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Abstract

In this paper, we time-change the generalized counting process (GCP) by an indepen-
dent inverse mixed stable subordinator to obtain a fractional version of the GCP. We
call it the mixed fractional counting process (MFCP). The system of fractional differ-
ential equations that governs its state probabilities is obtained using the Z transform
method. Its one-dimensional distribution, mean, variance, covariance, probability gener-
ating function, and factorial moments are obtained. It is shown that the MFCP exhibits
the long-range dependence property whereas its increment process has the short-range
dependence property. As an application we consider a risk process in which the claims
are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour
of its finite-time ruin probability when the claim sizes are subexponentially distributed
and the initial capital is arbitrarily large. Later, we discuss some distributional properties
of a compound version of the GCP.
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1. Introduction

Di Crescenzo et al. [10] introduced and studied a Lévy process, namely the generalized
counting process (GCP), which performs k kinds of jumps of amplitude 1, 2, . . . , k with pos-
itive rates λ1, λ2, . . . , λk, respectively. We denote it by {M(t)}t≥0. Its transition probabilities
are given by

P{M(t + h) = n | M(t) = l} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −�h + o(h), n = l,

λjh + o(h), n = l + j, j = 1, 2, . . . , k,

o(h), n> l + k,

where�= λ1 + λ2 + · · · + λk for a fixed positive integer k and o(h) → 0 as h → 0. Moreover,
Di Crescenzo et al. [10] studied the fractional version of the GCP, namely the generalized
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Mixed fractional counting process 717

fractional counting process (GFCP), which we denote by {Mα(t)}t≥0, 0<α ≤ 1. It is a
time-changed GCP in which the time-change is done using an independent inverse stable sub-
ordinator {Yα(t)}t≥0, i.e. {M(Yα(t))}t≥0. Its state probabilities pα(n, t) = P{Mα(t) = n} satisfy
the following system of fractional differential equations:

dα

dtα
pα(n, t) = −�pα(n, t) +

min{n,k}∑
j=1

λjp
α(n − j, t), n ≥ 0, (1.1)

with the initial conditions

pα(n, 0) =
⎧⎨
⎩

1, n = 0,

0, n ≥ 1.

Here dα/dtα is the Caputo fractional derivative defined as (see [20])

dα

dtα
f (t) :=

⎧⎪⎨
⎪⎩

1

�(1 − α)

∫ t

0
(t − s)−αf ′(s) ds, 0<α < 1,

f ′(t), α= 1.

Its Laplace transform is given by (see [20, eq. (5.3.3)])

L
(

dα

dtα
f (t); s

)
= sαL(f (t); s) − sα−1f (0), s> 0, (1.2)

where

L(f (t);s) =
∫ ∞

0
e−stf (t) dt

is the Laplace transform of f (t).
The involvement of the fractional derivative induces a global memory in the system. For

α = 1, the GFCP reduces to the GCP {M(t)}t≥0. The system of governing differential equations
for its state probabilities can be obtained from (1.1). For k = 1, the GFCP and GCP reduce to
the time-fractional Poisson process (TFPP) (see [5]) and the Poisson process, respectively.
The GFCP exhibits overdispersion and it has the long-range dependence (LRD) property. Di
Crescenzo et al. [10] showed that the ratio of a positive integer power of the GFCP over its
mean tends to 1 in probability, that is, it exhibits cut-off behaviour at mean times. In other
words, it converges abruptly to equilibrium.

The explicit expression for the state probabilities of the GFCP was obtained by Di
Crescenzo et al. [10]. Let N0 denote the set of non-negative integers. The following expression
for the state probabilities p(n, t) = P{M(t) = n} of the GCP will be used later:

p(n, t) =
∑
�(k,n)

k∏
j=1

λ
xj
j

xj! tx1+x2+···+xk e−�t, n ≥ 0, (1.3)

where
�(k, n) = {(x1, x2, . . . , xk) : x1 + 2x2 + · · · + kxk = n, xj ∈N0}.

For more properties of the GFCP and an application of the GCP in risk theory, we refer
the reader to Kataria and Khandakar [19]. Also, for other counting processes that perform
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718 M. KHANDAKAR AND K. K. KATARIA

jumps of amplitude larger than 1, we refer to Orsingher and Polito [24] and Orsingher and
Toaldo [25].

