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This paper considers the nonlinear optimal control of transition in a boundary layer
flow subjected to a pair of free stream vortical perturbations using a receding horizon
approach. The optimal control problem is solved using the Lagrange variational
technique that results in a set of linearized adjoint equations, which are used to
obtain the optimal wall actuation (blowing and suction from a control slot located
in the transition region). The receding horizon approach enables the application
of control action over a longer time period, and this allows the extraction of
time-averaged statistics as well as investigation of the control effect downstream
of the control slot. The results show that the controlled flow energy is initially
reduced in the streamwise direction and then increased because transition still occurs.
The distribution of the optimal control velocity responds to the flow activity above
and upstream of the control slot. The control effect propagates downstream of the slot
and the flow energy is reduced up to the exit of the computational domain. The mean
drag reduction is 55 % and 10 % in the control region and downstream of the slot,
respectively. The control mechanism is investigated by examining the second-order
statistics and the two-point correlations. It is found that in the upstream (left) side of
the slot, the controller counteracts the near-wall high-speed streaks and reduces the
turbulent shear stress; this is akin to opposition control in channel flow, and because
the time-average control velocity is positive, it is more similar to blowing-only
opposition control. In the downstream (right) side of the slot, the controller reacts
to the impingement of turbulent spots that have been produced upstream and inside
the boundary layer (top–bottom mechanism). The control velocity is positive and
increases in the streamwise direction, and the flow behaviour is similar to that of
uniform blowing.

Key words: boundary layer control, transition to turbulence

1. Introduction

In boundary layers, transition from laminar to turbulent flow is usually classified
as orderly (classic) or bypass. Orderly transition is a slow process, which involves

† Email address for correspondence: g.papadakis@imperial.ac.uk
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Nonlinear optimal control of transition 525

the exponential growth of Tollmien–Schlichting waves, their secondary instability and
finally breakdown to turbulence. On the other hand, bypass transition refers to all
other routes to turbulence. Bypass transition can be promoted by wall roughness, body
forces, acoustic noise, etc. In this work, a pair of free stream vortical perturbations is
used to trigger the transition process.

Laminar–turbulent transition in boundary layer flow is always associated with
high skin friction and enhanced mixing of momentum. Most of the turbulent energy
generation and dissipation takes place inside the boundary layer and thus affects
engineering performance. In particular, bypass transition is found in gas turbines,
where high levels of free stream turbulence are present (Hodson & Howell 2005;
Zaki et al. 2010; Wissink et al. 2014). Therefore exploring possible control methods
to delay or suppress transition is of crucial importance for performance improvement.

1.1. Active control of wall-bounded flows
Active control methods provide better control performance and have been explored
widely in the literature. One simple type of active control is uniform blowing (UB)
or uniform suction (US) at the wall. Park & Choi (1999) performed direct numerical
simulations with steady UB or US with velocity magnitude less than 10 % of the
mean flow velocity from a narrow spanwise slot in a turbulent boundary layer flow.
They found that for UB, skin friction over the control slot decreased rapidly but
increased downstream due to enhanced tilting and stretching of vorticity. Above the
slot, streamwise vortices are lifted up and weakened by the actuation. The opposite
is found for US. Kametani & Fukagata (2011) examined the effect of UB and US
with much smaller velocity magnitudes (less than 1 % of the mean flow velocity) in
a spatially developing turbulent boundary layer using direct numerical simulations.
Their control slot covered the entire computational domain. They applied the FIK
identity (Fukagata, Iwamoto & Kasagi 2002), which provides an analytic expression
of the effect of streamwise inhomogeneity and Reynolds stress on the local skin
friction, to investigate the drag reduction mechanism and concluded that the mean
convection has a strong contribution in reducing the drag for UB and increasing
the drag for US. More recently, Kametani et al. (2015) applied UB and US in a
turbulent boundary layer at moderate Reynolds number using large eddy simulations
(LES). The actuation velocity had a magnitude of 0.1 % of U∞ and achieved more
than 10 % drag reduction (or enhancement) by UB (or US). They also found that the
drag reduction efficiency could be improved by using a wider control region which
starts at a more upstream location.

Many control strategies for drag reduction are guided by the underlying flow
physics. For example, Choi, Moin & Kim (1994) proposed the opposition control
method to suppress the coherent structures in the wall region in a turbulent channel
flow. They imposed a transpiration velocity which is equal and opposite to the
wall-normal velocity at a detection plane located at some distance from the wall, in
order to counteract the motion of streamwise vortices. They found that drag is initially
reduced as a result of suppressed sweep events, and at later times drag reduction was
due to the change of wall vorticity layer by the active control. Stroh et al. (2015)
compared the performance of opposition control in a turbulent channel flow and a
spatially developing turbulent boundary layer. They found that for both configurations
the drag reduction rates were similar, but the mechanism was different. In channel
flow, drag is reduced due to the attenuation of the Reynolds stress, while in a
boundary layer modification of the spatial flow development is of critical importance.
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Chang, Collis & Ramakrishnan (2002) investigated the effect of Reynolds number
on opposition control using LES and showed that drag reduction is less effective at
higher Reynolds number. Chung & Talha (2011) studied the effect of the amplitude
of opposition control as well as the location of the detection plane on the control
performance and found that drag reduction is proportional to the magnitude of the
blowing and suction velocity.

Alternative strategies to the full opposition control have also been developed.
Pamiès et al. (2007) modified the opposition control, whereby only the blowing part
was retained and the suction part was suppressed. They applied this blowing-only
opposition control using LES in a spatially developing turbulent boundary layer and
demonstrated that drag reduction efficiency is improved. Very recently, Abbassi et al.
(2017) performed control experiments in a high-Reynolds-number turbulent boundary
layer using also the opposition control framework. They used a spanwise array of
wall-normal jets, which were activated based on information of incoming high-speed
flow zones. The latter were detected with wall shear stress sensors placed upstream
of the actuators. The wall-normal jet velocity opposed only the down-wash action of
the natural, large-scale roll modes. Lee et al. (1997) used a neutral network to predict
the opposition blowing and suction actuations based on wall shear stress and achieved
20 % skin friction reduction in a channel flow. They observed a stable pattern in the
distribution of the weights from the neutral network and derived a simple control
scheme based on a local weighted sum of spanwise shear stress.

There are several other successful active control methods such as spanwise wall
oscillations (Quadrio & Ricco 2004; Yudhistira & Skote 2011; Lardeau & Leschziner
2013; Hack & Zaki 2014) and wall deformation (Nakanishi, Mamori & Fukagata
2012; Tomiyama & Fukagata 2013), but they are outside the scope of the present
work.

1.2. Nonlinear optimal control
Most recent control approaches to delaying transition inside boundary layers are based
on linear control models (Chevalier et al. 2007; Monokrousos et al. 2008; Bagheri,
Brandt & Henningson 2009; Papadakis, Lu & Ricco 2016). The streamwise streaks,
generated inside the boundary layer by the free stream vortical disturbances, initially
grow linearly. In later stages, however, when they break down to form turbulent spots,
the nonlinear effects become important. Very few nonlinear approaches for controlling
transition in a boundary layer have appeared in the literature. These are gradient-based
approaches, i.e. the control parameters are updated along the direction that minimizes
a given cost function. The gradient direction is obtained by solving repeatedly the
Navier–Stokes and the adjoint equations in a forward–backward iterative loop over an
optimization time interval. Since the optimal control inputs are solely based on the
governing equations and the objective function, they do not rely on physical intuition.
Instead, the optimal control solution, which gives the best achievable performance, can
be used a posteriori to derive an effective control strategy.

The aforementioned approach is also known as model predictive control (MPC).
When MPC is applied to chaotic flows, the optimization interval is limited by the
growth of instability of the adjoint equations when integrating backwards in time
(Wang 2013). This instability is physical and is due to (one or more) positive
Lyapunov exponents that arise when linearizing along a solution trajectory. In order
to perform control simulations for longer time, the optimal control approach can be
applied in a receding horizon framework. The flow is locally optimized over a finite
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time period T using the forward–backward iteration loop described above. Once the
convergence is achieved within T , the flow is advanced in time by some portion Ta
of T and a new optimization problem is solved. The application of this framework to
turbulence in channel flow was first introduced by Bewley, Moin & Temam (2001).
The authors achieved relaminarization at Reτ = 180 (based on mean friction velocity
and the channel half-height).

Apart from channel flow, MPC has been applied also to flows around cylinders
and in boundary layers. For instance, Mao, Blackburn & Sherwin (2015) applied this
framework to suppress vortex shedding behind a circular cylinder using wall-normal
transpiration. In Flinois & Colonius (2015), the wake was controlled via cylinder
rotation. They examined the control performance for different T and found that long
T was essential and resulted in better performance.

