from the

measurement process is often discrete and incomplete, hence, when it is projected

onto the cdf-domain, it forms a staircase shape (Smith and La Poutre 1992). This is

depicted in our running example by the dotted staircase shape in Figure 2. Normal

and fuzzy cdf distributions are shown by the continuous red curves in Fig. 2 (b)

and (c). Each is based on an approximation that lacks precise point fitting of the

original data whereabouts. Similarly, the cdf-interval, in Fig. 2 (d), approximates the

data whereabouts by means of a line connecting the two bounding data values. The

convex model representation however shapes a rectangle, illustrated in Fig. 2 (e). This

rectangle includes all values in the cdf range [0, 1]. The convex representation treats
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Fig. 3. Data interval bounds construction

data values lying within the interval bounds equally, i.e. it lacks the probabilistic

information. The p-box cdf-interval enforces tighter bounds on the probabilities in

the cdf domain when compared to convex models as depicted in Fig. 2 (f).

3.1 Constructing the p-box cdf-intervals

Algorithm 3 shows the p-box cdf-interval construction steps. Two parameters are

taken into consideration: Arr[n] is an array of n distinct observed and sorted quantile

values; whereas the second parameter, cdf[n], is the set of their computed cdf values.

The two arrays, together, form the staircase function shape with quantiles stored in

Arr[] and cdf values stored in cdf[ ]. Note that a staircase function defines as set of

constant values cdf[i] over a set of intervals [Arr[i],Arr[i + 1]] ∀i < n (Smith and

La Poutre 1992). Accordingly, the set of upper and lower bounding points forming

the staircase function are {[Arr[i], cdf[i]]} ∀i, 1 � i � n and {[Arr[i + 1], cdf[i]]}
∀i, 1 � i < n respectively. The aim of the algorithm is to envelop those observed

points with the highest and lowest possible average probabilistic step increase from

the first quantile interval of the staircase function. Issuing the slopes from this specific

interval is sufficient to compute the bounds due to the cdf monotonic property. A

cdf slope, by definition, is the average step value that indicates how the probability

distribution increases. Algorithm in Fig. 3 starts by computing 2n slopes issued from

the 2 points, specified as (Arr[1],cdf[1]) and (Arr[2],cdf[1]), and destined to all other

points in the cdf-domain. This is to calculate the list of possible average step values

between the observed staircase bounding points. Slopes are then sorted to extract

the steepest line and the flatest line. The geometric area under the line, computed by

the integral, determines the dominated (dominating) cdf distribution with maximum

(minimum) area as indicated by the stochastic dominance property that is used to

order probabilities. Accordingly, the lower bound in the cdf domain is the fastest

increasing line slope and issued from the 1st quantile observation, and vise versa

the upper bound is the least increasing line slope and issued from the maximum

quantile value having the minimum observed cdf value. This is to guarantee the
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full encapsulation of all the measured data between the two bounding distributions,

each is shaping a line, and together they are ordered by means of the probabilistic

stochastic ordering. Algorithm in Fig. 3 is correct with time complexity O(nlog(n)).

The proof is omitted for space reason.

The red box in Fig. 2 (f) illustrates the p-box cdf-interval, as opposed to the

red line representing the cdf-interval, constructed for the same set of observations

using the ‘ConstrucIntervalBounds‘ algorithm proposed in (Saad et al. 2010). The

cdf-interval of the same running example is bounded by the points (5.17, 0.1) and

(6.25, 0.98), while the p-box cdf-interval representation is bounded by the points

(5.17, 0.1) and (6.36, 0.7), each lying on a bounding cdf uniform distribution with

slopes 1.2 and 0.57 respectively.

3.2 Interpretation of the confidence interval I

We formally describe the p-box cdf-interval structure which is bounding the observed

data as shown in Algorithm 3. The theoretical algebraic representation of an interval

of points is specified by I = [pa, pb], where pa and pb are the extreme points which

bound the p-box cdf-interval. Throughout this paper, we assume that data takes its

value in the set of real numbers �, denoted by a,b,c. Data points are denoted by

p,q,r, possibly subscripted by a data value (quantile).

The p-box cdf-interval I =[pa, qb]. One can see that this interval approach does

not aim at approximating the curve but rather enclosing it in a reliable manner.