A subordinator is a one-dimensional Lévy process with non-decreasing sample paths. A
stable subordinator is a driftless subordinator. The mixed stable subordinator {Dα1,α2 (t)}t≥0 is
a subordinator that is characterized by the following Laplace transform (see [1]):

E
(
e−sDα1,α2 (t))= e−tφ(s), s> 0, (1.4)

where 0<α2 <α1 < 1 and φ(s) = C1sα1 + C2sα2 is the Laplace exponent with C1 + C2 = 1,
C1 ≥ 0, C2 ≥ 0. The first passage time of a mixed stable subordinator is called the inverse
mixed stable subordinator (IMSS) {Yα1,α2 (t)}t≥0. It is defined as

Yα1,α2 (t) = inf{s ≥ 0: Dα1,α2 (s)> t}, t ≥ 0.

For Ci = 1, the IMSS reduces to the inverse stable subordinator Yαi , i = 1, 2.
In this paper, we consider the GCP time-changed by an independent IMSS, that is,

Mα1,α2 (t) := M(Yα1,α2 (t)), t ≥ 0.

We call it the mixed fractional counting process (MFCP). For k = 1, it reduces to the mixed
fractional Poisson process (MFPP) (see [1], [3]). We obtain its state probabilities in terms of
convolution of two suitable functions. The Z transform method is used to obtain the system of
fractional differential equations that governs its state probabilities. Some of its distributional
properties are obtained, such as mean, variance, covariance, probability generating function
(PGF), and factorial moments. It is observed that the MFCP has the overdispersion property.
Also, it is shown that the MFCP has the LRD property whereas its increment has the
short-range dependence (SRD) property. Moreover, we consider a risk process in which the
claims are modelled using the MFCP. We obtain an asymptotic behaviour of its finite-time
ruin probability when the claim sizes are subexponentially distributed and the initial capital is
arbitrarily large.

Later, we study the following process:

X(t) :=
M(t)∑
i=1

Yi, t ≥ 0,

where {Yi}i≥1 is a sequence of independent and identically distributed (i.i.d.) random vari-
ables which are independent of the GCP {M(t)}t≥0. We refer to the process {X(t)}t≥0 as the
compound generalized counting process (CGCP). Its finite-dimensional distribution function,
mean, and variance are obtained. A particular case of the CGCP is discussed by taking discrete
distribution for Y1 with non-negative support.

2. Preliminaries

Here, we give some known results and definitions related to the Mittag–Leffler function, the
LRD property, the Z transform, and the IMSS.

2.1. Mittag–Leffler function

The three-parameter Mittag–Leffler function is defined as (see [20, p. 45])

Eγα,β (x) :=
∞∑

j=0

γ (γ + 1) · · · (γ + j − 1)xj

j!�(jα+ β)
, x ∈R,

where α > 0, β > 0, and γ > 0.
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It reduces to the two-parameter Mittag–Leffler function for γ = 1. It further reduces to the
Mittag–Leffler function for γ = β = 1.

For n ≥ 0, we have (see [20, eq. (1.9.5)])

(
Eγα,β (x)

)(n) = γ (γ + 1) · · · (γ + n − 1)Eγ+n
α,nα+β (x), (2.1)

where
(
Eγα,β (x)

)(n) denotes the nth derivative of three-parameter Mittag–Leffler function,
that is, (

Eγα,β (x)
)(n) = dn

dxn
Eγα,β (x).

The following asymptotic result follows from equation (2.44) of [3]:

Eγα,β (−λtα) ∼ λ−γ t−αγ

�(β − αγ )
, t → ∞, (2.2)

where λ> 0 and β 
= αγ .
The following result holds (see [14, eq. (17.6)]):

L−1
(

sρ−1

sα + asβ + b
; t

)
= tα−ρ

∞∑
m=0

(−a)mt(α−β)mEm+1
α,α+(α−β)m−ρ+1(−btα), (2.3)

along with the conditions α > β > 0, α − ρ + 1> 0, and |asβ/(sα + b)|< 1.

2.2. Z transform

The unilateral Z transform of a function f (k), k ∈N0, is defined by (see [9, eq. (12.3.3)])

F(z) = Zf (k) =
∞∑

k=0

f (k)z−k, z ∈R. (2.4)

The following translation property holds (see [9, eq. (12.4.1)]):

Zf (k − m) = z−m

(
F(z) +

−1∑
r=−m

f (r)z−r

)
, m ≥ 0. (2.5)

Note that the coefficient of z−k in (2.4) is the inverse Z transform, i.e. f (k) = Z−1(F(z)). Let
f (k) be a probability mass function (PMF) whose support is N0. Then its PGF is given by

G(u) =
∞∑

k=0

ukf (k), |u| ≤ 1.

