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New results concerning Lie symmetries of nonlinear reaction-diffusion-convection equations,

which supplement in a natural way the results published in the European Journal of Applied

Mathematics (9(1998), 527–542) are presented.

1 Introduction

Recently we established new results, which supplement those published earlier [1]. We

remind the reader that § 2 of Cherniha & Serov [1] is devoted to a complete description

of Lie symmetries of the reaction-diffusion-convection (RDC) equation

u0 = ∂1[A(u)u1] + B(u)u1 + C(u), (1.1)

where u = u(x0, x1) is an unknown function and A(u), B(u), C(u) are arbitrary smooth

functions. Hereinafter the 0 and 1 subscripts to functions denote differentiation with

respect to the variables x0 and x1, and ∂1 = ∂
∂x1

.

The main result was presented in Theorem 2.1 of Cherniha & Serov [1], and proved

under the following restriction: formula (2.29) in Cherniha & Serov [1] presents the most

general form of transformations reducing any given nonlinear RDC equation with a

non-trivial Lie symmetry (we remind that the Lie algebra spanned by the operators of

time and space translations was called the trivial Lie algebra) to one of those given in

Table 1 of Cherniha & Serov [1] or to the well known Burgers equation.

We also assumed that the function B(u)� 0 since the case B(u) = 0 has been completely

described in Dorodnitsyn [2]. It turns out that some RDC equations listed in Table 1

of Cherniha & Serov [1] can be reduced to reaction-diffusion equations, i.e., equations

of the form (1.1) with B(u) = 0, if one applies some local substitutions not belonging to

(2.29) in Cherniha & Serov [1]. In other words, the list of nonlinear RDC equations with

a non-trivial Lie symmetry can be shortened. Moreover, we established that there are two

nonlinear RDC equations with non-trivial Lie symmetries which are not listed in that table.
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The paper is organized as follows. In the next section, we show how to reduce a number

of RDC equations arising in Table 1 of Cherniha & Serov [1] using new local substitutions.

The final result is formulated as a new table. In § 3 we discuss how to construct a standard

procedure for reducing the given list of differential equations with the known Lie algebra

invariance to a list of “canonical” equations and the corresponding Lie symmetries.

2 Main results

The list of RDC equations admitting non-trivial Lie symmetries obtained in section 2 of

Cherniha & Serov [1] can be given in the form of Table 1 (here some misprints arising in

Cherniha & Serov [1] are corrected).

In Table 1, the following designations are introduced: λ1 � 0, λ2, λ3, α1 � 0, k� 0, m are

arbitrary constants, λ4 = 2α2
1(k + 2), and:

D1 = 2mx0∂0 + mx1∂1 − u∂u,

D2 = (2m − k)x0∂0 + (m − k)x1∂1 − u∂u,

D∗
3 = kx0∂0 − u∂u,

D4 = (2m − 1)x0∂0 + (m − 1)x1∂1 − ∂u,

D5 = x0∂0 − ∂u,

D6 = 2x0∂0 + x1∂1 − ∂u,

G = x0∂1 − 1
λ1

u∂u,

Y = exp

[(
λ2

1
4

+ λ3

)
x0 − λ1

2
x1

]
u∂u,

G1 = exp(λ2x0)
(

∂1 − λ2
λ1

∂u

)
,

G2 = exp(λ3x0)
(

∂1 − λ3
λ1

u∂u

)
,

T1 = exp(−λ2kx0)(∂0 + λ2u∂u),

T2 = exp(−λ2x0)(∂0 + λ2∂u),

X1 = exp(−kα1x1)(∂1 − 2α1u∂u),

X2 = exp(−α1x1)(∂1 − 2α1∂u)

(2.1)

are operators of Lie symmetry. The substitutions

x0 → c0x0,

x1 → c1x1 + c2x0 + c3x
2
0 + c7 exp(c8x1),

A0(u) → c4 + c5x0 + c6A0(u) exp(c9x0) + c10x1,

(2.2)

with correctly-specified constants ci, i = 0, . . . , 10 and A0(u) =
∫
A(u)du reduce any given

nonlinear RDC equation with a non-trivial Lie symmetry either to one of those given in

this table or to the well-known Burgers equation u0 = u11 + λ1uu1.

