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Abstract

Developing the ability to regulate one’s emotions in accordance with contextual demands (i.e., emotion regulation) is a central developmen-
tal task of early childhood. These processes are supported by the engagement of the autonomic nervous system (ANS), a physiological hub
of a vast network tasked with dynamically integrating real-time experiential inputs with internal motivational and goal states. To date, much
of what is known about the ANS and emotion regulation has been based on measures of respiratory sinus arrhythmia, a cardiac indicator of
parasympathetic activity. In the present study, we draw from dynamical systems models to introduce two nonlinear indices of cardiac com-
plexity (fractality and sample entropy) as potential indicators of these broader ANS dynamics. Using data from a stratified sample of pre-
schoolers living in high- (i.e., emergency homeless shelter) and low-risk contexts (N = 115), we show that, in conjunction with respiratory
sinus arrhythmia, these nonlinear indices may help to clarify important differences in the behavioral manifestations of emotion regulation.
In particular, our results suggest that cardiac complexity may be especially useful for discerning active, effortful emotion regulation from less
effortful regulation and dysregulation.
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Developing the ability to recognize and regulate one’s emotions in
accordance with contextual demands (i.e., emotion regulation) is
a central developmental task of early childhood (Blair & Raver;
2015; Cole, Martin, & Dennis, 2004; Thompson & Goodman,
2010). Nonetheless, some children struggle with these skills;
many showing behavioral and/or physiological response patterns
that undermine their abilities to adapt flexibly to emotionally
salient experiences (Beauchaine, Gatzke-Kopp, & Mead, 2007;
Cicchetti, Ackerman, & Izard, 1995; Gross & Jazaieri, 2014).
These patterns of emotion dysregulation, in turn, pose risks for
a litany of subsequent psychopathological outcomes across the
life course (see Aldao, Gee, De Los Reyes, & Seager, 2016;
Beauchaine, 2015a; Sheppes, Suri, & Gross, 2015). Efforts to
address problems with emotion regulation in childhood before
they cascade to later developmental tasks require a better under-
standing of processes that influence the development of emotion
dysregulation, particularly in contexts that vary in risk. The pur-
pose of this study was to examine emotion dysregulation at both
the behavioral and the physiological levels for children from a
range of early life experiences, using an underutilized analytic
strategy for capturing cardiac dynamics.

Emotion Regulation and Dysregulation

Several recent reviews have outlined the historical challenge of
establishing a common working definition of emotion regulation
(e.g., Beauchaine, 2015a, 2015b; Compas et al., 2017; Eisenberg,
Spinrad, & Eggum, 2010; Jones, Bailey, Barnes, & Partee, 2016;
Nigg, 2017). Similar to others (e.g., Nigg, 2017), we define emo-
tion regulation as behavioral and/or physiological response pat-
terns that support children’s abilities to maintain goal-directed
behavior or allostasis in the context of affectively salient stimuli.
Emotion regulation is a complex process that draws from a variety
of internal (e.g., approach/inhibition tendencies; emotion under-
standing; and cognitive control) and external sources (e.g., social
and physical affordances). It can reflect the downregulation of
salient prepotent emotional tendencies, for instance, minimizing
angry or overly exuberant responses, when they would otherwise
interrupt a desired social interaction. It can also reflect the upre-
gulation of emotional responses that counter one’s dominant
response tendencies, for example, ramping up positive emotions
in an empathic response to a social partner’s needs. It can be
effortful or automatic (Eisenberg et al., 2010; Gross &
Thompson, 2007) and manifest as a state or as a more stable trait.

From a dynamical systems perspective, emotion regulation can
be seen as an “emergent property” arising spontaneously from
interactions of these bottom-up and top-down processes to pro-
duce complex adaptive patterns at a given time—interactions
that yield emergent, softly assembled structures (Barrett,
Wilson-Mendenhall, & Barsalou, 2013; Thelen & Smith, 1996).
From this perspective, “complex” refers to nonlinear interactions
across multiple loci and scales, rather than simply the
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involvement of many component parts. In dynamical systems the-
ory, complexity reflects a fundamental context-sensitivity of each
constituent part that either disallows removing any single part
or ensures that the removal of any single part will change that
part’s meaning/purpose. Emotion dysregulation manifests when
the overall organization of the underlying processes breaks
down, such that necessary connections between constituent
parts become increasingly random or increasingly rigid to change.
Taken another way, effective regulatory organization is supported
by internal organization that is neither too rigid nor too
disconnected.

Transient bouts of emotion dysregulation are normative, in
young children and adults alike. Negotiating the ebb and flow
of passing dysregulatory states is likely vital to building self-
regulatory skills in childhood (Lyons, Parker, & Schatzberg,
2010; Berry et al., 2017; Blair, Berry, & Family Life Project Key
Investigators, 2017). However, when protracted and extreme,
emotion dysregulation has been implicated as a transdiagnostic
marker of psychopathological risk (see Aldao et al., 2016;
Compas et al., 2017; Eisenberg et al., 2010).

The Autonomic Nervous System (ANS)

A well-developed literature places ANS functioning as an impor-
tant physiological indicator of regulatory capacity (Beauchaine &
Thayer, 2015; Calkins, Graziano, & Keane, 2007; Porges, 1995,
2007). Comprised by its sympathetic and parasympathetic
branches, the ANS serves as the hub of the central autonomic net-
work (CAN; Benarroch, 1993; Smith, Thayer, Khalsa, & Lane,
2017; Thayer & Lane, 2000), a structural and functional network
supporting bidirectional connections between the ANS and corti-
cal (e.g., prefrontal cortex and anterior cingulate cortex) and sub-
cortical (e.g., limbic and mesolimbic) neural regions implicated in
goal-directed behavior and motivation. Collectively, the CAN sup-
ports the flexible integration of physiological, neurocognitive, and
behavioral responses to changing experiential demands and goal
states.

Much of the literature regarding ANS and emotion regulation
has concerned parasympathetic functioning (Porges, 1995, 2007;
Thayer & Lane, 2002) as indexed by respiratory sinus arrhythmia
(RSA). RSA represents a band of high-frequency heart rate vari-
ability that occurs across successive respiratory cycles thought to
reflect vagal control of the heart (Porges, 1995, 2007). The mye-
linated vagus (Xth cranial nerve) is a central locus of parasympa-
thetic influence on peripheral and central nervous system
integration. Porges’s polyvagal theory (1995, 2007) highlights
the regulatory role of the vagus on sympathetic, endocrine, and
social communication, where changes in vagal efference inhibit
sympathetic and hypothalamic–pituitary–adrenal axis activity.
Greater resting vagal tone leads to a calm state, reflective of the
“rest and digest” parasympathetic branch of the ANS. In low-
stress situations, greater vagal tone promotes social approach
and engagement and is considered to reflect an individual’s gene-
ral readiness to adapt to change. In the context of challenge, with-
drawal of vagal control (and corresponding suppression of RSA)
promotes a physiological state and is, thus, considered to be an
index of regulatory capacity.

Thayer and Lane’s (2000) neurovisceral integration (NVI)
model and its more recent iterations (Smith et al., 2017) also sit-
uate vagal influences as central to an extensive array of coordi-
nated regulation-related processes. Like polyvagal theory, this
includes more local regulatory organization of the ANS on

cardiovascular and endocrine function. However, the NVI
model also highlights explicitly the role of the PNS in the com-
plex, real-time integration of interoceptive and contextual infor-
mation from the viscera and limbic system—in particular, the
frontotemporal processes required to organize these high-
dimensional data streams. Collectively, this massive, dynamic
coordination is required to predict and revise adaptive internal
and behavioral responses to contextual demands (i.e., self-
regulate; Barrett et al., 2013).

At its roots, the NVI model is grounded in dynamical systems
thinking (e.g., Thayer & Friedman, 1997; Thayer & Lane, 2000).
These authors posit that emotions represent attractor states,
or preferred organizations, that emerge in the context of particu-
lar, softly assembled arrangements of these internal processes,
given particular external demands. Here, emotion dysregulation
reflects being “stuck in an attractor or behavioral pattern” that
is unresponsive to changing contextual demands (Thayer &
Lane, 2000, p. 203).

Empirical evidence from over the past 20 years indicates that
vagal tone and phasic vagal reactivity support regulation in the
context of challenge and, ultimately, more optimal child out-
comes. Higher levels of resting vagal tone (indexed via resting
RSA) and/or moderate RSA suppression to experiential challenge
have been linked with an extensive array of regulation-relevant
behavioral outcomes in childhood (see Beauchaine et al., 2019;
Beauchaine & Thayer, 2015; Zahn et al., 2016), ranging from
better behavioral regulation to frustrating social and cognitive
challenges (Calkins, Smith, Gill, & Johnson, 1998; Forbes, Fox,
Cohn, Galles, & Kovacs, 2006; Lewis, Hitchcock, & Sullivan,
2004; Shahrestani, Steward, Quintana, Hickie, & Guastella,
2014), to executive attention (Feldman, 2009; Richards, 1987;
Suess, Porges, & Plude, 1994), and empathic responding
(Hastings, Miller, Kahle, & Zahn-Waxler, 2014; Taylor,
Eisenberg, & Spinrad, 2015). Alternatively, excessively low resting
vagal tone and/or comparatively blunted phasic responses to chal-
lenge have been implicated in childhood and adolescent psycho-
pathology, including anxiety (Schmitz, Kramer, Tuschen-Caffier,
Heinrichs, & Blechart, 2011), depression (Patriquin, Lorenzi,
Scarpa, & Bell, 2014; Patriquin, Lorenzi, Scarpa, Calkins, & Bell,
2015; see Koenig, Kemp, Beauchaihne, Thayer, & Kaess, 2016),
and aggression, attention, and conduct problems (see
Beauchaine, 2012; Beauchaine et al., 2007, 2019; Graziano &
Derefinko, 2013).