It is related to the unilateral Z transform as follows:

G(z−1) = F(z). (2.6)
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720 M. KHANDAKAR AND K. K. KATARIA

2.3. Inverse mixed stable subordinator

Let fα1,α2 (t, x) be the density function of the IMSS. Its Laplace transform is given by
(see [1])

L(fα1,α2 (t, x);s) = φ(s)

s
e−xφ(s), (2.7)

where φ(s) is given in (1.4).
The mean Uα1,α2 (t) =E(Yα1,α2 (t)) of the IMSS is given by (see [22])

Uα1,α2 (t) = tα1

C1
Eα1−α2,α1+1(−C2tα1−α2/C1), (2.8)

where Eα1−α2,α1+1(·) is the two-parameter Mittag–Leffler function.
The following asymptotic result holds (see [28, eq. (48)]):

Uα1,α2 (t) ∼

⎧⎪⎪⎨
⎪⎪⎩

tα1

C1�(α1 + 1)
, t → 0,

tα2

C2�(α2 + 1)
, t → ∞.

(2.9)

For fixed s> 0 and large t, the variance and covariance of the IMSS have the following limiting
behaviour (see [17, eqs (22) and (29)]):

Var(Yα1,α2 (t)) ∼ t2α2

C2
2

(
2

�(2α2 + 1)
− 1

(�(α2 + 1))2

)

and

Cov(Yα1,α2 (s), Yα1,α2 (t)) ∼ C−2
1 s2α1E2

α1−α2,2α1+1(−C2sα1−α2/C1) − tα2−1K(s), (2.10)

where

K(s) = sα1+1

C1C2�(α2)

∞∑
m=0

(m(α1 − α2) + α1)(−C2sα1−α2/C1)m

�(m(α1 − α2) + α1 + 2)
. (2.11)

2.4. The LRD and SRD properties

We will use the following definition (see [13], [23]).

Definition 2.1. Let s> 0 be fixed and let {X(t)}t≥0 be a stochastic process such that its
correlation function has the following asymptotic behaviour:

Corr (X(s), X(t)) ∼ c(s)t−γ , as t → ∞,

where the value of c(s) depends on s. The process {X(t)}t≥0 is said to exhibit the LRD property
if γ ∈ (0, 1) and it has the SRD property if γ ∈ (1, 2).

3. Mixed fractional counting process

In this section we introduce a time-changed version of the GCP, namely the mixed fractional
counting process (MFCP). It is obtained by time-changing the GCP by an independent IMSS.
We denote it by {Mα1,α2 (t)}t≥0 and define it as follows:

Mα1,α2 (t) := M(Yα1,α2 (t)), (3.1)

where the GCP {M(t)}t≥0 and the IMSS {Yα1,α2 (t)}t≥0 are independent.
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For k = 1, the MFCP reduces to the MFPP (see [1], [3]) as in this case the GCP reduces to
the Poisson process. On taking λj = λ for all j = 1, 2, . . . , k, the GCP reduces to the Poisson
process of order k (see [19, Section 4.1]). Thus, for such λj, the MFCP reduces to a fractional
version of the Poisson process of order k. Also, for λj = λ(1 − ρ)ρj−1/(1 − ρk), 0 ≤ ρ < 1,
j = 1, 2, . . . , k, the GCP reduces to the Pólya–Aeppli process of order k (see [19, Section
4.2]). So, for such λj, the MFCP reduces to a fractional version of the Pólya–Aeppli process of
order k.

3.1. Some properties of the MFCP

Here we discuss some distributional properties of the MFCP. Let 0< s ≤ t<∞ and

q1 =
k∑

j=1

jλj, q2 =
k∑

j=1

j2λj.

The mean and variance of the GCP are given by (see [10])

E(M(t)) = tq1 and Var(M(t)) = tq2. (3.2)

The mean, variance, and covariance of the MFCP can be obtained using (3.2) and Theorem 2.1
of [22] in the following form:

E(Mα1,α2 (t)) = q1Uα1,α2 (t), (3.3)

Var(Mα1,α2 (t)) = q2Uα1,α2 (t) + q2
1 Var (Yα1,α2 (t)), (3.4)

Cov(Mα1,α2 (s),Mα1,α2 (t)) = q2Uα1,α2 (s) + q2
1 Cov(Yα1,α2 (s), Yα1,α2 (t)), (3.5)

where Uα1,α2 (·) is given in (2.8).