The complete envelopment is exerted by means of the uniform cdf-bounds, which

are depicted by the red curves in Fig. 2 (f). It is impossible to find a point that

exists outside the formed interval bounds. The cdf bounds are chosen to have a

uniform distribution due to its linear computational complexity. Each is represented

by a line with a slope (Sp
a ,S

q
b ) issued from one of the extreme quantiles (a,b).

Storing the full information of each bound is sufficient to restore the designated

interval assignment. Bounds are denoted by triplet points, in the 2D space, to

guarantee the full information on: the extreme quantile values observed (a,b); the

cdf-value of each quantile projected onto its corresponding bounding distribution

(Fp
a ,F

q
b ); and the degree of steepness formed by the uniform distributions (Sp

a ,S
q
b ).

The uniform cdf-distribution has a line shape with a slope indicating how the

probabilistic values accumulate for successive quantiles. Accordingly, the p-box cdf-

interval bounding points representation: pa = (a, Fp
a , S

p
a ) and qb = (b, Fq

b , S
q
b ). The

p-box cdf-intervals triplet points are ordered in U, where U is a partial order set

defined over � × [0, 1] × �+ with an ordering operator �U.

Definition 3.1. Sp
x is the slope of a given cdf-distribution; it signifies the average step

probabilistic value. For a given uniform cdf-distribution

Sp
x =

Fb − Fa

b − a
, ∀a � x � b (1)

The average step value, denoted as Sp
x , derives the probabilistic values of consequent

quantiles on the real domain.
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Plotting a point px within the p-box cdf-interval deduces bounds on its possible

chances of occurrence.

Definition 3.2. FI
x is the interval of cdf values obtained when px is projected onto the

p-box cdf bounds. For a point px ∈ I denoted as px = (x, Fp
x , S

p
x ) and pa �U px �U qb

a < x < b, and F
q‘
b � FI

x � Fp‘
a and Sp

a � Sp
x � S

q
b (2)

Fp‘
a and F

q‘
b are the possible maximum and minimum cdf values px can take;

both are computed by projecting the point px onto the cdf distributions passing

through real points a and b respectively. They are derived using the following linear

projections, computed in O(1) complexity:

Fp‘
a = min(Sp

a (x − a) + Fp
a , 1) and F

p‘
b = max(Fp

b − S
p
b (b − x), 0) (3)

Equation 3 guarantees the probabilistic feature of the cdf-function by restricting its

aggregated value from exceeding the value 1 and having negative values below 0.

Example 3.2. I = [(5.17, 0.1, 1.2), (6.36, 0.7, 0.57)] is the p-box cdf-interval of the

cost/item in Example 3.1. Suppose that xi = 5.5, its cdf-bound values FI
x = [0.2, 0.5].

This means that the possible chance of the value to be at most 5.5 is between 20%

and 50%, with an average step probabilistic value between 0.57 and 1.2. Note that

this interval is opposed to only one approximated value Fx = 0.37 in the cdf-intervals

representation proposed in (Saad et al. 2010), the fuzzy cdf value Fx = 0.31 and

its Normal cdf value is Fx = 0.42. Note that convex models do not enforce any

probabilistic bounds, accordingly, xi = 5.5 has a cdf FI
x ∈ [0, 1].

4 Constraint reasoning

In the CP paradigm, relations between variables are specified as constraints. A

set of rules and algebraic semantics, defined over the list of constraints, formalize

the reasoning about the problem. As a fundamental language component in the

Constraint Logic Programming (CLP), these set of rules, with a syntax of definite

clauses, form the language scheme (Jaffar and Lassez 1987). The constraint solving

scheme is intuitively and efficiently utilized in the reasoning over the computation

domain. The scheme formally attempts at assigning to variables a suitable domain

of discourse equipped with an equality theory together with a least and a greatest

model of fix-point semantics. Starting from an initial state the reasoning scheme

follows a local consistency technique which attempts at constraining each variable

over the p-box cdf-interval domain while excluding values which do not belong to

the feasible solution. An implementation of the constraint system was established

as a separate module in the ECLiPSe constraint programming environment (ECRC

1994). ECLiPSe provides two major components to build the solver: an attributed

variable data structure and a suspension handling mechanism. Fundamentally,

attributed variables are specific data structures which attach more than one data

type. Together they permit for a new definition of unification which extends the well-

known Prolog unification (Le Huitouze 1990; Holzbaur 1992). A p-box cdf-interval
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point is implemented in an attributed variable data structure with three main

components: quantile, cdf value and slope. Whilst constraints suspension handling

is a highly flexible mechanism that aims at controlling user defined atomic goals.