Complexity and the CAN

Converging theoretical and empirical evidence suggests that atyp-
ical parasympathetic functioning serves as a physiological indica-
tor common to both behavioral indices of emotion dysregulation
and broader manifestations of psychopathology in children and
adolescents. Of note, it is also well recognized that our common
measures of parasympathetic processes (e.g., RSA) reflect a “snap-
shot in time,” with respect to the complex cross-system dynamics
of CAN functioning. Informed by work in statistical physics and
dynamical systems modeling, there is increasing evidence that
cardiac time series data carry nonlinear, or complex, statistical sig-
natures reflecting the multisystem, multiscale, and highly interac-
tive nature of cardiac activity (see Barbieri, Scilingo, & Valenza,
2017). When considered in the context of negotiating real-time
adaptations to changing demands, we propose that the complexity
of cardiac time series may shed important light on the dynamics
of the CAN.
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Cardiac fractality
Despite their highly interactive and nonlinear properties, complex
systems carry organizational structures that can be formalized
mathematically. In particular, complex systems often show fractal
patterns, marked by repeated, self-similar organization across a
variety of scales (Mandelbrot, 1977). Mathematically, fractals
reflect power-law scaling, such that a relation at one level is pro-
portionally similar across nested levels of observation. Common
examples of spatial fractality include the self-similarity of moun-
tain ranges, riverbeds, and vasculature, where organizational
structures repeat across nested levels of spatial resolution.

Fractal organization is also evident in the temporal dynamics
of complex systems. A number of algorithms can be used to esti-
mate time series fractality; however, they typically converge on the
idea of capturing the long-term interrelatedness (or “color”) of
the time series (Figure 1a). Completely random temporal variabil-
ity represents white noise. At the other extreme, highly self-
similar or rigid series can be represented as brown (or
Brownian) noise. Optimal (i.e., fractal) complexity is thought to
occur in the middle of this distribution, pink noise, where there
is order to the temporal system, without it being overly con-
strained. As such, systems showing pink noise are self-organized,
yet also readily flexible to change. When the complexity of a sys-
tem can be captured by a single parameter, the system is mono-
fractal. However, systems can also exhibit multiple power laws,
or “multifractality,” which allow the system to tune its pink
noise to suit more drastic structural or contextual change.
Substantively, the fractal nature of such time series is interpreted
as the long-term memory of the system, how preceding events in
the system cascade to affect downstream functioning.

Heart rate variability (HRV) is widely known to show fractal
properties—complexity typically ascribed to the far-reaching
dynamics between the ANS and its vast connections throughout
the peripheral and central nervous systems (Barbieri et al., 2017;
Seoane-Collazo et al. 2015; Thayer & Lane, 2000; Thayer &
Sternberg, 2006). An accumulating literature indicates that HRV
fractality tends to be associated with optimal system functioning
across a number of health and psychologically relevant outcomes.

For example, developmentally normative HRV tends to show
complex fractal organization throughout much of life, yet precip-
itous declines into senescence (Beckers, Verheyden, & Aubert,
2006; Pikkujamsa et al., 1999). In adulthood, loss of HRV com-
plexity has been considered to be a broad predictor of mortality
and morbidity across a number of pathological states, such as
arterial fibrillation or cardiometabolic dysfunction (Angelini
et al., 2007; Costa, Goldberger, & Peng, 2002; Vikman et al.,
1999). These changes mirror and likely partially reflect similar
long-term trajectories observed for RSA (Masi, Hawkley,
Rickett, & Cacioppo, 2007).

Although studied far less often, similar findings extend to
mental health and psychological outcomes (see de la Torre-
Luque, Bornas, Balle, & Fiol-Veny, 2016). For example, meta-
analytically, adults and adolescents suffering from major depres-
sion show evidence of HRV patterns that are less complex than
their matched peers. Recent work with preschoolers suggests
that engaging in tasks that require executive function (EF) follow-
ing a period of low demand (resting baseline) may produce a shift
from nonfractal to fractal patterns of HRV complexity (Berry &
Stallworthy, 2018). Further, for children who were challenged
by the task (i.e., not at ceiling), there was an inverted-U relation
between HRV complexity and EF accuracy and reaction times.
EF performance was optimal when HRV complexity was in the
fractal range (∼1), compared with more random or rigid time
series organization.

Cardiac sample entropy
A second index of complexity (i.e., sample entropy; SampEn;
Richman & Moorman, 2000) is also increasingly leveraged to clar-
ify the underlying organizational structure of cardiac time series.
Drawing from early work by Shannon (1948) and Kolmogorov
(1958), contemporary conceptions of entropy refer to the loss
of information from a system, or movement from states of sys-
temic stability to states of temporal chaos (Pincus, 1991:
Richman & Moorman, 2000; Yentes et al., 2013). Unlike the com-
monly negative connotation of the term chaos, here, moderately
chaotic temporal variation around a steady state is thought to

Figure 1. (a) Simulated example of time series noises. (b) “Power law” relation between (log), power, and (log) frequency of the fluctuations defined by respective
noise series in (a).
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reflect the dynamic flexibility of the system to change (Yentes
et al., 2013, p. 350). Like fractality, adaptive system organization
is theorized to be neither too stable nor too chaotic (Lipsitz,
2002).

Several algorithms have been introduced to capture time series
entropy (e.g., Shannon’s entropy [1948]; and approximate
entropy [Pincus, 1991]; however, contemporary work tends to
adopt a variant called sample entropy (SampEn; Richman &
Moorman, 2000), given its appropriateness for short time series
common to biological studies (Lake, Richman, Griffin, &
Moorman, 2002; Richman & Moorman, 2000; Yentes et al.,
2013). Mathematically, sample entropy represents the negative
natural logarithm for the conditional probability that an epoch
of data points m distance apart will remain similar (within an
arbitrary tolerance r) at the next point, m +1. Formally,

SampEn = −log
∑

Ai

( )
/

∑
Bi

( )( )
= −logA/B. (1)

Sample entropy is estimated by, first, defining m and r. For
instance, consider a cardiac interbeat-interval (IBI) time series,
where m = 2 and r = .10. Here, m = 2 would represent two adja-
cent IBIs in the series, and r = .10 would represent a tolerance
band of .10 × SDtotal series, where the two adjacent IBI points
within this band would be considered close enough to be consid-
ered the same value. Bi from Equation 1 is defined by the total
number of matches, m = 2, across the time series (excluding self-
match). Ai from Equation 1 is defined by the total number of
matches, m + 1 (given tolerance r), within the subset Bi. Values
approximating 0 would represent a perfectly repeating series,
whereas values approximating infinity would, in principle, repre-
sent a completely random series. As detailed by Richman, Lake,
and Moorman (2004), there are trade-offs with respect to preci-
sion and variance, in selecting appropriate values of m and r.
With short cardiac time series (n < 1,000), r∼ .10 and m∼ 2
are commonly thought to reflect an optimal balance; however,
sensitivity analyses are typically warranted.

Although empirical findings are only just beginning to accu-
mulate, measures of HRV entropy are increasingly used in the
medical literature (see Sassi et al., 2015). For example, declines
in fetal HRV entropy predict restricted intrauterine fetal growth
and distress (Ferrario, Signorini, & Magenes, 2009). In neonates,
decreases in entropic HRV tend to reliably precede the onset of
sepsis-like illness (Griffin, Lake, & Moorman, 2005; Lake et al.,
2002), and loss of HRV entropy has been implicated as a risk fac-
tor for subsequent atrial fibrillation (Tuzcu, Nas, Börklü, & Ugur,
2006) and congestive heart failure in adults (Graff, Graff, &
Kaczkowska, 2012; Poon & Merrill, 1997).

To date, there is a paucity of work considering HRV entropy in
the context of emotion dysregulation or psychopathology, partic-
ularly with children. However, the burgeoning literature hints at
its potential utility. Research with adults, for instance, suggests
that HRV entropy measures can reliably differentiate patients
with schizophrenia, bipolar disorder, and depression from
matched controls (e.g., Bär et al., 2007; Chang et al., 2009; de la
Torre-Luque et al., 2016; Nardelli, Lanata, Bertschy, Scilingo, &
Valenza, 2017; Valenza et al., 2015).

The limited available studies of children suggest similar differ-
ences. In middle childhood, children rated by their parents as dis-
playing heightened levels of temperamental negative affect and/or
internalizing problems have been shown to demonstrate lower
levels of resting cardiac entropy, relative to their lower

internalizing peers (Fiskum et al., 2018). Comparable associations
have been noted with adolescents in more ecologically valid set-
tings. For example, using an extreme-groups design, Bornas,
Balle, de la Torre-Luque, Fiol-Veny, and Llabrés (2015) found
that high-anxious adolescents showed considerably lower cardiac
entropy, as they went about their typical school day, than did
those reporting low levels of anxiety.

To date, there is virtually no research on the association of car-
diac entropy with self-regulation or mental health problems in
young children. However, collectively, the extant literature sug-
gests that both cardiac fractality and sample entropy may serve
as novel tools to capture the physiological instantiation of emo-
tion regulation in childhood.