Remark 3.1. A stochastic process {X(t)}t≥0 is said to exhibit overdispersion if

Var(X(t)) −E(X(t))> 0, t> 0.

Observe that

Var(Mα1,α2 (t)) −E(Mα1,α2 (t)) = (q2 − q1)Uα1,α2 (t) + q2
1 Var (Yα1,α2 (t))> 0, t> 0.

Thus the MFCP exhibits overdispersion.

Theorem 3.1. The MFCP has the LRD property.

Proof. Let s> 0 be fixed. From (3.4) and (3.5), we get

Corr (Mα1,α2 (s),Mα1,α2 (t)) = q2Uα1,α2 (s) + q2
1 Cov(Yα1,α2 (s), Yα1,α2 (t))√

Var(Mα1,α2 (s))
√

q2Uα1,α2 (t) + q2
1 Var (Yα1,α2 (t))

,

which on using (2.9)–(2.10) reduces to the following as t → ∞:

Corr (Mα1,α2 (s),Mα1,α2 (t))

∼ q2Uα1,α2 (s) + q2
1

(
C−2

1 s2α1 E2
α1−α2,2α1+1(−C2sα1−α2/C1) − tα2−1K(s)

)
√

Var(Mα1,α2 (s))
√

q2tα2

C2�(α2+1) + q2
1

t2α2

C2
2

( 2
�(2α2+1) − 1

(�(α2+1))2

)
∼ c(s)t−α2,
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where

c(s) = q2Uα1,α2 (s) + q2
1C−2

1 s2α1 E2
α1−α2,2α1+1(−C2sα1−α2/C1)

√
Var(Mα1,α2 (s))

√
q2

1
C2

2

( 2
�(2α2+1) − 1

(�(α2+1))2

) .

As 0<α2 < 1, the MFCP exhibits the LRD property. �

Remark 3.2. It is known that the processes that exhibit the LRD property have applica-
tions in areas like finance (such as [11], [21]), econometrics (see [26]), hydrology (see [12,
pp. 461–472]), and internet data traffic modelling (see [16]). As the MFCP possesses the LRD
property, it has potential applications in these areas. Its application to risk theory is discussed
later in this paper.

Let
d= denote the equality in distribution. Di Crescenzo et al. [10] showed that the GCP is

equal in distribution to a compound Poisson process, that is,

M(t)
d=

N(t)∑
i=1

Xi, t ≥ 0. (3.6)

Here {N(t)}t≥0 is the Poisson process with intensity parameter � which is independent of the
sequence of i.i.d. random variables {Xi}i≥1 such that

P{X1 = j} = λj

�
, j = 1, 2, . . . , k.

From (3.1) and (3.6), we get

Mα1,α2 (t)
d=

Nα1,α2 (t)∑
i=1

Xi, (3.7)

where {Nα1,α2 (t)}t≥0 is the MFPP. Thus the MFCP is equal in distribution to a compound MFPP
studied in [18].

In the next result, we obtain the PGF Gα1,α2 (u, t) =E(uMα1,α2 (t)) of the MFCP.

Proposition 3.1. The PGF of the MFCP is given by

Gα1,α2 (u, t) =
∞∑

m=0

(−C2tα1−α2/C1)mEm+1
α1,(α1−α2)m+1

(
−tα1

C1

k∑
j=1

(1 − uj)λj

)

−
∞∑

m=0

(−C2tα1−α2/C1)m+1Em+1
α1,(α1−α2)(m+1)+1

(
−tα1

C1

k∑
j=1

(1 − uj)λj

)
. (3.8)

Proof. We have

GX1 (u) = E(uX1 ) = 1

�

k∑
j=1

λju
j. (3.9)

Using (3.7) and (3.9), the proof follows from the PGF of the MFPP (see [3, eq. (2.28)]). �
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Let pα1,α2 (n, t) = P{Mα1,α2 (t) = n}, n ≥ 0 be the PMF of the MFCP. On substituting u = 0
in (3.8), we get

pα1,α2 (0, t) =
∞∑

m=0

(−C2tα1−α2/C1)mEm+1
α1,(α1−α2)m+1(−�tα1/C1)

−
∞∑

m=0

(−C2tα1−α2/C1)m+1Em+1
α1,(α1−α2)(m+1)+1(−�tα1/C1),

which reduces to the zero state probability of the MFPP for k = 1, i.e. �= λ1 (see [3,
eq. (2.13)]).

