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We use resolvent analysis to design active control techniques for separated flows
over a NACA 0012 airfoil. Spanwise-periodic flows over the airfoil at a chord-based
Reynolds number of 23 000 and a free-stream Mach number of 0.3 are considered at
two post-stall angles of attack of 6◦ and 9◦. Near the leading edge, localized unsteady
thermal actuation is introduced in an open-loop manner with two tunable parameters
of actuation frequency and spanwise wavelength. To provide physics-based guidance
for the effective choice of these control input parameters, we conduct global resolvent
analysis on the baseline turbulent mean flows to identify the actuation frequency and
wavenumber that provide large perturbation energy amplification. The present analysis
also considers the use of a temporal filter to limit the time horizon for assessing
the energy amplification to extend resolvent analysis to unstable base flows. We
incorporate the amplification and response mode from resolvent analysis to provide
a metric that quantifies momentum mixing associated with the modal structure.
This metric is compared to the results from a large number of three-dimensional
large-eddy simulations of open-loop controlled flows. With the agreement between
the resolvent-based metric and the enhancement of aerodynamic performance found
through large-eddy simulations, we demonstrate that resolvent analysis can predict the
effective range of actuation frequency as well as the global response to the actuation
input. We believe that the present resolvent-based approach provides a promising path
towards mean flow modification by capitalizing on the dominant modal mixing.

Key words: instability control, separated flows

1. Introduction
In aerodynamic applications, flow separation can cause detrimental effects such as

stall. Flow separation can also intensify the pressure fluctuation and cause structural
fatigue. For these reasons, suppression of flow separation over aerodynamic bodies
has been an area of focus for the flow control community (Joslin & Miller 2009).
Active flow control, which requires steady or unsteady input of external energy, is
capable of adapting to a wide range of operating conditions. It has the advantage over
passive control strategies whose performance can degrade in off-design conditions.

† Email address for correspondence: cayeh@seas.ucla.edu
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For separation control, in particular, unsteady forcing has demonstrated its enhanced
capability of reattaching the flow and improving aerodynamic performances (Zaman,
McKinzie & Rumsey 1989; Wu et al. 1998). Consequently, attempts have been made
to investigate the effect of different unsteady forcing frequencies on control (Seifert
& Pack 1999; Glezer, Amitay & Honohan 2005). A range of flow responses to
forcing frequency were examined by conducting parametric studies of separation
control (Amitay & Glezer 2002). However, the characterization of global frequency
response of the separated flow lacks quantitative support from theoretical analyses.
Moreover, detailed knowledge of effective frequency range for unsteady separation
control remains limited.

Greenblatt & Wygnanski (2000) provided an overview on the use of periodic
excitation for separation control. They suggested that the fundamental mechanism for
suppression of separation lies in the excitation of the Kelvin–Helmholtz instabilities
in the shear layer forming from the separation point. The seminal work of Brown &
Roshko (1974) pointed out that the formation of spanwise coherent structures due to
these instabilities is the main driving force for the momentum mixing and entrainment.
Leveraging the shear-layer instabilities has been an important strategy to suppress
flow separation (Joslin & Miller 2009). As such, knowledge on the instability and
receptivity of the separated flow is crucial to guide the design of active separation
control.

For the study of hydrodynamic instability, a variety of approaches have been
summarized by Schmid & Henningson (2001) and Theofilis (2011). One traditional
approach for analysing instability seeks a modal representation for infinitesimal
perturbations about an equilibrium base state, i.e. a solution to the Navier–Stokes
equations. Such an approach forms an eigenvalue problem for the global instability
modes and emphasizes the spectrum of the linearized Navier–Stokes operator (Barkley
& Henderson 1996; Sipp & Lebedev 2007; Liu, Gómez & Theofilis 2016; Sun
et al. 2017; Taira et al. 2017). Inherently, it characterizes the asymptotic long-time
behaviour of the perturbations about the base flow. Complementing this traditional
approach, the non-modal approach addresses flow instability by seeking an energy
measure for the time-evolving response of the flow (Schmid 2007). The non-modal
approach either forms an initial-value problem that examines the transient energy
growth over a finite-time window (Schmid & Rossi 2004), or investigates the energy
amplification from a harmonic forcing input to the harmonic response (Farrell &
Ioannou 1993; Trefethen et al. 1993; Jovanović & Bamieh 2005). The latter path is
closely related to receptivity analysis (Goldstein & Hultgren 1989; Choudhari 1993),
and has built the foundation for the resolvent analysis extended for turbulent flows.

With recent developments, resolvent analysis has become a valuable approach
for investigating the frequency response of a fluid-flow system. Resolvent analysis is
concerned with the pseudospectrum of a linear operator (Trefethen & Embree 2005). It
provides particularly valuable insights when the linear operator is non-normal, which
is encountered in shear-dominated flows (Schmid & Henningson 2001). Trefethen
et al. (1993) conducted such an analysis on laminar Poiseuille flows. They showed
that the perturbation energy can exhibit significant transient growth due to the
non-normality of the operator. This growth can depart from the linear regime and
cause subcritical laminar–turbulent transition. For a non-normal operator, a linear
mechanism of pseudoresonance can also result in a large resonant behaviour to
forcing even when the forcing frequency is far from the spectrum (eigenvalues) of
the operator. McKeon & Sharma (2010) extended the resolvent analysis for turbulent
flows. The challenge in formulating the analysis for turbulent mean flow stems
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from the nonlinear terms of finite-amplitude perturbations. In their framework, these
nonlinear terms are treated as internal forcing, yielding a linear relationship between
the nonlinearity and the harmonic flow response. The linear relationship describes an
input–output process that takes place through the resolvent operator constructed about
the statistically stationery turbulent mean flow. By examining the characteristics of the
resolvent operator, they captured the coherent structures in wall-bounded turbulence,
revealing scalings for length and velocity that are in agreement with experimental
measurements. Following this resolvent formulation, similar approaches have been
undertaken in numerous studies (Moarref et al. 2013; Beneddine et al. 2016; Gómez
et al. 2016).

Resolvent analysis, as an input–output analysis, gives knowledge of energy
amplification as well as the associated structural response to the perturbation over
a range of frequencies. Such knowledge is crucial in designing active flow control
techniques, because both amplification and response structure provide insights into
identifying the effective unsteady forcing that takes minimal energy to change the
mean flow. Applying this analysis to turbulent flows, our study aims to provide
theoretical support to examine the flow response under unsteady forcing and to
develop a predictive tool for identifying the range of effective actuation frequencies. In
this study, we conduct an active flow control effort combining large-eddy simulations
(LES) and resolvent analysis of the mean baseline flows over a canonical airfoil.
Over the airfoil, the control input is introduced in the form of local periodic heat
injection near the leading edge. We parameterize the actuation frequency and spanwise
wavenumber in this numerical effort. Our choice of thermal actuator is motivated by
the energy-based actuators that have become widespread in active flow control,
such as nanosecond pulse-driven dielectric barrier discharge plasma actuators (Little
et al. 2012) and thermoacoustic actuators (Yeh et al. 2015). These energy-based
actuators have a sheet-like arrangement with no moving parts, which allows for
a surface-compliant installation without occupying any internal space or adding
significant weight. The thermal actuator set-up used in the present study models the
thermoacoustic and plasma-based actuators at a fundamental level (Bin, Oates & Taira
2015; Chae et al. 2017).

Resolvent analysis has been conducted on flows over a NACA 0012 airfoil in a
similar effort by Thomareis & Papadakis (2018). They selected turbulent mean flow
over the airfoil at 5◦ angle of attack and at a chord-based Reynolds number of 50 000
as the base state for their analysis, and considered resolvent analysis to capture the
frequency spectra of probe measurements. According to the forcing mode structures,
they also showed that the flow exhibits high receptivity near the leading edge. With
their base flow likely being unstable, one should infer the physical implications of
resolvent analysis with great care. For unstable base flows, the significance of input–
output amplification would be shadowed by the unbounded perturbation growth in
the linearized formulation. For this reason, the present effort carefully considers the
stability of the base flow and raises the need for an appropriate time window for the
resolvent analysis. The stability characteristics of the chosen base flow are examined
prior to the performance of resolvent analysis and provide an upper bound on the
time window. In particular, we discuss the use of a temporal filter in the form of an
exponential discount (Jovanović 2004).

A roadmap of this study is outlined in figure 1. Starting in § 2, we perform
the baseline flow simulations at two post-stall angles of attack. The baseline flows
are validated and characterized. With the turbulent mean flow obtained from the
baseline LES, the global resolvent operator is constructed about the time- and
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Resolvent analysis

ÎCD = -41%, ÎCL = 58%

LES of controlled flows

Frequency, ø
ß1(Kz, ø)

G
ai

n,
 ß

1

ReLc = 23 000, M∞ = 0.3

= [iøI - lq(kz)]-1
hq (kz, ø)

1.0

0.5

0

√x/√∞

q̂1 (response mode)

u1 (forcing mode)^

hq (kz, ø) 
= QÍU

Baseline flow validation and
characterization

(§ 2)

(§§ 3.2 and 3.4)
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Perform LES for controlled 
flows with open-loop forcing  

Compare control effectiveness
with predictions of resolvent 
analysis

Build resolvent operator hq about
the turbulent mean flow, q

FIGURE 1. (Colour online) Roadmap of the present study.

spanwise-averaged mean flow at a specified wavenumber–frequency combination
in § 3. Resolvent analysis performs a singular value decomposition (SVD) of the
discrete resolvent operator to determine the forcing modes, response modes and the
associated amplification (gain). The amplification as well as the modal structures
are characterized over the Fourier space, so as to obtain physical insights into the
candidate range of actuation frequencies and wavenumbers for active flow control to
suppress flow separation. In § 4, we present the LES results of over 250 controlled
cases using open-loop actuation with different actuation frequencies and wavenumbers.
The control effects are quantified and compared to the prediction of resolvent analysis
on the mean baseline flows. We comment on the agreements and limitations of the
usage of resolvent analysis for design of active flow control in § 5.

2. Problem set-up
2.1. Problem description

We consider separated flows over a NACA 0012 airfoil at two angles of attack of
α= 6◦ and 9◦ for a moderate chord-based Reynolds number ReLc ≡ v∞Lc/ν∞= 23 000
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®∞, T∞

Lc

M∞ ≡ √∞/a∞ = 0.3
ReLc ≡ √∞Lc/∞ = 23 000

√∞ = √∞ex^ ey^

ex^

Heat flux actuator model
periodic heating
with spanwise

sinusoidal profile

FIGURE 2. (Colour online) The problem description. Separated flow over a NACA 0012
airfoil (shown for α = 6◦) at free-stream Mach number M∞ = 0.3 and chord-based
Reynolds number ReLc = 23 000.

and a free-stream Mach number M∞≡ v∞/a∞= 0.3, as shown in figure 2. Here, v∞ is
the free-stream velocity, Lc is the chord length, a∞ is the free-stream sonic speed and
ν∞ is the kinematic viscosity. To perform active flow control, a thermal actuator is
placed across the span near the leading edge. This actuator introduces oscillatory heat
flux at a prescribed frequency and spanwise profile as an open-loop actuation input.
The details of this thermal actuator will be discussed in § 2.3.