This is achieved by waiting for user-defined conditions to trigger specific goals.

Implemented rules in our solver infer the local consistency in the p-box cdf-

interval domains of the binary equality and ordering constraints {=,�U}, and that

of the ternary arithmetic constraints {+U,−U,×U,÷U}. Operations, in the solver,

are exerted first as real interval computations, and then they are projected onto the

cdf domain using a linear computation, as shown in Definition 3.2. In this section

we demonstrate how the ordering and the ternary addition constraints infer the

local consistency over the variable domains of X, Y , and Z assuming that their

initial bindings are I = [pa, pb], J = [qc, qd] and K = [re, rf] respectively. The ternary

multiplication, subtraction and division constraints are implemented in the same

way.

Ordering constraint X �U Y . To infer the local consistency of the binary ordering

constraint, we extend the lower cdf-bound of X and contract the upper cdf-bound

of Y . The ordering constraint is defined by the following rule:

pb
′ = glb(pb, qd), qc

′ = lub(pa, qc)

{X ∈ I, Y ∈ J, X �U Y } �−→ {X ∈ [pa, pb′], Y ∈ [qc′, qd], X �U Y }

To achieve the local consistency, the ordering constraint �U updates the upper

bound of the variable X domain to glb(pb, qd), which is the greatest lower bound of

the two points, i.e. the point preceeding the two on the partially ordered set lattice

U. And vice versa, the lower bound of Y is updated to lub(pa, qc) (the least upper

bound of the two points).

Example 4.1. Let I and J be two p-box cdf-interval domains. I = [(10, 0.14, 0.016),

(80, 0.49, 0.06)] and J = [(20, 0.06, 0.025), (90, 0.9, 0.014)]. The effect of applying the

set of constraints X �U I and X �U J, prunes the domain of X. As a result, the

variable X is bounded by the lower bound of I and by the upper bound of J:

X ∈ [(10, 0.14, 0.016), (90, 0.9, 0.014)] as shown in Fig. 4 (a). Clearly the obtained

domain of X, in this example, preserves the convex property of the p-box cdf-

intervals. Let Y be subject to the domain pruning using the set of constraints:

Y �U I and Y �U J. As a result, Y should be bounded by the lower bound of J

and the upper bound of I. However, in this case, at lower quantiles � 23, the upper

bound distribution of I preceeds the lower bound of J. The fact that conflicts the

stochastic dominance property of a p-box cdf-interval domain. In order to resolve

this conflict, the real bounds of Y are further pruned to the point of the probability

intersection = 23.

Ternary addition constraints X +U Y = Z . The addition operation is implemented

by summing up pair of points, defined in the 2D space and located within the p-box

cdf-interval bounds which enclose the domain ranges of X and Y . This addition

operation is linear. It is convex and can be computed from the end points of the

domains involved in the addition. The p-box cdf-domain of Z is updated to envelop
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(a) (b)

(c) (d)

Fig. 4. (Colour online) Ordering constraint execution

all points defined in that range. To infer about the cdf ternary addition constraint

we use the following rule:

rf
′ = (ub+, F

I+J
ub+

, S I+J
ub+

), re
′ = (lb+, F

I+J
lb+

, S I+J
lb+

)

{X ∈ I, Y ∈ J, Z ∈ K, Z = X +U Y } �−→ {X ∈ I, Y ∈ J, Z ∈ [re′, rf ′], Z = X +U Y }
(4)

pb
′ = (ub−, F

K−J
ub−

, SK−J
ub−

), pa
′ = (lb−, F

K−J
lb−

, SK−J
lb−

)

{X ∈ I, Y ∈ J, Z ∈ K, X = Z −U Y } �−→ {X ∈ [pa′, pb′], Y ∈ J, Z ∈ K, Z = Z −U Y }
(5)

The projection onto the Y domain is symmetrical. The p-box cdf ternary addition

inference rule is exerted on the variable domains involved in the relation Z = X+UY .