Remark 3.3. On substituting u = 1 in (3.8), we get

Gα1,α2 (u, t)
∣∣
u=1 =

∞∑
n=0

pα1,α2 (n, t)

=
∞∑

m=0

(−C2tα1−α2/C1)m

�((α1 − α2)m + 1)
−

∞∑
m=0

(−C2tα1−α2/C1)m+1

�((α1 − α2)(m + 1) + 1)

= 1.

Thus pα1,α2 (n, t) is indeed a PMF.

Next we use the Z transform technique to obtain the system of fractional differential
equations that governs the state probabilities of the MFCP.

Proposition 3.2. For n ≥ 0, the state probabilities of the MFCP satisfy

C1
dα1

dtα1
pα1,α2 (n, t) + C2

dα2

dtα2
pα1,α2 (n, t) = −�pα1,α2 (n, t) +

min{n,k}∑
j=1

λjp
α1,α2 (n − j, t), (3.10)

with the initial conditions pα1,α2 (0, 0) = 1 and pα1,α2 (n, 0) = 0, n ≥ 1.

Proof. See Appendix A.1. �

Remark 3.4. In view of (3.7), Proposition 3.2 follows as a particular case of Proposition 3.2
of [18].

Using (3.10), it can be shown that the PGF of the MFCP solves the following fractional
differential equation:

C1
dα1

dtα1
Gα1,α2 (u, t) + C2

dα2

dtα2
Gα1,α2 (u, t) = −

k∑
j=1

(1 − uj)λjG
α1,α2 (u, t),

with initial condition Gα1,α2 (u, 0) = 1.

Theorem 3.2. Let

�(k, n) = {(x1, x2, . . . , xk) : x1 + 2x2 + · · · + kxk = n, xj ∈N0},
zk = x1 + x2 + · · · + xk.
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The state probabilities of the MFCP are given by

pα1,α2 (n, t) =
∑
�(k,n)

k∏
j=1

λ
xj
j

xj!
zk!

Czk+1
1

(
C1f ∗(zk+1)(t) + C2g∗(zk+1)(t)

)
, n ≥ 0, (3.11)

where f ∗(zk+1) and g∗(zk+1) are (zk + 1)-fold convolutions of

f (t) = t
zk(α1−1)

zk+1

∞∑
m=0

(−C2tα1−α2/C1)mEm+1

α1,(α1−α2)m+ zkα1+1
zk+1

(−�tα1/C1)

and

g(t) = t
zk (α1−1)+α1−α2

zk+1

∞∑
m=0

(−C2tα1−α2/C1)mEm+1

α1,(α1−α2)m+ zkα1+α1−α2+1
zk+1

(−�tα1/C1),

respectively.

Proof. See Appendix A.2. �

Remark 3.5. On substituting k = 1 in (3.11), we get the state probabilities of the MFPP (see
[18, eq. (3.1)]).

Remark 3.6. In view of (3.7), the PMF of the MFCP can be obtained as follows:

pα1,α2 (n, t) =
n∑

r=0

P{X1 + X2 + · · · + Xr = n}P{Nα1,α2 (t) = r}

=
n∑

r=0

∑
x1+x2+···+xk=r

x1+2x2+···+kxk=n

r!
�r

k∏
j=1

λ
xj
j

xj! P{Nα1,α2 (t) = r}

=
∑
�(k,n)

zk!
�zk

k∏
j=1

λ
xj
j

xj! P{Nα1,α2 (t) = zk},

where in the penultimate step we used the explicit expression for the PMF of X1 + X2 + · · · +
Xr (see [10, p. 297]). The result follows on using the PMF of the MFPP (see [18, eq. (3.1)]).

The rth factorial moment

ψα1,α2 (r, t) =E(Mα1,α2 (t)(Mα1,α2 (t) − 1) · · · (Mα1,α2 (t) − r + 1)), r ≥ 1,

of the MFCP can be obtained using its PGF as follows.