2.2. Simulation set-up
We perform LES to simulate spanwise-periodic flows over the airfoil using the
finite-volume compressible flow solver CharLES (Khalighi et al. 2011; Brès et al.
2017), which is second-order accurate in space and third-order accurate in time.
Vremen’s subgrid-scale model (Vreman 2004) is utilized in the LES. We utilize a
C-shaped computational mesh, with the airfoil positioned with its leading edge at
x/Lc = y/Lc = 0, as shown in figure 3. The extent of the computational domain is
x/Lc ∈ [−19, 26], y/Lc ∈ [−20, 20] and z/Lc ∈ [−0.1, 0.1] in the streamwise, transverse
and spanwise directions, respectively. This domain is discretized with approximately
35 million grid cells. We have examined the grid convergence by comparing the flow
field and aerodynamics forces from this mesh to two other meshes that are further
refined in the near field with a total of 63 and 82 million grid cells. From each
mesh, the force data are collected for the developed flow over 80 convective time
units. The time-averaged wall-normal velocity profiles were converged within 1.5 %
and aerodynamic forces were also observed to be insensitive to the grid resolution of
the three meshes.

For the fluid properties, we use the specific heat ratio γ = 1.4 and the Prandtl
number Pr = 0.7, which are representative for standard air. The temperature-varying
dynamic viscosity, µ(T), is evaluated with a power law as µ=µ∞(T/T∞)0.76, where
µ∞ and T∞ are the free-stream dynamic viscosity and temperature, respectively
(Garnier, Adams & Sagaut 2009). The power law models the dynamic viscosity
variation for standard air in the range T/T∞ ∈ [0.5, 1.7]. This range is suitable for
the current study with local thermal inputs, where we observe that the maximum
temperature fluctuation is within 42 % of T∞ for all controlled flows.

The simulations are performed with the Dirichlet boundary condition specified at
the far-field boundary as [ρ, vx, vy, vz, T] = [ρ∞, v∞, 0, 0, T∞], where ρ is the density,
vx, vy and vz are respectively the streamwise, transverse and spanwise velocities
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Resolvent analysis domain
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y/
L c
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FIGURE 3. (Colour online) The computational domains (x–y plane, shown for α= 6◦) for
LES and resolvent analysis. The near-field mesh (right) is shown along with instantaneous
spanwise vorticity from LES and streamwise velocity mode from resolvent analysis. For
both meshes, uniform 1x is adopted in x/Lc ∈ [1.5, 6] to resolve the wake structures.

and T is the temperature. Over the airfoil, the no-slip adiabatic boundary condition
is prescribed, except for where the actuator is placed for controlled cases. Along
the outlet boundary, a sponge layer (Freund 1997) is applied over x/Lc ∈ [15, 25]
with the target state set to the running-averaged flow over 10 acoustic time units.
Time integration is performed at a constant time step of 1tv∞/Lc = 4.14 × 10−5,
corresponding to a maximum Courant–Friedrichs–Lewy number of 0.84. Further
details regarding the meshing strategy and computational set-up are reported in Yeh,
Munday & Taira (2017a).

2.3. Actuator model
The thermal actuator is implemented as an oscillatory energy-flux boundary condition
to model the fundamental effects of thermoacoustic and plasma-based actuators in
the LES. It is prescribed in the energy equation as an unsteady Neumann boundary
condition, along with no-slip boundary condition for the momentum equation in the
compressible Navier–Stokes equations. The actuator model is expressed as

φ+(ω+, k+z )=
1
4
φ̂ sin(ω+t)[1+ cos(k+z z)]

{
1+ cos

[
2π

σa
(x− xa)

]}
, (2.1)

where (x − xa)/σa ∈ [−0.5, 0.5]. This expression provides the boundary heat flux
input with a compact spatial support in the form of a Hanning window centred
at xa/Lc = 0.03 on the suction surface with width of σa/Lc = 0.04, as illustrated
in figure 2. The actuator introduces the open-loop control input at the prescribed
actuation frequency, ω+, and spanwise wavenumber, k+z . They are parameterized in
the LES of controlled cases and reported in terms of the actuation Strouhal number
St+=ω+Lc/(2πv∞) and the normalized wavenumber k+z Lc throughout this paper. Due
to the choice of the spanwise extent for the computational domain (z/Lc ∈ [−0.1, 0.1]),
the actuation wavenumbers k+z Lc are restricted to integer multiples of 10π. Hence,
we only consider the use of k+z Lc = 0, 10π, 20π and40π in the LES of controlled
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α = 6◦ α = 9◦

C̄D C̄L C̄D C̄L

Present study 0.066 0.609 0.113 0.570
Munday & Taira (2018) 0.062 0.637 0.117 0.565
Kojima et al. (2013) 0.054 0.639 0.118 0.594

TABLE 1. The time-averaged drag and lift coefficients on a NACA 0012 airfoil at α= 6◦
and 9◦ at ReLc = 23 000. The present study performs compressible LES at a free-stream
Mach number M∞ = 0.3, in comparison with the results from incompressible LES by
Munday & Taira (2018) and implicit LES by Kojima et al. (2013) at M∞ = 0.2.

flows. In the actuator model (2.1), the actuation amplitude φ̂ is selected such that the
normalized total actuation power

E+ =
1
4 φ̂σa

1
2ρ∞v

3
∞
(Lc sin α)

= 0.0902 (2.2)

for all controlled cases throughout this work. This magnitude is representative of those
used in thermally actuated flow control studies (Corke, Enloe & Wilkinson 2010;
Sinha et al. 2012; Akins, Singh & Little 2015; Yeh et al. 2015). For this thermal
actuator, Yeh, Munday & Taira (2017b) have investigated its control mechanism and
flow control capability in free shear layers. The thermal input from the actuator
translates to vortical perturbations in the forms of oscillatory surface vorticity flux
and baroclinic torque. The thermal actuation is capable of exciting fundamental and
subharmonic instabilities, which is suitable for modifying the shear-layer dynamics
herein.

2.4. Baseline simulations
We validate the baseline simulations at angles of attack of α=6◦ and 9◦ by comparing
the surface pressure distribution and the aerodynamic forces to those reported in the
literature for ReLc = 23 000. Throughout this study, the pressure coefficient Cp, lift
coefficient CL and drag coefficients CD are defined as

Cp =
p− p∞
1
2ρ∞v

2
∞

, CL =
FL

1
2ρ∞v

2
∞

A
, CD =

FD
1
2ρ∞v

2
∞

A
, (2.3a−c)

where FL and FD are the total lift and drag forces on the airfoil, respectively, and
A is the planform area of the airfoil. The time-averaged aerodynamic forces and
surface pressure profile are respectively presented in table 1 and figure 4. We found
reasonable agreements with those reported by Kim et al. (2009), Kojima et al. (2013)
and Munday & Taira (2018). We note that the numerical study of Kojima et al.
(2013) was conducted using implicit LES and Munday & Taira (2018) reported the
results from incompressible LES. The discrepancy in the surface pressure with the
experimental measurement by Kim et al. (2009) can be attributed to the different
transverse blockage ratios (0.26 % for the present study).

The instantaneous flow fields and time-average streamlines for the baseline flows
at α = 6◦ and 9◦ are shown in figure 5. The iso-surface of Q-criterion (Hunt, Wray
& Moin 1988) is used to visualize the vortical structures. The contour line of
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Cp

Present
Kojima et al. (2013), (iLES)
Kim et al. (2009) (exp.)

-1.5

-1.0

-0.5
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0 0.2 0.4 0.6
xc/Lc

0.8 1.0
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0.5
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xc/Lc

0.8 1.0

Present
Kojima et al. (2013), (iLES)
Munday & Taira (2018) (incomp. LES)

(a) (b)

FIGURE 4. (Colour online) Surface pressure profiles for (a) α = 6◦ and (b) α = 9◦ over
the chord-wise coordinate xc/Lc= (x cosα+ y sinα)/Lc, in comparison with those reported
by Kim et al. (2009), Kojima et al. (2013) and Munday & Taira (2018).

√x = 0 contour

√x = 0 contour 0.26
TKE √x/√∞

0

1.4

-0.4

å = 6°, CL/CL,0 = 0.84 å = 9°, CL/CL,0 = 0.52(a) (b)

(c) (d)

FIGURE 5. (Colour online) (a,b) Baseline flow visualization using Q-criterion (iso-surface
of QL2

c/v
2
∞
= 50 coloured by streamwise velocity) and spanwise-average TKE =

(v′2x + v
′2
y + v

′2
z )/v

2
∞

in the background. (c,d) The time-averaged streamlines. The contour
line for v̄x = 0 is shown and will be used for characterizing the extent of the separation
region throughout this study.

time- and spanwise-averaged streamwise velocity v̄x = 0 is also shown to identify
the flow separation and reattachment. This contour line is also shown on top of
the time-average streamlines, where we see the contour line extends through the
separation bubble for each case. For both angles of attack, laminar separation is
observed near the leading edge and forms a shear layer. The shear layer rolls up over
the suction surface and evolves into spanwise vortices. This roll-up process leads to
increasing turbulent kinetic energy (TKE) within the shear layer. Farther downstream,
these spanwise vortices break up and lose their spanwise coherence, resulting in the
laminar–turbulent transition. Within this roll-up and transition process, one common
feature in the pressure profiles in figure 4 is the ‘plateau’ observed for both angles
of attack. Such a plateau in the pressure profile is also observed by Marxen, Lang &
Rist (2013) and Benton & Visbal (2018) in the transition process that takes place over
a laminar separation bubble. The transition process is accompanied by the maximum
TKE over the airfoil at x/Lc ≈ 0.6 for α = 6◦ and x/Lc ≈ 0.5 for α = 9◦. The roll-up
and break-up processes both result in momentum mixing and entraining of the free
stream, leading to flow reattachment for α = 6◦ at x/Lc ≈ 0.85. Over the airfoil at
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α = 9◦, the flow is in full stall. To quantitatively characterize the stall condition, we
calculate the potential-flow lift CL,0 using the panel method (Hess 1990) to mark a
theoretical upper bound of the lift for both angles of attack. The flow over the airfoil
at α= 6◦ reattaches and achieves 84 % of CL,0. Whereas for the α= 9◦ airfoil, while
experiencing deep stall, provides only 52 % of the potential flow lift. This difference
in the stall condition will be reflected in the control effectiveness to be discussed
in § 4.

The excitation of shear-layer instabilities serves as the key to separation control
(Greenblatt & Wygnanski 2000). For the laminar separation bubble that is observed in
both baseline flows, Häggmark, Bakchinov & Alfredsson (2000) have experimentally
shown that the Kelvin–Helmholtz instability dominates the laminar–turbulent transition.
In order to leverage the Kelvin–Helmholtz instability for flow control, we place the
thermal actuator slightly upstream of the separation point such that the perturbations
can be introduced at the onset of the shear layer.

3. Resolvent analysis of mean baseline flows
Following the baseline LES, we perform resolvent analysis of the mean turbulent

flows at α= 6◦ and 9◦ to provide physical insights into the design of active separation
control.