In this study, we apply MPC in a receding horizon framework to a boundary layer
flow in order to suppress bypass transition due to a pair of free stream vortical
disturbances. The same framework has been used to control a two-dimensional,
separated, boundary layer flow over a hump using blowing and suction (Passaggia
& Ehrenstein 2013). For this configuration, the flow is linearly unstable beyond a
critical Reynolds number, and low-frequency oscillations appear due to the non-normal
interaction of the global modes. The mechanism is two-dimensional, it arises due
to the recirculation behind the hump and is not related to the breakdown process
that is the subject of this paper. Cherubini, Robinet & De Palma (2013) applied the
same technique in a single time interval in order to control the growth of nonlinearly
optimal perturbations (also known as minimal seed) superimposed on a Blasius
boundary layer flow. The simulations were three-dimensional, but the time horizon
was short and the flow did not progress to full transition stage.

Xiao & Papadakis (2017) applied MPC to a transitional boundary layer for a very
short optimization period, T . The controller was effective in reducing the flow energy
above the control slot, but it was not possible to investigate the full interaction of
the transitioning flow with actuation. In the present paper, we report simulations with
the receding horizon approach over a much longer period. We explore the control
mechanism, we relate the actuation velocity to the flow physics above the slot and
we report converged time-averaged statistics above and downstream of the slot.

The paper is organized as follows. In § 2, we introduce the numerical methodology
and the nonlinear optimal control algorithm. In § 3, results from optimal control of
bypass transition are presented. In particular, the control results are first investigated
through the flow energy and the distribution of the optimal control velocity. Then the
control performance is assessed by examining the time-averaged statistics above and
downstream of the actuation region. The correlation between the control velocity and
the flow above is studied in order to understand the control mechanism. The main
findings are summarized in § 4.

2. Methodology
2.1. Direct numerical simulations

The flow is governed by the continuity and Navier–Stokes equations. For a three-
dimensional incompressible flow, the non-dimensional form of this set equations reads

∇ · u= 0, (2.1)
∂u
∂t
=−(u · ∇)u−∇p+

1
ReL0

∇
2u. (2.2)
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x

y

z

Free stream
perturbations

Laminar flow Transitional flow Turbulent flow

Streaks Control slot

FIGURE 1. Schematic representation of the boundary layer flow over a flat plate subjected
to free stream perturbations and the location of the blowing/suction control slot.

ω α β γ

Mode A 0.0064 0.0064+ 0.0015i 0.393 0.374
Mode B 0.128 0.128+ 0.0023i 0.628 0.209

TABLE 1. Parameters of the continuous modes: ω, frequency; α, streamwise
wavenumber; β, spanwise wavenumber; γ , wall-normal wavenumber.

The spatial variables are defined in Cartesian coordinates and non-dimensionalized
by the Blasius similarity variable L0 =

√
νx∗0/U∞, where x∗0 is the dimensional

streamwise distance between the leading edge of the flat plate and the inlet location
of the computational domain, ν is the kinematic viscosity of the fluid and U∞ is
the free stream velocity. The velocity vector is non-dimensionalized as u = u∗/U∞,
pressure as p= p∗/(ρU2

∞
), where ρ is the fluid density, and time as t= t∗/(L0/U∞).

Figure 1 shows the computational domain, which is a rectangular box of dimensions
1800 × 100 × 90. The boundary layer thickness δ (defined as the distance from the
wall at which the velocity reaches 0.99U∞) at the inlet is 5, approximately 20 in the
transition region and 35 at the end of the domain. The Reynolds number at the inlet
is ReL0 = 200 (based on the momentum thickness Reθ∗0 = 134). The grid is uniformly
distributed in both streamwise and spanwise directions, but is stretched in the wall-
normal direction with an expansion ratio of 1.031. The mesh resolution is 1800 ×
150× 120.

Bypass transition is triggered by imposing at the inlet boundary vortical perturbations,
which are constructed using the continuous modes of the Orr–Sommerfeld and Squire
equations (Jacobs & Durbin 2001; Brandt, Schlatter & Henningson 2004). In the
current work, we only use two modes, one of low and one of high frequency, to
trigger the transition (Zaki & Durbin 2005). As will be seen later, this makes the
analysis of the control mechanism easier. Parameters for the two modes are listed in
table 1. A detailed description of the boundary conditions, numerical code, simulation
parameters and validation can be found in Xiao & Papadakis (2017).

Figure 2 shows contour plots of the instantaneous streamwise velocity fluctuation in
the x–y plane. Streamwise elongated high- and low-speed streaks, resulting from the
penetration of the low-frequency inlet perturbation inside the boundary layer, can be
clearly seen. The streamwise wavelength of these streaks is approximately 740 units
and analysis shows that they convect downstream at 0.75U∞. These values are in
agreement with the temporal frequency of the penetrating inlet mode A (ω= 0.0064).
The streamwise wavelength of the undulations seen at the top of the boundary layer
is 50 units and their convection speed is U∞. The resulting temporal frequency agrees
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FIGURE 2. (Colour online) Instantaneous contour plots of streamwise velocity fluctuation
in the x–y plane at z= 45 (uncontrolled flow) for two time instants (a) 18T and (b) 26T ,
where T = 60 (time separation 1t = 480). Black dashed line shows the boundary layer
thickness. Vertical black lines mark the location of the control slot from 1050 to 1300
(inactive).

with the high-frequency inlet mode B (ω = 0.128). The time difference between the
two plots is 1t = 480, which is equivalent to a half period of mode A. During this
time, the positive streak at x= 400 in figure 2(a) propagates downstream a distance
of half a wavelength. Negative streaks are lifted upwards to the top of the boundary
layer, where they interact with the high-frequency disturbance and break down. This
leads to secondary instability and the inception of turbulent spots. Such an instability
can be seen in figure 2(a), between x≈ 800–1000 and in the middle of the boundary
layer, y ≈ 5–15. Once spots form, they grow in all directions and impinge on the
wall (top–bottom effect). For example, the aforementioned instability has propagated
in the x direction and has impinged on the wall, as shown in figure 2(b). Similar
observations were made in the simulations of Jacobs & Durbin (2001), Brandt et al.
(2004) and Zaki & Durbin (2005). This type of secondary instability is known as
outer mode and has been studied by Andersson et al. (2001) and Vaughan & Zaki
(2011). The high-speed streaks, on the other hand, are not affected by the external
perturbations and they stay close to the wall. One such high-speed streak is shown to
enter the region of the control slot in figure 2(a); it is located between x≈ 900–1100
and y≈ 0–3. Note that the interaction with high-frequency mode occurs upstream of
the control slot and therefore, in the controlled flow, the transition is also via the outer
mode. As can be seen in figure 2, the controller is located in the region of streak
breakdown and the flow is fully nonlinear.

A sketch that summarizes the breakdown process due to the outer instability is
shown in figure 3. This sketch will be referred to later when the control action is
characterized.
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Inception
of spots

High-speed streaks
close to the wall

Growth of spot
thickness

Control slot

∂(x)

FIGURE 3. (Colour online) Growth of spots and impingement on the control region.

2.2. Nonlinear optimal control algorithm
The objective of the nonlinear optimal control algorithm is to find the actuation
velocity that locally minimizes a cost function, within a finite optimization time T .
The actuation method is blowing and suction at the wall, which varies in time and
space. The location of the control slot is in the late transition zone, from x = 1050
to 1300 (figure 2). The cost function is defined as

J =
∫ T

0
E(t) dt+ l2

∫ T

0
Ew(t) dt, (2.3)

where T is the length of optimization time and l2 is a weighting parameter that
penalizes the magnitude of actuation. For example, a small value of l2 indicates low
penalization and results in higher control velocities. The first term on the right-hand
side of the cost function (2.3) is the energy of the flow, which is defined as a
quadratic measure of the deviation of the instantaneous velocity u(t) from the Blasius
velocity profile UB,

E(t)=
∫

V
[(u(t)−UB) ·Ω(x) · (u(t)−UB)] dV, (2.4)

where Ω(x) is an indicator function that specifies a subregion (1050 < x < 1350,
0< y< 5, 0< z< 90) inside which the flow energy is to be reduced (Ω(x)= 1 inside
and Ω(x)= 0 outside). For simplicity, in the rest of this paper, E is called flow energy.
Therefore the objective of the control algorithm is to drive the velocity fields towards
the Blasius profile. The analysis of the control performance is also easier since the
target profile is known.

The second term on the right-hand side of the cost function (2.3) measures the cost
of the control and is defined as

Ew(t)=
∫

Sw

[vw(t)]2 dSw, (2.5)

where vw is the actuation velocity and Sw is the area of the wall, including the control
slot (of course outside the slot vw = 0).