The domain of Z is updated with the addition of the two interval domains I and J

which yields a lower bound (lb+, F
I+J
lb+

, S I+J
lb+

) and an upper bound (ub+, F
I+J
ub+

, S I+J
ub+

).

lb+ and ub+ are the bounds of the arithmetic addition exerted on the real domain

�. (FI+J
lb+

, S I+J
lb+

) and (FI+J
ub+

, S I+J
ub+

) are the bounding cdf distributions, each is obtained

by means of a linear equation that is proposed in (Saad et al. 2012), and which is

derived using the approach in (Glen et al. 2004). The domain of Z is pruned by

intersection the new bounding points [re
′, rf

′], resulting from the p-box cdf-intervals

addition operation, with the initial binding of Z . Since three variables are involves

in the ternary addition, domains of X and Y are pruned using rule 5. The p-box

cdf-interval subtraction is exerted linearly over the bounding points of K − J and

K − I . (lb−, F
K−J
lb−

, SK−J
lb−

) and (ub−, F
K−J
ub−

, SK−J
ub−

) are the resuting bounds defined over

U and they are intersected with the initial binding of X. Similarly the domain of Y

is pruned. This operation is exerted multiple times until the constraint is stabilized,

i.e. no further pruning is taking place and the system of constraint is preserving its

local consistency.
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The ternary addition constraint exerted on p-box cdf-interval domains is a simple

addition computation since it adopts the real-interval arithmetics which are then

projected linearly onto the cdf domain. This operation is opposed to the fuzzy

extended addition operation adopted in the constraint reasoning utilized in the

possibilistic domain (Dutta et al. 2005; Petrović et al. 1996), and to the Normal

probabilistic addition which has a high computation complexity that is due to the

Normal distribution shape (Glen et al. 2004).

5 Empirical evaluation

We use, as a case study, an inventory management problem. We adopt in our

evaluation the model proposed by (Tarim and Kingsman 2004). The key idea is

to schedule ahead replenishement periods and find the optimal order sizes which

achieve a minimum total manufacturing cost. A reorder point δt with order size Xt

should meet customer demands dt up to the next point of replenishment with an

adequate inventory level It.

Definition 5.1. An inventory management model defined over a time horizon of N

cycles is

minimize TC =

N∑
t=1

(aδt + hIt + vXt)

subject to δt =

{
1 if Xt > 0

0 otherwise

}

It = I0 +

t∑
i=1

(Xi − di)

Xt, It � 0, t = 0, 1, ..., N (6)

The problem is an optimization problem that seeks the minimization of the total

cost TC which constitutes of three components: the cost of replenishment which is

defined by the ordering cost a multiplied by the number of times a replenishment

takes place
∑N

t=1 δt; the holding cost which depends on the depreciation cost h and

the level of the inventory observed in a given cycle It; and the purchase cost which is

the reorder quantity Xt multiplied by the varying cost/item v. The model is studied

over a time horizon of N cycles. δt is 1, when an order is issued and 0 otherwise.

The inventory level It for a given cycle is the difference between the ordered items

Xt and those which are consumed dt. I0 is the initial inventory level. From this

model, one can observe that all cost components depend totally on fluctuating and

unpredictable variables especially in the real-life version of the problem. This is due

to the unpredictability of customer demands and the variability of the cost/item.

Accordingly, this model perfectly fits our evaluation criteria: comparing the behavior

of the models when the environment is uncertain.

Information realized in the solution set. We test the model for a randomly distributed

monthly demands. Table 1 shows the average demand per cycle for a time horizon

N = 10 cycles. We build a p-box cdf-interval for each average demand value since it is
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Table 1. dt and δt over a time horizon of 10 cycles

Average dt 26 36 23 28 32 30 29 37 25 34

Lower bound dt 25.6 34.7 22.5 27.1 31.7 29.6 28.6 36.2 24 33.2

Upper bound dt 26.9 36.8 23.9 28.4 33 31.5 29.9 37.9 25.4 34.5

Probabilistic δt 1 1 1 0 1 0 1 0 1 0

PBOX δt [1, 1] [0, 0] [0, 0] [0, 1] [0, 0] [0, 1] [0, 1] [0, 0] [0, 0] [0, 1]