3.1. Formulation
Let us consider the compressible Navier–Stokes equations expressed as

∂q
∂t
=N (q)+ f+, (3.1)

where N is the nonlinear Navier–Stokes operator that acts on the flow state variable
q= [ρ, vx, vy, vz, T]T and f+ represents the external actuation input from active flow
control. Note that in general the external forcing f+ can be absent. We perform the
Reynolds decomposition of q= q̄+ q̌ so that the flow state variable q is decomposed
into a statistically stationary long-time mean component q̄ and a fluctuating component
q̌. Substituting q with its Reynolds decomposition into the Navier–Stokes equations
(3.1) yields

∂ q̄
∂t
+
∂ q̌
∂t
=L(q̌, q̄∇q̌, q̌∇q̄,∇2q̌, · · ·)︸ ︷︷ ︸

Lq̄(q̌)

+N (q̄)+ f̄ (q̌n
)+ f+︸ ︷︷ ︸

ǔ

. (3.2)

With the Reynolds decomposition, the linear operations for q̌ are extracted from the
operation of N (q̄ + q̌). We collect these terms that are linear with respect to q̌ and
denote them as Lq̄(q̌). The term N (q̄) accounts for the Navier–Stokes operation taking
place only on q̄, and f̄ (q̌n

) collects the nonlinear higher-order terms for q̌ in O(qn),
where n> 1. In particular, we note that N (q̄)+ f̄ (q̌n

) can be interpreted as the internal
forcing in the turbulent flow due to the nonlinear interaction (Farrell & Ioannou 1994;
McKeon & Sharma 2010). This internal forcing together with the external forcing f+
is further denoted as ǔ. Observing that the base flow is taken to be time-invariant,
i.e. ∂tq̄= 0, equation (3.2) can be simplified as

∂ q̌
∂t
=Lq̄(q̌)+ ǔ. (3.3)
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We note that, for a statistically stationary turbulent flow where q̄ is known a priori
and is not affected by the sustained forcing input ǔ, the linear operator Lq̄ is also
time-invariant and can be explicitly constructed with the knowledge of q̄. Therefore,
equation (3.3) can be viewed as a linear system for q̌. The nonlinear interaction in
ǔ supports the base flow q̄ via its mean component and forces q̌ with its fluctuating
component (McKeon & Sharma 2010). Thus far, no assumptions have been made in
the formulation except for the statistical stationarity of the turbulent flow about which
the Navier–Stokes equations are rewritten in the above form.

Now, we cast equation (3.3) for the spanwise-periodic flow over the airfoil.
Considering the two-dimensional airfoil geometry in this study, the time- and
spanwise-average flow obtained from the baseline flow simulation is used as the
mean component so that the Reynolds decomposition can be written as

q(x, y, z, t)= q̄(x, y)+ q̌(x, y, z, t). (3.4)

The spanwise-periodic setup in the present study allows for the biglobal-mode
representation for q̌ and ǔ as the sum of temporal and spanwise Fourier modes
(Theofilis 2003) respectively as

q̌(x, y, z, t)=
∫
∞

−∞

∫
∞

−∞

q̂kz,ω
(x, y)ei(kzz−ωt) dω dkz (3.5)

and

ǔ(x, y, z, t)=
∫
∞

−∞

∫
∞

−∞

ûkz,ω(x, y)ei(kzz−ωt) dω dkz. (3.6)

Here, i=
√
−1, ω is the complex radian frequency, kz is the real spanwise wavenumber

and q̂kz,ω
and ûkz,ω are the biglobal modes for spanwise wavenumber kz and temporal

frequency ω. Substituting the modal expressions (3.5) and (3.6) for q̌ and ǔ into (3.3),
we arrive at the linearized Navier–Stokes equations in Fourier space:

− iωq̂kz,ω
=Lq̄(q̂kz,ω

; kz)+ ûkz,ω. (3.7)

By treating ûkz,ω as a known forcing term, equation (3.7) (or (3.3) equivalently)
represents an inhomogeneous linear differential equation that governs the time
evolution of perturbation q̂kz,ω

, with ûkz,ω being the inhomogeneous forcing term
on the right-hand side. Its general solution comprises a homogeneous solution and a
particular solution. The homogeneous solution can be found by solving equation (3.7)
without the forcing term. That is,

− iωq̂kz,ω
=Lq̄(q̂kz,ω

; kz), (3.8)

which forms an eigenvalue problem, which reminds us that the homogeneous solution
is associated with the spectrum of Lq̄. On the other hand, the particular solution of
(3.7) can be expressed as

q̂kz,ω
= [−iω−Lq̄(kz)]

−1ûkz,ω, (3.9)

where the operator

Hq̄(kz, ω)= [−iω−Lq̄(kz)]
−1, (3.10)
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582 C.-A. Yeh and K. Taira

is referred to as the resolvent and is associated with the pseudospectrum of Lq̄
(Trefethen & Embree 2005).

Our objective is not to solve differential equation (3.7), which requires knowledge
of the initial condition and the explicit forcing ûkz,ω. However, we characterize its
general solution by analysing the spectrum and pseudospectrum of the linear operator
Lq̄. Moreover, we note that particular solution (3.9) describes a linear operation that
takes place between a sustained input ûkz,ω and the harmonic output q̂kz,ω

through
the resolvent operator Hq̄(kz, ω). For this reason, the pseudospectrum of Lq̄, which
captures the energy amplification through the input–output process, is the main focus
of this study on active flow control.

With the knowledge of q̄ and the appropriate boundary conditions, the linear
operator Lq̄ can be explicitly constructed in its discretized form Lq̄ for a prescribed
spanwise wavenumber kz. We can rewrite equation (3.7) in discrete form as

− iωq̂kz,ω
= Lq̄(kz)q̂kz,ω

+ ûkz,ω, (3.11)

where the operation of Lq̄ on q̂kz,ω
is represented by a matrix–vector multiplication

of Lq̄(kz)q̂kz,ω
. The modal wavenumber kz is embedded in Lq̄ since it emerges from

the spatial differentiation in the construction of Lq̄. With the discrete linear operator
Lq̄ constructed, its spectrum and pseudospectrum can be found numerically. Below,
we document the domain discretization and boundary conditions for constructing the
discrete linear operator Lq̄. The numerical approach for computing its spectrum and
pseudospectrum is also offered.

3.2. Numerical set-up
The discretization for equation (3.7) is performed on the computational mesh shown
in figure 3 highlighted in orange on top of the LES domain. This two-dimensional
rectangular domain has an extent of x/Lc ∈ [−15, 16], y/Lc ∈ [−12, 12] and is
composed of approximately 0.14 million grid points. The mean turbulent flow
q̄ = [ρ̄, ū, v̄, w̄, T̄]T obtained from the baseline simulation on the LES mesh is
interpolated onto this coarser mesh to perform the stability (spectral) and resolvent
(pseudospectral) analyses. For the far-field boundary and over the airfoil, the Dirichlet
boundary condition is set for [ρ ′, u′, v′, w′] = [0, 0, 0, 0] and the Neumann boundary
condition is set for T ′ such that en · ∇T ′ = 0, where en is the unit normal boundary
vector. At the outlet boundary, the same Neumann boundary condition is set for
all flow variables. With these boundary conditions and the baseline mean flow q̄,
we construct the linear operator in its discrete form Lq̄(kz) for a chosen spanwise
wavenumber kz.

In the current study, the size of Lq̄ is approximately 0.7 million × 0.7 million.
Considering the large size of Lq̄, the implicitly restarted Arnoldi method (Lehoucq,
Sorensen & Yang 1998) is used to handle the large-scale eigenvalue problem to solve
for its spectrum and pseudospectrum. The eigenvalues and the resolvent norm (for
pseudospectrum) are computed with a Krylov space of 128 vectors and a residual
tolerance of 10−10. The domain size and mesh resolution were examined to ensure that
the results converge to at least six significant digits. Further detail of grid convergence
is documented in appendix A.

3.3. Spectrum and pseudospectrum of Lq̄

The mean-flow-based linear operator Lq̄ can be characterized by its spectrum
(eigenvalues) and pseudospectrum. They describe the dynamical response of the
fluid-flow system as they arise from the general solution of the linearized Navier–
Stokes equations (3.7).
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FIGURE 6. (Colour online) Spectrum (a) and dominant eigenmodes (b) of Lq̄(kz = 0) for
α = 9◦ mean flow. Three representative dominant modes shown in (b) are circled with ◦
(blue) or ◦ (red) in the spectrum (a). Spurious eigenvalues that associate with unphysical
standing waves (Lesshafft 2018) are coloured in grey in the spectrum (a). An eigenmode
is considered to be physical if 99.9 % of its energy (equation (3.14)) lies in the box of
y/Lc ∈ [−5, 5] and x/Lc ∈ [−2, 16], where x/Lc = 16 is the computational outlet where
Neumann boundary condition is imposed. The magenta dashed lines in (a) highlight the
frequencies of the dominant wake modes and are also shown in the frequency spectra in
figure 7(a,b). The shear layer over the separation bubble is identified by the time-averaged
spanwise vorticity ζ̄z as shown in (c) and is marked with dashed lines to highlight the
shear-layer structures in the eigenmodes.

3.3.1. Spectrum
The eigenvalue problem arising from the homogeneous problem (3.8) can be

expressed in its discretized form

Lq̄(kz)q̂kz,ω
=−iωq̂kz,ω

, (3.12)

where −iω and q̂ are the eigenvalue and eigenmode, respectively. The eigenvalue
−iω = −iωr + ωi determines the temporal stability with modal frequency ωr and
growth (or decay) rate ωi. An instability is identified if the complex modal frequency
ω=ωr + iωi resides on the positive imaginary plane with ωi > 0. Upon prescribing a
modal wavenumber kz for Lq̄(kz), the eigenvalue problem (3.12) can be viewed as the
biglobal linear stability analysis (Theofilis 2011) at kz with the mean turbulent flow
q̄ as the base state.

We show in figure 6 the results of the spectrum of Lq̄(kz = 0) and three
representative eigenmodes for α = 9◦. We note that the spectrum is symmetric about
the ωi axis, since the modal phase velocity does not exhibit preferential spanwise
direction due to the two-dimensional geometry of the airfoil. Thus, in figure 6, we
only show the spectrum on the positive frequency plane (ωr > 0). In the spectrum,
two branches can be identified: the wake-mode branch and the shear-layer-mode
branch. These two branches can be characterized by the frequency bandwidth of
the eigenvalues or through examination of their modal structures. Three eigenmodes
are chosen in the spectrum with ◦ and their modal structures are visualized in
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584 C.-A. Yeh and K. Taira

figure 6(b) with the streamwise velocity profile û: (1) the dominant shear-layer mode;
(2) the dominant wake mode; and (3) a coupling mode of shear layer and wake.
On top of each modal structure, a dashed line is shown to mark the location of the
time-averaged shear layer. This line is determined by examining the time-averaged
spanwise vorticity ζ̄z for its local maximum magnitude over the separation bubble,
as shown in figure 6(c). The shear-layer mode presents distinctively strong structure
along the shear layer. While the shear-layer mode gradually vanishes in the wake, the
wake-mode structure extends farther downstream and resembles the pattern of the von
Kármán vortex street behind a bluff body. On the wake branch, the frequencies of
four dominant modes are highlighted with magenta lines. These frequencies, marked
again in the frequency spectrum of lift ĈL in figure 7(b), are found to be in agreement
with the peaks obtained from LES. Similar agreement holds for α = 6◦ results in
figure 7(a). The agreement between the Lq̄ spectrum and the dominant frequency
identified from the baseline flow shows that the nonlinear vortex-shedding physics
can be revealed by the linear analysis. Comparing the lift spectra for α = 6◦ and
9◦ in figure 7(a,b), we find that the frequency content of ĈL scales well with the
frontal-height-based Strouhal number Stα =ω(Lc sin α)/2πv∞. The Stα scaling for the
lift spectra has been studied by Fage & Johansen (1927), reporting the appearance of
the ĈL peaks near Stα ≈ 0.2.