The cost function is to be minimized while all the constraints describing the flow
problem (e.g. governing equations, initial conditions) are satisfied. Using the Lagrange
multiplier technique, the constrained flow problem is replaced by an unconstrained one
defined by the Lagrange cost function L:

L=J − a ·F, (2.6)
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where a is the Lagrange multiplier and F includes all the constraints. The problem
now becomes that of finding the flow variables (u and p) and the Lagrange multipliers
(u† and p†) so that L is minimized. A differentiate-then-discretize approach was used.
The first-order variation of the Lagrangian with respect to each independent argument
must be zero at a stationary point. Setting the first variation of L with respect to
u(u, v,w) and p to zero and after integration by parts, the following system of adjoint
equations is derived:

∇ · u†
= 0, (2.7)

∂u†

∂t
=−(u · ∇)u†

+ u†
· (∇uT)−∇p†

−
1

ReL0

∇
2u†
+ 2(u−UB)Ω, (2.8)

where u† and p† are the adjoint velocity and pressure, respectively. Note that the above
system of linear equations is solved by integrating backwards in time. The terminal
conditions for the adjoint variables are

u†(T)= v†(T)=w†(T)= 0. (2.9)

The boundary conditions are provided in Xiao & Papadakis (2017). The Navier–Stokes
equation and the adjoint equation form a nonlinear coupled system, which is solved
iteratively. The first variation of L with respect to the control input vw is used to
update the control velocity at each iteration:

vn+1
w (x, z, t)= vn

w(x, z, t)− αn

(
∂L

∂vw(x, z, t)

)
, (2.10)

where n is the iteration number and α is an adjustable step length.
The optimization procedure for a finite time T is summarized as follows:

(i) Assume an initial distribution for the actuation velocity v0
w(x, z, t) (usually 0) and

an initial value for α.
(ii) Solve the Navier–Stokes equations forward from t= 0 to t= T .

(iii) At t = T , evaluate the values of the objective function (2.3) between two
successive iterations.
(1) If J decreases, and the change is smaller than a predefined threshold, stop

the iteration loop; otherwise continue to step (iv).
(2) If J increases, halve the value of α and continue to step (iv).

(iv) Integrate the adjoint equation backward from t= T to t= 0.
(v) At t= 0, update the control velocity using (2.10) and return to step (ii).

As mentioned in the introduction, the maximum value of T is limited by the
instability of the adjoint equations when integrating backwards in time. To perform
control simulations for longer time, the optimization approach is applied in a receding
horizon framework. A schematic representation of the procedure is shown in figure 4.
Once convergence is achieved within T , the flow is advanced in time by some
portion Ta of T and a new optimization problem is solved again. As Bewley et al.
(2001) correctly pointed out, the actuation computed near the end of each optimization
interval is determined without considering further development of the flow, as opposed
to the actuation obtained near the beginning of each interval. Therefore the actuation
near the end of T may not be as effective as the one at the beginning of T . In that
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t = Ta t = Ta + T

t = Ta

t = 0 t = T

Optimization on horizon (0, T)

Optimization on horizon (Ta, Ta + T)

Optimization on horizon 
(2Ta, 2Ta + T)

t = Ta + T

FIGURE 4. Schematic representation of the receding horizon framework.

sense, the actuation is optimal over T and sub-optimal during the whole multi-T
period examined.

In the present simulations we used the same uncontrolled flow scenario as in
Xiao & Papadakis (2017) so that we can use the longest T = 60. Due to the high
computational cost required for the receding horizon method, we take Ta= T in order
to maximize the total time span. The weighting parameter l2 in the objective function
(2.3) is set to l2

= 150 so that the mean actuation velocity is less than 1 % of U∞.
The maximum value of the adjustable step length is set to be α = 0.001 to ensure
smooth convergence.

3. Results
3.1. Flow energy

A total of 48 optimization intervals, corresponding to a time duration of 48T = 2880,
are considered. This is approximately equal to three complete periods of the low-
frequency, penetrating inlet mode A (table 1). This time span is long enough for the
controlled flow to reach the exit of the computational domain.

The convergence of the cost function J (defined in (2.3)) within each optimization
interval is shown in figure 5. Recall that J is defined as the sum of the integral of
flow energy over time T plus the cost of actuation. Due to the high computational
cost required, the maximum number of iterations in each interval was set to four.
As figure 5 clearly demonstrates, there is a large drop of J in the first optimization
interval T because the actuation starts from an uncontrolled transitional flow state.
After the second interval, J exhibits a repeatable oscillatory pattern, with frequency
equal to that of the low-frequency inlet mode A (indeed three cycles can be detected).
The shape of the oscillatory pattern is related to the transition activity taking place
inside the control region and will be explored in more detail below. Two examples of
convergence of the cost function can be seen in the insets of figure 5; both indicate
smooth convergence. The reduction of J between the third and fourth iteration
is small, so adding further iterations would increase computational cost, without
commensurate reduction of the cost function. The low-frequency penetrating mode
also modulates the flow, again making more iterations within a single T unnecessary.

The time evolution of the flow energy E for both uncontrolled and controlled flow
is shown in figure 6. Note that in the horizontal axis, time is expressed in terms of the
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FIGURE 5. Cost function J versus the total number of iterations n. The vertical dashed
lines delineate the optimization intervals. The two insets show the convergence of the cost
function in the 20th and 32nd interval.
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FIGURE 6. Evolution of the energy of the flow in the defined sub-region. Solid line,
uncontrolled flow; dashed line, controlled flow.

optimization length T (with T = 60). For the uncontrolled flow, three complete periods
of the low-frequency mode (0–16T , 16T–32T and 32T–48T) can be detected from the
shape of E; these are delineated by two vertical dash-dot lines. It is clear that the
breakdown process that determines E is modulated by the low-frequency penetrating
mode A. The first few intervals (the very first interval is exactly the same as in Xiao
& Papadakis (2017)) can be regarded as the initial transient period until the control
effect is established after 16T . In the current work, we mainly focus on the control
effect and the associated control mechanism in time domain 16T–48T , during which
the controlled flow is very different compared to that during the first few intervals.

In figure 6, the controlled flow energy is reduced significantly within the first few
optimization intervals, and then stays in the range 3000–4500. This is approximately
43 % of the uncontrolled flow energy. In the first low-frequency period (0–16T),
there is a small phase difference between controlled and uncontrolled flow. This is
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because when the controller is activated at t = 0, the uncontrolled flow is in a state
of increasing E. From t = 16T onwards, the two energies evolve in phase. Similar
flow processes take place in the controlled flow, but with reduced flow energy.

The evolution of E indicates that two local maxima appear within each period.
The evolution of the uncontrolled and controlled flow is examined by visualizing
the instantaneous u in figure 7 at four successive time instants. The total duration
corresponds to one quarter of the period of the low-frequency mode. Figure 7
demonstrates in detail the evolution of one patch of streaks as it convects into
the control region. In the uncontrolled flow at t = 16T , the head of one patch of
high-speed streaks is seen to enter the control slot, while the downstream side is
occupied by turbulent flow. Secondary instabilities distort the streaks entering the slot.
The front part convects more rapidly than the rear and soon overtakes the downstream
turbulent region. The ragged edge of the turbulent region is maintained by turbulent
spots that continuously overtake the main turbulent zone. Without this sustenance the
turbulent flow would convect out of the numerical domain (Jacobs & Durbin 2001).
In figure 6 it can be seen that E is at a local minimum at t= 16T . This is due to the
region of inactivity between the entering high-speed streaks and the turbulent spot.
At t= 19T , the actuation region is almost full of turbulent flow, and the flow energy
is approaching a local peak value, as expected.

In the controlled flow, at all time instants, the high-speed streaks are still visible and
distorted, indicating that the penetrating mode is present, but they have been clearly
quenched by the control action, while the turbulent zone has also been significantly
affected. Between them, there is an extended region with very low velocities and small
spanwise variation in u. In the downstream end, there are some small localized patches
of large u but they appear random. This figure indicates that the controller has been
very effective in suppressing the energy of the flow. It is very interesting to notice
that the control effect has propagated downstream of the control slot. This aspect of
control action will be further investigated in § 3.4.

To further understand the control effect, we define Ez(x, t) as the energy integrated
in the spanwise and wall-normal directions:

Ez(x, t)=
∫ ylim

0

∫ Lz

0
[(u(t)−UB) ·Ω(x) · (u(t)−UB)] dy dz. (3.1)

The time-averaged value 〈Ez〉t is plotted in figure 8 against x. From the definition
of Ez(x, t), the area under the curve is equal to the total energy of the flow above
the slot. In the uncontrolled case, the energy increases almost linearly as a result of
the transition process taking place over the control slot, as described above. In the
controlled flow, 〈Ez〉t is already reduced at x= 1050 (starting position of the control
slot) compared to the uncontrolled flow. This indicates that, in a time-average sense,
the actuation effect is already felt upstream of the slot. The controlled 〈Ez〉t then
decreases and reaches a minimum value just before x = 1100. After this location, it
increases linearly, but with a much smaller rate compared to the uncontrolled flow.
This behaviour is in agreement with the u velocity contours of figure 7.

