
Glasgow Math. J. 63 (2021) 378–399. C© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow
Mathematical Journal Trust.
doi:10.1017/S0017089520000257.

A FAST ALGORITHM FOR CALCULATING S-INVARIANTS

DIRK SCHÜTZ
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Abstract. We use the divide-and-conquer and scanning algorithms for calculating
Khovanov cohomology directly on the Lee- or Bar-Natan deformations of the Khovanov
complex to give an alternative way to compute Rasmussen s-invariants of knots. By dis-
regarding generators away from homological degree 0, we can considerably improve the
efficiency of the algorithm. With a slight modification, we can also apply it to a refinement
of Lipshitz–Sarkar.
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1. Introduction. The celebrated Rasmussen s-invariant [17] assigns an even integer
s(K) to any knot K such that |s(K)| ≤ 2 · g∗(K), where g∗(K) is the smooth slice genus of
K. Its definition is based on the Lee complex [7], a deformation of the Khovanov complex
[6] whose differential does not preserve the quantum grading, that is, the non-homological
grading in the bigraded chain complex. However, it admits a filtration which is preserved
by the differential. The s-invariant is then derived from the filtration.

Rasmussen worked originally over Q, but s-invariants have since been generalized to
arbitrary fields [15] and recently to cohomology operations [13]. Our algorithm has been
designed to deal with these. Another class of generalizations have been considered in [19],
it would be worthwhile to see if our techniques can be used in that setting.

The computation of s-invariants is time-consuming and is usually done by calculat-
ing the Khovanov cohomology first, compare [4, 17], but is potentially rewarding as it
may detect counterexamples to the smooth Poincaré conjecture, see [4]. Whether this is a
promising line of attack remains to be seen though.

In [2], Bar-Natan developed a powerful algorithm to calculate Khovanov cohomol-
ogy which also made the calculation of s-invariants possible for large classes of knots.
Lee cohomology [7] on the other hand has a rather simple form, with all the information
for a knot contained in homological degree 0. This was used in [8], where bounds for
the s-invariant are given based on focusing directly on the Lee complex in homological
degree 0.

Our approach to calculate the s-invariant is to use the techniques of [2] directly on
the Lee complex (or rather on a slight variation of this complex) while also focussing on
homological degree 0. One difficulty that arises is that the filtration needed to derive the s-
invariant from the complex does not have an obvious analog on the intermediate complexes
over tangles. We therefore need to carefully keep track of the resulting filtration.

With only small adjustments, we can also use this to calculate the Sq1-refinement of
[13]. The algorithm we present in this paper has been turned into a computer program, see
[18], and results of calculations are listed in Section 7.
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Our calculations for the Sq1-refinement suggest that it detects whether the original
Rasmussen invariant differs from the s-invariant over F2. In theory, this need not be the
case, but it would be interesting to have a knot where this is actually not the case. For such
a knot, the Sq1-refinement would give a better lower bound on the slice genus than the
s-invariants.

2. Lee–Bar-Natan cohomology. Our description of s-invariants largely follows [13,
Section 2], as this will help with the transition to the Sq1-refinement.

Let F be a field and V the vector space over F generated by two elements x+ and x−.
The Bar-Natan Frobenius algebra is then given using the multiplication m : V ⊗ V→ V

m(x+ ⊗ x+)= x+ m(x+ ⊗ x−)= x− m(x− ⊗ x+)= x− m(x− ⊗ x−)= x−,

the comultiplication � : V→ V ⊗ V

�(x+)= x+ ⊗ x− + x− ⊗ x+ − x+ ⊗ x+ �(x−)= x− ⊗ x−,

with unit ı : F→ V and counit η : V→ F given by

ı(1)= x+, η(x+)= 0 η(x−)= 1.

A link diagram L gives rise to a bigraded cochain complex C∗,∗(L; F) in the usual way, and
we call this complex the Bar-Natan complex, see [1, Section 9.3], and also [13, 15, 20]. A
slightly different complex was used by Lee in [7] which does not work as well over fields
of characteristic 2.

The cohomology H∗BN(L; F) of this cochain complex has been calculated in [15,
Proposition 2.3], and in particular for a knot K there are exactly two generators, both in
homological degree 0.

The quantum degrees of the generators give rise to a filtration FqC=FqC∗,∗(L; F) of
subcomplexes with

· · · ⊂Fq+2C⊂FqC⊂Fq−2C⊂ · · · ⊂C∗,∗(L; F).

The Rasmussen s-invariant of a knot K is then defined as

sF(K)=max{q ∈ 2Z+ 1 | i∗ : H∗(FqC)→H∗BN(K; F)∼= F2 surjective} + 1

=max{q ∈ 2Z− 1 | i∗ : H∗(FqC)→H∗BN(K; F)∼= F2 nonzero} − 1.

It is shown in [13, Proposition 2.6] that the two lines give indeed the same number.
Rasmussen [17] originally worked over Q and used the Lee complex [7], but it is

shown in [15] that we get the same result from the Bar-Natan complex. Seed, compare
[13], provided examples of knots K for which sF2(K) 
= sQ(K), where F2 is the field with
two elements. The first example is 14n19265.

The usual technique to calculate sF(K) is to work out the Khovanov cohomology of K
and read it off the Poincaré polynomial as in [4, Theorem 5.1], hoping one does not run
into ambiguities when applying this theorem. Working out the Khovanov cohomology can
be very time-consuming, and currently the fastest known method is Bar-Natan’s scanning
algorithm [1].

We plan to use this algorithm on the Bar-Natan complex rather than the Khovanov
complex. This does not seem like an improvement, as the Bar-Natan complex has the same
generators as the Khovanov complex, and a more complicated coboundary. But since the
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cohomology of a knot is concentrated in degree 0, we can disregard a lot of the information
that arises during the construction of the complex. We will make this more precise in the
next section.

First, we want to get a local version for the Bar-Natan complex, using the method of
[1]. Recall that a pre-additive category C is a category where the morphism sets abelian
groups such that composition is bilinear in the obvious sense. If it contains a zero-object
and a biproduct of any two objects, the category is called an additive category.

Any pre-additive category can be turned into an additive category by formally adding
direct sums of objects (the biproducts), and treating composition and addition of mor-
phisms as for matrices. Details are given in [1, Definition 3.2]. We denote this additive
closure of the pre-additive category C as M(C). Furthermore, we can also consider the
category K(C) of cochain complexes over an additive category C, again, see [1, Definition
3.3] for details.

In [1] Bar-Natan defines a pre-additive category Cob3(B), where B⊂ S1 is a finite set
of points and the objects are compact one-dimensional manifolds M ⊂D2 with ∂M = B,
and the morphisms are free abelian groups generated by cobordisms within the cylinder,
up to boundary fixing isotopies. A slight variation is given in [1, Section 11.2], denoted
Cob3•(B), which has the same objects, but cobordisms are allowed to have markings in the
form of finitely many dots, which are allowed to move freely.

Define a quotient category C̃ob
3
•(B) of Cob3•(B) by adding relations to the morphism

groups using the local relations

= 0,
• = 1,

•
• = • • •

, (2.1)

and

+ • • =
•

+
•

. (2.2)

Notice that setting

• • = 0

recovers Cob3
•/l(B) from [1, Section 11.2]. Relation (2.1) and (2.2) ensure that any mor-

phism from the empty set to itself is a linear combination of products of spheres with two
dots. In other words, we have Mor(∅, ∅)∼=Z[H], a polynomial ring in a variable H .