Homelessness as a marker of high contextual risk

Although stable attributes of temperament, such as negative emo-
tionality/withdrawal, positive affect/approach, and more effortful
regulatory capacities, play an important role in clarifying individ-
ual differences in children’s emotion regulation capacities
(Beauchaine, 2001; Nigg, 2017; Rothbart & Sheese, 2007; Stifter,
Dollar, & Cipriano, 2011), considerable evidence indicates that
the organization of these emerging physiological systems is also
canalized by children’s early experience (Blair & Raver, 2012;
Karssen et al., 2007; Liston et al., 2006; Patel, Katz, Karssen, &
Lyons, 2008). In particular, unsupportive, unpredictable, and/or
overwhelming social and physical contexts are implicated in orga-
nizing these systems toward more reactive and reflexive response
patterns (Berry, et al., 2017; DelGuidice, Ellis, & Shirtcliff, 2011;
Holmes & Wellman, 2009) and, thus, heightened risk for emotion
dysregulation.

Family homelessness is, perhaps, one of the most extreme
examples of such contextual risks in the United States.
Homelessness and high levels of family mobility serve as acute
stressors that undermine the continuity and predictability of
children’s physical and social environments. Beyond these acute
effects, homelessness also typically occurs in the context of
other chronic and persistent risk factors (e.g., extreme poverty,
food insecurity, low educational obtainment, minority status,
etc.; Cutuli & Herbers, 2014). Thus, collectively, it is not surpris-
ing that childhood homelessness has been linked to a litany of
negative child outcomes, ranging from emotion dysregulation
and psychopathology to academic problems and ill health (e.g.,
Bassuk, Richard, & Tsertsvadze, 2015; Labella, Narayan, &
Masten 2016; Masten, Fiat, Labella, & Strack, 2015; Obradović,
Bush, Stamperdahl, Adler, & Boyce, 2010).

The Current Study

The current study had two primary aims. The first aim was to
integrate indices of HRV complexity with more typical RSA-
based metrics of parasympathetic functioning, as a means of bet-
ter characterizing differences in physiological response patterns
across different behavioral manifestations of emotion regulation.
Specifically, we hypothesized that, on average, our challenge
task would elicit decreases in children’s mean RSA levels (i.e.,
RSA suppression), relative to baseline, along with increases in sec-
ond-to-second variation in RSA (i.e., more temporal RSA variabil-
ity around his/her own RSA mean). With respect to HRV
complexity, we hypothesized that the challenge would evoke
increases in overall HRV complexity, as indicated by increases
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in the temporal organization of the cardiac time-series (i.e., higher
α, lower sample entropy).

In addition, we hypothesized that these response patterns
would vary across children evincing different affective and regula-
tory responses to the challenge. Informed by prior work, we
expected that children showing more effective regulatory strategies
would show greater RSA suppression, compared with their more
dysregulated peers. We also expected well-regulated children to
show more within-person stability in their second-to-second
RSA levels during the task. Drawing from our previous work
suggesting that HRV complexity increases in the context of active
regulatory engagement (e.g., executive functioning; Berry &
Stallworthy, 2018), we hypothesized that HRV complexity
would be greater for children displaying the most actively effortful
regulation patterns (i.e., moderate negative affect + high regulatory
behavior). Specifically, we expected a nonlinear pattern, in which
actively regulating children would show greater complexity than
either their dysregulated (i.e., high negative affect + low regulatory
behavior) or their regulated peers, who seemingly had less nega-
tive to actively regulate (i.e., low negative affect + high regulatory
behavior).

Our second aim was to test the extent to which the behavioral
profiles and/or HRV responses differed across children from low-
versus high-risk contexts. We hypothesized that, on average,
children currently experiencing homelessness would be more
likely to show behavioral dysregulation and lower levels of HRV
complexity.

Method

Participants

The study recruited 4- to 6-year-old children and their primary
caregivers from two different populations (N = 115). The first
sample included low- to middle-income children from a commu-
nity participant pool (N = 57). The second was recruited from an
urban emergency family homeless shelter in a large Midwestern
city (N = 58). In an attempt to make the two groups as compara-
ble as possible, only families within 200% of the federal poverty
line were recruited from the participant pool. However, given
that the available income data was collected shortly after the
child’s birth (when parents joined the participant pool), many
of the community families were above this threshold at the time
of data collection.

To be eligible for participation in the study, children in both
samples had to speak and hear primarily English, have no phys-
ical disabilities affecting vision or hearing, and have no known
developmental delays or disorders. For participants residing in
the emergency homeless shelter, families had to reside in the shel-
ter for a minimum of 3 days, to acclimate to their new living envi-
ronments. A total of 59 families from the shelter consented to
participate (though 1 ultimately failed to do so). The remaining
eligible families (approximately 50) did not participate because
they either left the shelter, never learned of the study, or were
too busy or uninterested. With respect to the broader community
participant pool, 84 of the eligible families agreed to participate
and 57 actually participated due to visit cancelations. In both
samples, the primary caregivers were female and most were bio-
logical mothers. Demographic information for the full sample
and by subsample can be found in Table 1. As expected, the
two samples differed markedly in sociodemographic variables,
including ethnicity, education level, and income.

Missing data
Out of the 115 participants, 20 were missing observational data.
In 19 of these cases, missing data were due to technical difficulties
(e.g., audio/video problems). In addition, 1 child refused to partic-
ipate in the task. To address this missingness, we used a robust full
information maximum likelihood estimator in all models (along
with several auxiliary variables; see Graham, 2003). In so doing,
we invoked the missing at random assumption that missingness
was conditionally random, given the other variables included in
the observed covariance matrix.

Procedure

The University of Minnesota Institutional Review Board approved
all study procedures, and parents provided informed consent for
themselves and their children. For families experiencing home-
lessness, study sessions took place in a private research room
located inside an emergency shelter. For community participant
pool families, sessions took place in a university lab setting.
Assessors were trained female graduate and undergraduate stu-
dents. All children participated in a 60-min self-regulation assess-
ment, while parents were interviewed in a different room.

Throughout the session, children wore a small, noninvasive
ambulatory heart rate monitor (FirstBeat: BodyGuard2) on their
torsos, in a modified Lead II electrode configuration (i.e., no
ground). To capture “resting” heart rate, children first spent 5
min sitting quietly, watching a video narration of the story book
Snowy Day by Ezra Jack Keats. We attempted to equate posture,
movement, and vocalizations as much as possible between the
baseline and the self-regulation task. Respiration was not directly
measured (see Limitations section).

Children then participated in a “Barrier Box” challenge task
designed to tax children’s regulatory capacities (Goldsmith,
Reilly, Lemery, Longley, & Prescott, 1999). Specifically, children
picked one of two attractive toys, prior to beginning the task.
The toy was then locked in a transparent box and put into a cab-
inet, while the child participated in another set of tasks. At the
end of the session, the locked transparent box was returned to
the child, along with a large ring of keys. Children were then
told that they could claim their preferred prize from the box,
upon finding the correct key. Unbeknownst to the child, none
of the keys fit the lock. They were given 5 min to open the box
and were told that they could quit the task at any time. The exper-
imenter pretended to be busy with paperwork and provided no
help to the children, even if explicitly requested by the child.
After 5 min (or whenever the child resigned from the task), the
experimenter realized that she had given the child the wrong set
of keys and provided the child with the correct key. All children
received their desired prize.

Measures

Negative emotion and emotion regulation
Observed negative affect and behavioral regulation were coded
from videos recorded during the Barrier Box challenge task,
using a coding scheme developed by Perry and colleagues
(Perry, Calkins, Dollar, Keane, & Shanahan, 2018; Perry,
Calkins, Nelson, Leerkes, & Marcovitch, 2012; Williford,
Calkins, & Keane, 2007). Children’s levels of negative affect
were based on observer ratings of their verbal and physical
expressions of negative emotion across the entirety of the task
(e.g., complaints, frustrated huffing, name calling, and
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shaking/hitting box). Verbal and physical expressions were each
coded on a 0 to 4 scale (0 = absence, 4 = four or more occur-
rences), summed, and ultimately square root transformed, to
adjust the positive skew. Two additional indicators were
included to capture behaviors likely reflecting negative affect.
Child resignation was coded 0 (none) to 4 (> 2 min), based
on how much time she or he spent “waiting out the clock”
(e.g., unfocused looking at the box, without trying to solve it;
head in hands, ignoring box; or “I give up” statements).
Given the largely binary nature of the observed distribution,
we subsequently dichotomized all nonzero values as 1. In addi-
tion, off-task behavior was coded (0–4), based on the total
number of 15-s intervals in which the child seemed to be
actively avoiding the task.

Three regulation codes were also included. The first two were
based on specific regulatory behaviors: help seeking and self-
distraction. Help-seeking behaviors included asking the experi-
menter for assistance during the task. Distraction behaviors
included activities unrelated to the task, such as focusing on
other objects in the room, participating in soothing behaviors
like humming, or attempting to engage the experimenter in con-
versation. These regulatory activities were originally rated on a 0
to 4 scale (0 = absence, 4 = four or more instances). However,
given the largely binary nature of the observed distributions, we
ultimately collapsed them into a dichotomous indicator (1 = pres-
ence of behavior). Global regulation scores were based on observa-
tions of children’s overall abilities to minimize the distress
imposed by the challenge task, based on a 0 to 4 scale.
Children who consistently demonstrated the ability to stay
engaged with the challenge, while using behavioral strategies
seemingly intended to modulate their emotions (e.g., self-talk/
planning, self-distraction, joking/silliness, or pretense) were
scored as 4. In contrast, children who used no consistent strategies
and illustrated distress or resignation were scored as 0. The global
code was intended to catch the overall impression of regulatory
behaviors, beyond what is specific to help seeking and self-
distraction.