3.2. Optimal control velocity
The spatially (streamwise and spanwise) averaged optimal blowing and suction
velocity 〈vw〉x,z is shown in figure 9 as a function of time. Only the first 30
optimization intervals are shown; the rest have very similar behaviour. The actuation
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FIGURE 7. Uncontrolled (a,c,e,g) and controlled (b,d, f,h) instantaneous streamwise
velocity in the x–z plane at y= 2 at four successive time instants: (a,b) 16T; (c,d) 17T;
(e, f ) 18T; (g,h) 19T .
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FIGURE 8. Streamwise variation of 〈Ez〉t. Solid line, uncontrolled flow; dashed line,
controlled flow.

velocity 〈vw〉x,z attains its maximum value at the beginning of each interval and
gradually reduces towards the end, which is in agreement with the actuation from
control in a single optimization horizon (Xiao & Papadakis 2017). After a short
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FIGURE 9. Spatially averaged actuation velocity against time. Vertical dashed lines
demarcate optimization intervals.

transient period at the beginning of actuation, the value of 〈vw〉x,z within each interval
stabilizes to an average of 0.685 % of U∞. It was demonstrated in figure 6 that
the flow energy is reduced dramatically in the first few intervals and then fluctuates
around a lower value. The control velocity has a similar behaviour. This suggests
that a larger actuation velocity is required to bring down the uncontrolled flow at the
beginning of actuation, and subsequently a smaller vw is enough to maintain the flow
energy at that lower level.

In figure 10 the variation of the time- and spanwise-averaged actuation velocity
〈vw〉z,t with streamwise distance inside the control slot is plotted. Time averaging
here is performed over one period of the low-frequency inlet mode A (i.e. over 16T),
starting from four different time instants (mentioned in the figure caption). All four
curves collapse reasonably well. This indicates that the spanwise-averaged actuation
velocity is repeatable in a time scale equal to the period of the low-frequency inlet
mode. We notice in figure 6 that the flow energy is periodically modulated by the
slow mode, so it is not surprising that 〈vw〉z,t also demonstrates periodic behaviour.
Note also that when no constraint on mass is imposed, the control velocity results in
a net positive mass flow rate.

It is interesting to examine the streamwise variation of 〈vw〉z,t. When the optimization
was performed on a single interval (Xiao & Papadakis 2017), 〈vw〉z increased
monotonically in the streamwise direction and a physical explanation was provided
based on the flow pattern and the definition of the objective function. However, when
the actuation velocity is averaged over much longer time, there is a local peak at
around 1070, a local minimum at 1130 and 〈vw〉z,t then increases linearly with x.

This behaviour is consistent with the instantaneous flow patterns of the controlled
flow (right-hand column of figure 7). The peak at 1070 corresponds to the control
action to quench the incoming distorted high-speed streaks. The minimum value
corresponds to the low-velocity region (black area), and the linear growth to the
suppression of the turbulent patches with large u that appear in the right half of the
slot, but they originate upstream (refer to figure 3).

It is interesting to notice that the profiles of both the controlled energy 〈Ez〉t
(figure 8) as well as the actuation 〈vw〉z,t (figure 10) reduce due to the control action
in the streamwise direction, but then rise again. This behaviour is the result of the
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FIGURE 10. Time- and spanwise-averaged actuation velocity. The four distributions shown
are averaged over one period of low-frequency inlet mode (i.e. 16T) starting from different
time instants: solid line, 6T; dashed line, 18T; dash-dot line, 22T; dotted line, 26T .

competition between the control action and the transition process. If transition to
turbulence had not taken place above the control slot, the flow energy as well as
〈vw〉z,t would continue to reduce, in a manner similar to that found by Monokrousos
et al. (2008). In their work, the control slot is placed in the upstream laminar flow
region and both the flow and control velocity reduce monotonically in the streamwise
direction within the slot. This is the expected behaviour if there is no transition.

In the present case, however, the interaction between the elevated negative streaks
and the external high-frequency mode that leads to secondary instability starts inside
the boundary layer and upstream of the control slot as seen in figure 2. Nolan &
Zaki (2013) used laminar–turbulent discrimination techniques and managed to detect
the inception and growth of spots. They showed that the highest turbulent spot count
appears inside the boundary layer, in the region y/δ = 0.4–0.8, where δ is the local
boundary layer thickness. The current objective function minimizes the flow energy
closer to the wall, below y/δc= 0.25, where δc is the average boundary layer thickness
over the control slot (see also figure 13a). The spots are then brought towards the wall,
and the control velocity in response to this increases along x as seen in figure 10. This
top-to-bottom process in relation to the control slot is sketched in figure 3.

In the following two sections, the effect of control action on the time-average flow
above and downstream of the slot until the end of the domain is examined. For a more
accurate and meaningful comparison, all the mean flow properties for both controlled
and uncontrolled flow are obtained by averaging over two periods of low-frequency
mode A, starting from t= 16T until t= 48T . The reason is that at t= 16T the effect
of actuation has reached the end of the domain (as will be shown later), so the same
time window can be used for the flow both above and downstream of the slot.

3.3. Effect of actuation on mean and turbulent quantities above the control slot
3.3.1. Mean velocity profiles

The mean (time- and spanwise-averaged) velocity profiles u at three streamwise
locations, x = 1075, 1130 and 1250, are shown in figure 11. These locations are
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FIGURE 11. Time- and spanwise-averaged velocity profiles at three locations: (a) x=1075;
(b) x = 1130; (c) x = 1250. Solid line, uncontrolled flow; dashed line, controlled flow;
dotted line, Blasius profile. The horizontal dashed line marks the upper boundary in the
wall-normal direction in which the cost function is defined.

selected based on the previous analysis of the streamwise variation of the optimal
control velocity. They correspond to the peak of actuation close to the inlet, to the
trough in the quiescent region between steaks and turbulent flow and to a location
inside the fully developed region, respectively.

It can be seen clearly that the control has imparted significant changes in the
mean profiles in the three locations. At x = 1075, the controlled velocity profile
is between the uncontrolled and Blasius profile, while at x = 1130, the controlled
flow matches well with the Blasius solution. Further downstream at x = 1250, the
uncontrolled profile is steeper as a result of the enhanced mixing arising from the
transition process. The controlled flow velocity has milder slope, but still larger
than the Blasius one, indicating that the controlled flow is still disorganized, but
with reduced mixing activity. This is in agreement with the findings of the previous
section. As already mentioned, the upper boundary of the box in which the objective
function is defined is at y= 5; this position is indicated by a horizontal dashed line
in figure 11. The optimal controller performs its ‘duty’ as expected; it brings the
velocity profile close to the Blasius velocity only below y= 5.

The optimal actuation velocity depends on the choice of the objective function. If
the location of the upper boundary were set closer to the wall, one would expect
that the controlled velocity profile would approach even better the Blasius profile in
the near-wall region, leading to lower drag (closer to laminar drag). It is therefore
clear that minimizing energy is not expected to lead to drag minimization if the upper
boundary is set far from the wall.

The spatial correlation between vw and u, Rs
vw,u, evaluated over the whole control

slot is now examined. Rs
vw,u is defined as

Rs
vw,u =

〈(vw − 〈vw〉x,z)(u− 〈u〉x,z)〉x,z
[〈(vw − 〈vw〉x,z)2〉x,z〈(u− 〈u〉x,z)2〉x,z]1/2

, (3.2)

where 〈〉x,z denotes average in streamwise and spanwise directions. Figure 12 shows
Rs
vw,u averaged over one period of time with u extracted from four wall-normal

locations. It can be seen that Rs
vw,u peaks at y = 2.5, which means vw is most

responsive to the flow in this region. The explanation for this is that the difference

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.919


Nonlinear optimal control of transition 539

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4

Rs √w
,u

y
5 6 7

FIGURE 12. Time-averaged (over one period) correlation coefficient between control
velocity over the whole control region and instantaneous streamwise velocity at various
wall-normal locations over the whole control region.

between the uncontrolled u and Blasius velocity is larger between y = 2 and 3 as
seen in figure 11. Note also that vw is very weakly correlated with u at y= 6. This
is not surprising since this location is outside the region where the objective function
is defined and the controller does not respond to the flow in this region; therefore
Rs
vw,u is very small. Above y = 5, the controlled flow profile deviates strongly from

the Blasius profile compared to the uncontrolled flow. This again ties with the low
correlation between vw and u at y= 6.