The main idea leading to the new substitutions is based on the following observation:

the operators T1, T2, X1 and X2 arising in the cases 8–11, 13–16 of Table 1 can be mapped

to the operators of time and space translation.
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Table 1. Lie symmetries of equation (1.1)[1]

Maximal

algebra

N A(u) B(u) C(u) of invariance

1. 1 λ1u
m λ2u

2m+1, (m� 0) ∂0, ∂1, D1

2. 1 λ1u λ2u, (λ2 � 0) ∂0, ∂1,G1

3. 1 λ1 ln u λ2u ∂0, ∂1, G

4. 1 λ1 ln u u(λ2 + λ3 ln u), (λ3 � 0) ∂0, ∂1,G2

5. 1 λ1 ln u u(λ2 + λ3 ln u +
λ2

1
4

ln2 u) ∂0, ∂1, Y

6. 1 λ1 exp u λ2 exp(2u) ∂0, ∂1, D6

7. uk λ1u
m, (m� 0) λ2u

2m−k+1 ∂0, ∂1, D2

8. uk α1u
k u(λ2 + λ3u

k), (λ2 � 0) ∂0, ∂1, T1

9. uk, (k� − 4
3
)

λ1u
k/2

+ (3k + 4)α1u
k

u(λ2 + λ4u
k

+ 2α1λ1u
k/2)

∂0, ∂1, X1

10. uk, (k� − 4
3
) α1(3k + 4)uk λ4u

k+1 ∂0, ∂1, D
∗
3 , X1

11. uk, (k� − 4
3
) α1(3k + 4)uk u(λ3 + λ4u

k), (λ3 � 0) ∂0, ∂1, T1, X1

12. exp u λ1 exp(mu) λ2 exp[(2m − 1)u] ∂0, ∂1, D4

13. exp u α1 exp u λ2 + λ3 exp u, (λ2 � 0) ∂0, ∂1, T2

14. exp u λ1 exp u
2

+ 3α1 exp u
λ2 + 2α2

1 exp u

+ 2α1λ1 exp u
2

∂0, ∂1, X2

15. exp u 3α1 exp u 2α2
1 exp u ∂0, ∂1, D5, X2

16. exp u 3α1 exp u, λ2 + 2α2
1 exp u ∂0, ∂1, T2, X2

Let us start from the operator T1 = exp(−λ2kx0)(∂0 + λ2u∂u) arising in cases 8 and 11

of Table 1. The Lie algebra with the basic operators ∂0, ∂1 and T1 by the simple renaming

−T1

λ2
→ ∂∗

0, ∂1 → ∂∗
1, ∂0 → D∗

2

is taken to the algebra with the basic operators ∂∗
0, ∂

∗
1 and D∗

2, which satisfies the same

commutation relations as the algebra 〈∂0, ∂1, D2〉 with m = k arising in case 7 of

Table 1. In other words, we deal with two representations of the same Lie algebra. So

one can expect that the relevant equations are related by the same substitution which

transforms the algebra 〈∂0, ∂1, T1〉 into the algebra 〈∂0, ∂1, D2〉 with m = k. The operator

T1 is transformed to the operator of time translations ∂∗
0 = ∂

∂t
by the substitution

t =
1

λ2k
exp(λ2kx0), w = u exp(−λ2x0). (2.3)

Simultaneously, this substitution maps the operator ∂0 to λ2D
∗
2 = λ2(kt∂t − w∂w). Now

one easily checks that the relevant RDC equations, arising in cases 8 and 11 of Table 1

are taken to

wt = ∂1[w
kw1] + α1w

kw1 + λ3w
k+1, (2.4)
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and

wt = ∂1[w
kw1] + α1(3k + 4)wkw1 + 2α2

1(k + 2)wk+1, (2.5)

respectively, by substitution (2.3).

Now one observes that (2.4) is a particular case of the equation arising in case 7 of

Table 1 from Cherniha & Serov [1]. So, case 8 can be combined with case 7. Equation

(2.5) coincides with the equation arising in case 10. On the other hand, it will be shown

that (2.5) admits the further simplification.