Similar relations were introduced in [3] to give a local model for the Lee complex.
We can turn the categories into graded categories by considering objects together with

an integer q which denotes the grading. We thus write S{q} for an object in the graded cat-
egory, where S is still a compact one-dimensional manifold embedded in the disk. Unlike
in [1, Section 6], we will be more restrictive with the morphisms. We require the basic
morphisms birth and death to lower the grading by 1, while saddles increase the grading
by 1, and dotting raises the grading by 2.
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The Delooping Lemma of [2] carries over, but with a different isomorphism.

LEMMA 2.1. If an object S of C̃ob
3
•(B) contains a circle C, then S is isomorphic to

S′{1} ⊕ S′{−1} in M(C̃ob
3
•(B)), where S′ is the object obtained by removing the circle C

from S.

Proof. This is completely analogous to [2, Proof of Lemma 3.1], although the first iso-
morphism ϕ : S→ S′{1} ⊕ S′{−1} is slightly different because of relation (2.2). In pictures,
it can be described as

∅{1}
⊕
∅{−1}

•
• •−

•( )

where the morphism on the left arrow is a 2× 1 matrix, while the morphism on the right
arrow is a 1× 2 matrix. Notice that we consider composition of cobordisms as going from
top to bottom.

As in [1], any tangle diagram T gives rise to an object [[T]] in K(C̃ob
3
•(∂T)).

Furthermore, for any commutative ring k, we have a functor F : Cob3•(∅)→Modk[H] to the
category of k[H]-modules, given by F(S)= V⊗k , where k is the number of components of
S and V = k[x, H]/(x2 = xH), and the tensor product is over k[H]. As a k[H]-module, V
is freely generated by 1 and x. On morphisms, we need to declare F on

, ,
•

, and .

On the generators 1 and x of V , we set

F( ) : V→ k[H], 1 �→ 0, x �→ 1

F( ) : k[H]→ V , 1 �→ 1

F( · ) : V→ V , 1 �→ x, x �→ x2

F( ) : V ⊗ V→ V , 1⊗ 1 �→ 1, 1⊗ x �→ x, x⊗ 1 �→ x, x⊗ x �→ x2

F( ) : V→ V ⊗ V , 1 �→ 1⊗ x+ x⊗ 1−H · 1⊗ 1, x �→ x⊗ x

It is straightforward to check that F is a well-defined functor from Cob3•(∅) to Modk[H],
and furthermore

F( • • ) : k[H]→ k[H], 1 �→H .

With this, it is easy to see that F descends to a functor F(∅) : C̃ob
3
• →Modk[H]. Finally,

evaluating H to u ∈ k gives rise to a functor Eu : Modk[H] →Modk. Setting u= 0 recov-
ers the ordinary Khovanov complex, while setting u= 1 leads to the Bar-Natan complex
described above, using the identifications x= x− and 1= x+.

Adding the relation

• • = 1 (2.3)
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to C̃ob
3
•(B) allows us to go straight to Modk and the Bar-Natan complex, although we lose

the grading this way. In practice, we treat the twice-dotted sphere as an identity which
raises the grading by 2. To distinguish it from the identity, we write I for this morphism.

3. The algorithm. Bar-Natan’s divide-and-conquer algorithm in [2] can be
described as follows.

Given a complex C∗ in K(Cob3
•/l(B)), the cochain objects are direct summands

of objects in Cob3
•/l(B), which are embedded one-dimensional compact manifolds with

boundary B. Using the Delooping Lemma [2, Lemma 3.1], we can remove all the circle
components in this manifold at the cost of producing more direct summands in the cochain
objects. The result is a new cochain complex C̄∗ isomorphic to C∗, but where the cochain
objects have more direct summands.

Now search for direct summands S1 in C̄n and S2 in C̄n+1 such that the matrix entry of
the coboundary between these objects is an isomorphism. At this stage, one may want to
work with a pre-additive category where the morphism sets are vector spaces rather than
abelian groups, to increase the chances of finding an isomorphism. Then use Gaussian
elimination [2, Lemma 3.2] to replace C̄∗ by a chain homotopic cochain complex C̃∗
which has fewer direct summands (namely S1 and S2 have been cancelled). Continue to
cancel direct summands this way as long as possible to obtain a cochain complex Ĉ∗ chain
homotopy equivalent to C∗.

Given a tangle T , cut it into two tangles T1, T2 so that [[T]] = [[T1]] ⊗ [[T2]]. Now find
Ĉ∗1 � [[T1]] and Ĉ∗2 � [[T2]] inductively using the previous step and further cutting the tan-
gles. Then [[T]] � Ĉ∗1 ⊗ Ĉ∗2 , and we can apply the previous step once more to the right-hand
side to get [[T]] � Ĉ∗. We expect Ĉ∗ to have much fewer generators than [[T]].

In practice, if both Ĉ∗1 and Ĉ∗2 have a large number of generators, their tensor prod-
uct can have too many generators to make this efficient. For this reason, [2, Section 6]
introduced a scanning algorithm, where the link diagram is described as a list of tangles
Ti, each of which may only contain one crossing. One then forms Ck = Ĉ∗k−1 ⊗ [[Tk]] and

Ĉ∗k from C∗k via delooping and Gaussian elimination. This way the second cochain com-
plex in the tensor product always has a small number of generators only, and computer
implementations of the scanning algorithm have proven to be rather effective.

Lemma 2.1 ensures we can deloop in K(C̃ob
3
•(B)), and Gaussian elimination [2,

Lemma 3.2] works for general additive categories, so these algorithms work also for the
Bar-Natan complex. Of course, since [15, Proposition 2.3] tells us the cohomology, we are
not interested in applying the algorithms directly.

Instead, we want to simplify C∗(L; F) to a filtered complex Ĉ∗ such that the chain
homotopy equivalence provides chain homotopy equivalences between the filtration sub-
complexes. To make this precise, we now only consider the scanning algorithm where each
tangle is either

P= or M = (3.1)

Let us write the resulting bigraded complex [[T]] as C∗,∗(T) which has two
generators

C0,0(P)= , C1,1(P)= , and C0,0(M)= , C1,1(M)=
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and the morphism is the obvious saddle. The distinction between P and M here is somewhat
artificial, since we have not chosen an orientation yet, and so M is obtained from P by a
rotation. Furthermore, the same rotation identifies the cochain complexes. For now we can
ignore this, but later when we consider other tangles built from P and M , this will be useful.

Notice that we consider the first degree as the homological degree, while we consider
the second degree as the quantum degree. We will slightly change the pre-additive category

and consider C∗,∗(P) an object in K(Cob
3
k(∂P)), where Cob

3
k(B) is the pre-additive category

whose objects are the same as in Cob3•(B), but the morphism sets are free k-modules rather
than free abelian groups, and we use the relations (2.1), (2.2) and (2.3). We can also con-
sider this a graded pre-additive category by formally introducing a quantum grading and
assume the generator for C∗,q having quantum degree q.