The effect of the control action on the spatial development of the boundary layer
is further investigated by examining the boundary layer thickness δ (defined as the
location of 0.99U∞), the Reynolds number based on momentum thickness Reθ and the
shape factor H, which are plotted in figure 13. In the control region, both δ and Reθ
increase, i.e. the boundary layer is thickened by the control action. This is expected
since the current controller imparts a positive net mass flow rate and it is known that
UB increases the boundary layer thickness (Kametani & Fukagata 2011; Kametani
et al. 2015; Stroh et al. 2016). Note that δ starts to increase before the control slot
is reached, and this is due to the upstream effect of the pressure gradient induced by
the actuation, as will be discussed below. The shape factor H is also increased above
the control slot, in agreement with the findings from UB (Kametani & Fukagata 2011;
Kametani et al. 2015).

The effect of control action extends downstream of the control slot. The shape factor
H gradually recovers and approaches the value of the uncontrolled flow. At the exit
of the domain, H ≈ 1.5 for both flows. At the moderate values of Reθ shown in
figure 13(b) (less than 1000), H depends on the history of transition (Schlatter & Orlu
2012). Although transition in the present work is due to interacting modes in the free
stream (and not due to tripping at the wall), the value at the exit is within the range
of values reported in Schlatter & Orlu (2012). Note also the constant negative shift
of the Reθ plot for the controlled flow downstream of the slot; this is very similar to
the shift reported in Stroh et al. (2016) for UB.
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FIGURE 13. Effect of optimal control on spatial development of the boundary layer:
(a) boundary layer thickness δ; (b) Reynolds number based on momentum thickness Reθ ;
(c) shape factor H. Solid line, uncontrolled flow; dashed line, controlled flow. In (a) the
shaded area denotes the region where the cost function is defined.

3.3.2. Pressure distribution
Figure 14 shows the variation of the mean wall pressure. The mean pressure

changes significantly near the entrance and the exit of the control slot. The
time-average x-momentum equation at the wall can be written as

∂p
∂x

∣∣∣∣
w

=
1

Re
∂2u
∂y2

∣∣∣∣
w

− vw
∂u
∂y

∣∣∣∣
w

− v′w
∂u′

∂y

∣∣∣∣
w

, (3.3)

where the overbar denotes the average in time and the spanwise direction (z) and
the prime (′) denotes the fluctuation. Upstream and downstream of the control slot
the pressure increases in the streamwise direction, i.e. there is an adverse pressure
gradient. This is because at these places vw = 0 and ∂2u/∂y2

|w > 0. The same is
reported by Park & Choi (1999), who applied UB to a turbulent boundary layer. The
presence of the adverse pressure gradient upstream of the slot explains the upstream
effect of the control action mentioned earlier. Above the slot, vw(∂u/∂y) is always
positive because vw > 0 as shown in figure 10. Our computations reveal that the third
term on the right-hand side of equation (3.3) is much smaller than the second term,
and therefore can be neglected. The term ∂2u/∂y2

|w is positive above the control
slot and its magnitude is comparable to that of −vw(∂u/∂y). Therefore the sign of
the pressure gradient depends on the relative size of these two terms. In the work
of Park & Choi (1999), the viscous term was much smaller as they used relatively
large UB velocity; consequently they had a favourable pressure gradient over the
entire control slot. In the present case, as seen in figure 14, the pressure gradient
is initially favourable, and is followed by a weak adverse pressure gradient, starting
from about x = 1100, which is the location where vw is decreasing to the local
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FIGURE 14. Variation of mean wall pressure.

minimum (figure 10). After x = 1200, the pressure starts to decrease again as vw
keeps increasing. Near the exit of the domain, there is a small deviation of pressure
from 0, probably due to the effect of the convective outlet boundary condition.

3.3.3. Turbulent profiles
In this section, the control effect on second-order turbulent statistics is examined.

Figure 15 shows the root mean square (r.m.s.) profiles of the three velocity fluctuations
at the same streamwise locations. The variables take physical values (figure 15a–c), or
are expressed in wall units based on local uncontrolled (figure 15d–f ) or case-specific,
local friction velocity (figure 15g–i).

In the uncontrolled flow, the wall-normal location for maximum urms gradually
reduces from y = 1.7 (0.135δ) at x = 1075 to y = 1.54 (0.07δ). This is due to the
fact that the transition process is initiated at the edge of the boundary layer and
progressively penetrates inside the boundary layer, as already mentioned. In the
controlled case, the values of urms are reduced close to the wall (within the region
where the cost function is defined) at all three locations; the reduction is largest at
x= 1075. Further away from the wall, however, the values are increased, and more so
in the two downstream locations. When normalized by the case-specific (i.e. actual)
local friction velocity, u+case

rms is increased all along the wall-normal direction, except
near the wall at x = 1075. The enhanced u+case

rms is due to the fact that the friction
velocity is decreased, as will be demonstrated later.

The wall-normal turbulence intensity is positive at the wall due to the unsteady
actuation velocity. At the first location x= 1075, wrms is slightly decreased close to the
wall while away from the wall slightly increased, while vrms is only increased at peak.
At two downstream locations, x= 1130 and x= 1250, the behaviour of vrms and wrms
is different compared to the upstream point. All values increase in the wall-normal
direction, which is also found in UB (Sumitani & Kasagi 1995). The overall effect
is that in the right half of the slot turbulence intensity increases, and more so as the
downstream end of the slot is approached.

Differences are also found in the profiles of the Reynolds and viscous shear stresses,
shown in figure 16. To facilitate comparison, the variables are expressed in wall units
based on the local friction velocity of the uncontrolled flow. At all three locations, the
viscous part du/dy+nc is decreased close to the wall, which is a direct result of the
reduction of the friction velocity. The behaviour of Reynolds stress is different at the
first location compared to the other two locations. At x = 1075, −u′v′+nc is reduced
close to the wall. At x = 1130, the controlled −u′v′+nc is very close to that of the
uncontrolled flow in the near-wall region, while further downstream at x = 1250, it
is increased in the controlled case. Away from the wall, −u′v′+nc is increased in all
three locations. The behaviour of −u′v′+nc at x = 1075, i.e. decreased close to the
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FIGURE 15. Root mean square of the velocity fluctuations profile at three locations:
(a,d,g) x= 1075; (b,e,h) x= 1130; (c, f,i) x= 1250. (a–c) Physical variables; (d–f ) variables
in wall units based on local uncontrolled friction velocity; (g–i) variables in wall units
based on case-specific, local friction velocity. Symbols: ◦, urms; �, vrms; ×, wrms. Solid
line, uncontrolled flow; dashed line, controlled flow. The dotted line in (a–c) represents
the extent of the region in which the cost function is defined.

wall and increased away from the wall, is also observed when using a blowing-only
opposition control by Pamiès et al. (2007). On the other hand −u′v′+nc at x = 1130
and x= 1250 is similar to those obtained from UB (Pamiès et al. 2007; Kametani &
Fukagata 2011).

3.4. Control effect downstream of the slot
To investigate how the control effect propagates, we divide the distance between the
downstream end of the control slot until the end of the computational domain in
small segments of length 1x = 50. The variation of E with time is computed in
each segment (in the wall-normal and spanwise directions the segment dimensions are
0< y< 5 and 0< z< 90, respectively). The results are displayed in figure 17. Here E
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FIGURE 16. Reynolds stress −u′v′+nc (◦) and viscous shear stress du/dy+nc (6) profiles
at three locations: (a) x = 1075; (b) x = 1130; (c) x = 1250. Solid line, uncontrolled
flow; dashed line, controlled flow. All quantities are non-dimensionalized by the local
uncontrolled friction velocity.

is reduced immediately at the first segment x= 1300–1350 and as the control effect
propagates, reduction also appears downstream at later time instants. This shows that
the control effect does affect the flow downstream of the actuation slot. In fact, the
flow energy is reduced right until the end of the domain.

The propagation of the control effect can be seen in figure 18(a), where
the evolution of the energy reduction rate for each segment, defined as r(t) =
(Enc − Ec)/Enc, is plotted. The reduction rate varies from an average of 60 % in the
first segment x= 1300–1350 (closest to the exit of the control slot) to an average of
about 30 % near the end of the domain (furthest from the control slot). In figure 18(b)
a space–time diagram of the point at which |r| > 3 % is shown. The linear trend
suggests that the actuation effect propagates at an average speed of 0.74U∞, which
is very close to the convection speed of the streaks upstream as mentioned before.

After the control effect has reached the end of the domain and the flow has
stabilized, the time-average (between 32T and 48T) energy reduction rate downstream
of the control slot can be computed. The results are shown in figure 19, and, as
expected, the energy reduction rate decreases further downstream. The computational
domain is not large enough however to capture the full recovery to the uncontrolled
state.