Coders were blind to the research questions and contextual
risk. Coders established reliability on a set of practice videos
from previous studies with the same task and reached intraclass
correlations above .80 on all coded domains. Approximately
30% of the videos were double coded across both samples, and
coders met weekly to prevent coder drift. Interclass correlation
coefficients varied from good to excellent across both samples
(community sample: global regulation = .79, negative reactivity = .96,

off-task = .69; shelter sample: global regulation = .70, negative reactiv-
ity = .83, off-task = .82).

Emotion (dys-)regulation
Informed by prior work suggesting that emotion regulation may
be best captured by integrating blends of emotion-related and
regulation-related behaviors (e.g., Ramsook, Cole, & Fields-
Olivieri, 2018), we hypothesized three qualitatively distinct behav-
ioral profiles: a normative “actively regulating” group reflecting
moderate levels of negative affect and off-task behavior, coupled
with moderate to high levels of regulation; a “regulated” group,
reflecting low levels of negative affect, low levels of off-task behav-
ior, and moderate to high levels of regulation; and a much smaller
“dysregulated” group, reflecting children with the highest levels of
negative affect and off-task behavior, and the lowest levels of reg-
ulation. We also allowed for a potential fourth “disengaged” pro-
file, marked by low levels of both negative affect and regulation;
however, given our sample size and the nature of the task, we con-
sidered this to be largely a post hoc sensitivity check. To test the
plausibility of these groupings, we fitted a taxonomy of finite mix-
ture models using a robust maximum likelihood estimator
(Mplus, 8.1; Muthén & Muthén, 1998–2019), working systemati-
cally across one- to four-class specifications. As discussed below,
we included all of the variables that would ultimately contribute
to our substantive analyses as auxiliary variables in these measure-
ment models (i.e., three-step strategy; see Analytic Plan). We
based our preferred model on the collective evaluation of a num-
ber of relative fit indices, class discriminability, class size, and the-
ory (Collins & Lanza, 2010; Masyn, 2013). As a sensitivity check,
we also considered descriptive (i.e., low statistical power) differ-
ences in the class structure as a function of shelter status, using
a variant of multiple-groups analysis appropriate for mixed mod-
els (Collins & Lanza, 2010).

As shown in Tables 2 and 3, there was general support for the
three-class structure, both statistically and substantively. Across fit
indices, the three-class model led to considerable improvements
in model fit. In addition, it was the only specification to yield stat-
istically significant improvements beyond the k – 1 class, for both
an adjusted Vuong–Lo–Mendell–Rubin likelihood ratio test and a
bootstrapped likelihood ratio test (10,000 iterations).

The three-class solution was also consistent with our hypoth-
esized model, with respect to both meaning and class size.
Specifically, the largest actively regulating profile (48%) com-
prised children illustrating modest levels of negative reactivity
and off-task behavior, yet low probabilities of resignation, high

Table 1. Descriptive statistics of sample demographics

Total sample
(N = 115)

Experiencing homelessness
(N = 58)

Community sample
(N = 57)

Child mean age (SD) 5.38 (0.80) 5.39 (0.84) 5.38 (0.75)

Child percentage female (N) 49.56% (57) 45.55% (27) 52.63% (30)

Percentage of White children (N) 43.48% (50) 5.17% (3) 82.46% (47)

Parent mean age (SD) 33.56 (7.64) 31.84 (8.99) 35.34 (5.47)

Parent percentage female (N) 88.70% (102) 89.65% (52) 87.72% (50)

Percentage of White parent (N) 50.43% (58) 10.34% (6) 91.23% (52)

Percentage of parents with a high school education (N) 84.34% (97) 70.69% (41) 98.24% (56)

Median family income $25,000–$49,999 $10,000–$15,000 $50,000–$75,000
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levels of global regulation, and moderate probabilities of help
seeking and self-distraction. The second largest regulated profile
(42%) comprised children who showed no negativity, nor any res-
ignation or off-task behavior, coupled with high levels of global
regulation and minimal help seeking or self-distraction. The
smallest dysregulated profile (11%) comprised children who illus-
trated the highest levels of negative emotion, the most off-task
behavior, and the greatest probability of resigning behavior.
Although these children showed high probabilities of help seeking
and self-distraction, they did so in the context of low levels of
overall global regulation. As such, these specific strategies seemed
to reflect disorganized and ineffective attempts at regulation.
Overall, these latent profiles were highly discriminable; class prob-
abilities for the most likely class ranged from .90 to 1.00 (entropy
= .89). We, thus, adopted these three classes as our emotion-
regulation typologies.

IBI data
IBI data were sampled at 1000 Hz using FirstBeat BodyGuard2
ambulatory heart rate monitors, with a modified Lead II electrode
configuration. In prior work (Palmer, Berry, & Leneman, 2018),
we have shown that the reliability between the BodyGuard 2
and a gold standard Biopac MP150 ECG approached unity. All
raw IBI data were edited by hand using Cardio Edit software
(Brain Body Center; University of Illinois at Chicago) by research
assistants reliable to Porges’ gold standard. Fifteen percent of the
IBI files were double-edited to check for drift.

Linear HRV
RSA. Second-to-second RSA values were estimated using a mov-
ing-window technique created by Gates, Gatzke-Kopp, Sandsten,
and Blandon (2015). This method utilizes a peak-matched multi-
ple window technique across a 32-s window epoch, with a fre-
quency band of 0.40 to 1.04 Hz (per normative child
respiration). Succinctly, the algorithm calculates RSA by moving
across successive overlapping windows of IBI epochs. For exam-
ple, the first epoch would consist of the first 32 s of IBI data,
and the second epoch would consist of IBI data from 2 to 33 s,
and the third between 3 and 34 s, and so on. This moving window
is repeated until the end of the segment, to provide second-

by-second estimates of RSA across the series. RSA represents
the natural log of the power spectral density estimate for each
epoch.

We aggregated the RSA time series data in two ways, separately
for each of the respective baseline and challenge tasks. To account
for overall level, we first calculated children’s individual RSA
means. To capture second-to-second within-person variability
in RSA, we calculated the within-person standard deviation in
RSA for the given task (i.e., baseline and challenge).

Nonlinear HRV
Fractal analyses. Fractal complexity was estimated by applying
detrended fluctuation analysis (DFA; Peng, Havelin, Stanley, &
Goldberger, 1995) and multifractal DFA (Kantelhardt et al.,
2002) to each of the individual edited IBI series. Mathematically,
fractal structures reflect an inversely proportional relationship
between the power (i.e., size of change) and the frequency (i.e.,
how frequently changes of that size occur) of variation within a
time series (Coey, Wallot, Richardson, & Van Orden, 2012). For
fractal structures, this relationship is stable across multiple mea-
surement scales, meaning that small variations have the same
structure as larger variations within a given time series. In the fre-
quency domain, the degree to which the data approximate this
linear relationship between power (P) and frequency ( f), P = 1/fα,
or fractal structure, can be summarized by the scaling exponent,
α. Values of α fall on a continuum from 0 to 2, reflecting the rela-
tionship between the size and frequency of fluctuations within a
time-series (see Figures 1a and 1b). More random fluctuation is
reflected in a white noise series, which correspond to α values
near 0.5 (Coey et al., 2012). Fractal organization is indicative of
self-similarity and scale-invariant patterns displayed in pink noise,
summarized by α values approximating 1. Finally, random-walk
structures, or brown noise series, represent more tightly organized
or “rigid” temporal structures and are reflected in α values
approaching 2 in the frequency domain and 1.5 in the context of
our DFA approach (i.e., the two are aligned via an integral trans-
form; Heneghan & McDarby, 2000).

DFA is increasingly included as a standard routine in HRV
software (e.g., Kubios HRV, Tarvainen, Niskanen, Lipponen,
Ranta-Aho, & Karjalainen, 2014; HRHV, Rodríguez-Liñares

Table 2. Fit statistics and model comparisons from a taxonomy of finite mixture
models (N = 115)

Class 1 Class 2 Class 3 Class 4

Fit indices and discrimination

–2LL 1203.53 1075.66 970.08 918.80

AIC 1221.53 1107.66 1016.08 978.80

BIC 1246.24 1151.58 1079.21 1061.15

ABIC 1217.79 1101.01 1006.51 966.32

Entropy 0.92 0.89 0.90

K–1 model comparison

Parms. 9 16 23 30

VLMR LRT ( p value) .92 .004 .59

Boot LRT ( p value) <.001 <.001 <.001

Note: –2LL = –2*log likelihood. AIC, Akaike information criterion. BIC, Bayesian information
criterion. ABIC, adjusted Bayesian information criterion. Parms., free parameters. VLMR LRT,
Vuong–Lo–Mendel–Rubin likelihood ratio Test. Boot LRT, bootstrapped likelihood ratio test.

Table 3. Estimated means/probabilities of emotional reactivity and regulation
by latent class (N = 115)

Class 1 Class 2 Class 3

Construct Regulated Actively regulating Dysregulated

Reactivity

Negative reactivity 0.00 0.72 1.25

Resigned 0.00 0.23 0.74

Off task 0.04 1.7 4.80

Regulation

Global regulation 3.96 3.68 1.93

Help 0.05 0.51 0.81

Distract 0.12 0.29 0.34

N 48 55 12

Note: Negative reactivity, negative verbal and/or physical emotional reaction. Resigned,
resigned behavior. Off task, off-task behavior. Help, help-seeking behavior. Distract,
self-distraction behavior.
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et al., 2011). We used the open-source program Heart Rate
Variability Analysis With R (Ramshur, 2010), as it has batch pro-
cessing capabilities that are often either nonstandard or require
additional programming in other software. Monofractal DFA
was estimated based on the following steps. The time series was
converted to a random-walk-like structure by subtracting the
mean value and integrating. The time series was then divided
into equal, non-overlapping, user-specified windows sizes (see
below), and detrended by fitting a quadratic model to each win-
dow of data. The local root mean square (RMS) was then com-
puted for residual variation that remains for that window.