In fact, since the algebras arising in case 9 and 7 with 2m = k are two representations

of the same Lie algebra, we found the substitution

x = − 1

α1k
exp(α1kx1), U = w exp(2α1x1), (2.6)

which reduces the operator X1 = exp(−kα1x1)(∂1 − 2α1w∂w) to the operator of space

translations ∂∗
1 = ∂

∂x
. Thus, (2.6) can be also applicable for simplifying the equation (see

case 9 of Table 1)

wt = ∂1[w
kw1] + (λ1w

k/2 + α1(3k + 4)wk)w1 + w(λ2 + 2α1λ1w
k/2 + 2α2

1(k + 2)wk). (2.7)

Substituting (2.6) into (2.7) and making cumbersome calculations, one obtains the equation

Ut = ∂x[U
kUx] − λ1U

k/2Ux + λ2U. (2.8)

We again observe that (2.8) is a particular case of the equation arising in case 7 of Table 1.

So, case 9 can be combined with case 7.

It turns out, that substitution (2.6) also reduces (2.5) to the known nonlinear heat

equation

Ut = ∂x[U
kUx], (2.9)

which is invariant under a 4-dimensional Lie algebra (see, for example, Dorodnitsyn [2]).

Thus, cases 8–11 of Table 1 from Cherniha & Serov [1] can be omitted, if one applies a

combination of the local substitutions (2.3) and (2.6) not belonging to (2.29) in Cherniha

& Serov [1].

Remark 1. Substitution (2.6), mapping (2.5) to (2.9), can be also obtained from King [3]

if one puts N = 1 in the relevant formulas on P.52.

In a similar way, one can deal with the RDC equations arising in cases 13–16 of Table 1.

It was again established that the operator T2 = exp(−λ2x0)(∂0 + λ2∂u) arising in cases 13

and 16 is transformed to the operator of time translation Pt by the substitution

t =
1

λ2
exp(λ2x0), w = u − λ2x0. (2.10)

Simultaneously, the equations arising in cases 13 and 16 of Table 1 take the forms

wt = ∂1[expw w1] + α1 expw w1 + λ3 expw, (2.11)
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Table 2. Lie symmetries of equation (1.1)

Maximal

N A(u) B(u) C(u) algebra

of invariance

1. 1 λ1u 0 ∂0, ∂1, D1, G1, Π

2. 1 λ1u λ2u, (λ2 � 0) ∂0, ∂1,G1

3. 1 λ1 log u λ2u ∂0, ∂1, G2

4. 1 λ1 log u λ3u log u, (λ3 � 0) ∂0, ∂1,G2

5. 1 λ1 log u u(λ2 +
λ2
1
4

log2 u) ∂0, ∂1, Y

6. uk λ1u
m, (m� 0) λ2u

2m−k+1 ∂0, ∂1, D2

7. exp ku λ1 exp(mu), (m� 0) λ2 exp((2m − k)u) ∂0, ∂1, D3

8. exp(ku), (k� 0) λ1u λ2 exp(−ku) ∂0, ∂1, Z1

9. uk, (k� 0), λ1 log u λ2u
1−k ∂0, ∂1, Z2

and

wt = ∂1[expw w1] + 3α1 expw w1 + 2α2
1 expw, (2.12)

respectively. While (2.11) is a particular case of the equation arising in case 12 of Table 1,

equation (2.12) (one coincides with the equation arising in case 15) admits the further

simplification by applying the substitution

x = − 1

α1
exp(α1x1), U = w + 2α1x1. (2.13)

It can be checked by direct calculations that this substitution transforms (2.12) into the

known nonlinear heat equation

Ut = ∂x[expU Ux], (2.14)

which is invariant under 4-dimensional Lie algebra (see, for example, Dorodnitsyn [2]).

Moreover, (2.13) reduces the equation (see case 14 of Table 1)

wt = ∂1[expw w1] + (λ1 exp(w/2) + 3α1 expw)w1 + λ2 + 2α1λ1 exp(w/2) + 2α2
1 expw (2.15)

to the form

Ut = ∂x[expU Ux] − λ1 exp(U/2)Ux + λ2, (2.16)

which is nothing else but another particular case of the equation arising in case 12 of

Table 1.

Finally, the proof of Theorem 2.1 [1] has been once more checked and two new cases

found, which were lost in Cherniha & Serov [1]. They are added below as cases 8 and 9.

Thus, we can formulate the following theorem.

Theorem 1 All possible maximal algebras of invariance of the nonlinear RDC equation (1.1)

for any fixed triplet of functions A,B, C , where AB� 0, are presented in Table 2. Any other

equation of the form (1.1) with non-trivial Lie symmetry is reduced by a local substitution
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of the form

x0 → c0x0 + c1 exp(c2x0)

x1 → c3x1 + c4 exp(c5x1) + c6x0 + c7x
2
0

U → c8U + c9x0 + c10x1 + c11U exp(c12x0 + c13x1) + c14

(2.17)

either to one of those given in Table 1 or to an equation of the form (1.1) with B = 0 (the

constants ci, i = 1, . . . , 14 are determined by the form of the equation in question, many of

them necessarily being zero in any given case).