Attention is turned to the velocity profiles. Figure 20 presents the mean velocity
profiles at several downstream locations. The change in u in the near-wall region
(y< 2) is small compared to the velocity profile above the control slots in figure 11.
Above y= 2, there is large deviation of the controlled from the uncontrolled flow, but
the difference becomes smaller further downstream. This is because the cost function
is defined up to x= 1350. There is a small difference of the profile slope at the wall,
so we expect a small reduction in drag. The controlled u is reduced above the control
slot (figure 11) and downstream of the control slot (figure 20). The positive actuation
introduces additional mass into the system and it is found that the controlled v is
increased above the control slot to satisfy continuity.

3.5. Effect on skin friction
The time- and spanwise-averaged skin friction profile is shown in figure 21. It can
be seen that the controlled skin friction starts to deviate from the uncontrolled line
upstream of the control region, which is also observed in other controlled flows
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FIGURE 17. Evolution of energy downstream of the control slot. Each subplot corresponds
to a segment of length 1x= 50; the start and end positions are indicated at the top. Solid
line, uncontrolled case; dashed line, controlled case.

(Park & Choi 1999; Kim & Sung 2006; Pamiès et al. 2007; Kametani et al. 2015).
This is also in agreement with the mean pressure field shown in figure 14, where
p̄ at the wall starts to increase from around x = 900. The controlled Cf ,c reduces
quickly inside the control slot and reaches the laminar level at around x = 1130.
Between x = 1130 and 1200, Cf ,c increases along the streamwise direction, at a
rate similar to that of the uncontrolled flow. After x = 1200, the controlled Cf ,c is
almost constant until the end of the control region. At this location the actuation
velocity vw increases linearly to counteract the transition. The local drag reduction
rate RCf = (Cf ,nc −Cf ,c)/Cf ,nc is also shown in figure 21(b). Inside the control region,
RCf is between 45 % and 60 %.

Downstream of the control slot, Cf ,c recovers very quickly, but remains at a lower
value than that of the uncontrolled flow up to the end of the domain. In terms of the
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FIGURE 18. (a) Energy reduction rate r= (Enc−Ec)/Enc as a function of time; line colour
from dark to light corresponds to increasing starting x of the 10 segments of figure 17.
(b) Space–time diagram of the point when |r|> 3 % (indicated by a dashed horizontal line
in (a)).
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FIGURE 19. Mean energy reduction rate (averaged from 32T to 48T) against distance x
downstream of the control slot.

average boundary layer thickness δc of the uncontrolled flow, the distance between the
end of the control slot and the exit of the computational domain is about 25δc. The
average drag reduction rate in this region is 10 %, with a maximum RCf of 14.5 % at
7δc and a minimum RCf of 7.5 % at the exit.

These results have similarities to those of Stroh et al. (2016). The effect of UB
was also extended significantly downstream of the control slot until the exit of the
domain, as in our case. This is interesting because in our case turbulence is sustained
by instabilities that are initiated inside the boundary layer and not close to the wall.

It has been shown that the optimal control velocity is repeatable in a time scale
equivalent to the period of the slow mode (figure 10). The Cf ,c from optimal control
shown in figure 21 (black dashed line) was averaged from t= 16T to 48T , which is
limited by the heavy computational cost for this control method. Although our results
are in agreement with those of Stroh et al. (2016) as mentioned above, we performed
an additional check to confirm that the drag reduction observed downstream of the
slot is indeed robust, and it is not an artifact of the short time-averaging window. To
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FIGURE 20. Mean velocity profile. Solid line, uncontrolled flow; dashed line, controlled
flow; dotted line, Blasius solution. Streamwise axis shows the downstream location of each
profile.

0 200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400 1600 1800

0.6

0.4

0.2

0

7

6

5

4

3

2

1

0

(÷ 10-3)

x-x0

RCf

Cf

Turbulent flow

Laminar flow

(a)

(b)

FIGURE 21. Mean skin friction profiles (a) and corresponding local drag reduction rate
RCf = (Cf ,nc−Cf ,c)/Cf ,nc (b). Solid line, optimal controlled flow; dashed line, uncontrolled
flow; dash-dot line, controlled flow using repeated vw.

this end, the temporal and spatial evolution of the optimal control velocity was stored,
and then applied repeatedly for 64T (equivalent to four periods of the slow mode and
two flow-through times).
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FIGURE 22. Evolution of the flow energy defined in the control box. Black solid line,
uncontrolled flow; thick dashed line, optimal controlled flow; thin dashed line, controlled
flow using repeated application of vw.

The evolution of flow energy in the same control box is shown in figure 22.
The vertical dotted lines indicate repeated application of vw, i.e. the optimal control
velocity from 16T to 48T was repeated from 48T to 80T and 80T to 112T . The
figure demonstrates that the repeated application of vw is able to maintain the flow
energy at a level very similar to that obtained from piece-wise optimization. The
controlled E also has a clearly periodic behaviour over the time, as expected.

The long time-averaged Cf ,lc from 16T to 112T (i.e. including both piece-wise
optimal control and control using repeated vw profiles) is shown in figure 21 by the
dash-dot line. It is somewhat surprising that in the control slot, Cf ,lc is slightly lower
than the Cf ,c from the receding horizon control. It must be borne in mind however
that the objective of the optimal control is to minimize the flow energy, and not Cf .
Most importantly, the results demonstrate that in the downstream region, the long
time-averaged Cf ,lc remains reduced and has a very similar value to the Cf ,c from
receding horizon control.

3.6. Correlation between actuation and the flow field
In the present work, the control velocity distribution was obtained solely based on
the objective function and the governing equations. In this section we explore the
relationship between the optimal actuation and the flow above the slot.

Figure 23 shows the time history of vw and u at x = 1080, which is close to the
inlet of the control slot. Velocity u is recorded at a distance y=2.5 from the wall. The
time is from 4T to 36T , which covers two complete periods of the slow inlet mode. It
was shown earlier that at this location the flow contains distorted streaks. The control
velocity vw and both uncontrolled and controlled u exhibit periodic behaviour as a
function of time and it is clear that they are correlated.

In order to explore quantitatively the relationship between the optimal actuation and
the flow above the slot over time, we compute the two-point correlation coefficient
between vw(x, z) and a general variable of interest φ(x, y, z); in the present case,
φ(x, y, z) represents velocities u, v. The coefficient is defined as

Rt
vw,φ
(x, z; y)=

〈(vw − 〈vw〉t)(φ − vw − 〈φ〉t)〉t

[〈(vw − 〈vw〉t)2〉t〈(φ − 〈φ〉t)2〉t]1/2
. (3.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.919


548 D. Xiao and G. Papadakis

4T 8T 12T 16T 20T 24T 28T 32T 36T

4T 8T 12T 16T 20T 24T 28T 32T 36T

1.0

0.5

0

0.04

0.02

0

t

u

√w

(a)

(b)

FIGURE 23. Time history of control velocity vw(x= 1080, z= 30) (a) and instantaneous
streamwise velocity u(x = 1080, y = 2.5, z = 30) (b). Solid line, uncontrolled u; dashed
line, controlled u; thin horizontal solid line, time averaged value over each optimization
interval.

The superscript t denotes averaging in time from 4T to 36T , and the correlation
is computed using data from two periods of time, i.e. 32T . Note that due to the
finite value of T , velocity vw decreases over time within each interval and rapidly
increases at the beginning of next interval. On the other hand the velocity field is
relatively smooth compared to vw. The correlation coefficients are computed using
data from each time instant from 4T to 36T and also from data averaged within each
optimization interval (shown by horizontal line in figure 23).

Before examining the correlation between the control velocity and flow field above
it, we first recall in figure 24 the flow properties corresponding to an idealized vortex
pair. The largest (smallest) velocity fluctuations u′ (v′) at the height of the vortex
centre occur between the vortices, while at the centre of the vortex they are zero.
Note also that u′ and v′ are negatively correlated (leading to ejections and sweeps
events). The spanwise variation of the streamwise shear stress τx is consistent with u′.
On the other hand, the largest τz is directly beneath the vortex centre and therefore is
offset from the peak u′ position by a quarter of the average streak spacing (Naguib,
Morrison & Zaki 2010).

Figure 25 shows the contour of Rt
vw,u over the slot for u and v extracted at y= 2.5.