Now assume our knot diagram D is given as a sequence of tangles T1, T2, . . . , Tn

where n is the number of crossings in D, and each Ti is either P or M . Since D represents
a knot, every crossing has a well-defined sign ε(Ti) ∈ {±1}. Notice that ε(P)=−ε(M), if
we assume the orientations to agree on the endpoints.

Let n+ be the number of crossings with sign +1, and n− be the number of crossings
with sign −1. Recall that the Khovanov complex of D gets a global shift in homological
degree and in quantum degree based on n+ and n−, and it will be convenient for us to apply
this shift to the first tangle. We therefore start with

C∗,∗1 =C∗+n−,∗+2n−−n+(T1), (3.2)

and for 1 < i≤ n we form

C∗,∗i =C∗,∗i−1 ⊗C∗,∗(Ti),

using the usual rule for forming tensor products of cochain complexes. Note that this is

an object in K(Cob
3
k(∂T ′i )), where T ′i is the obvious sub-diagram of D made up from the

tangles T1 to Ti. Also, there is a functor F : Cob
3
k(∅)→Modk, defined analogously to F ,

with F(C∗,∗)=C∗,∗(D; k).
Each C∗,∗i has a filtration coming from quantum degrees, given by

FqC∗i =
⊕
j≥q

C∗,ji .

and each FqCh
i decomposes as a direct summand of objects in Cob

3
k(∂T ′i ) with quantum

grading at least q.
The idea is to apply delooping and Gaussian elimination without disturbing the fil-

trations. There is an immediate problem in that the delooping isomorphism does not
respect the filtrations. Gaussian elimination on the other hand behaves well with filtrations,
provided the isomorphism along which we cancel respects quantum degrees.

We claim that by carefully performing Gaussian elimination, we get a filtered cochain
complex homotopy equivalent to the Bar-Natan complex, so that the filtration subcom-
plexes are also chain homotopy equivalent. The resulting algorithm can be described as
follows. We assume that we have a knot diagram D with n crossings, which are listed as
tangles T1, . . . , Tn.

Step 1. Form C∗,∗1 using (3.2).
Step 2. Assuming we have C∗,∗i−1 for some i > 1 with i≤ n, form

C̃∗,∗i =C∗,∗i−1 ⊗C∗,∗(Ti). (3.3)
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Step 3. Form C̄∗,∗i as the result of delooping C̃∗,∗i .
Step 4. In C̄∗,∗i search for morphisms k · id : Sq→ Sq, where k ∈ k is a unit, and Sq is

an object in Cob
3
k(T
′
i ) which is a direct summand in both C̄m,q

i and C̄m+1,q
i , and perform

Gaussian elimination along such a morphism.
Continue until no such morphisms can be found and call the resulting cochain complex

C∗,∗i .
Step 5. If i < n, repeat from Step 2.
This algorithm ends with a cochain complex C∗,∗n with the property that F(C∗,∗n ) is

chain homotopy equivalent to the Bar-Natan complex C∗,∗(D; k). But more importantly,
the resulting filtration on this complex behaves well with respect to the filtration of the
Bar-Natan complex.

PROPOSITION 3.1. Denote C∗,∗ =F(C∗,∗n ), and let

FqC∗ =
⊕
j≥q

C∗,j.

Then there is a chain homotopy equivalence ϕ : C∗,∗ →C∗,∗(D; k) which restricts to chain
homotopy equivalences ϕq : FqC∗ →FqC∗(D; k) for all q ∈Z.

We prove Proposition 3.1 in Section 4. For now recall that we are interested in deter-
mining the s-invariant of the knot K represented by D, so let us specialize to the case k= F

is a field. Observe that for q odd, we get

FqCn/Fq+2Cn ∼=Hn,q
Kh (K; F),

the Khovanov cohomology of K with coefficients in F. To see this note that the cohomology
of the quotient complex is the Khovanov cohomology by Proposition 3.1, but the quotient
complex has trivial coboundary, for otherwise we could still have done more cancellations
in Step 4 for i= n.

We now want to calculate the s-invariant directly from the definition, but using the
filtered complex C∗,∗. Notice that C∗,∗ comes with an explicit basis, which comes from

the objects of C∗,∗n , which after all is a cochain complex over the category Cob
3
F(∅). We

therefore have a basis of each Ci,q which we denote by ci,q
1 , . . . , ci,q

ki,q
.

Denote the coboundary of C∗,∗ by δ. Notice that δ(ci,q
j ) is a linear combination of basis

elements ci+1,q′
l with q′ > q. Since H0(C∗,∗)∼= F2, we can do Gaussian elimination on basis

elements c0,q
j until there are only two left. If δ(c0,q

j ) 
= 0, we can do Gaussian elimination

of c0,q
j against any c1,q′

l appearing in the coboundary with a nonzero coefficient. We can

also do Gaussian elimination of c0,q
j if it appears in the coboundary of some c−1,q′′

m with a
nonzero coefficient. Basically, we want to eliminate basis elements of homological degree
0 until there are only two left and then read off the s-invariant from the quantum degree of
the two remaining generators. For this to work, we need to do the cancellations in the right
order.

The filtration FqC∗ ⊂C∗,∗ induces maps on cohomology, and [13, Proposition 2.6]
tells us that there is a unique s ∈ 2Z such that

i∗ : H0(Fs−1C)→H0(C)

is surjective, and
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i∗ : H0(Fs+1C)→H0(C)

is nonzero, but not surjective. Furthermore, for q > s+ 1, the map on cohomology is triv-
ial. The correct order to cancel the remaining generators can now be described in the
continuation of our algorithm as follows.

Step 6. Denote D∗1 =C∗,∗ and choose the basis ci,q
j from above.

Step 7. Assume we have D∗i−1 for some i > 1 with a basis. If the coboundary

δ : D0
i−1→D1

i−1 is nonzero, choose a basis element c0,q
j with maximal q such that δ(c0,q

j ) 
=
0 and form D∗i by performing Gaussian elimination of c0,q

j with a basis element c1,q′
j′ . The

basis of D∗i is obtained from the basis of D∗i−1 by removing the two cancelled elements.
Step 8. Repeat Step 7 until the coboundary δ : D0

i →D1
i is zero.

Step 9. Assume we have D∗k−1 for some k > i with a basis. If the coboundary

δ : D−1
i−1→D0

i−1 is nonzero, choose a basis element c0,q
j with minimal q such that c0,q

j

appears with nonzero coefficient in δ(c−1,q′
j′ ) for some basis element c−1,q′

j′ . Then form D∗k
by performing Gaussian elimination of c0,q

j with c−1,q′
j′ . The basis of D∗k is obtained from

the basis of D∗k−1 by removing the two cancelled elements.
Step 10. Repeat Step 9 until the coboundary δ : D−1

k →D0
k is zero.

PROPOSITION 3.2. The final based cochain complex D∗k satisfies D0
k = F2, and the two

basis elements in homological degree 0 have quantum degree s(K)+ 1 and s(K)− 1,
respectively.

This proposition will also be proven in Section 4.

REMARK 3.1. Steps 1–10 therefore give an algorithm to calculate the s-invariant of a
knot over a field F. The first five steps give us a smaller version of the Bar-Natan complex,
and the last five steps reduce the 0-th group until we can read off the invariant.