Proposition 3.3. For r ≥ 1, the rth factorial moment of the MFCP is given by

ψα1,α2 (r, t)

=
∞∑

m=0

r∑
n=1

fm,n(r, t)

�(nα1 + (α1 − α2)m + 1)
+ C2

C1
tα1−α2

∞∑
m=0

r∑
n=1

fm,n(r, t)

�(nα1 + (α1 − α2)(m + 1) + 1)
,
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where

fm,n(r, t) = (−1)mr!Cm
2

Cm+n
1

(
m + n

n

)
tnα1+(α1−α2)m

∑
∑n

i=1 mi=r
mi∈N

n∏
�=1

(
1

m�!
k∑

j=1

(j)m�λj

)
(3.12)

and (j)m� = j(j − 1) · · · (j − m� + 1).

Proof. See Appendix A.3. �

The convergence of the series involved in Proposition 3.3 follows from Theorem 1.5 of [20].

Remark 3.7. On substituting C2 = 0 and C1 = 1 in Proposition 3.3, we get the rth factorial
moment of the GFCP (see [19, eq. (19)]). Moreover, on substituting k = 1 in Proposition 3.3,
we get the rth factorial moment of the MFPP (see [3, eq. (2.34)]).

3.2. The increments of the MFCP

For a fixed δ > 0, the increment process {Zδα1,α2
(t)}t≥0 of the MFCP is defined as

Zδα1,α2
(t) := Mα1,α2 (t + δ) −Mα1,α2 (t).

Next we show that {Zδα1,α2
(t)}t≥0 exhibits the SRD property. First we give an asymptotic

result for the covariance of the MFCP.

Proposition 3.4. For fixed s> 0, we have

Cov(Mα1,α2 (s),Mα1,α2 (t)) ∼ L(s) − q2
1tα2−1K(s), as t → ∞, (3.13)

where L(s) and K(s) are some constants that depend on s.

Proof. For fixed s> 0 and large t, we get the following on substituting (2.10) in (3.5):

Cov(Mα1,α2 (s),Mα1,α2 (t)) ∼ q2Uα1,α2 (s) + q2
1C−2

1 s2α1E2
α1−α2,2α1+1(−C2sα1−α2/C1)

− q2
1tα2−1K(s),

where K(s) is given in (2.11). On taking

L(s) = q2Uα1,α2 (s) + q2
1C−2

1 s2α1E2
α1−α2,2α1+1(−C2sα1−α2/C1),

the result follows. �

Theorem 3.3. The increment process {Zδα1,α2
(t)}t≥0 has the SRD property.

Proof. The proof follows similar lines to that of Theorem 2 of [17]. Here we give a brief
outline.

Let s> 0 be fixed such that 0< s + δ ≤ t. From (3.5) and (3.13) we have

Cov
(
Zδα1,α2

(s), Zδα1,α2
(t)
)

= Cov(Mα1,α2 (s + δ),Mα1,α2 (t + δ)) + Cov(Mα1,α2 (s),Mα1,α2 (t))

− Cov(Mα1,α2 (s + δ),Mα1,α2 (t)) − Cov(Mα1,α2 (s),Mα1,α2 (t + δ))

∼ (1 − α2)δq2
1(K(s + δ) − K(s))tα2−2. (3.14)
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From (3.5) we have

Cov(Mα1,α2 (t),Mα1,α2 (t + δ))

= q2Uα1,α2 (t) + q2
1 Cov(Yα1,α2 (t), Yα1,α2 (t + δ))

∼ q2Uα1,α2 (t) − q2
1Uα1,α2 (t)Uα1,α2 (t + δ)

+ q2
1

(
(t + δ)α1+α2

C1C2
Eα1−α2,α1+α2+1(−C2(t + δ)α1−α2/C1)

+ t2α1

C2
1

E2
α1−α2,2α1+1(−C2tα1−α2/C1)

)
, (3.15)

where in the last step we used an asymptotic result for the covariance of the IMSS (see [17,
eqs (31) and (32)]).