Given that fast- and slow-changing fluctuations in a time series
influence the RMS differentially depending on the window size
(i.e., fast-changing fluctuations influence small window sizes
and slow-changing fluctuations influence larger windows), the
RMS is then calculated for an array of different window sizes.
The range of window sizes is intended to capture the range of
temporal resolution that is meaningful for the system (Ihlen,
2012). For instance, with a common HRV times series length
of∼ 1000 points, a typical range of window sizes might be as
small as 4 adjacent heartbeats and as large as a quarter of the
size of the entire series (i.e., 250).

The monofractal scaling exponent, α, is estimated as the pro-
portional or “power law” relation between RMS power and fre-
quency. Specifically, given that proportional relations are a
natural property of linear relations between two log-scaled vari-
ables, α is estimated as the regression slope between log RMS
and log window size.

In the present study, we used a slight variation of this approach
to capture both the shorter run (α1) and the longer run (α2)
memories of the IBI series, where α1 captures a smaller window
of adjacent heartbeats (4 to 13) and α2 captures a larger window
of adjacent heartbeats (14 to n/4; see Peng et al., 1995).

Alpha spectrum width (W). The complexity of some time series is
not fully captured by one or two summary-level α values, when it
contains local fluctuations with both extremely small and large
magnitudes. To capture this “multifractal (MF)” complexity,
MF-DFA (Kantelhardt et al., 2002) computes the local RMS
repeatedly, varying the weights of segments with large and
small fluctuations (q-order weights). Negative qs heavily weight
segments with small RMS while positive qs weight segments
with large RMS values. Q-order α values are derived as the slopes
of the regression lines for each q-order RMS. The multifractal
spectrum width (W) denotes the deviation n from the average
fractal structure, α, for segments with large and small fluctuations
within a time series. Here, larger spectrum widths are often
thought to reflect greater complexity; however, like DFA, it is
likely that the relation is nonlinear (i.e., extreme widths corre-
spond to less system organization). MF-DFA is not commonly
available in HRV software, though Ihlen (2012) provides compre-
hensively annotated MATLAB code.

SampEn. As introduced above, SampEn is thought to represent
the loss of information from a temporal system, where very low
values index constrained or rigid system organization and very
large values index unpredictable and highly chaotic systems.
SampEn can technically range from 0 to infinity, and unlike
DFA, there are no rough bounds to tie its values to overall orga-
nizational structure of the time series (i.e., continuum of noises).
However, given that the SampEn scale is substantively the inverse

of the fractal complexity scale, one would typically expect the two
to be negatively associated.

We calculated SampEn by applying Richman and Moorman’s
(2000) algorithm to the IBI series using the Heart Rate Variability
Analysis With R program (Ramshur, 2010). Per Richman and
Moorman’s (2000) recommendation, we used raw rather than
detrended data. As described above, this algorithm requires the
user to define a tolerance band, r, to designate the required degree
of similarity between two data points and, m, the number of con-
tiguous data points analyzed for similarity. Informed by prior
work using IBI series of similar lengths (e.g., Yentes et al.,
2013), we specified r to represent 10% of the standard deviation
of given time series and m to represent two contiguous data
points. Of note, as sensitivity checks, we conducted the same
analyses using alternative specifications (combinations of non-/
detrended IBI; r = .5 and .15; m = 2 and 3). As the findings were
functionally identical, we do not discuss them further.

Control covariates
To adjust for potential confounding between self-regulation group
and HRV, we adjusted for a number of control covariates, includ-
ing child age (mean-centered), child sex (male = 1), sample (shel-
ter vs. community sample; shelter = 1), length of the IBI time
series (mean-centered), and mean-centered baseline values of
the given HRV outcome (i.e., autoregressive effect). It should be
noted that, despite our aim of minimizing differences between
the shelter and community samples, demographic factors such
as income, education, and race were too collinear with shelter sta-
tus to include in our models. As such, we are unable to disentan-
gle the unique relations of these sociodemographic variables from
those due to sample.

Data analytic plan

Our analytic plan comprised multiple steps. First, to test the
extent to which the Barrier Box task was predictive of within-
person decreases in RSA and increases in HRV complexity, on
average, we fitted a series of latent difference score models
(McArdle & Hamagami, 2001).

Second, to test whether children evincing regulatory control at
the behavioral level showed more responsive HRV patterns at the
physiological level, we fitted a taxonomy of finite mixture models
using the “three-step” approach (see Asparouhov & Múthen,
2014; Vermunt, 2010). Specifically, we regressed each HRV
index on latent class membership (i.e., regulation type) and a vec-
tor of control covariates, including that same HRV index mea-
sured during the baseline condition (i.e., autoregression), using
a robust maximum likelihood estimator (Mplus 8.1; Muthén &
Muthén, 1998–2019). The three-step approach helps to assure
that the class structure is similar across the respective measure-
ment and regression steps of the modeling process (Step 1), and
that the regression step adjusts for the estimated nature of class
assignment (i.e., proper standard errors; Steps 2 and 3).

Because this approach estimates the conditional means of the
given outcome as a function of latent class and the control covar-
iates, rather than estimating differences between these conditional
means directly, as in typical regression, we recovered these differ-
ences using model constraints. These are represented as dummy
variables in Table 6, where the excluded comparison is based
on relevance for the given outcome. All 95% confidence intervals
(CIs) were estimated using a nonparametric bootstrap (10,000
iterations).
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Results

Preliminary analyses

As displayed in Table 4, the results from the latent change models
indicated that the challenge task was predictive of within-person
changes from baseline, for the majority of the HRV indices.
Children showed noteworthy declines in their mean RSA levels
(ΔRSAi = –1.01, p < .001; d = –0.89). They also showed increases
in RSA variability (ΔRSASD = 0.09, p < .001, d = 0.41), short-run
(Δα1 = .18, p < .001, d = 0.91) and long-run fractal complexity
(Δα2 = .07, p < .001, d = 0.41), and decreases in sample entropy
(ΔSampEn = –.08, p = .08, d = –0.19). For each of the complexity
indices, these changes suggest a tightening of the temporal orga-
nization of the cardiac time series. Although there was evidence of
substantial between-person variability, there was no statistically
significant change in α spectral width, on average.

Table 5 displays the intercorrelations between the HRV indi-
ces. There was moderate to strong rank-order stability across
the baseline and challenge tasks for some of the HRV indices
(e.g., RSAi and α1). However, others showed only modest stability
across the tasks (e.g., RSASD, α2, and SampEn). With respect to
the correlations across the HRV indices, RSAi during baseline
(i.e., resting RSA) tended to be inversely correlated with the base-
line measures of HRV complexity (lower α1, α2, and higher

SampEn). This is consistent with the idea that higher resting
RSA reflects better regulatory control and preparedness for adap-
tive change (i.e., less need for complex organization when overall
vagal tone is high). Similar inverse relations were evident between
resting RSA and some of the complexity indices measured during
the challenge task. Of note, the absolute magnitudes of these rela-
tions were considerably weaker than those collected during base-
line. The indices of fractal complexity and sample entropy were
negatively correlated, as expected, given their substantively
inversed scales.

As shown in Table 5, there were few HRV differences between
the community and shelter samples; however, children from
the shelter sample did show modestly lower levels of short-run
fractal complexity, during both the baseline (r = –.21, p < .05)
and challenge tasks (r = –.30, p <.01). These relations were robust,
after adjusting for the control covariates (see M5 and M6
in Table 6).

To test whether children from the shelter sample were at
greater risk for behavioral dysregulation, we conducted a contin-
gency table analysis across most-likely regulation class and shelter
status (10,000 iteration bootstrap). Although the community and
shelter children were distributed fairly evenly across the regulation
profiles, there was some indication of nonindependence (w = .19,
95% CI [.03, .43]). This was driven largely by the slightly greater

Table 4. Unconditional within-person differences in linear and nonlinear HRV indices from baseline to challenge task (N = 115)

RSABL DRSA RSAsd_BL DRSAsd α1BL Da1 α2BL Da2 αWBL Daw SampEnBL DSampEn

Mean 5.20* −1.01* 0.53* 0.09 0.97* 0.18* 0.74* 0.07* 0.83* 0.11 2.09* −0.08∼

dΔ −0.89 0.41 0.91 0.41 0.15 −0.19

Variance 1.3* 0.58* 0.04* 0.04* 0.05* 0.04* 0.02* 0.03* 0.15* 0.52* 0.10* 0.16*

Note: BL, baseline. D, change from BL to challenge task. RSA, task-mean RSA. RSAsd, task-standard deviation RSA. α1, alpha 1 short-run fractality. α2, alpha 2 long-run fractality. αW, multifractal
spectral width. SampEn, sample entropy. ∼p < .10. *p < .001.