In Table 2, the following designations are introduced: λ1 � 0, λ2, λ3, k and m are arbitrary

constants, and

Π = x2
0P0 + x0x1P1 − ( x1

λ1
+ x0u)∂u,

G1 = x0∂1 − 1
λ1

∂u,

G2 = x0∂1 − 1
λ1
u∂u,

Y = exp[
λ2

1

4
x0 − λ1

2
x1]u∂u

D3 = (2m − k)x0∂0 + (m − k)x1∂1 − ∂u,

Z1 = kx0∂0 + (kx1 − λ1x0)∂1 + ∂u,

Z2 = kx0∂0 + (kx1 − λ1x0)∂1 + u∂u

(2.18)

are operators of Lie symmetry, the operators D1, D2,G1 and G2 are defined in (2.1).

Remark 2. In Table 2, the Burgers equation and its Lie symmetry (case 1) are included

(see formulas (1.7)–(1.8) in Cherniha & Serov [1]). Cases 1 and 7 of Table 1 are combined

here in case 6, while cases 6 and 12 of Table 1 are combined in case 7. Similarly, the

equations arising in cases 4 and 5 of Table 1 are reduced to the same equations but with

λ2 = 0 and λ3 = 0, respectively, by applying the substitution x1 → x1 + c6x0, u → c11u

with correctly-specified c6 and c11 (see formulas (2.17)).

It should be noted that the set of substitutions (2.17) (in contrary to (2.2)) does not

contain the function A0(u) =
∫
A(u)du . In fact, we have proved in Cherniha & Serov [1]

that any equation of the form (1.1) with a non-constant A(u) can admit a non-trivial Lie

symmetry only in the cases A(u) = c0(u+c1)
k and A(u) = c0 exp(ku). We have also checked

that each of those equations can be reduced to the relevant equation from Table 2 (see

cases 6–9) by a linear substitution with respect to the variable u. Simultaneously, this

substitution can be also presented in a form containing A0(u). For example, the second

formula from (2.3) can be presented in the form

A0(w) ≡ wk+1

k + 1
=

uk+1

k + 1
exp(−λ2x0) ≡ A0(u) exp(−λ2x0), k� −1

or

A0(w) ≡ expw = exp u exp(−λ2x0) ≡ A0(u) exp(−λ2x0), k = −1

We stress that the local substitutions presented above do not coincide with the set of

equivalence transformations of the RDC equation (1.1)

x0 → c0x0 + c1, x1 → c2x1 + c3x0 + c4, U → c5U + c6, (2.19)

which was calculated using the well-known procedure (see, for example, Akhatov et al. [4]).

A similar situation takes place in the case of systems of reaction-diffusion equations. Using
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a set of new local substitutions, it was established in a recent paper [5] that there are

only 10 non-equivalent reaction-diffusion systems with variable diffusivities admitting

non-trivial Lie symmetries. Those substitutions cannot be obtained from the relevant

equivalence transformations, too. A natural question is: Can we claim that nine equations

listed in Table 2 are non-equivalent up to any local substitutions? The answer is positive.

Theorem 2 The nine reaction-diffusion-convection equations listed in Table 2 are non-

equivalent (up to local substitutions).

Sketch of the proof The proof is based on the known fact that a given equation from the

class (1.1) can be transformed into another equation from this class only by a substitution

of the form

t = α(x0), x = β(x0, x1), w = γ(x0, x1)u + κ(x0, x1), (2.20)

where α(x0), β(x0, x1), γ(x0, x1) and κ(x0, x1) are correctly-specified functions. Formulas

(2.20) can be found by direct calculations of u0, u1, u11 using the most general form of

local transformations and by substitution of the expressions obtained into (1.1). The

equation obtained can have the form (1.1) (with respect to w) only under condition (2.20).

Of course, the Burgers equation (see case 1 of Table 2) cannot be mapped to any other

equation from this table because it is invariant a under five-dimension Lie algebra.

Consider the equations and three-dimension Lie algebras arising in cases 2–9 of Table.