The linear operator Lq̄(kz) is observed to be unstable for kzLc = 0 as it possesses
eigenvalues with positive growth rates. In fact, Lq̄(kz) is found to be unstable for
kzLc . 8π. The identification of the critical kz that yields instability in Lq̄(kz) is not
the focus the present study. However, we leave a cautionary note here that its unstable
nature for low kz necessitates further care when performing the resolvent analysis of
Lq̄, which will be discussed in detail in § 3.5.

3.3.2. Pseudospectrum
A normal operator satisfies LL∗=L∗L, where the superscript ∗ denotes the Hermitian

transpose. It has orthonormal eigenmodes with corresponding eigenvalues that govern
the dynamical behaviour. For a non-normal operator (i.e. LL∗ 6= L∗L), its transient
behaviour is not described simply by the eigenvalues and eigenvectors. Instead of
just the spectrum, the pseudospectrum is needed to analyse the dynamics resulting
from a non-normal operator. Trefethen & Embree (2005) examined pseudospectra of
non-normal operators and explained how they align with the dynamical behaviours
governed by these operators. In fluid-flow systems, non-normality appears in
shear-dominant flows (Trefethen et al. 1993; Schmid & Henningson 2001; McKeon
& Sharma 2010). From the baseline flows, we readily identify the presence of strong
shear particularly over the separation bubble. This region of strong shear can be
recognized in the mean flow profile about which Lq̄ is constructed.

We have mentioned that the pseudospectrum of Lq̄(kz) arises from the resolvent
operator Hq̄(kz, ω) in the particular solution (3.9). Here, we work with the discrete
resolvent operator

H q̄(kz, ω)= [−iωI − Lq̄(kz)]
−1, (3.13)

where I is the identity matrix. The pseudospectrum of Lq̄(kz) is to be mapped out over
the complex ω plane by seeking a 2-norm measure through the SVD of its resolvent
matrix H q̄. An appropriate 2-norm for this study can be introduced as the weighted
inner product between two state vectors:

〈q1, q2〉E =

∫
Ω

q∗1diag

(
RT̄
ρ̄
, ρ̄, ρ̄, ρ̄,

Rρ̄
(γ − 1)T̄

)
q2 dx, (3.14)
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FIGURE 7. (Colour online) Frequency spectra of lift ĈL from baseline LES (a,b) and
pseudospectra of Lq̄ with kzLc = 0 (c,d) for both α = 6◦ (top) and 9◦ (bottom). The
pseudospectra are constructed over the complex ω-plane by seeking the leading singular
value σ1 in (3.16). Magenta dots in (c,d) depict the eigenvalues of the corresponding Lq̄.
Over the horizontal axis, two frequency scales are provided: the Fage–Johansen Strouhal
number Stα = ω(Lc sin α)/2πv∞ on the upper axis and the chord-based Strouhal number
St = ωLc/2πv∞ on the lower axis. In each panel, the magenta dashed lines mark the
frequencies of dominant wake modes from the spectra of Lq̄.

where Ω is the domain of interest and R is the ideal gas constant. The inner product
〈q1, q2〉E is referred to as the energy norm (Schmid & Henningson 2001). We adopt
the compressible disturbance energy proposed by Chu (1965) and use this 2-norm
for the computation of pseudospectra. For the discrete flow fields, the energy norm
is evaluated as

〈q1, q2〉E = q∗1Wq2, (3.15)

where the weight matrix W is the numerical quadrature that accounts for both the
energy weight and spatial integration. By introducing the similarity transformation of
H q̄ 7→H q̄,W =W 1/2H q̄W−1/2, the energy norm for H q̄ can be handled within the 2-norm
framework for H q̄,W (Trefethen & Embree 2005). Also, the similarity transformation
performed for H q̄ translates to Lq̄ and preserves its eigenvalues. The pseudospectrum
of Lq̄ with respect to the energy norm (3.14) can be evaluated through the SVD of
H q̄,W as

H q̄,W (kz, ω)=QW ΣU∗W , (3.16)

where QW and UW are the left- and right-singular vector, respectively. By seeking
the leading singular value σ1 in Σ , the pseudospectrum of Lq̄(kz) is obtained at the
complex ω.
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Following the approach, in figure 7(c,d), we present the pseudospectra of Lq̄(kz)

with respect to the energy norm for both α = 6◦ and 9◦ with kz = 0, along with
the frequency spectra of the lift coefficients from LES (figure 7a,b). For all four
panels, we provide two different frequency scalings over the horizontal axes:
the Fage–Johansen Strouhal number Stα = ω(Lc sin α)/2πv∞ on the top, and the
chord-based Strouhal number St = ωLc/2πv∞ on the bottom. Comparing the results
from two angles of attack, we observe that, while the lift spectra scale well with
Stα, the general behaviour of the pseudospectra agrees better with St, especially in
the high ωi region. The pseudospectra levels spread out from the region where most
of the shear-layer eigenmodes reside for both angles of attack. This observation can
be explained by the highly non-normal nature of these shear-layer modes, whose
structures are supported by the separation bubble above the airfoil that exhibits
the strongest shear in the mean flow. The high non-normality in these shear-layer
modes expands the pseudospectral radius about them such that they are centred by
the roll-off in the pseudospectra levels. Therefore, instead of the Stα scaling which
emphasizes the wake physics, the shear-layer-dominated behaviour is better supported
by the St scaling for the pseudospectra.

3.4. Resolvent analysis for active flow control
To provide physical interpretation for the right- and left-singular vectors (QW and
UW ) of the SVD (3.16), let us recall the resolvent operator as part of the particular
solution:

q̂= H q̄û. (3.17)

Here, we have dropped the subscripts kz and ω for simplicity. The similarity
transformation for H q̄ can be brought into the particular solution as W 1/2q̂ =
(W 1/2H q̄W−1/2)W 1/2û. With the SVD for H q̄,W in (3.16), the particular solution
can be rewritten considering the energy norm as

W 1/2q̂= (QW ΣU∗W )W
1/2û. (3.18)

Starting from the right-hand side of this equation, we see the projection of the
weighted forcing W 1/2û onto the vector space spanned by the right-singular vectors
UW . This projection takes the inner product with respect to the energy norm and
decomposes W 1/2û into the vector components in UW with a series of projection
coefficients. Each forcing component is amplified by the corresponding singular value
in Σ , producing a set of scaled coefficients for the corresponding left-singular vectors.
The output W 1/2q̂ is generated through the linear combination of the left-singular
vectors using this set of scaled coefficients. Thus, in the SVD of H q̄,W , the left-singular
vectors QW = W 1/2

[q̂1, q̂2, . . . , q̂n] can be interpreted as response modes, whereas
the right-singular vectors UW = W 1/2

[û1, û2, . . . , ûn] can be interpreted as forcing
modes. Each forcing–response pair is subjected to the corresponding amplification in
Σ = diag(σ1, σ2, . . . , σn), where σk can be arranged in a descending order. If σ1� σ2,
the rank-1 assumption (McKeon & Sharma 2010; Beneddine et al. 2016; Gómez
et al. 2016) can be appropriately made, expecting that the input–output process is
dominated by the leading forcing–response pair, i.e. q̂ ≈ q̂1σ1〈û1, û〉E, as long as
〈û1, û〉E is reasonably large. This assumption will be justified shortly with the results
presented in the next section.
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FIGURE 8. (Colour online) Schematic demonstration of resolvent analysis: each SVD
provides an optimal forcing–response pair with the associated amplification (gain) while
sweeping through frequency ω and wavenumber kz.

Recognizing that the SVD is performed for H q̄(kz, ω) for prescribed kz and ω, a
concept of ‘Bode plot’ can be realized by sweeping through the frequency ω for each
kz, seeking for the leading amplification (as the ‘gain’) from each SVD (Jovanović
& Bamieh 2005). Such an approach is illustrated in figure 8, where each SVD gives
a leading forcing–response pair along with the associated gain. With the Bode plot
constructed based on the pseudospectral analysis of Lq̄, efficient ways of forcing
may be predicted by searching for the combination of kz and ω that produces high
gain. Such a forcing input will be highly amplified by H q̄ to produce perturbation
q̂ about q̄. The amplitude of perturbation may grow beyond the validity of linear
regime governed by Lq̄. Through nonlinearity, the highly amplified perturbation can
modify the mean flow q̄, which is the objective of flow control. For this reason,
resolvent analysis, arising from the input–output process in the particular solution
(3.17), provides insightful information for flow control design. While following this
approach, we provide a couple of cautionary comments on the use of resolvent
analysis in the present context:

(i) Even though the effective forcing input predicted by the resolvent analysis may
have a good chance to modify q̄, the direction of the change (e.g. increase
or decrease in lift) may be beyond the insights that can be provided by the
amplification. The achievement of an aerodynamically favourable change may
require further knowledge, such as the structure of the harmonic response rather
than just the knowledge of amplifications.

(ii) Once the base flow q̄ is modified with control, the results from the analysis
performed with respect to the operator for uncontrolled base state Lq̄ may no
longer be valid. However, resolvent analysis can still provide valuable insights
for the effective forcing before the system departs from the linear regime about
the uncontrolled q̄.

We have presented a control-oriented interpretation of the results from resolvent
analysis. Traditionally, resolvent analysis used in fluid mechanics deals with
asymptotically stable base flows (the Lyapunov stability). With asymptotic stability,
the gain obtained from the sustained forcing is bounded over the infinite-time horizon.
However, the linear operators Lq̄ for the present flows are unstable, as pointed out
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in figure 6. To address this matter for the present flow control effort, we discuss an
extension to the standard resolvent analysis in the following section.

3.5. Finite-time horizon resolvent analysis
While the analysis of asymptotic stability requires an infinite-time horizon, the
dynamical behaviour of a non-normal system within a finite-time horizon is also
relevant. For an asymptotically stable system, the perturbation energy can undergo
transient growth due to non-normality of the operator. Such dynamics is not described
by the asymptotic behaviour of the operator, but can be characterized through an
initial-value problem by specifying a finite-time horizon (Schmid & Brandt 2014).
Even if the system is characterized as unstable (unbounded) asymptotically, a bounded
amplification can be found when a finite-time horizon is specified. For the present
problem, some nonlinear dynamic processes, such as the shear-layer roll-up, the
break-up of spanwise vortical structures and the vortex merging process, can all
take place within a short time window. Therefore, we do not concern ourselves with
the concept of asymptotic stability, but rather focus on the short-term dynamics by
considering a finite-time horizon for the input–output analysis, following the approach
proposed by Jovanović (2004).