Table 5. Descriptive statistics and zero-order correlations across the HRV indices collected during a baseline and challenge task (N = 115)

1 2 3 4 5 6 7 8 9 10 11 12

1. Shelter 1.00

2. RSABL .04 1.00

3. RSABB .11 .65*** 1.00

4. RSAsd_BL –.01 –.25* –.23* 1.00

5 RSAsd_BB .04 .06*** –.05 .29** 1.00

6. α1BL –.21* –.74*** –.47*** .29** .02 1.00

7. α1BB –.30** –.42*** –.60*** .26** .19* .54*** 1.00

8. α2BL .17 –.38*** –.22* .35*** .07 .14 –.01 1.00

9. α2BB .19 –.08 –.33** .09 .15 –.08 –.02 .20* 1.00

10. αWBL .13 .03 –.10 .43*** .28** .09 .06 .27** .14 1.00

11. αWBB .10 .35*** .26*** .05 .38** –.10 .00 –.23** –.06 .14 1.00

12. SampEnBL –.04 .47*** .42*** –.65*** –.27** –.59*** –.35*** –.38*** –.12 –.47*** –.08 1.00

13. SampEnBB –.04 .01 .06 –.15 –.62** –.08 –.42*** –.04 –.18 –.27** –.35** .10

Note: Shelter: 1 = experiencing homelessness and 0 = community sample. BL, baseline. BB, barrier box. RSA, task-mean RSA. RSAsd, task standard deviation RSA. α1, short-run fractality. α2,
longer-run fractality. αW, multifractal spectral width. SampEn, sample entropy. * p < .05. **p < .01. ***p < .05.
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representation of children experiencing homelessness being
classified as dysregulated, relative to regulated.

Behavioral self-regulation and linear HRV indices

Mean RSA
On average, children’s baseline mean RSA levels did not differ
statistically across the regulation groups (Table 6; M1).
However, as displayed in Table 6 (M2) and Figure 2, there were
statistically significant group differences in children’s mean RSA
levels during the challenge task (adjusting for baseline mean
RSA and the other control covariates). On average, dysregulated
children showed comparatively higher RSA (i.e., less withdrawal)
during the challenge task, compared with either the regulated
(B = 0.86, 95% CI [0.183, 1.94]) or the actively regulating children
(B = 0.98, 95% CI [0.22, 2.01]). Tests of model constraints indi-
cated that the differences between the regulated and actively reg-
ulating children were statistically indistinguishable (B1,2 = 0.12,
95% CI [–0.20, 0.49]). We, thus, constrained these parameters
to equality for parsimony (i.e., B = dysregulated > regulated or
regulating = 0.94, 95% CI [0.22, 2.07]). Standardizing on the base-
line RSA variance, this harmonized relation corresponded to a
standardized association of approximately 0.84. As expected
(i.e., sample size), the 95% CI bands indicated some imprecision
in these estimates. Of the control covariates, only baseline mean
RSA was predictive of mean RSA during the challenge task
(B = 0.51, 95% CI [0.34, 0.66]; β = .56).

SD RSA
There was some evidence of baseline differences in children’s lev-
els of RSA variability. This was the only HRV index to show a
baseline difference. On average, children in the regulated group
showed comparatively less second-to-second variability in their
RSA levels during the baseline task than did those in either the
actively regulating or the dysregulated groups. As the two differ-
ences were statistically identical, we constrained them to equality,

manifesting in harmonized relation of approximately B = 0.12
(p < .01; Table 6, M3).

After adjusting for this baseline difference, as well as the other
control covariates, a similar relation was evident for RSA variabil-
ity during the challenge task (M4; Figure 3). Children in the reg-
ulated group tended to show less second-to-second RSA
variability, compared with either the actively regulating group
(B = –0.09, 95% CI [–.0.16, –0.02]) or the dysregulated group
(B = –0.08, 95% CI [–0.19, 0.01]), though the latter was statisti-
cally marginal (p = .05). As above, because these relations were
statistically identical (B2,3 = –0.02, 95% CI [–0.11, 0.09]), we con-
strained them to equality, resulting in a harmonized relationship
of B = –0.09, 95% CI [–0.16, –0.03]). This corresponds to a stan-
dardized effect size of approximately 0.60. None of the control
covariates were predictive of RSA variability during the challenge
task, save a marginal relation with baseline RSA variability.

Behavioral self-regulation and nonlinear HRV indices

Alpha1.
Children’s α1 complexity levels were statistically indistinguishable
across the regulatory profiles during the baseline task (Table 6;
M5). However, during the challenge task, children in the actively
regulating group showed comparatively greater α1 HRV complex-
ity than did either the regulated (B = –0.10, 95% CI [–0.19, –0.01])
or dysregulated groupings (B = –0.08, 95% CI [–0.19, 0.01]),
though the latter only reached marginal statistical significance.
Again, because these relations were substantively and statistically
identical (B1,3 = 0.02, 95% CI [–0.15, 0.10]), we constrained them
to equality for parsimony. This resulted in a harmonized differ-
ence of (B = –0.10, 95% CI [–0.17, –0.02]), which corresponds
to a standardized effect size approximately 0.51. The fitted esti-
mates are present in Figure 4. With respect to the covariates,
children’s baseline α1 levels were positively associated with their
α1 levels during the challenge task (B = 0.38, 95% CI [0.29,
0.55]; β = .45). In addition, children from the shelter tended to

Table 6. Unstandardized fitted regression parameters from a series of finite mixture models testing regulation-group differences in linear and nonlinear HRV across
baseline and challenge tasks (N = 115)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

RSABL RSABB RSAsd_BL RSAsd_BB α1BL α1BB α2BL α2BB αWBL αWBB SampEnBL SampEnBL

Intercept 5.93*** 4.98*** 0.040*** 0.46*** 0.96*** 1.22*** 0.71*** 0.77*** 0.80*** 0.89*** 2.28*** 2.07***

BaselineDV 0.51*** 0.16∼ 0.38*** 0.10 0.19∼ 0.18∼

Girl –0.63*** –0.14 0.04 −0.02 0.11* 0.03 0.03 0.02 0.03 –0.03 –0.09 0.02

Age 0.07 0.07 0.03 0.00 –0.02 0.005 −0.01 −0.02 0.02 0.06 0.01 −0.02

Length −33.67 −18.54 2.82 1.57 2.13 1.17 3.32* 3.41* 3.8 −19.91*** −5.43∼ −2.69

Shelter 0.11 0.04 −0.05 −0.01 –0.10* −0.10** 0.05 0.05∼ 0.07 0.04 0.01 0.01

Regulated –0.53 –0.94*** — — 0.01 −0.10** −0.01 0.02 −0.04 –0.03 0.08 0.13∼

Act. Reg –0.49 –0.94*** 0.12** 0.09* — — — — — — — —

Dysreg — — 0.12** 0.09* –0.04 −0.10** −0.02 0.04 0.07 0.05 0.06 0.05

R2 .16 .44 .05 .06 .13 .38 .10 .12 .02 .26 .06 .06

Note: italicized values represent equality constraint. — represents comparison group, based on the most relevant contrast. BL, resting baseline. BB, barrier box challenge task. RSA, task-mean
respiratory sinus arrhythmia. RSAsd, within-task/within-person standard deviation in respiratory sinus arrhythmia. α1, short-run HRV fractality. α2, long-run HRV fractality. αw, multifractal
spectral width. SampEn, HRV sample entropy. Intercept, conditional outcome value for excluded group. BaselineDV, same DV, but collected during resting baseline. Length, absolute length of
IBI series. Regulated, “regulated” behavioral profile. Act. Reg, “actively regulating” behavioral profile. Dysreg, “dysregulated” behavioral profile. ∼p < .10 * p <.05. **p < .01. ***p < .001.
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show lower α1 levels than did their community sample counter-
parts (B = –0.10, 95% CI [–0.18, –0.03]; d = –0.27).

Alpha2 and multifractal spectrum width
No statistically significant differences in the long-run complexity
(α2) nor the multifractal spectrum widths (αw) were evident
across regulation profiles, irrespective of the inclusion of the con-
trol covariates (Table 6; M7–M10).

SampEn
There were no regulation-group differences in children’s sample
entropy levels during the baseline task. However, there was evi-
dence that children in the actively regulating group showed non-
trivially lower HRV sample entropy during the challenge task
than did their regulated peers (Table 6; M12, d = –0.44). Of
note, this relation only reached marginal levels of statistical signif-
icance (B = –0.13, 95% CI [–0.28, 0.02]). Modest descriptive dif-
ferences were evident for the group of dysregulated children,
such that actively regulating children show modestly lower
SampEn level (β = –.13). Yet, this difference also failed to reach
statistical significance (B = –0.04, 95% CI [–0.19, 0.13]). The fitted
estimates from this model are presented in Figure 5.

Findings summary

Collectively, these findings suggest that the behaviorally measured
regulatory profiles were differentiated descriptively by different
patterns of linear and non-linear HRV. First, children illustrating
regulated behavioral profiles—low negative affect, with high per-
sistence and global regulation—showed clear RSA suppression,
coupled with low levels of second-to-second RSA variability
(i.e., higher stability), and a more loosely organized temporal
structure. Second, actively regulating children—those displaying
modest levels of negative affect and off-task behavior, coupled
with high levels of global regulation—similarly, showed clear
RSA suppression. They also showed comparatively more
second-to-second RSA variability than did children in the regu-
lated group; however, this variability occurred in the context of
an overall tightening of the temporal organization of cardiac
series. Third, children in the dysregulated group showed compar-
atively blunted RSA suppression and high levels of second-to-
second RSA variability, coupled with more loosely organized
temporal structure.

Finally, although this study was underpowered to reject all but
large interaction effects, we nonetheless conducted a mixture-
based version of a multiple-groups analysis to test possible hetero-
geneity among these relations across the shelter and community
samples. We found no statistical nor any consistent descriptive
differences in the parameter estimates across community and
shelter children.