As it stands, we still calculate the full Khovanov cohomology as a side effect, and
since the coboundary of the Bar-Natan complex is more complicated than the Khovanov
coboundary, our cancellation technique is less effective. We will see however in Section
5 that we can do the same cancellations as if working on the Khovanov complex. The
efficiency will still be a bit worse, as we need to keep track of the Bar-Natan deformation.

To regain some efficiency, notice that the final five steps focus on the complex in
degree 0. During the first five steps, we operate on objects with positive homological degree
which are never used again. It is therefore tempting to simply disregard such elements. The
resulting cochain complex will not have the same chain homotopy type, but will have the
right cohomology in degree 0. This can be made to work and leads to noticable practical
improvements.

The aforementioned disregarding of certain objects can be implemented by slightly
changing Step 4. The replacement is given as follows.

Step 4’. In C̄∗,∗i search for morphisms k · id : Sq→ Sq, where k ∈ k is a unit, and Sq

is an object in Cob
3
k(T
′
i ) which is a direct summand in both C̄m,q

i and C̄m+1,q
i with m ∈

{−2− n+ i, . . . , 1}, and perform Gaussian elimination along such a morphism.
Continue until no such morphisms can be found, set the m-th cochain group to 0 for

m /∈ {−1− n+ i, . . . , 1}, and call the resulting cochain complex C∗,∗i .
Notice that the final cochain complex C∗,∗n has only nonzero cochain groups in homo-

logical degree −1, 0, 1. It also has a filtration coming from the quantum degree so we can
look at the maximal q for which H0(FqC)→H0(C) is surjective and call this value s− 1.
The next Lemma states that this gives the right value.
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LEMMA 3.2. The value s agrees with the s-invariant of the knot.

We can therefore calculate the s-invariant of a knot with the algorithm obtained by
replacing Step 4 with Step 4’. The proof of Lemma 3.2 is given at the end of the next
section.

4. Proofs. It will be useful for us to restate Gaussian elimination from [2, Lemma
3.2] in a way that makes the chain homotopy equivalences more visible.

LEMMA 4.1 (Gaussian Elimination). Let C be an additive category and (C∗, c∗) be a
cochain complex over C such that Cn = An ⊕ Bn, Cn+1 = An+1 ⊕ Bn+1, and the coboundary
cn : Cn→Cn+1 is represented by a matrix

cn =
⎛⎝ϕ δ

γ ε

⎞⎠
with ϕ : An→ An+1 an isomorphism. Then C∗ is chain homotopy equivalent to a cochain
complex (D∗, d∗) with Dk =Ck for k 
= n, n+ 1, Dk = Bk for k = n, n+ 1, dk = ck for k 
=
n− 1, n, n+ 1. Furthermore, we have a commutative ladder between C∗ and D∗ with the
vertical morphisms chain homotopy equivalences.

Cn−1 An ⊕ Bn An+1 ⊕ Bn+1 Cn+2

⎛⎝ϕ δ

γ ε

⎞⎠⎛⎝α

β

⎞⎠ (
μ ν

)

Cn−1 Bn Bn+1 Cn+2
β ε− γ ϕ−1δ ν

1 1
(

0 1
) ⎛⎝−ϕ−1δ

1

⎞⎠ (
−γ ϕ−1 1

) ⎛⎝0

1

⎞⎠ 1 1

(4.1)

Proof. Using that ck+1 ◦ ck = 0, it is straightforward to see that the diagram commutes,
and the lower row represents a cochain complex. Therefore, the downward map f : C∗ →
D∗ and the upward map g : D∗ →C∗ are cochain maps. Clearly f ◦ g= idD∗ , and if we
define H : An+1 ⊕ Bn+1→ An ⊕ Bn by the matrix

H =
⎛⎝ϕ−1 0

0 0

⎞⎠ ,

we have H ◦ cn = idCn −gn ◦ f n and cn ◦H = idCn+1 −gn+1 ◦ f n+1, which means that f and
g are chain homotopy equivalences.

If the cochain complex C∗ comes with a quantum grading so that for the filtration

FqC∗ =
⊕
j≥q

C∗,j

we have c∗ : FqC∗ →FqC∗+1 for all q, that is, each FqC∗ is a subcomplex, we may be able
to apply Gaussian elimination to each filtered subcomplex. But this means that we need that
ϕ restricts to an isomorphism ϕ : FqAn→FqAn+1. This is why in Step 4 the morphism is
required to preserve q.
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Proof of Proposition 3.1. In the first five steps of the algorithm, we get a cochain
complex via the tensor product, then we deloop it, and then we perform Gaussian elim-
ination, before we repeat these three steps. We claim that we can get the same cochain
complex by repeatedly taking the tensor product and delooping, and finally doing (many
more) Gaussian eliminations. But doing the Gaussian eliminations at the last step preserves
quantum degrees, so the result follows by the above discussion.

First notice that performing Gaussian elimination from a cochain complex C∗ to D∗,
and then taking the tensor product with another cochain complex E∗ has the same result as
first taking the tensor product, and then performing Gaussian elimination. To see this, we
only need to add⊗E∗ and⊗1E∗ in several places of the commutative ladder in Lemma 4.1.
Notice that we require ϕ to be a multiple of the identity, and this does not change if we first
do the tensor product. The quantum degree of each individual cancellation also remains
the same.

We now want to switch the order of performing a Gaussian elimination and the deloop-
ing of circles. Assume we perform a Gaussian elimination as in (4.1). If the delooping does
not take place in An, An+1, Bn, or Bn+1, it is clear that we can change the order.

If the delooping takes place in the object An, we can also perform the same delooping
in An+1. This is because we assume that the isomorphism is a unit multiple of the identity.
The delooped cochain complex in the degrees where we will cancel looks like

Ān
q+1 ⊕ Ān

q−1 ⊕ Bn

⎛⎜⎝ k 0 (0 − 0 )δ

0 k 0 δ

γ 0 γ 0 ε

⎞⎟⎠•

•

Ān+1
q+1 ⊕ Ān

q−1 ⊕ Bn

with k ∈ k a unit. Gauss elimination results in

Bn ε− k−1γ δ Bn+1

which is the same result as if we had first cancelled, with no further delooping.
If the delooping takes place in Bn, delooping results in

An ⊕ B̄n
q+1 ⊕ B̄n

q−1

(
k δ 0 δ0
γ ε 0 ε0

)
•

•

An+1 ⊕ Bn+1

and after Gauss elimination we have

B̄n
q+1 ⊕ B̄n

q−1

(ε− k−1γ δ) ◦ (00 00 )•

Bn+1

which is the same as if we first cancelled and then delooped. The final case where we
deloop in Bn+1 is similar.

Proof of Proposition 3.2. Notice that each complex D∗j has a filtration, and we can

form its own s-invariant s(Dj). Then s(D1)= sF(K), and we want to show that s(Dj+1)=
s(Dj) for all j= 1, . . . , k − 1.