Jovanović (2004) introduced an input–output analysis of an unstable system with
an exponential discount. This analysis starts with the introduction of a temporal filter
performed on both response and forcing such that q̌β = q̌e−t/tβ and ǔβ = ǔe−t/tβ . The
time constant tβ > 0 is chosen such that the decay rate β = 1/tβ in the temporal filter
e−βt overtakes the growth rate of the dominant unstable eigenvalue of Lq̄. That is,
β >max(ωi). The use of such temporal filter ensures that we examine the dominant
transient growth that takes place over a time window characterized by tβ . Therefore,
the value of tβ can be chosen according to physical interests. Upon substituting these
growth-discounted modes of q̌β and ǔβ into the Navier–Stokes equation (3.3), we
have

(β − iω)q̂β = Lq̄q̂β + ûβ . (3.19)

Thus, we can express the discounted resolvent analysis as

q̂β = [−iωI − (Lq̄ − βI)]−1ûβ, (3.20)

with the discounted resolvent operator H q̄,β

H q̄,β = [−iωI − (Lq̄ − βI)]−1. (3.21)

This expression constructs the discounted resolvent operator H q̄,β using the shifted
linear operator (Lq̄− βI). The eigenvalues of Lq̄ are now shifted by −β and all reside
on the stable complex plane so that the standard resolvent analysis can be performed
with H q̄,β along the real axis of ω=ωr. Note that H q̄,β can also be expressed as H q̄,β =

[−i(ω + iβ)I − Lq̄]
−1, suggesting that an equivalent exercise can be performed by

directly evaluating the pseudospectrum of Lq̄ on a raised frequency axis of (ωr + iβ).
The traditional approach is recovered by setting β = 0 (i.e. tβ→∞ for infinite-time
horizon), which was undertaken by Thomareis & Papadakis (2018) on the same airfoil
at ReLc = 50 000.

We demonstrate this finite-time horizon resolvent analysis in figure 9 by showing
representative results over various choices of tβ . Here, we use the operator Lq̄

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.163


Resolvent-analysis-based design of separation control 589

105

104

103

102

101

100
0 5 10

tı√∞/Lc

∞
7
5
3

G
ai

n:
 ß

1

St = øLc/2π√∞

tı√∞/Lc → ∞ tı√∞/Lc → ∞

tı√∞/Lc = 7 tı√∞/Lc = 7

tı√∞/Lc = 5 tı√∞/Lc = 5

tı√∞/Lc = 3 tı√∞/Lc = 3

0 2 4 6 -4 -2 0
x/Lc x/Lc

(a) (b) (c)

FIGURE 9. (Colour online) Finite-time horizon resolvent analysis with different choices
of tβ , considering α = 9◦ mean flow with kzLc = 0. (a) Gain distribution over frequency
in St; the leading resolvent (b) response and (c) forcing modes at St= 0.833. The lowest
magnitude marked by contour lines is 1 % of the modal maximum. The streamwise extent
of the modal structures shortens with decreasing tβ .

constructed with kz = 0 about the α= 9◦ mean baseline flow and choose tβ such that
tβv∞/Lc = 3, 5 and 7. The results from these choices of tβ will be compared with
those from the infinite-time horizon analysis (tβ→∞).

Let us analyse the gain distribution over frequency shown in figure 9(a). By
decreasing tβ from 7 to 3, we observe that the gain over St decreases with tβ . The
decrease in gain can be explained by the shorter time horizon over which the growth
in perturbation energy is evaluated. It can also be understood as the decreasing
pseudospectral level with increasing ωi (moving away from the neutral stability
axis) as we can observe in figure 7. The finite-time horizon analysis removes the
spikes appearing in the gain distribution evaluated with the infinite-time horizon. The
spikiness is attributed to the response of pseudospectral level to subdominant and
spurious eigenmodes populating densely near the frequency (ωr) axis, which can be
seen in the spectrum in figure 6(a).

The leading response modes and forcing modes are respectively shown in
figure 9(b,c) for the corresponding tβ using St = 0.833 as a representative case.
From the response modes in figure 9(b), we observe that all choices of tβ reveal the
flow responses in the shear layer over the airfoil and in the wake. In figure 9(c), the
forcing modes exhibit advective structures near the airfoil and its upstream. Note that
the time scale, tβv∞/Lc, can also be interpreted as the advective length scale over the
finite-time window. The streamwise coverage of the structures in both response and
forcing modes is well characterized by each time constant tβ used in the temporal
filter.

The advective feature of the forcing mode motivates the use of local actuation,
since the locally introduced perturbation that advects with the flow can leverage
this feature as long as the forcing mode structures extend farther downstream of
the actuator. Moreover, we observe that the forcing modes exhibit high level of
fluctuation near the leading edge for all values of tβ examined. This observation is in
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FIGURE 10. (Colour online) Gain distribution over the ω–kz space for (a) α= 6◦ and (b)
α= 9◦, computed using tβv∞/Lc= 5. Approximately O(10) difference from the leading to
second singular value is observed.

agreement with Thomareis & Papadakis (2018), who performed the resolvent analysis
for infinite horizon. The forcing mode shape suggests that the amplification from
the input–output process can be efficiently leveraged if actuation is introduced near
the leading edge (Gómez & Blackburn 2017). Our choice of the actuator location
(xa/Lc = 0.03) is hence supported by the observation of the forcing mode structure.

We now move our attention to the choice of tβv∞/Lc = 5 in the rest of this work.
However, we will also show that the conclusive assessment still stands for other
choices in appendix B. We present the gain distribution over the ω–kz plane in
figure 10. For each α, the gain constructed from the second singular value σ2 is also
presented in comparison with that from σ1 over the same frequency–wavenumber
plane. The difference between σ1 and σ2 is typically greater than an order of
magnitude. This gap between the leading and second singular value justifies the
rank-1 assumption discussed in the previous section. Comparing the results from
both angles of attack, we find that leading gain over the entire ω–kz plane is well
scaled with the chord-based Strouhal number St = ωLc/2πv∞ and wavenumber kzLc.
The resemblance stems from the highly non-normal shear-layer modes residing near
St ≈ 5 for both angles of attack, which are observed from their pseudospectra in
figure 7. Moreover, the gain exhibits a general decreasing trend with increasing kzLc.
This behaviour can be attributed to the attenuation of three-dimensional instability,
which has been studied by Pierrehumbert & Widnall (1982) and Hwang, Kim & Choi
(2013) for free shear layer and wake, respectively.

The structure of the response mode can also provide knowledge for identifying
the appropriate actuation k+z and ω+ that result in aerodynamically favourable control
effects. Given a response mode q̂ ≡ [ρ̂, v̂x, v̂y, v̂z, T̂]T at specified kz and ω, we
also evaluate the associated streamwise, transverse and spanwise Reynolds stress
respectively by

R̂x(kz, ω)=Re(v̂∗y v̂z), R̂y(kz, ω)=Re(v̂∗z v̂x), R̂z(kz, ω)=Re(v̂∗x v̂y), (3.22a−c)

where Re(·) denotes the real component of the argument. We visualize the response
modes in figure 11 in their streamwise velocity v̂x, transverse velocity v̂y and the
associated spanwise Reynolds stress R̂z with the representative kzLc–St combinations
for the mean baseline flow at α=9◦. For modes of St=1.5 and 2.5, response structure
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FIGURE 11. (Colour online) Streamwise velocity mode v̂x, transverse velocity mode v̂y

and spanwise modal Reynolds stress R̂z of representative kz–St combinations for α = 9◦
mean baseline flow. The response modes are obtained with tβv∞/Lc= 5 and are visualized
by the contour lines of q̂/|q̂|∞ ∈±[0.01, 0.9].

develops from the shear layer above the suction surface and extends farther into the
wake. Particularly for (kzLc, St) = (0, 1.5), we observe an extended wake structure
in the velocity modes as well as the resolvent Reynolds stress. The Reynolds stress
exhibits a pattern of von Kármán vortex shedding with negative correlation developing
in the shear layer above the airfoil and positive correlation extending from the trailing
edge over the bottom. By increasing either St or kzLc, the streamwise extent of the
modal structure reduces to the shear layer. Further increase of frequency moves the
response structure towards the leading edge where the shear layer remains thin and
is capable of supporting small-scale structures from high-frequency perturbations. In
§ 5, we will further explore the resolvent Reynolds stress and show that it provides
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insight into momentum mixing that is critical for suppressing stall. We will discuss a
metric that incorporates the gain and the spatial integration of the resolvent Reynolds
stresses to provide a quantitative guidance to separation control.

We have performed resolvent analysis for the mean baseline flows of α = 6◦ and
9◦ and discussed an extension to the standard approach for the two unstable linear
operators. From the gain distribution over frequency and wavenumber, we have seen
the shear-layer-dominated feature for the baseline flows at both angles of attack. In
the next section, we discuss the results of controlled flows and investigate important
flow physics that achieves suppression of separation. The enhancement in aerodynamic
performances will later be compared to the prediction of resolvent analysis.

4. Large-eddy simulations of controlled flows
In this section, we examine open-loop separation control using the thermal actuator

modelled by (2.1). To assess the effectiveness of flow control and to develop a
database to relate the control effectiveness to resolvent analysis, we conduct a
parametric study with LES over open-loop actuation frequency St+ and wavenumber
k+z . We will start our discussion by giving an overall picture of how aerodynamic
forces (lift and drag) respond to the chosen St+ and k+z . We then analyse the
controlled flow fields to correlate the flow physics to the change in the aerodynamic
forces and their fluctuation magnitudes. The near-field velocity profiles and surface
pressure distributions are also investigated to reveal the mechanism of aerodynamic
force modification. With the results obtained from LES, the control effects will be
compared to the results of resolvent analysis in the next section.

For both angles of attack, we present the drag and lift coefficients respectively in
figures 12 and 13 for controlled flows by sweeping through actuation frequencies and
wavenumbers. Let us now direct our attention to the change in lift in figure 12. While
the controlled lift data appear scattered for α= 6◦, the flow control for α= 9◦ achieves
enhancement in lift by up to 54 % with thermal-based actuation. On the right of both
lift plots, we provide an additional scale of C̄L/CL,0 with CL,0 being the potential-flow
lift for the baseline. We recall that, while the α= 9◦ airfoil is in deep stall, the mildly
separated baseline flow at α = 6◦ reattaches and achieves 84 % of CL,0, leaving a
smaller room for lift enhancement with active flow control. The lift enhancement at
α = 6◦ does not exhibit a clean trend as at α = 9◦, which is likely due to difference
in the baseline C̄L/CL,0. However, for both angles of attack, the fluctuation in lift is
generally reduced by over 85 % with active flow control, as shown in figure 14.