The correlation was computed using averaged data from 4T to 36T (correlation with
non-averaged data has similar distribution, but reduced value). When averaged data
are used, the sample is much smaller (there is one sample per interval, corresponding
to the horizontal line of figure 23). It can be seen that for u, there is strong
positive correlation over the entire slot; it is only towards the downstream end
where some patches with negative correlation appear. Parameter Rt

vw,u has a strong
spatial dependence that weakens along the streamwise direction while the correlation
of Rt

vw,v
remains more uniform over the entire slot. The values of Rt

vw,v
are negative

in most of the control region, indicative of opposition control.
In order to remove the effect of the transient behaviour at the beginning of each

interval due to the instability of the adjoint equations, we recomputed the correlations
using the non-averaged data but discarding the first 150 time steps (equivalent
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FIGURE 24. Sketch of a pair of streamwise vortices and corresponding variation in
velocity fluctuations (u′, v′) at the height of the vortex centre and wall shear stresses τ ′x, τ

′

z
(Naguib et al. 2010).
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FIGURE 25. (Colour online) Contour of correlation between actuation velocity vw(x, z)
and averaged data: (a) instantaneous streamwise velocity u(x, y= 2.5, z); (b) instantaneous
wall-normal velocity v(x, y= 4, z).

to t = 12) in each optimization interval. We further process the correlation over
the entire slot and produce a (smoothed) normalized histogram of the correlation
distribution. Figure 26 shows the histogram of Rt

vw,u for non-averaged data (denoted
by ‘all’) and non-averaged data with the first 150 time steps removed (denoted by
‘partial’) for various wall-normal locations. The results show that the transient in vw
has small effect on the correlation distribution. There is positive correlation between
vw and u′ at all four locations and Rt

vw,u is larger at y= 2.5 and y= 4 than at y= 1
and y = 5.6. This wall-normal dependence is very similar to Rs

vw,u (figure 12). The
histogram peaks at average Rs

vw,u ≈ 0.3–0.35.
Figure 27 shows the distribution of Rt

vw,v
at the same four wall-normal locations.

The correlation is negative at three locations, apart from y = 1 where it is slightly
positive. This is because this location is close to the wall and v′ is strongly affected
by the actuation. As for Rt

vw,u, removing the transient data results in slight changes.
The histogram peaks at average Rs

vw,v
≈−0.10.

The standard opposition control (Choi et al. 1994) imposes the opposite of the
wall-normal velocity at a distance away from the wall (detection plane) with the
aim of counteracting the up-and-down motion induced by the vortex. In this case
the correlation at the detection plane is Rs

vw,v
= −1. The predicted negative sign of
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FIGURE 26. Distribution of the correlation coefficient Rt
vw,u between vw(x, z) and u(x, y, z)

at different wall-normal locations.
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FIGURE 27. Distribution of the correlation coefficient Rt
vw,v

between vw(x, z) and v(x, y, z)
at different wall-normal locations.

the Rs
vw,v

correlation in our case indicates that opposition control is at play, but the
small value of the correlation indicates that it significantly deviates from the standard
opposition control. The correlation is positive with the streamwise velocity, so the
optimal wall actuation is broadly consistent with the streamwise vortex model shown
in figure 24.

Recall that the current actuation has mean positive velocity (figure 10). Figure 28
presents a scatter plot of vw and u from averaged data at one particular location
with averaged Rt

vw,u = 0.92 as an example. A positive Rt
vw,u implies that a larger

positive vw is applied to area with positive u′, while smaller positive vw is applied
to area with negative u′. Therefore the actuation is closer to the blowing-only
opposition control of Pamiès et al. (2007), where the suction part from the opposition
control is removed. Chang et al. (2002) showed that the effectiveness of standard
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FIGURE 28. Scatter plot of time-average (over one interval) vw at x= 1071, z= 63 and
u at x= 1071, y= 2.5, z= 63; at this location Rt

vw,u = 0.92.

opposition control reduces as Reynolds number increases in channel flow. Pamiès
et al. (2007) demonstrated the blowing-only opposition control can improve drag
reduction efficiency when compared to the classic opposition control as well as UB
with same mean control velocity. Another similar example was the recent experimental
work of Abbassi et al. (2017), in which wall-normal jet flow was injected in regions
where high-speed streamwise velocity fluctuations were presented. The jet operated
in the blowing-only mode.

In § 3.3 it was found that the turbulent profiles (r.m.s. of velocity fluctuations,
Reynolds stress) have different behaviour over the control slot. In particular, the
controlled flow at x = 1075 is different from that at x = 1130 and x = 1275. In
figure 25 is can be seen that Rt

vw,u is larger in the upstream side of the control slot,
especially upstream of x= 1100. As discussed above, this indicates the control action
is similar to blowing-only opposition control in this region. This is supported by the
behaviour of the controlled turbulent profiles at x= 1075 being very similar to those
obtained by blowing-only opposition control (Pamiès et al. 2007). The blowing-only
opposition control is designed to counteract the sweep events only. Wallace (2016)
reported that close to the wall, for y+ < 15, the sweep events contribute considerably
more to the total Reynolds stress than the ejection events. In figure 16, at x= 1075,
−u′v′+nc is largely reduced near the wall. There is a very small reduction in −u′v′+nc

at x = 1130 while at x = 1250 an increase is observed. This behaviour agrees with
the spatial distribution of Rt

vw,u.
In the rear part of the control slot when Rt

vw,u is weak, the mean positive actuation
indicates the controller might work in a similar way to the UB. This is also proved
by the behaviour of turbulent statistics in this region.

The change of the control mechanism over the slot is related to the flow activity in
the control region. As shown in § 3.1, near the inlet of the control region, there are
mainly distorted streaks entering from upstream and the controller tends to counteract
the motion of the streaks (vortices) using blowing-only opposition control. This is
effective as the flow energy initially reduces along x (figure 8). As mentioned, the
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transition still occurs in the controlled flow after x = 1100 and there are turbulent
structures, but with reduced strength. In this region (x > 1100), the optimal results
reveal that the best solution to control the flow is to impose strong positive actuation.
Although the controlled flow properties are similar to those obtained from UB, the
distribution of optimal vw in this region is not uniform. In Xiao & Papadakis (2017)
it was shown that a variable vw is more efficient in reducing the objective function
than UB in a single interval. The same is also demonstrated in the receding horizon
control.

4. Conclusions
In the present work, a nonlinear optimal control strategy is applied in a receding

horizon framework in order to suppress bypass transition in a zero-pressure-gradient
flat-plate boundary layer. The transition process is triggered by a pair of free stream
vortical perturbations, which consist of two continuous Orr–Sommerfeld and Squire
modes. The optimal control problem is solved using the Lagrange multiplier technique.
The objective is to find the optimal blowing and suction velocity that results in the
minimum of the weighted sum of energy of velocity perturbations around the Blasius
profile and the actuation energy. The control slot is located in the late transition region,
where turbulent spots break down, grow and merge into turbulence. Using the receding
horizon approach, the control is applied for longer time so that time-averaged statistics
can be examined in order to gain more insight into the control action.

The results show that the controller is very effective in reducing the objective
function. The uncontrolled flow energy increases monotonically in the streamwise
direction as a result of the transition process taking place over the control slot. On
the other hand, the controlled flow energy initially decreases along the streamwise
direction near the beginning of the control slot, then increases towards the rear,
but with a reduced strength. This spatial dependence results from the competition
between the control action and the transition activity. The optimal control velocity
has a positive net mass flow rate and its spatial distribution is found to reflect the
transition process.

The control performance is further investigated through time-averaged statistics.
Over the control slot, the controller does its duty, and brings the mean velocity
towards the Blasius profile. The control effect propagates downstream of the slot,
right up to the end of the computational domain. An average drag reduction of 55 %
and 10 % is achieved over the control slot and in the downstream region, respectively.

The correlations between the optimal control velocity and various flow properties
above the slot are also examined. It is found that the actuation velocity is positively
correlated with instantaneous streamwise velocity, especially near the upstream half
of the control slot. This implies that the controller works similar to the blowing-only
opposition control near the beginning of the slot, while near the rear side of the
control region, the controller works similar to UB. This is supported by the second-
order statistics of the controlled flow (r.m.s. and Reynolds stress).

The present nonlinear optimal control strategy has been shown to be effective in
suppressing bypass transition triggered by a pair of vortical perturbations in the free
stream. Without any constraint on the mass flow rate of the actuation, the optimal
control law results in a positive net mass flow rate. A natural extension of this work
would be to enforce zero mass flow rate constraint, which is easier to implement in
practice.

Application to transition triggered by a prescribed turbulence spectrum in the free
stream, rather than just two vortical modes, could be also a next step. It is expected
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that the control strategy will be equally effective in suppressing the flow energy.
In the present work, control was applied in the region where nonlinearities have
fully developed and the flow is transitioning. This means that the memory effect of
the inlet conditions is significantly attenuated, but not completely eliminated, mainly
because the Reynolds number based on momentum thickness Reθ is moderate (less
than 1000; see figure 13(b)). Schlatter & Orlu (2012) found that numerical simulation
of turbulent boundary layers is sensitive to inflow condition for Reθ < 1000. The
fundamental mechanism depicted in figure 3 will however remain the same, and we
expect that the main conclusions of this study will also remain valid. Simulations
with a full turbulence spectrum are required in order to confirm that this is indeed
the case.