Consider Step 7 and the basis element c0,q
j . Since we cancel it with an element c1,q′

j′ , the
chain homotopy equivalence Di−1→Di induces chain homotopy equivalences FrDi−1→
FrDi for all r≤ q. For r > q, we still have H0(FrDi)=H0(FrDi−1), since no basis element
c0,r

l has nonzero coboundary by the choice of q. It follows that Step 7 does not change the
s-invariant.
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Ck−1
i ⊗ B

⊕
Ck

i ⊗ A

Ck
i ⊗ B

⊕
Ck+1

i ⊗ A

C−1
i ⊗ B

⊕
C0

i ⊗ A

C0
i ⊗ B

⊕
C1

i ⊗ A

C1
i ⊗ B

⊕
C2

i ⊗ A

· · ·

Figure 1. The cochain complex D̃∗i+1, and the cochain complex C̃∗i+1, whose extra terms are indicated
in gray. We write C∗(Ti+1) as A→ B.

In Step 9, we have H0(FqDk−1) is a quotient of D0
k−1 obtained by disregarding basis

elements c0,q′ with q′ < q, and more relations coming from δ(c−1,r) with r≥ q. If c0,q is
being cancelled with c−1,q′ in Step 9, we have that

δ(k · c−1,q′)= c0,q − x,

for some k ∈ F and x ∈D0
k−1. By the choice of q being minimal, we get x ∈FqD0

k−1, so for
r≤ q the image of H0(FrDk) in F2 =H0(Dk) is the same as the image of H0(FrDk−1). For
r > q, the filtrations are unchanged, hence so are the images. So again the s-invariant does
not change during Step 9.

Proof of Lemma 3.2. Let C∗i be a cochain complex over Cob
3
F(∂T ′i ), and let D∗i be

obtained from C∗i by setting Dk
i =Ck

i for k ∈ {−2− n+ i, . . . , 1} and 0 otherwise, and
δDi = δCi in the range where this makes sense.

Now form C̃∗i+1 =C∗i ⊗C∗(Ti+1) and D̃∗i+1 =D∗i ⊗C∗(Ti+1). Since C∗(Ti+1) is con-

centrated in homological degrees 0 and 1, we have C̃k
i+1 = D̃k

i+1 for k ∈ {−1− n+
i, . . . , 1}, and D̃k

i+1 is a direct summand of C̃k
i+1 for k ∈ {−2− n+ i, 2}. The cobound-

aries mostly agree and differ only slightly toward the ends of the complex, and compare
Figure 1. We can deloop both complexes, calling them D̄∗i+1 and C̄∗i+1, but we still get that
they agree for k ∈ {−1− n+ i, . . . , 1} and behave as in Figure 1 at the ends.

We now perform Gaussian elimination on D̄∗i+1 to get a cochain complex D̂∗i+1 and do
the exact same eliminations on C̄∗i+1 to get a cochain complex C∗i+1. We could possibly do

more Gaussian eliminations on C∗i+1. But we will not do this, as now D̂∗i+1 and C∗i+1 agree
in the range between k ∈ {−2− n+ (i+ 1), . . . , 1}.

Cutting D̂∗i+1 by setting the object in degrees −2− n+ i and 2 equal to 0 gives rise to
a cochain complex D∗i+1 which is obtained from C∗i+1 in the same way that D∗i was obtained
from C∗i .

If we begin with C∗1 from (3.2), the final complex D∗n is exactly the result from using
the first five steps of the modified algorithm, and C∗n is a cochain complex chain homo-
topy equivalent to the Bar-Natan complex. Since the filtrations are preserved and the two
complexes agree in degrees −1, 0, 1, we get a commutative diagram

H0(FqDn) H0(Dn)

H0(FqCn) H0(Cn)

Notice that the inclusion D∗n ⊂C∗n is not a cochain map, but behaves like one in degree
0, leading to the vertical maps being actual identities. It follows that both complexes lead
to the same s-invariant, with the s-invariant coming from C∗n being the s-invariant of the
knot.
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5. Analyzing cancellations in the Bar-Natan complex. Our rule for performing
Gauss elimination sounds rather more restrictive than the one in [2]. But given two objects
S, S′ in Cob3

•/l(B) where both manifolds do not contain circle components, there are not too
many isomorphism between them. Surgeries are neither isomorphisms nor is the dotting of
an arc, and there is no point in considering dotted spheres since we already look at mor-
phisms up to relations. So the typical isomorphism is coming from the product cobordism,
that is, the identity.

We now want to check that we can assume a similar amount of cancellation
opportunities on the Bar-Natan complex as on the Khovanov complex.

Given a surgery between two arcs

{+1}

tensoring with an object from the next crossing might lead to the same surgery between
two arcs or it might lead to at least one circle in one of the objects. If we only get one new
circle, it may be on the left or on the right. So we can get

{+1}
or

{+1}

With delooping, this turns into

{−1}

{+1}
{+1}

•

id

or
{+2}• −I

id

Recall that I is multiplication by a twice-dotted sphere. In both cases, we will be able
to perform one Gaussian elimination, and this is exactly what we would get if we were
working on the Khovanov complex. Also, notice that

{+2}
•

and {+2}
I

turn into

∅{−1}

∅{+1}

∅{+1}

∅{+3}

I

00− 00= 0

id

• • • •

and
∅{−1}

∅{+1}

∅{+1}

∅{+3}

I

I

0

On the left-hand side, we can perform one Gaussian elimination in the same way as this
is possible in the Khovanov complex. The right-hand side does not occur in the Khovanov
situation, and we cannot perform Gaussian elimination, as the morphism does not preserve
the quantum degree.

From this, we expect a similar amount of cancellations on the Bar-Natan complex as
on the Khovanov complex. Because of the extra morphisms occuring, it may be possible
that we do not get the same amount of opportunities to cancel. Furthermore, since we need
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to keep track of more morphisms, we expect this to be less efficient on the whole of the Bar-
Natan complex. But our calculations suggest that disregarding generators of unnecessary
homological degree more than make up for this shortcoming.

If we stack crossings as in (3.1) on top of each other, we can do cancellations directly.
It is not clear that this improves efficiency, but it can be combined with [11] to make the
Sq2-refinement below more calculation friendly. Let us define the tangles

1 = −1 = n+ 1 =
n

−n− 1 = −n

for n≥ 1.

PROPOSITION 5.1. Let n≥ 1. We have

(1) C∗,∗( 2n ) is chain homotopy equivalent to

{+1}

• •

{+3}

• •

{+5}

• • · · · • •

{4n+ 1}

− + − I − −

(2) C∗,∗( 2n+ 1 ) is chain homotopy equivalent to

{+1}

• •

{+3}

• •

{+5}

• • · · · • •

{4n+ 3}

− + − I − + − I

(3) C∗,∗( −2n ) is chain homotopy equivalent to

{−2n+ 1}

• • · · · • •

{+2n− 5}

• •

{+2n− 3}

• •

{+2n− 1}

− − + − I −
{+2n}

(4) C∗,∗( −2n− 1 ) is chain homotopy equivalent to

{−2n}

• • · · · • •

{+2n− 4}

• •

{+2n− 2}

• •

{+2n}

+ − I − + − I −
{+2n+ 1}

Proof. The proof is done by induction, with the start given by the ordinary saddle
complex. We have to do four induction steps, but as they are all very similar, we only show
how (2) is derived from (1).