Substituting δ = 0 in (3.15), we get an asymptotic behaviour of the variance of the MFCP.
Thus

Var
(
Zδα1,α2

(t)
)

= Var(Mα1,α2 (t + δ)) + Var(Mα1,α2 (t)) − 2 Cov(Mα1,α2 (t),Mα1,α2 (t + δ))

∼ q2(Uα1,α2 (t + δ) − Uα1,α2 (t)) + q2
1

(
2Uα1,α2 (t)Uα1,α2 (t + δ) − U2

α1,α2
(t)

− U2
α1,α2

(t + δ)
)+ q2

1

(
(t + δ)2α1

C2
1

E2
α1−α2,2α1+1(−C2(t + δ)α1−α2/C1)

− t2α1

C2
1

E2
α1−α2,2α1+1(−C2tα1−α2/C1) + tα1+α2

C1C2
Eα1−α2,α1+α2+1(−C2tα1−α2/C1)

− (t + δ)α1+α2

C1C2
Eα1−α2,α1+α2+1(−C2(t + δ)α1−α2/C1)

)

∼ q2α2δ

C2�(α2 + 1)
tα2−1 (using (2.2) and (2.9)). (3.16)

From (3.14) and (3.16) we get

Corr
(
Zδα1,α2

(s), Zδα1,α2
(t)
)∼ d(s)t−(3−α2)/2, as t → ∞,

where

d(s) = (1 − α2)δq2
1(K(s + δ) − K(s))√

Var(Zδα1,α2
(s))

√
q2α2δ

C2�(α2+1)

.

As 1< (3 − α2)/2< 1.5, the result follows. �

3.3 An application of the MFCP to risk theory

Beghin and Macci [4] introduced the following risk process:

Rα(t) = u + ct −
Nh
α(t)∑

i=1

Xi, t ≥ 0,
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where u> 0 is the initial capital, and c> 0 is the constant premium rate. The claim numbers

Nh
α(t) :=

∑
n≥1

1{T1+T2+···+Tn≤t}, 0<α ≤ 1, h> 0

form a renewal process whose interarrival times {Tn}n≥1 has the density

f h
α (t) = λhtαh−1Eh

α,αh(−λtα), λ > 0, t> 0,

and the Xi are i.i.d. positive random variables that represent the claim sizes and are independent
of {Nh

α(t)}t≥0. For h = 1, the process {Nh
α(t)}t≥0 reduces to the TFPP. Beghin and Macci [4] have

obtained some asymptotic results for the ruin probabilities of {Rα(t)}t≥0. For more applications
of the TFPP to risk theory, we refer the reader to Biard and Saussereau [7], Constantinescu et al.
[8], and Kumar et al. [21].

Here we consider a risk process in which the number of claims received by an insurance
company is modelled using the MFCP. We define it as follows:

Rα1,α2 (t) := u + ct −
Mα1,α2 (t)∑

i=1

Xi, t ≥ 0, (3.17)

where u> 0 is the initial capital and c> 0 is the constant premium rate. Here, the i.i.d. positive
random variables Xi are the claim sizes with mean μ> 0 and these are independent of the
MFCP {Mα1,α2 (t)}t≥0.

Remark 3.8. As the TFPP and MFPP are particular cases of the MFCP, the risk process defined
in (3.17) generalizes the risk processes studied in Biard and Saussereau [7] and Kataria and
Khandakar [18]. There are several group insurance policies that insure employees of a partic-
ular institution, families, businesses, etc. A single group claim received implies several claims
within a group. These situations can be modelled using the MFCP where the claims arrive in
groups of size less than or equal to a fixed number k. This is an advantage of the risk process
defined in (3.17) compared to the risk processes studied in [7] and [18].

The mean of {Rα1,α2 (t)}t≥0 is

E(Rα1,α2 (t)) = u + ct −μq1Uα1,α2 (t),

where Uα1,α2 (t) is given in (2.8).
It is important to note that initially the expected number of claims is higher under the MFCP

regime than that of the GFCP or GCP. From (2.9) and (3.3), since 0<C ≤ 1, 0<α < 1, and t
is small, we have

tα

C�(α+ 1)
≥ tα

�(α+ 1)
> t.

The covariance of {Rα1,α2 (t)}t≥0 can be obtained along similar lines to that of Proposition
10 of [21], and it is given by

Cov(Rα1,α2 (s), Rα1,α2 (t)) = Cov

(Mα1,α2 (s)∑
j=1

Xj,

Mα1,α2 (t)∑
i=1

Xi

)
, 0< s ≤ t

= (μ2q2 + Var(X1)q1)Uα1,α2 (s) +μ2q2
1 Cov(Yα1,α2 (s), Yα1,α2 (t)).
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Its variance is given by

Var(Rα1,α2 (t)) = (μ2q2 + Var(X1)q1)Uα1,α2 (t) +μ2q2
1 Var(Yα1,α2 (t)).