Fig. 5. (Colour online) Output solutions for holding cost

given from a list of customer demand observations over the years. The construction

of the p-box cdf-interval representation follows Algorithm 3. Clearly, fuzzy and

probabilistic models are based on the listed average values. The two models set

assumptions on the shape of the probability distribution adopted, as pointed out

in Section 3. We then develop the intervals of the cost components. Example 3.1

demonstrates how to deduce the input varying cost/item observed for 12 months. We

implement the model defined in Equation 6. The input customer demands and cost

components are represented as p-box cdf-intervals. We start the problem with an

empty initial inventory. The set of addition and equality constraints are employed

in the p-box cdf-interval domain. Constraints are triggered until stabilized and

consistency is reached by means of the inference rules defined in Section 4. The solver

suggests 2 to 5 replenishment periods, with a total holding cost [(8.5, 0.83, 4.4E −
04), (137.98, 0.039, 7.5e − 5)] and a total manufacturing cost [(2739.6, 0.8, 3.3E −
04), (6483.2, 0.03, 6.2e−5)]. This output is opposed to 6 replenishment periods realized

by the fuzzy and the probabilistic models, as shown in Table 1, with a total

holding cost $53.5 and $52.05 and a total manufacturing cost $3868.5 and $3828.93

respectively. We have successfully added more value to the solution set obtained

due to the propagation techniques applied in the p-box cdf-intervals domain. Fig. 5

illustrates a comparison between the output holding cost obtained from the models

under consideration. The p-box cdf-interval graphical representation of the cost is

depicted by the shaded region and their bounds in the convex models are illustrated

by the dotted rectangles. Clearly, the solution set obtained from the p-box cdf-

intervals model, when compared with the outcome of the convex model, realized

an additional knowledge (i.e. tighter bounds in the cdf domain). This solution set

is opposed to a one value proposed as $53.5 by the fuzzy and as $52.05 by the

probabilistic models. Output solution point suggested by the latter models can,

sometime, mislead or deviate the decision making. This is because their distributions

are built, from the begining, on approximating the actual observed distribution.
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Model tractability. We adopt the data corpus introduced by (Tarim et al. 2006). They

generated 4 types of randomly distributed demand data sets. Customer demands are

varied over the time horizon (t is the cycle number) using the following equations:

• P1 set (general trend): demand distribution mean value per cycle is

50(1 + sin(πt/6))

• P2 set (positive trend): demand distribution mean value per cycle is

50(1 + sin(πt/6)) + t

• P3 set (negative trend): demand distribution mean value per cycle is

50(1 + sin(πt/6)) + (52 − t)

• P4 set (life-cycle trend): demand distribution mean value per cycle is

50(1 + sin(πt/6)) + min(t, 52 − t)

We run the different models for high values of t (t � 30). Table 2 shows the time

taken in seconds by each model to reach a solution for the varying demands in a

given time horizon. Timeout is set to 2 hours. Empty cells in the table demonstrate

the failure of the model to solve the problem within the 2 hours interval. As shown in

rows (3,10,17 and 24), stochastic models time-out after a time horizon t = 34. Clearly

they have the most expensive computations because they work on the probability

distribution in a pointwise manner. Observing each column in Table 2, one can notice

the speed of each model to reach a solution for the given problem. Evidently, convex

models outperfrom the rest of the models in terms of speed; p-box cdf-intervals have

a closer speed, followed by fuzzy models, then the probabilistic models. In summary,

the p-box cdf-intervals speed performance is closer to that of the convex models.

This means that, the new framework, with minimal overhead, adds up a quantifiable

information by imposing tighter bounds on the probability distribution, in a safe

and a tractable manner. We claim that applied computations are tractable because

they are exerted on the interval bounds, using interval computations, then results

are further projected, linearly, onto the cdf domain. Last but not least, empirical

evaluations which we used to test the scalability of the framework support our

argument.

6 Conclusion and future research direction

In this paper, we propose a novel constraint domain to reason about data with

uncertainty. The key idea is to extend convex models with the notion of p-boxes in

order to realize aditional quantifiable information on the data whereabouts. To the

best of our knowledge, p-boxes have never been implemented in the CP paradigm,

yet they are very good candidates to deal with and reason about uncertainty in the

probabilistic paradigm, especially when the data is shaping an unknown distribution.