We have C∗,∗( 2n+ 1 )=C∗,∗( 2n )⊗C∗,∗( 1 ), so by induction this is chain homotopy
equivalent to

{+1}

• •

{+4n− 1}

• •· · · • •

{+4n+ 1}

{+1} {+2}

• • · · · • •

{+4n}

• •

{+4n+ 2}

− + − I −

+ − − +

− + − I −
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After delooping, we get

{+1}

• •

{+4n− 1}

• •· · · • •

{+4n+ 1}

{+1} {+3}
· · ·

{+4n+ 1}

•

•

{+4n+ 3}

{+1} · · · {+4n− 1} {+4n+ 1}

− + − I −

−I

id

0−

id
id−0

id+0−
0

id−0

We can now cancel the elements in the third row with the corresponding element in the mid-
dle row, starting from the left. The top row stays as it is, with the last object of the
middle row becoming the object of top homological degree. By Gaussian elimination,
the coboundary is exactly as predicted.

6. The Lipshitz–Sarkar refinements of the s-invariant. In [12], Lipshitz and
Sarkar construct a suspension spectrum for a link whose reduced singular cohomology
agrees with Khovanov cohomology of this link, which gives rise to stable cohomol-
ogy operations on Khovanov cohomology. Furthermore, in [13], they use such cohomology
operations to refine the s-invariant, leading to new lower bounds for the slice genus of
a knot.

To describe these refinements, assume that α : H̃∗(·; F)→ H̃∗+nα (·; F) is a stable coho-
mology operation on singular cohomology. If K is a knot, denote by X q

K the suspension
spectrum defined in [12] such that H̃ i(X q

K; F)=Hi,q
Kh(K; F).

We thus have a cohomology operation α : Hi,q
Kh(K; F)→Hi+nα,q

Kh (K, F) for every q.
Also, recall that H∗,qKh (K; F)∼=H∗(Fq/Fq+2; F), where we now write simply Fq for the
filtration on the Bar-Natan complex. Therefore, we have a zig-zag of maps

H−nα,q
Kh (K; F)

α−→H0,q
Kh (K; F)←−H0(Fq; F)−→H0

BN(K; F)∼= F2.

Consider the following configurations related to this zig-zag:

〈ã, b̃〉 〈â, b̂〉 〈a, b〉 〈ā, b̄〉

H−nα,q
Kh (K; F) H0,q

Kh (K; F) H0(Fq; F) H0
BN(K; F)

〈ã〉 〈â〉 〈a〉 〈ā〉 
= 0

α p i∗
(6.1)

DEFINITION 6.1. Call an odd integer q α-half-full, if there exist a ∈H0(Fq; F) and
ã ∈Kh−nα,q(K; F) such that p(a)= α(ã), and such that i∗(a)= ā 
= 0. That is, there exists
a configuration as in the upper two rows of (6.1).

Call an odd integer q α-full, if there exist a, b ∈H0(Fq; F) and ã, b̃ ∈Kh−nα,q(K; F)

such that p(a)= α(ã), p(b)= α(b̃), and i∗(a), i∗(b) generate H0
BN(K; F). That is, there

exists a configuration as in the lower two rows of (6.1).

We note that while i∗(a) and i∗(b) have to be nonzero, it is allowed that p(a) or p(b)

are zero.
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With the concept of α-full and α-half-full, Lipshitz and Sarkar [13] define their
refinements of the s-invariant as

DEFINITION 6.2. Let K be a knot and α a stable cohomology operation on singular
cohomology with coefficients in F, then rα+, rα−, sα+, sα− ∈Z are defined as follows.

rα
+(K)=max{q ∈ 2Z+ 1 | q is α-half-full} + 1

sα
+(K)=max{q ∈ 2Z+ 1 | q is α-full} + 3.

If K denotes the mirror of K, we also set

rα
−(K)=−rα

+(K)

sα
−(K)=−sα

+(K).

We can put them all together and write

sα(K)= (rα
+(K), sα

+(K), rα
−(K), sα

−(K)).

The motivation for these refinements is that each of these numbers provides a lower
bound for the slice genus of K, provided these numbers evaluate the unknot to 0 (which is
automatically satisfied for nα > 0), and that in some cases they provide better bounds than
the s-invariant, see [13, Theorems 1 and 2].

It is shown in [13, Lemma 4.2] that each of these new invariants differs from sF(K)

by at most 2. Indeed, once i∗ : H0(Fq; F)→H0
BN(K; F) is the 0-map, q can no longer be

α-half-full, and if i∗ is not surjective, q cannot be α-full. Hence,

rα
+(K), sα

+(K)≤ sF(K)+ 2.

Also,

rα
+(K), sα

+(K)≥ sF(K),

as for small values of q the desired configurations can be achieved using 0 for ã and b̃.
So to calculate rα+(K) one has to check whether sF(K)+ 1 is α-half-full, and to calculate
sα+(K) one has to check whether sF(K)− 1 is α-full.

Let us denote

R(α)= im α ∩ im p⊂H0,sF(K)+1
Kh (K; F),

and

S(α)= im α ∩ im p⊂H0,sF(K)−1
Kh (K; F).

We want to give a criterion for checking whether any of the refinements differ from the
s-invariant, which can be easily combined with our algorithm. For notational purposes, let
us write F−∞ for the Bar-Natan complex. There is a commutative diagram

H0(Fq; F) H0(F−∞; F)=H0
BN(K; F)

H0,q
Kh (K; F)=H0(Fq/Fq+2; F) H0(F−∞/Fq+2; F)

i∗

j∗
p (6.2)
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PROPOSITION 6.3. Let K be a knot and α a stable cohomology operation on singular
cohomology with coefficients in F.

(1) We have rα+(K)= sF(K)+ 2 if and only if there is â ∈ R(α) such that 0 
= j∗(â) ∈
H0(F−∞/FsF(K)+3; F).

(2) We have sα+(K)= sF(K)+ 2 if and only if there is b̂ ∈ S(α) such that 0 
= j∗(b̂) ∈
H0(F−∞/FsF(K)+1; F).

Proof. Assume that rα+(K)= sF(K)+ 2 which means that q= sF(K)+ 1 is α-half-
full. By assumption, there exists â= α(ã)= p(a) with 0 
= i∗(a) ∈H0

BN(K; F). Consider
the long exact sequence corresponding to Fq+2 ⊂F−∞:

· · · −→H0(Fq+2; F)
i∗−→H0

BN(K; F)
p−→H0(F−∞/Fq+2; F)−→ · · · (6.3)

Since q+ 2 > sF(K)+ 1, we have i∗ = 0, so p is injective. By the commutativity of (6.2),
we get j∗(â) 
= 0.

If there is â ∈ R(α) with j∗(â) 
= 0, it follows directly from (6.2) and the definition that
sF(K)+ 1 is α-half-full. By the discussion above, we have rα+(K)= sF(K)+ 2.

Now assume that sα+(K)= sF(K)+ 2, which means that there are â, b̂ ∈ S(α) with â=
p(a), b̂= p(b) and i∗(a), i∗(b) generate H0

BN(K; F). Look again at the long exact sequence
(6.3), but this time with q+ 2= sF(K)+ 1. This time i∗ is nonzero, but not surjective. So
some linear combination of â, b̂ is not in the kernel of j∗.