Drag for both angles of attack exhibits significant reduction with active flow control,
as shown in figure 13. The thermal actuation achieves drag reduction of up to 45 %
for α= 6◦ and 49 % for α= 9◦. The corresponding reductions in the thrusting power
evaluated by the same normalization in (2.2) are 0.284 and 0.354 respectively for
α = 6◦ and α = 9◦. Both values are larger than the deployed actuation power of
E+ = 0.0902. More importantly, by comparing the drag reduction for both angles
of attack, we observe that the effective range of the actuation frequency scales well
with the chord-based actuation Strouhal number St+ = ω+Lc/2πv∞. Significant drag
reduction is achieved over 3 . St+ . 15 but a sharp loss in the drag reduction is
observed at St+ ≈ 15 for both α = 6◦ and 9◦. For St+ & 15, no control case exhibits
significant enhancement in aerodynamic forces. Similar to effective frequency range
for drag reduction, the lift fluctuation shown in figure 14 is also observed to decrease
significantly over 3 . St+ . 15 for both angles of attack. The frequency scaling with
St+ rather than the wake-based Fage–Johansen St+α once again implies a shear-layer-
dominated nature for separation control.
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FIGURE 12. (Colour online) The time-averaged lift coefficients C̄L of controlled flows for
angles of attack of α = 6◦ (a) and α = 9◦ (b). In each plot, the black dashed line marks
the baseline value for the corresponding angle of attack. The magenta dashed line marks
the potential flow lift coefficient computed using the panel method.
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FIGURE 13. (Colour online) The time-averaged drag coefficients C̄D of controlled flows
for α = 6◦ (a) and α = 9◦ (b). The black dashed line marks the baseline value for the
corresponding angle of attack. Symbols are as in figure 12(a).
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FIGURE 14. (Colour online) Root-mean-square of the lift coefficients CL,rms of controlled
flow for α = 6◦ (a) and α = 9◦ (b). The black dashed line marks the baseline value for
the corresponding angle of attack. Symbols are as in figure 12(a).
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FIGURE 15. (Colour online) Controlled flows for α= 6◦ with k+z Lc= 0 and the resolvent
response modes (streamwise velocity v̂x) at the corresponding kz–St. The percentage
change in the drag coefficient is computed using 1C̄D = (C̄D,control − C̄D,baseline)/C̄D,baseline
and similarly for lift and lift-to-drag ratio. Note that the resolvent response modes
are computed based on mean baseline flow. Iso-surface of QL2

c/v
2
∞
= 50 coloured by

streamwise velocity is used in the flow visualization. The response modes are obtained
with tβv∞/Lc = 5 and are shown by the contour lines of v̂x/|v̂x|∞ ∈±[0.01, 0.9].

Another interesting feature in the change of aerodynamic forces is the distinct trend
exhibited by the two-dimensional actuation (k+z Lc = 0) cases. We observe that drag,
while still below the baseline value, increases near St+≈ 7.5 for both angles of attack
for k+z Lc = 0. When a spanwise variation (k+z Lc > 0) is introduced to the actuation
profile, such increase in drag is absent from the intermediate range of actuation
frequency. In fact, little difference can be observed in the change of aerodynamics
forces with k+z Lc= 10π, 20π and 40π using the actuation power E+= 0.0902 in (2.2)
for the present study.

To reveal the cause for the distinctive trend in drag with k+z Lc = 0, we visualize
the instantaneous flows for representative cases of α = 6◦ in figure 15. Behind the
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Q-criterion visualization, we also show the TKE contour as well as a black curve
that marks v̄x= 0 to indicate the separation region for each case. Along with the flow
visualization, the percentage change of aerodynamic forces is tabulated on the left.
In all cases, we find that thermal actuation is able to trigger the Kelvin–Helmholtz
instability of the shear layer, exciting the roll-up and chopping the shear layer at the
actuation frequency. Each chop forms a compact two-dimensional spanwise vortex,
advecting along the suction side of the airfoil. These vortical structures promote
momentum mixing and entrain the free stream. Similar to the discussion in Glezer
et al. (2005), the entrainment results in the Coandă-like effect and suppresses flow
separation, which can be seen in cases 6-0A to 6-0D by comparing the v̄x = 0
contours to that of the baseline. In what follows, we split the discussion into four
ranges of frequencies according to the distinctive change in drag as well as similar
flow responses to the actuation.

Frequency range: 0.6 . St+ . 4.33 (represented by cases 6-0A and 6-0B)
In this frequency range, the flow response is characterized by the coupling between

the roll-up of the shear layer over the airfoil and the vortex shedding in the wake.
Particularly for case 6-0B, we observe the formation of strong spanwise vortices
that advect farther downstream into the wake, diminishing the development of
three-dimensional structures and fully laminarizing the flow. The laminarization,
however, leads to a decrease in lift which can also be inferred by the upward-deflected
wake vortices shown in the flow visualization of 6-0B. Such a global laminarization
is observed over 2 . St+ . 4.33 with two-dimensional actuation for α = 6◦. Although
such flow laminarization is not observed in 0.6 . St+ . 1.67, the coupling between
the excited shear-layer roll-up and the wake shedding holds for this frequency range.
Over the frequency range of 0.6 . St+ . 4.33, the drag generally decreases with
increasing actuation frequency.

Frequency range: 4.67 . St+ . 7.33 (represented by case 6-0C)
In this range, the pairing between the spanwise vortices takes place near the trailing

edge. Though the flow is reattached before mid-chord due to actuation, the vortex
pairing process results in trailing-edge separation and causes the drag to increase. The
pairing process also stimulates the laminar–turbulent transition and increase TKE near
the trailing edge, making the wake turbulent. The drag reaches the local maximum
with St+ ≈ 7.33 over the varied actuation frequency in this range.

Frequency range: 8 . St+ . 11 (represented by case 6-0D)
The flow response in this frequency range is characterized by the break-up of the

spanwise vortices over the suction surface, accompanied by the laminar–turbulent
transition before the pairing process takes place. It is also marked by the removal of
the von Kármán shedding structures that are prominent in other regimes as well as
the baseline. The break-up of the spanwise vortices occurs near the mid-chord with
increased TKE, after which turbulent structures cover the rest of the suction surface.
Compared to the baseline flow, these turbulent structures in case 6-0D possess higher
streamwise momentum and advect close to the suction surface. The break-up process
allows for three-dimensional mixing and keeps high-momentum turbulent structures
staying adjacent to the suction surface, suppressing the trailing-edge separation. As a
result, the drag further decreases and reaches the local minimum at case 6-0D with
St+ = 11.

Frequency range: St+ & 11 (represented by case 6-0E)
The drag increases beyond St+ & 11. In this range, the spanwise vortices

are not sufficiently large and strong to induce enough momentum mixing for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.163


596 C.-A. Yeh and K. Taira

free-stream entrainment. By comparing the flow fields of 6-0E to that of the
baseline, the appearance of the actuation-induced spanwise vortices is still visibly
clear. However, while these smaller spanwise structures advect downstream, they
also move away from the suction surface, as opposed to their trajectories in cases
6-0A to 6-0D. Even though the actuation still excites shear-layer roll-up, it does not
effectively entrain the free-stream momentum and leads to the drag remaining at the
baseline level near St+ ≈ 15.

Along with the above observations made from the controlled flows, we also
examine the response modes from resolvent analysis in figure 15. We recall that
these response modes are obtained from the resolvent analysis of the mean baseline
flow. The response mode is provided at the frequency used for the unsteady actuation
in each corresponding control case in the middle column. For case 6-0A and 6-0B,
the corresponding response structure develops from the shear layer above the suction
surface and extends farther into the wake. For higher frequencies, the streamwise
extent of the modal structure reduces to the shear layer, starting from the mode at
St= 7.33 (case 6-0C) and for higher-frequency cases. According to these observations,
we see that the response mode structure is capable of providing insights into the global
flow receptivity to perturbation of specified frequency. When the modal structures
cover both the shear layer and the wake, in corresponding controlled flows we
observe that the perturbation amplified through the shear layer also advects into the
wake and stimulates the shedding instability. Similarly, when the modal structures
appear only within the shear layer, the corresponding controlled flow shows that the
actuation-induced spanwise vortices either merge near the trailing edge or break up
over the airfoil, never able to advect into the wake while remaining compact. Such
a qualitative agreement between resolvent analysis and controlled flows has made it
promising for resolvent analysis to provide quantitative design guidelines. We will
further elaborate on this point in the next section.

Continuing the discussion for control cases at α = 6◦, we present the flow
visualization for cases where a spanwise variation is introduced into the actuation
with k+z Lc> 0 in figure 16. We also refer to the drag value reported in figure 13(a) for
the controlled cases. For all k+z Lc > 0 examined, the drag decrease reaches C̄D ≈ 0.04
at St+ ≈ 3 and continues to maintain this level of approximately 40 % drag reduction
from the baseline. The control effect degrades at St+≈ 10 and returns to the baseline
drag level by St+≈ 15. Similar to the k+z Lc= 0 cases, the thermal actuation generates
spanwise vortices near the leading edge, which can be seen in the flow visualization.
These vortices carry the spanwise variation introduced by the actuation input for
the actuation wavenumbers of k+z Lc = 10π, 20π and 40π (respectively corresponding
to one, two and four waves across the spanwise extent in the current LES). These
spanwise vortices advect along the suction surface and evolve into turbulent structures
near mid-chord. Similar to the comments we made previously for case 6-0D on the
effect of mid-chord transition, the same mechanism holds here for drag reduction in
all effective cases with k+z Lc > 0. Therefore, as opposed to the controlled cases with
k+z Lc = 0, drag reduction achieved from k+z Lc > 0 remains at a comparable level over
the intermediate actuation frequencies.

Analogous to the discussions of α= 6◦ cases, we show representative control cases
at 9◦ with their flow visualizations in figure 17. A qualitative difference between the
controlled flows of α= 9◦ and those of 6◦ is that the global laminarization by thermal
actuation is not observed in any of the examined controlled cases with k+z Lc = 0 for
α = 9◦. Apart from these two differences, similar flow physics associated with the
change in drag for α=6◦ also holds for the α=9◦ controlled cases. Cases 9-0A, 9-0B,
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FIGURE 16. (Colour online) Instantaneous flow fields and TKE (in the background) for
the controlled cases with k+z Lc > 0 of α = 6◦. Iso-surface of QL2

c/v
2
∞
= 50 coloured by

streamwise velocity is utilized in the flow visualization.

9-0C and 9-0D are respectively associated with four frequency ranges as discussed for
α= 6◦ with k+z Lc= 0 in figure 15. In each frequency range, similar trend in the drag
reduction is observed with the use of two-dimensional actuation in both α= 6◦ and 9◦
controlled cases. For α= 9◦, the partial laminarization of the flow by two-dimensional
actuation is only observed over the suction surface in 5. St+. 7.5. Along with drag
reduction, significant lift enhancement from baseline flow of α = 9◦ is also observed
in cases where separation is effectively suppressed by thermal actuation. Suppression
of separation can be attributed to the accelerated laminar–turbulent transition over
separation bubble that occurs immediately after the shear-layer roll-up. In the case of
St+= 16, we observe that the small spanwise vortices depart from the suction surface
and fail to suppress flow separation. As a consequence, the lift and drag returns to
the baseline level at St+≈ 15. Qualitative agreement between the controlled flows and
the resolvent response modes is also observed for the α= 9◦ cases, similar to the the
discussions for α = 6◦.