The concept of p-boxes relies on the probabilistic approach that ranks probability

distributions based on their stochastic dominance. It is a safe envelopment of the

data whereabouts especially when it follows an unknown distribution. The cdf

was selected due to its aggregated nature which enables the propagation of the

information to the interval bounds in addition to its capability of easily ranking

probability distributions within a p-box domain.
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Table 2. Real-time taken to solve instances for the demand sets: P1, P2, P3 & P4

time horizon t = 30 t = 32 t = 34 t = 36 t = 38 t = 40 t = 42 t = 44 t = 46

P1 set

Stochastic 4599.65 5442.04 6355.23

Probabilistic 1882.5 1710.91 2207.96 6557.76

Fuzzy 1138.5 1228.8 1479.68 1697.76 1869.98 2129.6 2328.48 5265.93

CDF 1244.6 865.78 642.75 891.5 1130 1351.67 2289.59 2340.78

PBOX 675.77 586.81 874.12 1110.59 1256.86 1955.72 2119.47

Convex 1111.26 432.88 553.48 778.28 961.24 1088.4 1800.23 1844.06 1828

P2 set

Stochastic 4650.8 5502.57 6425.92

Probabilistic 1422 3242.4 5248.25

Fuzzy 1620 2088.96 2653.02 3311.28 3869.92 5136 6615

CDF 1465.45 775.08 538.88 854.55 1285.74 1922.06 2102.92

PBOX 1376.66 669.89 520.13 813.36 1211.82 1663.99 1985.7

Convex 1238.79 440.33 468.82 693.04 1095.12 1371.14 1814.8

P3 set

Stochastic 4590.34 5431.04 6342.38

Probabilistic 1773.75 2444.8 4722.27 6156

Fuzzy 1696.5 2216.96 3034.5 3777.85 4194.83 5192 7003.09

CDF 1195.14 888.15 622.29 1073.09 1372.47 1775.58 2435.39

PBOX 1047.68 840.45 532.45 920 1172.04 1567.14 2147.39

Convex 897.83 743.92 529.05 848.64 1144.34 1548.07 2091.32

P4 set

Stochastic 4604.29 5447.54 6361.65

Probabilistic 2259 2672.64 4404.36

Fuzzy 1831.5 2319.36 3063.4 3531.6 4534.16 4534.16 6368.04

CDF 1357.18 800.11 605.21 922.54 1127.69 1379.99 1990.82 2051.26

PBOX 1156.04 664.42 601.99 813.17 1010.49 1186.99 1698.63 1684.34

Convex 1155.23 442.47 519.8 697.55 968.99 1177.76 1570.67 1449.6 1669

In Section 3, we have demonstrated that the p-box cdf-interval algebraic structure

adds up quantitative information to real intervals which are adopted by convex

models. We have also shown that the novel interval domain prevents probabilistic

approximations which are carried on by models adopting possibilistic and proba-

bilitic approaches. In Section 4, we have shown that p-box cdf-interval operations

adopt real-interval computations which are then projected linearly in the cdf domain.

These operations guarrantee the envelopment of tuple computations exerted by each

and every probability pair distributions lying within the intervals in the constraint

relation. Moreover, the violation of the cdf ordering property shrinks the interval

domain. Hence the realized solution space can be further pruned from the domain
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of real quantiles. The added value provided by the p-box cdf-intervals algebraic

structure is a safe enclosure that bounds the data along with its whereabouts. This

envelopment achieves tighter bounds on the output solution sets as opposed to those

realized by convex models. In Section 5, we have evaluated the different modeling

approaches, in terms of expressiveness and tractability, on a case study: an inventory

management problem. We have shown how the p-box cdf-intervals intuitively

envelop the uncertain data found in different modeling aspects with minimum

overhead.

In practice and based on our findings, stochastic CPs and probabilistic models

are the slowest. Fuzzy models proved to have a better time performance and their

output solutions are characterized to be reliable, i.e. they seek the satisfaction of

all possible realizations. Convex models and the p-box cdf-intervals encapsulate

all possible distributions of the solution set in a convex representation. The p-box

cdf-intervals framework provides a range of quantities to order and a range of costs

for each decision along with bounds on their data whereabouts.

The introduction of a novel framework to reason about data coupled with

uncertainty due to ignorance or based on variability, paves the way to many

fruitful research directions. We can list many in: studying models having variables

following dependent probability distributions, exploring different search techniques,

revisiting the framework within a dynamically changing environment, generalizing

the framework to deal with all types of uncertainty by considering together vagueness

and dynamicity, and last but not least applying the model to a variety of large

scale optimization problems which target real-life engineering and management

applications.
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