If there is b̂ ∈ S(α) with j∗(b̂) 
= 0, let ǎ ∈H0(FsF(K)+1; F) be such that 0 
= i∗(ǎ) ∈
H0

BN(K; F). Choose b ∈H0(FsF(K)−1; F) with p(b)= b̂, and let a= i∗(ǎ) ∈H0(FsF(K)−1; F).
Then

i∗(a) ∈ ker p : H0
BN(K; F)→H0(F−∞/FsF(K)+1; F),

while i∗(b) is not. We then get the configuration for α-fullness of q= sF(K)− 1 using a, b
and 0, b̂.

6.1. The operation Sq1. The first cohomology operation of interest, considered in
[13], is Sq1, the first Steenrod square. It is shown in [13, Theorem 3] that there is a knot K
with

sSq1

+ (K) 
= sF2(K).

The knot in question is 14n19265, and the argument is based on the fact that

sF2(K) 
= sQ(K)

by a computation of C. Seed and the Khovanov cohomology of this knot.
The first Steenrod square can be expressed in terms of the Bockstein sequence

corresponding to the short exact sequence

0−→Z/2Z−→Z/4Z−→Z/2Z−→ 0

and thus can be defined directly on the Khovanov complex.
Step 1 to Step 5 work equally well on the commutative ring Z/4Z, but we need to be

a little bit careful with reading off the Khovanov cohomology with Z/4Z-coefficients, as
there may be several nonzero entries in the coboundary between generators of the same
quantum degree. The ring Z/4Z is not a domain, so we do not have a Smith Normal Form,
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but the ring is uncomplicated enough so that we can bring the cochain complex into a form
that resembles a Smith Normal Form.

DEFINITION 6.3. A cochain complex C∗ is called Z/4Z-elementary, if there is n ∈Z

and i≥ 0 such that

Ck =
⎧⎨⎩ 0 k /∈ {n, . . . , n+ i}

Z/4Z k ∈ {n, . . . , n+ i}

and the coboundary dk : Ck→Ck+1 is multiplication by 2 for n≤ k < n+ i. We call i the
length of the Z/4Z-elementary complex.

Let C∗ be a free cochain complex over Z/4Z and there is a filtration

· · · ⊂FnC∗ ⊂Fn−1C∗ ⊂ · · · ⊂C∗

by subcomplexes. Then C∗ is said to be in filtered Z/4Z-normal form, if each quotient
complex Fn−1C∗/FnC∗ is a direct sum of Z/4Z-elementary cochain complexes.

LEMMA 6.4. Let C∗ be a free Z/4Z-cochain complex such that there exists a finite
basis B, and subsets

∅=Bn+1 ⊂Bn ⊂ · · · ⊂Bn−m =B

such that each Bn−j generates a free subcomplex Fn−jC∗ of C∗. Then C∗ is chain homo-
topy equivalent to a free filtered cochain complex D∗ which is in filtered Z/4Z-normal
form, such that the chain homotopy equivalence i : C∗ →D∗ restricts to chain homotopy
equivalences i| : Fn−jC∗ →Fn−jD∗.

Proof. The proof is done by induction over m. We first show that Fn can be brought
into Z/4Z-normal form using Gaussian elimination and handle slides involving the basis
elements of Bn only.

Using Gaussian elimination, we can ensure that the coboundary matrix of Fn has only
entries 0 and 2. We then use handle slides, compare, for example, [10], to turn Fn into a
direct sum of Z/4Z-elementary cochain complexes. This argument is similar to the one
used in the proof of [10, Theorem 6.2], where a chain complex is brought into Smith
Normal Form. One has to be a bit careful with elementary complexes of length bigger than
1, in that one has to give priority to longer length. We will omit the details, especially since
the complexes arising for us come from Z-cochain complexes via the tensor product, and
can never have length bigger than 1.

Once we have the statement for Fn−j+1, we use Gaussian elimination on basis elements
in Bn−j −Bn−j+1 and then handle slides on the remaining ones. As Fn−j+1 is a subcomplex,
its coboundary is not affected by these operations. We can therefore finish the argument by
induction.

Notice that the Z/4Z-cochain complex C∗,∗n we get after the first five steps can be
used to read off the Khovanov cohomology with Z/2Z coefficients by simply counting the
generators according to their quantum and homological degrees. From this, we can obtain
sF2(K) using Steps 6-10.

We now apply handle slides, which can be done algorithmically, to get the complex into
filtered Z/4Z-normal form, where we can read off Sq1 on Khovanov cohomology. It simply
corresponds to the Z/4Z-elementary summands of length 1 in the quotient complexes.
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Figure 2. A cochain complex in filtered Z/4Z-normal form. The gray edges between (2, 14), (5, 18),
and (7, 14) are labelled 2.

To get the intersection with the image of p, we need to check which linear combina-
tions remain cocycles when considered in Fq for q= sF2(K)± 1.

Finally, we need to see if any of these cocycles survive after applying the coboundary
d−1 : F2 ⊗C−1,∗

n → F2 ⊗C0,∗
n . If this is the case, we add 2 to sF2(K) in the appropriate

refinement, according to Proposition 6.3.
In order to work out Sq1, we should get the correct calculation for the Khovanov

cohomology in homological degrees −1 and 1. Using Step 4’ is therefore not appropriate.
However, we can easily modify this step to only disregard objects of homological degree
bigger than 2 or smaller than −2− n+ i.

6.2. The operation Sq2. The second Steenrod square requires the stable homotopy
type of [12], or at least a 1-flow category as in [11]. At the moment there is no analog of
[2] for the stable homotopy type, so we need a global approach to an appropriate 1-flow
category. Using Proposition 5.1, one can get 1-flow categories C

q
Kh(K) for a knot K, whose

cochain complexes are connected to form a Bar-Natan complex.
We only need to keep track of objects in homological gradings between −3 and 3 and

use the cancellation technique of [11] for objects of the same quantum degree. This way we
can get much smaller 1-flow categories whose cochain complexes can be used to read off
the Khovanov cohomology. To determine R(Sq2) and S(Sq2), we can look at the smaller
1-flow category whose objects have homological degree between −2 and 0. This 1-flow
category can be brought algorithmically into “Chang form” as in [9]. This Chang form
makes it possible to read off R(Sq2) or S(Sq2) in the same way as R(Sq1) or S(Sq1), which
then makes it possible to calculate sSq2

(K).

7. Calculations and remarks on efficiency. Consider the graph in Figure 2. We
can interpret the vertices as generators for a cochain complex C∗,∗ with homological and
quantum degrees as indicated, and the coboundary determined by the edges. The gray
edges without labels represent either +1 or −1 in the coboundary. The exact value is not
important as we only need to know whether we can cancel generators between such an
edge.
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6

1 2 3 4

5

2

2

q = −1 q = 1
h = −1

h = 0

h = 1

Figure 3. A cochain complex with unusual sSq1
.

This is in fact obtained using our computer program on the knot 14n19265 with
Z/4Z coefficients after Gaussian elimination and handle slides to turn it into filtered
Z/4Z-normal form, but we can interpret this cochain complex over Z as well.

We can continue with our algorithm and perform steps 6 to 8. We first cancel generator
3 with 10 , as this has maximal quantum degree of those which can be cancelled with a

generator of homological degree 1. After that, we cancel generator 1 with 9 .
We now have to cancel from below, starting with minimal quantum degree for which

this is possible. So we can cancel 4 with 13 , while cancelling 2 with 14 is possible
rationally, but not over F2. In fact, rationally we would have already cancelled all generators
except for 1 , 5 , and 8 in Step 5, so we can easily read off sQ = 0.