To provide further insights into the mechanism for suppressing flow separation, we
examine three selective control cases from figure 17 along with the α = 9◦ baseline
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FIGURE 17. (Colour online) Instantaneous flow fields and TKE (in the background) for
the baseline and controlled cases of α = 9◦. Iso-surface of QL2

c/v
2
∞
= 50 coloured by

streamwise velocity is utilized in the flow visualization.

in their near-field mean flows. The changes in the aerodynamics forces of these three
control cases, 9-0B, 9-1B and 9-1C, are listed at the top of figure 18 with the baseline
values for quick reference. Cases 9-0B and 9-1B employ the same actuation frequency
(St+ = 5.5) but with different wavenumbers. While the levels of drag reduction are
comparable for these two control cases, the introduction of spanwise-varying actuation
in case 9-1B achieves further enhancement in lift compared to case 9-0B. Cases 9-1B
and 9-1C both use k+z Lc= 10π but different St+. These two cases achieve comparable
levels in lift enhancement and drag reduction across all drag data presented in
figure 13.
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FIGURE 18. (Colour online) Time- and spanwise-averaged streamwise velocity profiles
over the airfoil (a) and in near wake at x/Lc = 2.0 (b). Dashed curves mark the contours
of v̄x = 0 for the four cases.

For these three control cases, the time- and spanwise-averaged velocity profiles
are provided over the airfoil and one chord downstream in the near wake (x/Lc = 2)
in figure 18. Dashed curves are also shown in figure 18(a) to mark the contour
of v̄x = 0 for the comparison of separation region for the four cases. While the
separation region covers the entire chord in the baseline flow, the periodically excited
flow immediately reattaches after separation. In case 9-0B, the flow over the airfoil
is laminarized with formation of compact spanwise vortices. These vortices merge
near the trailing edge and the flow separates again near x/Lc ≈ 0.75. The occurrence
of the trailing-edge separation can be envisioned from the increasing deficit in the
streamwise velocity profiles observed farther upstream. We also observe in figure 17
that the spanwise vortices gradually depart from the suction surface as they advect
downstream in case 9-0B. As opposed to case 9-0B, the accelerated transition by
spanwise actuation in cases 9-1B and 9-1C provides further three-dimensional mixing
and effectively entrains free-stream momentum, resulting in a fully attached boundary
layer that extends to the trailing edge with en · ∇v̄x > 0. Similar observations on
the modification of velocity profiles have been made by Amitay & Glezer (2002)
using actuation frequencies of St+ ∼ O(10) for separation control with synthetic jets.
In cases 9-1B and 9-1C, the effective entrainment due to three-dimensional mixing
further enhances the lift performance from that of case 9-0B. The wake profiles in
figure 18(b) also provide insight into the drag reduction. All control cases exhibit
reduced momentum deficit in the streamwise velocity profiles in their near wakes. In
particular, we observe that the transverse locations where the wake profiles exhibit
the maximum deficit move downwards in cases 9-1B and 9-1C. Such a transverse
displacement suggests a stronger downwash and is reflecting the enhanced lift for
cases 9-1B and 9-1C as well.

In figure 18(a), case 9-0B exhibits the smallest separated region. The two-
dimensional actuation used in case 9-0B appears to reattach the flow more effectively
than three-dimensional actuation. In spite of the earlier reattachment, case 9-0B
provides the least suction over this separation region in 0 . x/Lc . 2 compared to
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FIGURE 19. (Colour online) Suction-surface pressure profiles (a) and their root-mean-
square (b) of controlled flows and baseline for α = 9◦. Legends follow figure 18.

cases 9-1B and 9-1C, as shown in figure 19(a). While all control cases provide higher
suction than the baseline flow over this region, the use of three-dimensional actuation
further enhances suction compared to two-dimensional actuation. As discussed for
baseline flows, the laminar–turbulent transition occurs with a plateau in the pressure
profile for the controlled cases also. Such a pressure plateau is clear in cases 9-1B
and 9-1C. However, in case 9-0B where only laminar spanwise vortices are present,
the airfoil does not benefit from the additional suction provided by the pressure
plateau associated with laminar–turbulent transition.

The shear-layer roll-up and transition processes can be identified from the pressure
fluctuation profiles in figure 19(b). These two processes take place with the pressure
fluctuation reaching the local maximum near x/Lc ≈ 0.21 for cases 9-0B and 9-1B
under the same actuation frequency of St+ = 5.5. With the higher St+ in case 9-1C,
the local maximum shifts upstream and suggests accelerated roll-up and transition
processes. Through the discussion of the velocity and pressure profiles, we have noted
that both the excited roll-up and laminar–turbulent transition processes are crucial for
the suppression of separation. These mechanisms can encourage momentum mixing
and entrain free-stream momentum to achieve flow reattachment, which provides
enhanced aerodynamic performance.

Let us recapitulate our findings on the important flow physics for suppressing flow
separation and the connection between those and the results from resolvent analysis.
The mechanism for suppression of separation relies on enhanced momentum mixing.
The mixing entrains free-stream momentum and can be provided by the excited roll-up
of the shear layer over the suction surface as well as the laminar–turbulent transition
process that follows the roll-up. As an observation from the study of controlled flows,
the shear-layer-dominated physics for separation control aligns with the discussions
in Greenblatt & Wygnanski (2000). Recalling that resolvent analysis also reveals the
shear-layer-dominated energy amplification, capitalizing upon the shear-layer instability
becomes critical for developing effective and efficient separation control techniques.
In what follows, we leverage the knowledge of these flow physics and propose a
resolvent-analysis-based guideline for the design of active separation control.

5. Assessment of control effect via resolvent analysis
We have performed resolvent analysis to reveal its insights into energy amplification

over a range of frequencies and wavenumbers in § 3. The knowledge of amplification
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kz
+Lc St+ ÎCL ÎCD Resolvent R̂z(kz Lc, St)
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FIGURE 20. (Colour online) Comparison of the enhancement in C̄L and C̄D and the
spanwise Reynolds stress of resolvent response mode for the corresponding kzLc and St.
Note that the resolvent response modes are computed based on mean baseline flow. The
response modes are obtained with tβv∞/Lc= 5 and the associated R̂z are visualized by the
contour lines of R̂z/|R̂z|∞ ∈±[0.01, 0.9].

can be leveraged for flow control, since highly amplified perturbations may change
the mean flow through nonlinear effects. By comparing the controlled flows to the
resolvent response modes, we found that the modal structures provide insights into
the global receptivity to a specified perturbation. We have also learned from controlled
flows that momentum mixing over the airfoil plays an important role in suppressing
separation in § 4. The enhancement of aerodynamic performance can be quantified by
the momentum mixing taking place over the airfoil. This section takes the insights
from the resolvent analysis and the LES of controlled flows to provide quantitative
guidelines for the design of unsteady separation control.

While resolvent response modes can capture coherent structures, mixing provided
by these coherent structures can be examined through the Reynolds stress associated
with the mode (Luhar, Sharma & McKeon 2014, 2015). We have also noted that
the location of momentum mixing is crucial to modify the base state and alter
the aerodynamic performance. Over the airfoil, the roll-up and transition processes
enhance mixing and suppress flow separation. On the other hand, momentum mixing
induced by large-scale von Kármán structure in the wake widens the wake and
results in increased streamwise momentum deficit and higher drag. Such mixing is
thus unfavourable for aerodynamic stall control. To address the different effects of
these two kinds of mixing, we discuss four representative controlled cases along
with the resolvent Reynolds stress obtained from the mean baseline flow for the
corresponding kzLc–St in figure 20. For the case with (k+z Lc, St+)= (0, 1), we observe
an extended wake structure in the Reynolds stress with a strong vortex-shedding
pattern, causing unfavourable mixing for drag reduction. Such mixing in the wake is
absent in the other three wavenumber–frequency combinations. Correspondingly, the
use of (k+z Lc, St+)= (0, 1.5) results in lower performance enhancement compared to
the other three controlled cases, particularly in drag. Therefore, for aerodynamically
favourable control, we should leverage mixing that takes place over the airfoil by
considering the resolvent Reynolds stress as a possible metric for guidance.

The momentum mixing associated with resolvent response mode can be characterized
through performing a spatial integral of the corresponding Reynolds stresses over
a region of physical interest (Nakashima, Fukagata & Luhar 2017). Here, we
quantitatively assess mixing by introducing a spatial window to perform integration of
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FIGURE 21. (Colour online) Spatial integration of the modal Reynolds stress, M(kz, ω),
for kzLc= 0, 10π, 20π and 40π for (a) α= 6◦ and (b) α= 9◦ airfoils. Over the airfoil, the
shear-layer window represented by the level-set function in the lower-left corner is used
as the weight in the spatial integration performed in (5.1).

resolvent Reynolds stress. We choose a window that covers the shear layer over the
airfoil so that only the mixing taking place in this crucial region for suppression of
separation is taken into account. This window w(x), shown in figure 21, is designed
as a level-set function with

∫
Ω

w(x) dx = 1. This level-set function is obtained by
evaluating |v̂∗x v̂y| for the dominant shear-layer eigenmode shown in figure 6. In
appendix C, we also demonstrate that the present assessment is robust with respect to
the choice of the window. The spatial integration for modal Reynolds stress considers
w(x) as a weighting function and is performed over the entire domain Ω as

M(kz, ω)≡

∫
Ω

[σ 2
1 (R̂

2
x + R̂2

y + R̂2
z )

1/2
]kz,ωw(x) dx, (5.1)

where we also associate the gain σ1 in the integration considering the amplification
from a unit energy of forcing. With this scalar function M(kz, ω), the mixing that is
favourable for flow control can be evaluated by the integrated Reynolds stresses from
the resolvent response mode at kz–ω.

We show the integrated resolvent Reynolds stress M(kz, ω) using the shear-layer
windows in figure 21. The trend in M(kz, ω) suggests higher mixing is achieved by
resolvent response modes over the shear layer near St ≈ 5 and low kzLc for both
angles of attack. With the mixing quantified by M(kz, ω) for resolvent response
modes, we colour the data points of aerodynamic forces from controlled cases by
the corresponding M(k+z , ω

+) for both angles of attack in figure 22. In both figures,
we show time-average drag, lift and lift-to-drag ratio with the level of modal mixing
M(k+z , ω

+). We observe that the drag reduction and lift enhancement achieved by
active flow control correlate well with the level of mixing based on M(k+z , ω

+) from
resolvent analysis of the mean baseline flow. Over the actuation frequency range of
3 . St+ . 12, where most of the effective control cases reside, successful control
is characterized by high levels of shear-layer mixing over the airfoil according to
resolvent analysis. Particularly for the lift data of α = 9◦, the maximum lift agrees
well with the high value of M. Similarly for α = 9◦, the sluggish decrease in drag
over the low-frequency range can also be related to the mixing that takes place
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FIGURE 22. (Colour online) Relative change in the time-average drag, lift and lift-to-drag
ratio coloured by the corresponding M(k+z , ω

+) for α = 6◦ (a–c) and α = 9◦ (d–f ). The
change in the drag coefficient is computed using 1C̄D = (C̄D,control − C̄D,baseline)/C̄D,baseline
and similarly for lift and lift-to-drag ratio. In each plot, the dashed line corresponds
to the baseline level. Symbols represent different actuation wavenumbers. E: k+z Lc = 0;
A: k+z Lc = 10π;6: k+z Lc = 20π; C: k+z Lc = 40π.

in the wake for low-frequency modes, as discussed in figure 20. At this stage,
we have observed both qualitative and quantitative agreements between resolvent
analysis and controlled flows obtained from LES. The positive correlation between
the enhancement of aerodynamic performance and the modal mixing from resolvent
analysis suggests its capability of serving as a guiding tool towards selecting effective
actuation parameters.