Discussion

There is strong scientific consensus that emotion dysregulation in
early childhood can confer developmental vulnerabilities for sub-
sequent psychopathology (e.g., Beauchaine, 2015a; Cole, Hall, &
Hajal, 2013). As such, clarifying the affective, sociocognitive,
and biological manifestations of emotion regulation remains a
core theme in the field of developmental psychopathology.
Informed by multiple theoretical models (e.g., polyvagal theory,
Porges, 1995, 2007; and neurovisceral integration, Thayer &
Lane, 2000), parasympathetic functioning, indexed by RSA, has
been a central physiological marker of children’s regulatory capac-
ity (Beauchaine & Thayer, 2015; Thompson, Lewis, & Calkins,
2008). This work has provided important insights into the phys-
iological instantiation of emotion regulation. However, RSA is just
one indicator of a vastly complex and dynamic central autonomic
network—a system tasked with integrating information from
across the brain and body (Thayer & Lane, 2000). Drawing
from work in statistical physics and dynamical systems modeling,
our aim was to consider the extent to which nonlinear indices of
HRV complexity might begin to tap some of these dynamics.
More specifically, our aim was to test whether our indices of
HRV complexity, in addition to RSA, differed across carefully
characterized regulatory profiles collected across children with a
diverse array of early life experiences.

Our findings provided mixed support for the role of HRV
complexity in children’s patterns of emotion regulation.
Specifically, there were four main findings. First, the challenge
task elicited fairly consistent changes in HRV, across both the lin-
ear (e.g., RSA) and the nonlinear HRV indices (e.g., α1, α2, and
SampEn). Second, there was evidence of three, fairly distinct
latent profiles of regulation-related behavior, comprising pairings
of negative affect and regulatory behaviors. Third, these regulatory
profiles were associated with noteworthy differences in HRV
during the challenge task. Specifically, looking across the HRV

Figure 2. Fitted mean respiratory sinus arrhythmic (RSA) values during challenge
task by emotion regulation profile. Note that the scale of the y-axis = 2 SD.

Figure 3. Fitted respiratory sinus arrhythmia variability (task standard deviation; SD
RSA) values during challenge task by emotion regulation profile. Note that the scale
of the y-axis = 2 SD.
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indices, there was an indication that the regulatory groups main-
tained different balances of RSA suppression, within-person RSA
variation, and HRV complexity. Behaviorally regulated children
tended to show considerable RSA suppression, RSA levels that
were comparatively more stable during the challenge task, and
complexity levels indicative of more loosely organized temporal
patterns. Actively regulating children (those showing moderate
levels of negative affect, coupled with high regulatory behavior)
similarly, showed substantial RSA suppression during the chal-
lenge task. They also illustrated greater second-to-second RSA
variation; however, this was accompanied by a more tightly orga-
nized temporal structure. Behaviorally dysregulated children
tended to show minimal RSA suppression and high levels of
RSA variability during the challenge task—variability coupled
with a more loosely organized temporal structure. Fourth, on
average, children experiencing homelessness were slightly more
likely to be categorized within the dysregulated behavioral profile.
They also showed modestly lower levels of short-run HRV fractal-
ity. However, the majority of the behavioral and physiological
outcomes were statistically and descriptively similar across the
high- and low-risk samples.

Eliciting HRV in the lab and in the field

Irrespective of collection site, the challenge task elicited rather
consistent changes in HRV, across both the linear and the nonlin-
ear indices. Compared to baseline, the challenge task was predic-
tive of decreases in children’s mean RSA levels (i.e., RSA
suppression), increases in second-to-second RSA variability, as
well as increases in HRV complexity (as indexed via short-run
and long-run fractality, and sample entropy). The effects sizes
ranged from fairly modest (d = 0.18) to rather strong (d = 0.50).

We found few differences across the community and shelter
samples, with the exception of short-run fractality, which was
somewhat lower during both the baseline (d = –0.22) and the
challenge task (d = –0.27) for the shelter sample. This is consistent
with theory and prior research indicating that chronic exposure to
adversities, such as those more common in homeless and highly
mobile families, can undermine children’s development of effec-
tive regulatory skills (e.g., Bassuk et sl., 2015; Labella et al.,
2016; Masten et al., 2015; Obradović et al., 2010). Of note, though,
because differences in children’s backgrounds and early life

experiences were inextricably confounded with data collection
site (i.e., shelter vs. lab), it is impossible to parse whether these
differences reflect substantive differences in children’s experiences
or, alternatively, more idiosyncratic differences with respect to
where the data were collected.

Although we are hesitant to breathe too much substantive life
into a null finding, particularly given our sample size, it is never-
theless interesting that we observed so few differences, given the
cumulative risks commonly experienced by homeless and highly
mobile families. These children tend to lag behind their lower
risk peers, with respect to related constructs like EF (Masten
et al., 2015), which, in turn, would be theorized to place these
children at risk for comparatively less effective downregulation
of ANS activity (Blair & Raver, 2012). Such null relations could
be due to many things, including the power afforded by our sam-
ple size. Throughout, the width of the 95% CIs highlight the
imprecision in our estimates. It, however, remains a somewhat
unexpected finding that we aim to pursue in future work.

Typologies of emotion- and regulation-related behavior

In addition to evoking autonomic activity, the challenge task was
originally designed to elicit levels of negative affect and frustration
that require active modulation in order to successfully minimize
the outward appearance of negative emotion and disengagement
(Goldsmith et al., 1999). Given the inherent bidirectional dynam-
ics of emotion and the regulation of emotion, labeling either as
“bottom-up” or “top-down” is largely heuristic. However, drawing
from prior work (e.g., Ramsook et al., 2018), we expected that
behavioral patterns suggestive of emotion regulation would com-
prise mixtures of outward negative affect and regulatory control.
As part of this, we aimed to capture simultaneously affective reac-
tivity (i.e., minimal to moderate displays of negative affect/high
persistence), as well as regulatory effort (i.e., high levels of regula-
tion are more effortful, when they occur in the context of a stron-
ger negative affect). This idea of regulatory effort was particularly
relevant to our interest in HRV complexity because, based on
prior work (e.g., Berry & Stallworthy, 2018), we expected HRV
to become more internally organized in the context of active
effortful engagement.

Consistent with these ideas, there was evidence of three rather
distinct latent behavioral profiles, comprising particular pairings

Figure 5. Fitted SD RSA values during challenge task by emotion regulation profile.
Note that the scale of y-axis = 2 SD.

Figure 4. Fitted α1 values during challenge task by emotion regulation profile. Note
that the scale of y-axis = 2 SD.
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of negative affect and regulatory behavior. We labeled the first
group as regulated, as they showed no negative affect nor off-task
behavior, coupled with heightened regulation-related behaviors.
We labeled the second group as actively regulating, in that they
showed modest levels of negative affect and off-task behaviors,
yet also high levels of regulation-related behavior. We labeled
the third, much smaller group as dysregulated, as they showed
high levels of negative affect, off-task behavior, and resignation,
paired with low levels of regulatory behavior.

Children in the dysregulated group also showed the most help
seeking and self-distraction behaviors—behaviors historically
ascribed to more adaptive regulatory capacities (Nelson-Le Gall,
1981; Thompson, Cothran, & McCall, 2012). This likely reflects
the context-specific nature of what can be considered to be adap-
tive. That is, help seeking is only an effective strategy to the extent
to which help is available. By design, no such help was available
during the challenge task. Similarly, self-distraction can be a use-
ful tool for minimizing negative affect because it allows one to
shift attention away from the affect-eliciting stimulus (e.g.,
Reijntjez, Stegge, Terwogt, Kamphuis, & Telch, 2006; Stansbury
& Sigman, 2000). However, such self-distraction is an arguably
ineffective strategy, when attention and persistence are required
to achieve the broader affective goal (i.e., unlocking the box to
attain the prized toy). Such mismatches between regulatory strat-
egy and context may actually exacerbate the original negative
emotions that the regulatory behavior was intended to allay
(Cole, Bendezú, Ram, & Chow, 2017).

Of course, across the board, our class labels represent behav-
iorally informed inferences about the underlying affective and
regulatory processes, rather than direct measures of the processes
themselves. For instance, based on the fact that the regulated
group showed similar levels of behavioral regulation as the actively
regulating group, yet did so without negative affect or disengage-
ment, we reasoned that the latter group was engaging in compar-
atively more effortful regulatory control (i.e., more emotion to
regulate). Of course, alternatively, it could the case that the regu-
lated group showed so little negative affect because they were
applying considerable regulatory effort. Based on our purely
behavioral data, we cannot rule out this alternative possibility.

Of note, our results with respect to HRV complexity may begin
to shed some light on this question. Informed by some of our
prior work with young children (Berry & Stallworthy, 2018), as
well as a growing literature with adults (e.g., Kelty-Stephen,
Stirling, & Lipsitz, 2016; Wallot & Kelty-Stephen, 2018), we
hypothesized that the internal organization of the HRV time
series would become more pronounced in the context of more
effortful regulation. For example, using HRV data collected during
the administration of a battery of EF tasks in a different sample,
we found that fractal complexity within the optimal pink noise
range (∼1) was associated with better EF performance than either
more random (∼0.8) or rigid time series organization (∼1.5), yet
only when children were actively challenged by the given task.
HRV fractal complexity was unrelated to EF performance, in
task blocks in which children were at ceiling (i.e., less challenged).
In the present work, we found that the challenge task elicited
increases in α1 from baseline, on average, and that that this was
particularly the case for the actively regulating children.
Holding baseline α1 constant, children in the actively regulating
group had α1 levels that were ∼0.51 SD higher than either their
regulated or dysregulated peers.