Over F2, we can cancel 5 with 14 , and after that only one of 6 and 7 . Finally, we can
cancel 8 and read off sF2 =−2.

To determine rSq1

+ , observe that the image of Sq1 in quantum degree −1 is generated
by 6 and 7 , and both are cocycles in F2 ⊗F−1. But when viewed in the quotient complex
F2 ⊗F−∞/F2 ⊗F1, we get 6 is cohomologous to 7 , and also to 5 , but this element

survives. Hence, rSq1

+ = 0 by Proposition 6.3.
Similarly, we see that S(Sq1) is generated by 2 and 4 , but 4 is a coboundary in

F2 ⊗F−∞/F2 ⊗F−1. Still, 2 survives, so sSq1

+ = 0.
If we turn Figure 2 upside down, we get S(Sq1)= 0, and R(Sq1) is generated by 3 .

But 3 gets killed by 10 once we pass to the quotient complex. Overall, we get

sSq1

(14n19265)= (0, 0,−2,−2).

7.1. Calculations for sSq1
. The program SKnotJob [18] was used to calculate the

invariant sSq1
(K) for all prime knots with up to 16 crossings. We list all knots with at most

15 crossings for which this invariant has 1 entry different from sF2(K) in Table 1. We also
found 162 non-alternating prime knots with 16 crossings with this behavior.

It is noticable that for all of these knots, we also have sF2(K) 
= sF3(K). In particular,
we do not get a better lower bound for the genus from sSq1

(K) than from the standard s-
invariants. In Figure 3, we have a hypothetical configuration which would result in sF2 =
sQ = 0, but sSq1 = (0, 2, 0,−2). It would be interesting to know whether a knot could give
rise to such a configuration.

It is known that sSq2
(K) gives better bounds for some knots [13], but we have not

implemented an algorithm for this invariant yet.

7.2. Efficiency. Given an immersion of S1 into the plane, which has at most double
self-intersections, consider the knot diagrams obtained from this immersion by changing
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Table 1. Prime knots with nonstandard sSq1
and at most 15 crossings.

Knot sSq1
sF2 sF3 Knot sSq1

sF2 sF3

14n19265 (0, 0,−2,−2) −2 0 14n22180 (2, 2, 0, 0) 2 0

15n040226 (2, 2, 0, 0) 0 2 15n041127 (2, 2, 0, 0) 0 2

15n041140 (0, 0,−2,−2) 0 −2 15n048439 (2, 2, 0, 0) 0 2

15n052310 (2, 2, 0, 0) 0 2 15n052477 (2, 2, 0, 0) 0 2

15n052495 (2, 2, 0, 0) 0 2 15n053135 (2, 2, 0, 0) 0 2

15n057674 (0, 0,−2,−2) 0 −2 15n059044 (2, 2, 0, 0)

15n059184 (0, 0,−2,−2) 0 −2 15n083419 (2, 2, 0, 0) 0 2

15n084460 (4, 4, 2, 2) 2 4 15n094892 (2, 2, 0, 0) 0 2

15n115486 (2, 2, 0, 0) 0 2 15n116118 (2, 2, 0, 0) 0 2

15n116363 (2, 2, 0, 0) 0 2 15n124915 (2, 2, 0, 0) 0 2

15n127312 (0, 0,−2,−2) 0 −2 15n127580 (0, 0,−2,−2) 0 −2

15n129563 (0, 0,−2,−2) 0 −2 15n130691 (0, 0,−2,−2) 0 −2

15n132535 (0, 0,−2,−2) 0 −2 15n132615 (0, 0,−2,−2) 0 −2

15n132623 (2, 2, 0, 0) 0 2 15n132672 (2, 2, 0, 0) 0 2

15n132684 (0, 0,−2,−2) 0 −2 15n135086 (2, 2, 0, 0) 0 2

15n135095 (0, 0,−2,−2) 0 −2 15n139104 (2, 2, 0, 0) 0 2

15n140905 (2, 2, 0, 0) 0 2 15n141051 (2, 2, 0, 0) 0 2

15n141061 (0, 0,−2,−2) 0 −2 15n141556 (2, 2, 0, 0) 0 2

15n141560 (0, 0,−2,−2) 0 −2 15n149575 (2, 2, 0, 0) 2 0

intersection points into over- or under-crossings. It is clear that our algorithm works bet-
ter the further away the writhe of a diagram is from 0. For example, if a diagram has
100 crossings and half of them are positive, we will only start throwing away generators
from the 52nd crossing onward. If there are only five negative (or positive) crossings, we
start throwing away generators much sooner, and we will overall deal with much fewer
generators.

In the extreme case of a positive knot K, it was already observed in [17] that

sF(K)=−k + n+ 1,

where n is the number of crossings and k is the number of circles in the resolution sitting in
homological degree 0. To count the number of circles, one can scan through the crossings
and check whether the 0-resolution leads to a new circle. To some extent, this is what our
algorithm does. Every time a new circle appears in the object in homological degree 0, we
can cancel it and never have more than one object in homological degree 0. One can check
that we will not get more than i objects of homological degree 1 at the i-th crossing, and
while this is not as efficient as simply counting circles, it is still done very fast.

For knots with up to 16 crossings, we observe a slight improvement in computation
time between calculating the s-invariant versus Khovanov cohomology. For knots with
writhe close to 0, ignoring homological degrees away from 0 has less effect, and the
boundary maps are more complicated.

Alternating knots take noticeably longer to calculate. By [14, Theorem 1.1], the s-
invariant cannot depend on the field in this case, and it furthermore agrees with the
signature [17, Theorem 3].

For larger knots, we have made a few sample computations on the knots shown in
Figure 4. The knot K1 on the left was communicated to the author by András Juhász and is
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Figure 4. Two knots.

motivated by the work of Piccirillo [16]. The diagram has 65 crossings and there exists a
girth 12 decomposition of this diagram. The calculation sF2(K1)= 0 took less than 40 min.
Obtaining the Khovanov cohomology with coefficients in F2 took only 25 min, but the
cohomology itself only gives a range of possible values for sF2 . We did not try to analyze
the cohomology further to see if the exact value can be obtained.

More interestingly, we get sF3(K1)= 2 and also sSq1 = (2, 2, 0, 0). In particular, this
knot is not smoothly slice.

The knot K2 on the right is a satellite knot of the trefoil considered in [5]. This knot
was communicated to the author by Lukas Lewark. The diagram has 93 crossings and
admits a girth 16 decomposition. A 20-h calculation revealed sF2(K2)= 0. Calculating the
Khovanov cohomology with F2-coefficients took a bit over 40 h and was more memory
intensive.

So for knots whose s-invariants are close to 0, we may get only small differences in
calculation speeds compared to the Khovanov cohomology, but we do not need to worry
about extracting the s-invariant from the cohomology computation.

Finally, we notice that calculation times can differ significantly when the mirror knot is
considered. For example, the calculation of sF2(−K1) only took 15 min, while determining
its F2-Khovanov cohomology took nearly an hour.
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10. A. Lobb, P. Orson and D. Schütz, Framed cobordism and flow category moves, Algebr.
Geom. Topol. 18(5) (2018), 2821–2858.
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