The nonlinear physics beyond resolvent analysis
With resolvent analysis being a linear technique for the present nonlinear fluid-flow
problem, we also observed some limitations of the interpretation in the aerodynamic
performance and the prediction of M(k+z , ω

+). Below, we comment on these
limitations and identify the associated nonlinear physics.

For controlled cases with k+z Lc= 0, drag increases over 4. St+. 10 for both angles
of attack. Such increase in drag is not captured by the value of M. As discussed
in the previous section, this drag increase is due to the vortex merging process that
causes trailing-edge separation. Therefore, the difference between the controlled flow
results and resolvent analysis can be attributed to the nonlinear nature of the merging
process that transfers energy from a fundamental frequency to its subharmonics. With

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.163


604 C.-A. Yeh and K. Taira

the energy transfer across frequency space, this nonlinear process is not captured by
the linear resolvent analysis that deals with a harmonic input–output process.

Another nonlinear process that leads to differences between the LES findings and
the results of resolvent analysis is the laminar–turbulent transition following the
break-up of spanwise vortices. In the previous section, the transition process has
been shown to be a mechanism responsible for the suppression of separation, in
addition to the shear-layer excitation. Such a mechanism is particularly important for
suppressing stall in the control cases with high frequency near St+≈ 10 and k+z Lc > 0,
leading to peak drag reduction at St+ ≈ 12 for α = 9◦ and comparable level of force
enhancement across three choices of three-dimensional actuation profiles (k+z Lc > 0).
However, the level of M(kz, ω) evaluated from resolvent analysis suggests degraded
mixing for kzLc > 0 and high frequencies. Therefore, while the aerodynamic forces
benefit from the laminar–turbulent transition, this nonlinear process is also beyond the
capability of resolvent analysis to predict the force enhancement through transition
by using the quantitative level of M(kz, ω).

Resolvent analysis as a guiding tool for separation control
We have presented a design guideline that leverages the knowledge obtained from
resolvent analyses performed on mean baseline flows for suppressing stall. We
evaluate the level of mode-based mixing by combining the knowledge of amplification,
modal structure and a shear-layer window over the airfoil, providing a scalar function
over the frequency–wavenumber space. In spite of slight deviations due to the
nonlinear physics beyond the present linear modal, the control effect well correlates
with lift enhancement and drag reduction for open-loop controlled flows. Such a
guideline provides quantitative assessment towards selecting actuation frequency and
wavenumber for effective unsteady separation control.

6. Conclusion
We presented an active flow control effort that capitalizes on the resolvent analysis

of the separated flows over a NACA 0012 airfoil at angles of attack of α = 6◦ and
9◦ and a chord-based Reynolds number of 23 000. The objective of our study was to
provide design guidelines for separation control by leveraging the insights gained from
resolvent analysis of mean turbulent flows. The guideline was tested against a large
number of LES cases with flow control implemented.

The resolvent analysis started by extracting the linear Navier–Stokes operator
that governs the perturbations about the statistically stationary turbulent mean flows
obtained from the baseline LES. In the present analysis, the nonlinearity is retained
by treating it as an internal forcing in the formulation. To analyse the unstable
linear operators (base states), we considered an extension to the standard approach
of resolvent analysis by introducing a temporal filter such that the input–output
analysis is performed over a finite-time horizon. We observed the gain as well as
the modal structure physically correlate with the time constant of the temporal filter.
By sweeping through the Fourier space spanned by the frequency and spanwise
wavenumber, we observed that the gain distribution scales well with the chord-based
Strouhal number between both angles of attack. This scaling behaviour stems from
the high non-normality of the shear-layer modes in the operator spectrum that expands
the pseudospectral radius. Based on these findings, the resolvent analysis revealed
a shear-layer-dominated mechanism for energy amplification from the input–output
process.
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The LES of controlled flows were performed with a thermal actuator that introduces
time-periodic heat injection with a prescribed spanwise profile. We swept through
different choices of actuation frequency and spanwise wavenumbers to investigate
their effects on suppressing stall and enhancing the aerodynamic performance. In
successful controlled cases, the periodic thermal actuation reduces drag by up to
49 % and enhances lift by up to 54 %. The fluctuation in lift is also reduced by up
to 85 %. According to the trend of drag reduction over frequencies, we once again
observed that the effective frequency for both angles of attack scales well with the
chord-based Strouhal number. Aligning with the literature are the observations on
the shear-layer-dominated physics in suppressing separation. We also examined the
control cases in their flow fields and the associated change in the aerodynamic forces.
With the examination, we concluded that the excitation of shear-layer roll-up and
the subsequent laminar–turbulent transition are two critical mechanisms in enhancing
momentum mixing to entrain the free-stream momentum. Both mechanisms contribute
to the enhancement of aerodynamic performances by reducing drag and increasing
lift.

The study of controlled flows showed that mixing over the suction surface plays a
key role suppressing separation. As such, we evaluated mixing provided by resolvent
response modes obtained from mean baseline flows. We quantified the modal mixing
by integrating the Reynolds stresses associated with the response mode over a shear-
layer window. By comparing the modal mixing to the force data obtained from LES,
we observed good correlation between the higher modal mixing and enhanced control
effects for both angles of attack. Such quantitative agreement assures the utility of
resolvent analysis for selecting effective actuation frequencies and wavenumbers, even
when the analysis is performed on the mean baseline flow. Although slight deviations
are found in such a correlation, they can be attributed to the nonlinear physics such as
vortex merging and laminar–turbulent transition. These nonlinear processes are beyond
the validity of the linear input–output process captured through resolvent analysis.

Through this effort, we have demonstrated that resolvent analysis is a valuable
tool for providing physics-based guideline for designing separation control. Such a
guideline gives insights into the effective actuation frequencies and wavenumbers
for separation control with periodic actuation. The present analysis was performed
on the mean baseline flow to serve as a predictive tool for the choices of actuation
frequencies and wavenumbers. It also provides quantitative support for the shear-
layer-dominated physics for separation control. Note that the present approach can
also serve as a basis to design a closed-loop controller with appropriate sensors and
actuators. We believe that this study can provide insights for the use of resolvent
analysis in guiding future implementation of active flow control.
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Appendix A. Convergence of resolvent norm
We document the grid convergence with respect to the resolvent norm in table 2, in

which the size of the domain and the grid resolution in both near and far field of the
α = 9◦ airfoil are investigated. We examine the convergence of the leading (σ1) and
second (σ2) singular values of discounted resolvent operator (3.21) using tβv∞/Lc= 5,
kzLc = 0 and St = 5.5, as the gain distribution reaches its maximum at the chosen
frequency. Mesh E is chosen for this study with six-digit convergence in the leading
singular value.

Mesh x/Lc ∈ y/Lc ∈ Ns Ntotal σ1 σ2

A [−10, 11] [−5, 5] 146 99, 995 4.758584774 E3 8.745356077 E0
B [−15, 16] [−5, 5] 211 108, 168 2.114745964 E3 7.978966539 E0
C [−15, 16] [−5, 5] 211 122, 008 2.068317916 E3 7.970099388 E0
D [−15, 16] [−12, 12] 211 136, 194 2.074543334 E3 7.969043486 E0
E [−15, 16] [−12, 12] 235 139, 183 2.074523974 E3 7.969621927 E0
F [−15, 25] [−12, 12] 235 150, 261 2.074520520 E3 7.969609335 E0

TABLE 2. Grid convergence with respect to the singular values (σ1 and σ2) of H q̄,β with
tβv∞/Lc = 5, kzLc = 0 and St = 5.5. Parameter Ns denotes the number of points on the
suction surface of the airfoil and Ntotal denotes the total number of points of the mesh.
Mesh E is chosen to conduct the analyses in this work.

Appendix B. On the choice of tβ
Since the control effect was assessed according to the modal mixing function

M(kz, ω), we show the robustness of the assessment with respect to different choices
of the discounting time parameter, tβ , by their corresponding M(kz, ω) in figure 23.
We show representative wavenumbers of kzLc = 0 and 10π, with tβ decreasing from
tβv∞/Lc= 7 to 1. We note that all choices reveal both shear-layer and wake structures
in their response modes, as shown in figure 9. Moreover, the trend of M(kz, ω) over
the spectral space remains effectively unchanged regardless of the different choices of
tβ . As the assessment of separation control effect is built upon the trend of M(kz, ω),
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FIGURE 23. (Colour online) The modal mixing function M(kz, ω) computed under
different choices of tβ evaluated for (a) kzLc = 0 and (b) kzLc = 10π.
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we conclude that the present approach is robust against the choice of tβ as long as
the shear-layer and wake structures can be revealed with the chosen tβ .

Appendix C. Window of integration on resolvent Reynolds stress
The integration of Reynolds stress in (5.1) involves a spatial window over which

the integration is performed. Here, we examine another choice for this window in its
effect on the quantitative correlation discussed in figure 22. Instead of providing a
level-set function according to the dominant shear-layer eigenmode, we can integrate
the Reynolds stress associated with the response mode over the domain above the
airfoil as

M′(kz, ω)≡

∫ xTE

xLE

∫
+∞

ys(x)
[σ 2

1 (R̂
2
x + R̂2

y + R̂2
z )

1/2
]kz,ω dy dx, (C 1)

where ys(x) denotes the profile of the suction surface as a function of x, and xLE and
xTE respectively denote the streamwise locations of leading and trailing edges. Using
this scalar function M′(kz, ω) to quantify modal mixing, we generate similar plots in
figure 24 and compare it to figure 22. We observe that the use of the new window in
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FIGURE 24. (Colour online) Relative change in the time-average drag, lift and lift-to-drag
ratio coloured by the corresponding M′(k+z , ω

+) for α = 6◦ (a–c) and α = 9◦ (d–f ). The
change in the drag coefficient is computed using 1C̄D = (C̄D,control − C̄D,baseline)/C̄D,baseline
and similarly for lift and lift-to-drag ratio. In each plot, the dashed line corresponds
to the baseline level. Symbols represent different actuation wavenumbers. E: k+z Lc = 0;
A: k+z Lc = 10π;6: k+z Lc = 20π; C: k+z Lc = 40π.
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equation (C 1) provides the same conclusive assessment with the positive correlation
between the level of M′(kz, ω) and the performance enhancement. This suggests the
developed guideline is robust in the choice of the integration window as long as the
window reasonably highlights the shear layer over the suction surface.
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