Given the presumed curvilinear relation between α1and “opti-
mal” regulatory functioning and the fact that all groups of

children were performing within the optimal “pink” noise
range, it is difficult to assert that these children’s HRV organiza-
tion showed better complexity, in any general sense. However,
these data do suggest that the short-run temporal organization
of these children’s cardiac time series becomes comparatively
more tightly organized during the challenge task, without moving
into high levels of rigidity indicated by brown noise (α1 = 1.5).
Although it only reached marginal levels of statistical significance,
a similar substantive finding was evident for the HRV sample
entropy. Actively regulating children tended to evince lower
sample entropy levels during the challenge task than their regu-
lated counterparts. Recall, lower levels of sample entropy are
thought to reflect greater maintenance of information within a
system, whereas higher levels suggest loss of information as the
system becomes increasingly chaotic. As such, children in the
actively regulating group showed comparatively larger movement
toward tighter temporal organization of their cardiac time series
during challenge, as indicated by sample entropy. Though
statistically marginal, these differences corresponded to effects
sizes of nearly half a standard deviation (d∼ 0.44). Thus, there
is at least some indication that the actively regulating group
showed nontrivial differences in the temporal organization of
their cardiac time series data, across two of our complexity
indices.

It is important to note that no group differences were evident
for two of the other complexity indices: long-run HRV fractality
or multi-fractal width. Here, long-run fractality was defined as
α estimated from heartbeat data that varied beyond a distance
of 14 beats from heartbeatt. It is worth noting that the original
coining of the “short-” versus “long-run” language was based
on 24-hr ambulatory cardiac (Holter) recordings (Peng et al.,
1995), a fundamentally different time scale than our 5-min task.
Nonetheless, it is interesting that we failed to see similar relations
across larger time scales. We think it highlights a critical (and
open) question regarding the alignment between system complex-
ity and system and context specificity. It may be the case that
understanding the organization of a system over long spans of
time is critical for some phenomena, such as overall cardiometa-
bolic decline or the onset of senescence, which reflect the massive
integration of far-reaching systems functioning at highly variable
times scales. In contrast, it may be the case that shorter term tem-
poral organization is more appropriate for real-time regulatory
phenomena, such as the millisecond to multiminute time scales
of an acute ANS response. In addition, some phenomena may
require high levels of flexibility in the temporal organization of
the system as it unfolds in time (i.e., multifractality), for instance,
contexts requiring nimble shifts between highly variable task
demands (e.g., sight reading while playing a difficult musical
composition). Other contexts (e.g., writing a manuscript) may
benefit from stability in internal organization over longer spans
of time. On a long enough timeline, a single individual could
move continuously through all of these varying types of “optimal”
time series organization. This is all to say that time series com-
plexity is not a single thing. Rather, optimal complexity is likely
contingent on the temporal scale of the phenomenon of interest,
as well as the context in which the system is unfolding. Although
rarely discussed, alignment across these different scales will be
central to clarifying the ultimate utility of the method.

For the time being, we find that considering these complexity
indices in concert with more common linear indices of HRV, like
RSA, likely provides the clearest picture with regard to their sub-
stantive meaning. Specifically, our findings suggest that our
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observed regulatory profiles could fall on a multidimensional
scale comprising overall basal tone and phasic flexibility of
vagal control, along with the overall complexity of HRV series.

Our regulated grouping of children showed clear RSA suppres-
sion and the most within-person RSA stability during the chal-
lenge task. Yet, with respect to complexity, they largely
maintained their baseline levels. Given their clear parasympathetic
response and seemingly low levels of negative affect, this could
reflect the possibility that these children’s internal regulatory
needs were met largely through an effective parasympathetic
response. That is, there is little need to orchestrate broader auto-
nomic engagement, if there is (a) minimal negative affect to reg-
ulate, and/or if (b) changes in vagal control alone achieves one’s
allostatic needs. The actively regulating children also showed
clear RSA suppression during the challenge task. In addition,
they illustrated substantial within-person variation in their RSA
levels. Yet, of note, this increase in RSA variability was accompa-
nied by an increase in the temporal organization of the broader
HRV time series. As such, it could be the case that the children
had to orchestrate movement into the broader autonomic space,
yet they did so in the context of a reasonably organized ANS land-
scape. Finally, the small grouping of dysregulated children
illustrated comparatively less RSA suppression and greater
within-person RSA variability during the challenge task.
Further, this variability was comparatively more loosely organized
than seen with the actively regulating children. Thus, this could
suggest dysregulation at both the parasympathetic and broader
autonomic levels.

Although these interpretations are ultimately speculative, it is
heartening that the findings with respect behavioral regulation
and RSA suppression are consistent with prior work (e.g.,
Beauchaine et al., 2019; Graziano & Derefinkko, 2013). It is also
interesting that all three indices (RSA suppression, within-person
RSA variability, and HRV complexity) were required to differen-
tiate the overall cardiac profiles across the behavioral regulatory
groups. At the end of the day, though, much needs to be done
to clarify the ultimate substantive meaning of the HRV complex-
ity parameters.

A downside to summary-level complexity statistics is that they
tell us nothing about process. For example, we have made the
inferential jump that changes in HRV complexity elicited in
the context of an ANS-relevant challenge may capture some of
the broader organization of the CAN. Yet, even if we could be
sure that this was a valid inference (we cannot), we would none-
theless be left with a rather nonspecific marker of a remarkably
complex and dynamic network. For example, although there are
meaningful substantive and empirical differences between HRV
complexity and more typical measures of RSA, RSA dynamics
presumably drive some of the self-organizational properties cap-
tured by our complexity index. On one hand, this could be seen
as a limitation. On the other hand, it is a virtually definitional
aspect of the dynamical systems approach because complex sys-
tems cannot be discretized into their distinct constituent parts.
Thus, if we are to take dynamical systems models of socio-neuro-
cognitive development seriously (i.e., massively interactive, multi-
directional, nonlinear, self-organizing, and emergent processes;
e.g., Barrett et al., 2013), then these admittedly “black box” sum-
maries of system-level organization may be as close as we can get,
at least in the near future. At present, there are no clear ways to
explicitly measure and model the structure of ANS dynamics
with “free-range” humans, let alone the expansive dynamics of
the CAN. When considered along with the presumably massive

population heterogeneity in these processes (e.g., Molenaar,
2004), the problem space seems even more intractable.
Although indices of HRV complexity are no panacea, we think
that they may be a promising and computationally elegant
proxy for the complex system dynamics that lay at the heart of
many developmental questions.

Limitations

Of course, our findings should also be considered in light of their
limitations. Our sample was relatively small (N = 115). This is
noteworthy, given that our analytic approach requires a nontrivial
number of parameters. The fact that our models derived a small
number of highly discriminable classes likely helped to address
this weakness (Masyn, 2013). Nonetheless, our statistical power
was limited for all but moderate to large effect sizes. In addition,
because we expected a relatively low proportion of children to
exhibit truly dysregulated behavior during this type of challenge
task, our absolute n for this grouping was quite small (N = 12).
Given the limited number of participants experiencing homeless-
ness available to participate at any given time, this remains an
ongoing practical challenge for this line of work.

Similarly, although maintaining two very different samples
allowed us to test our questions with children with a diverse
array of early life experiences, it also came with some costs.
First, the collinearity between shelter status and our sociodemo-
graphic measures (e.g., education, race, and adverse life events)
approached unity. Thus, we could not statistically differentiate
sample variation from sociodemographic variation. Second, mea-
surement location was perfectly confounded with shelter status;
shelter children were assessed only in the shelter and community
children were assessed only in our lab. As such, we cannot disag-
gregate substantively meaningful differences between the samples
from differences that might be due to the venue in which the data
were collected.

In addition, although we attempted to align posture/movement
and speech (i.e., none) across the baseline and challenge tasks, our
resting baseline was decidedly “vanilla” (Jennings et al., 1992).
That is, despite being a staple in work with young children,
quietly watching an unstimulating video may not capture child-
ren’s true basal RSA levels, nor are the task demands aligned
completely with those of the challenge task. Thus, although we
cannot think of any specific methodological confounds that
would explain the present findings, we also cannot rule out this
possibility. We were also unable to measure and adjust for respi-
ration. Thus, it is possible that some of the variation in both RSA
and the complexity indices reflects respiration (i.e., not purely
parasympathetic/general ANS processes, respectively). This is a
perennial methodological challenge when working with young
children, and increasing evidence indicates that the misspecifica-
tion of age-appropriate respiratory bands can lead to nontrivial
biases in RSA (Shader et al., 2018). The band employed in the
present study (0.40 to 1.04 Hz) was somewhat restrictive and
may have truncated some of the respiration-relevant spectral
power for children with comparatively slower respiration rates.
We are presently validating ambulatory impedance cardiographic
methods, as a means of better estimating and controlling for
potential respiration effects. However, to the extent to which res-
piration also differs across our regulation groups, it remains a
threat to validity in the present work.

Finally, most complexity indices require at least one user-
specified analytic decision (e.g., SampEn: tolerance band [r] and
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number of repeated beats [m]). We adopted commonly used
values and conducted sensitivity analyses with alternative param-
eters. However, we cannot say whether other parameters combi-
nations might alter our conclusions.

Summary

These caveats notwithstanding, the present work suggests that
integrating concepts and tools derived from dynamical systems
thinking may provide novel insights into our understanding of
the cross-level organization of emotion regulation. In particular,
our results suggest that cardiac complexity may be especially use-
ful for discerning active, effortful emotion regulation from less
effortful regulation and dysregulation.
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