Acknowledgements
The simulations were performed in the CX2 facility of Imperial College London

as well as Archer (to which access was provided through UK Turbulence Consortium
grant EP/L000261/1).

REFERENCES

ABBASSI, M. R., BAARS, W. J., HUTCHINS, N. & MARUSIC, I. 2017 Skin-friction drag reduction in
a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures.
Intl J. Heat Fluid Flow 67, 30–41.

ANDERSSON, P., BRANDT, L., BOTTARO, A. & HENNINGSON, D. S. 2001 On the breakdown of
boundary layer streaks. J. Fluid Mech. 428, 29–60.

BAGHERI, S., BRANDT, L. & HENNINGSON, D. S. 2009 Input–output analysis, model reduction and
control of the flat-plate boundary layer. J. Fluid Mech. 620, 263–298.

BEWLEY, T. R., MOIN, P. & TEMAM, R. 2001 DNS-based predictive control of turbulence: an
optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179–225.

BRANDT, L., SCHLATTER, P. & HENNINGSON, D. S. 2004 Transition in boundary layers subject to
free-stream turbulence. J. Fluid Mech. 517, 167–198.

CHANG, Y., COLLIS, S. S. & RAMAKRISHNAN, S. 2002 Viscous effects in control of near-wall
turbulence. Phys. Fluids 14 (11), 4069–4080.

CHERUBINI, S., ROBINET, J.-C. & DE PALMA, P. 2013 Nonlinear control of unsteady finite-amplitude
perturbations in the Blasius boundary-layer flow. J. Fluid Mech. 737, 440–465.

CHEVALIER, M., HŒPFFNER, J., ÅKERVIK, E. & HENNINGSON, D. S. 2007 Linear feedback control
and estimation applied to instabilities in spatially developing boundary layers. J. Fluid Mech.
588, 163–187.

CHOI, H., MOIN, P. & KIM, J. 1994 Active turbulence control for drag reduction in wall-bounded
flows. J. Fluid Mech. 262, 75–110.

CHUNG, Y. M. & TALHA, T. 2011 Effectiveness of active flow control for turbulent skin friction
drag reduction. Phys. Fluids 23 (2), 025102.

FLINOIS, T. L. B. & COLONIUS, T. 2015 Optimal control of circular cylinder wakes using long
control horizons. Phys. Fluids 27 (8), 087105.

FUKAGATA, K., IWAMOTO, K. & KASAGI, N. 2002 Contribution of Reynolds stress distribution to
the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73–L76.

HACK, M. J. P. & ZAKI, T. A. 2014 The influence of harmonic wall motion on transitional boundary
layers. J. Fluid Mech. 760, 63–94.

HODSON, H. P. & HOWELL, R. J. 2005 Bladerow interactions, transition, and high-lift aerofoils in
low-pressure turbines. Annu. Rev. Fluid Mech. 37, 71–98.

JACOBS, R. G. & DURBIN, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185–212.
KAMETANI, Y. & FUKAGATA, K. 2011 Direct numerical simulation of spatially developing turbulent

boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154–172.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.919


554 D. Xiao and G. Papadakis

KAMETANI, Y., FUKAGATA, K., ÖRLÜ, R. & SCHLATTER, P. 2015 Effect of uniform blowing/suction
in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55,
132–142.

KIM, K. & SUNG, H. J. 2006 Effects of unsteady blowing through a spanwise slot on a turbulent
boundary layer. J. Fluid Mech. 557, 423–450.

LARDEAU, S. & LESCHZINER, M. A. 2013 The streamwise drag-reduction response of a boundary
layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25
(7), 075109.

LEE, C., KIM, J., BABCOCK, D. & GOODMAN, R. 1997 Application of neural networks to turbulence
control for drag reduction. Phys. Fluids 9 (6), 1740–1747.

MAO, X., BLACKBURN, H. M. & SHERWIN, S. J. 2015 Nonlinear optimal suppression of vortex
shedding from a circular cylinder. J. Fluid Mech. 775, 241–265.

MONOKROUSOS, A., BRANDT, L., SCHLATTER, P. & HENNINGSON, D. S. 2008 DNS and LES of
estimation and control of transition in boundary layers subject to free-stream turbulence. Intl
J. Heat Fluid Flow 29 (3), 841–855.

NAGUIB, A. M., MORRISON, J. F. & ZAKI, T. A. 2010 On the relationship between the wall-shear-
stress and transient-growth disturbances in a laminar boundary layer. Phys. Fluids 22 (5),
054103.

NAKANISHI, R., MAMORI, H. & FUKAGATA, K. 2012 Relaminarization of turbulent channel flow
using traveling wave-like wall deformation. Intl J. Heat Fluid Flow 35, 152–159.

NOLAN, K. P. & ZAKI, T. A. 2013 Conditional sampling of transitional boundary layers in pressure
gradients. J. Fluid Mech. 728, 306–339.

PAMIÈS, M., GARNIER, E., MERLEN, A. & SAGAUT, P. 2007 Response of a spatially developing
turbulent boundary layer to active control strategies in the framework of opposition control.
Phys. Fluids 19 (10), 108102.

PAPADAKIS, G., LU, L. & RICCO, P. 2016 Closed-loop control of boundary layer streaks induced
by free-stream turbulence. Phys. Rev. Fluids 1 (4), 043501.

PARK, J. & CHOI, H. 1999 Effects of uniform blowing or suction from a spanwise slot on a turbulent
boundary layer flow. Phys. Fluids 11 (10), 3095–3105.

PASSAGGIA, P. & EHRENSTEIN, U. 2013 Adjoint based optimization and control of a separated
boundary-layer flow. Eur. J. Mech. (B/Fluids) 41, 169–177.

QUADRIO, M. & RICCO, P. 2004 Critical assessment of turbulent drag reduction through spanwise
wall oscillations. J. Fluid Mech. 521, 251–271.

SCHLATTER, P. & ORLU, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow
length and tripping effects. J. Fluid Mech. 710, 5–34.

STROH, A., FROHNAPFEL, B., SCHLATTER, P. & HASEGAWA, Y. 2015 A comparison of opposition
control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27 (7), 075101.

STROH, A., HASEGAWA, Y., SCHLATTER, P. & FROHNAPFEL, B. 2016 Global effect of local skin
friction drag reduction in spatially developing turbulent boundary layer. J. Fluid Mech. 805,
303–321.

SUMITANI, Y. & KASAGI, N. 1995 Direct numerical simulation of turbulent transport with uniform
wall injection and suction. AIAA J. 33 (7), 1220–1228.

TOMIYAMA, N. & FUKAGATA, K. 2013 Direct numerical simulation of drag reduction in a turbulent
channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25 (10),
105115.

VAUGHAN, N. J. & ZAKI, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by
unsteady Klebanoff streaks. J. Fluid Mech. 681, 116–153.

WALLACE, J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev.
Fluid Mech. 48, 131–158.

WANG, Q. 2013 Forward and adjoint sensitivity computation of chaotic dynamical systems. J. Comput.
Phys. 235, 1–13.

WISSINK, J. G., ZAKI, T. A., RODI, W. & DURBIN, P. A. 2014 The effect of wake turbulence
intensity on transition in a compressor cascade. Flow Turbul. Combust. 93 (4), 555–576.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.919


Nonlinear optimal control of transition 555

XIAO, D. & PAPADAKIS, G 2017 Nonlinear optimal control of bypass transition in a boundary layer
flow. Phys. Fluids 29 (5), 054103.

YUDHISTIRA, I. & SKOTE, M. 2011 Direct numerical simulation of a turbulent boundary layer over
an oscillating wall. J. Turbul. 12, N9.

ZAKI, T. A. & DURBIN, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid
Mech. 531, 85–111.

ZAKI, T. A., WISSINK, J. G., RODI, W. & DURBIN, P. A. 2010 Direct numerical simulations of
transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech.
665, 57–98.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.919

	Nonlinear optimal control of transition due to a pair of vortical perturbations using a receding horizon approach
	Introduction
	Active control of wall-bounded flows
	Nonlinear optimal control

	Methodology
	Direct numerical simulations
	Nonlinear optimal control algorithm

	Results
	Flow energy
	Optimal control velocity
	Effect of actuation on mean and turbulent quantities above the control slot
	Mean velocity profiles
	Pressure distribution
	Turbulent profiles

	Control effect downstream of the slot
	Effect on skin friction
	Correlation between actuation and the flow field

	Conclusions
	Acknowledgements
	References