The algebras 〈∂0, ∂1,G1〉 and 〈∂0, ∂1,G2〉 are two representations of the same algebra.

However, the first representation can be mapped to the second one only by the nonlinear

transformation u → exp u. Obviously, this transformation is not belonging to the set of

substitutions (2.20). Similarly, the algebras 〈∂0, ∂1, D3〉 and 〈∂0, ∂1, Z1〉 can be mapped to

those 〈∂0, ∂1, D2〉 and 〈∂0, ∂1, Z2〉, respectively, by the same nonlinear transformation.

Thus, RDC equations from Table 2 that are invariant under three-dimension Lie

algebras and contain the term ∂u are not reducible to the corresponding equations and

Lie algebras with term u∂u.

Consider three RDC equations and corresponding Lie algebras listed in cases 2, 7 and

8 of Table 2. These algebras contain only the term ∂u, however, there is one non-zero

commutation relation for basic operators of the algebra 〈∂0, ∂1,G1〉, while two other

algebras possess two non-zero commutation relations. Moreover, Lie algebras 〈∂0, ∂1, D3〉
and 〈∂0, ∂1, Z1〉 are not reducible one to another by the substitution of the form (2.20).

Thus, the equations listed in cases 2,7 and 8 are non-equivalent up to local substitutions.

Finally we should consider five RDC equation and corresponding Lie algebras listed in

cases 3–6 and 9 of Table 2. In a quite similar way, we can again establish that equations

arising in cases 4,6 and 9 of Table 2 are not reducible one to another. Moreover, algebra

〈∂0, ∂1, G2〉 from case 3 is nothing else but Galilei algebra without unit operator [1], which

cannot be reduced to the algebra 〈∂0, ∂1,G2〉 from case 4 by any local substitution. Algebra

〈∂0, ∂1, Y 〉 arising in case 5 can be rewritten as 〈∂0, ∂0 + λ1

2
∂1, Y 〉 and one easily checks

that algebras 〈∂0, ∂1,G2〉 and 〈∂0, ∂0 + λ1

2
∂1, Y 〉 possess the same commutation relations.

However, they are not reducible one to another by any substitution of the form (2.20). It

can be checked by direct calculations. Thus, the RDC equations listed in cases 3–6 and 9

of Table 2 are non-equivalent up to local substitutions.

The sketch of the proof is now completed.
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3 Discussion

In this paper, the complete list of canonical reaction-diffusion equations with convection

terms and corresponding Lie symmetry algebras is constructed and it’s shown that the

equations listed in Table 2 are locally non-equivalent, i.e., this list cannot be reduced.

It should be stressed that the classical method of Lie symmetry classification (the group

classification problem) of differential equations suggested by Ovsiannikov [6] is based on

the classical Lie scheme and a set of equivalence transformations of a given equation. The

formal application of this method to equations containing several arbitrary functions leads

to a lot equations with non-trivial Lie algebras of invariance. For example, there are about

27 non-linear equations of the form (1.1) admitting three-, four- and five-dimensional Lie

algebras. Our approach of Lie symmetry classification of differential equations is based on

the classical Lie scheme and on finding and then making essential use of the sets of local

substitutions that reduce any differential equation with a non-trivial Lie algebra to one

given in the relevant list. This approach was also applied for reaction-diffusion systems

[5, 7, 8]. In the particular case, it was found that there are only 10 non-equivalent reaction-

diffusion systems with variable diffusivities admitting non-trivial Lie symmetries [5].

Finally, we note an open problem: How to find those local substitutions using a

standard procedure? The steps of the procedure could be as follows:

(1) construction of the set of equivalence transformations, i.e., an analog of (2.19);

(2) construction of the most general form of substitutions transforming a given equation

into another equation from the same class, i.e., an analog of (2.20);

(3) analysis of the Lie algebras (with the same dimensionality) obtained by the direct

application of the Lie scheme;

(4) checking whether substitutions obtained in items (1)–(2) can transform different rep-

resentations of the same algebra one into another;

(5) construction of the complete list of canonical equations with non-trivial Lie algebras

of invariance.

Of course, each step may contain new difficulties. For example, the third step is

difficult to realize if there are several six or more dimensional Lie algebras because only

Lie algebras of low dimensionality are completely described at the present time (see

Popovytch et al. [9] and references therein). We are going to return to this problem in a

forthcoming paper.
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