It is important to observe that if the mean and variance of claim sizes are finite then the risk
process {Rα1,α2 (t)}t≥0 exhibits the LRD property.

The finite-time ruin probability for the risk process {Rα1,α2 (t)}t≥0 is defined as follows:

ψu(t) = P{Rα1,α2 (s)< 0 for some s ≤ t<∞}.
Now we give an asymptotic behaviour of the finite-time ruin probability when the claim sizes
are subexponentially distributed and the initial capital is arbitrarily large, i.e. u → ∞.

Let the distribution function FX1 (t) = P{X1 ≤ t} of the claim sizes in (3.17) be subexponen-
tial, that is,

lim
t→∞

(
1 − F∗2

X1
(t)
)
/(1 − FX1 (t)) = 2,

where F∗2
X1

(t) denotes the 2-fold convolution of FX1 (t).
The following result related to subexponential distribution will be used (see [2]).

Lemma 3.1. Let {Xi}i≥1 be a sequence of i.i.d. random variables having subexponential dis-
tribution F̄X1 (t) = P{X1 > t} and let N be an integer-valued random variable with E(zN)<∞
for some z> 1. Then

P

{
N∑

i=1

Xi > t

}
∼E(N)F̄X1 (t), as t → ∞,

where N is independent of {Xi}i≥1.

The following inequalities hold for the finite-time ruin probability of {Rα1,α2 (t)}t≥0:

P

{Mα1,α2 (t)∑
i=1

Xi > u + ct

}
≤ P

{Mα1,α2 (t∗)∑
i=1

Xi > u + ct∗ for some t∗ ≤ t<∞
}

≤ P

{Mα1,α2 (t)∑
i=1

Xi > u

}
. (3.18)

The PGF of the MFCP is given in (3.8), which is finite for some z> 1. On dividing (3.18) by

P

{Mα1,α2 (t)∑
i=1

Xi > u

}

and taking the limit u → ∞, we get

P

{Mα1,α2 (t∗)∑
i=1

Xi > u + ct∗ for some t∗ ≤ t<∞
}

∼ P

{Mα1,α2 (t)∑
i=1

Xi > u

}
,

where we have used limu→∞ F̄X1 (u + ct)/F̄X1 (u) = 1. On using Lemma 3.1, we get

ψu(t) ∼E(Mα1,α2 (t))F̄X1 (u), as u → ∞. (3.19)
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Thus the finite-time ruin probability has the following asymptotic behaviour as the initial
capital u → ∞:

ψu(t) ∼ q1Uα1,α2 (t)F̄X1 (u),

where we used (3.3) in (3.19).
Next we extend the above result to the case of m-dimensional risk processes, which is

motivated by Proposition 5 of [7].
Let us consider the following independent risk processes:

R(j)
α1,α2

(t) := u(j) + c(j)t −
Mα1,α2 (t)∑

i=1

X(j)
i , j = 1, 2, . . . ,m.

The above collection of independent risk processes can be rewritten as follows:

R̄α1,α2 (t) := ū + c̄t −
Mα1,α2 (t)∑

i=1

X̄i, t ≥ 0, (3.20)

where
R̄α1,α2 (t) = (

R(1)
α1,α2

(t), R(2)
α1,α2

(t), . . . , R(m)
α1,α2

(t)
)

is an m-dimensional risk process, ū = (
u(1), u(2), . . . , u(m)

)
is the initial capital vector, c̄ =(

c(1), c(2), . . . , c(m)
)

is the premium intensity vector, and X̄i =
(
X(1)

i , X(2)
i , . . . , X(m)

i

)
is the ith

claim size vector. Also, {X̄i}i≥1 is a sequence of i.i.d. random vectors with the following joint
distribution:

F(x1, x2, . . . , xm) = P
{
X(1) ≤ x1, X(2) ≤ x2, . . . , X(m) ≤ xm

}
=

m∏
j=1

P
{
X(j) ≤ xj

}

=
m∏

j=1

F(j)(xj).

Next we give an extension of the result given in (3.19) for the risk process defined in (3.20).
Its proof follows similar lines to that of the result given in (3.19).

Proposition 3.5. For j = 1, 2, . . . ,m, let the distribution of the claim sizes F(j) be subexponen-
tially distributed. For an initial capital vector ū, let

τmax(ū) = inf
{
s> 0: max

{
R(1)
α1,α2

(s), R(2)
α1,α2

(s), . . . , R(m)
α1,α2

(s)
}
< 0

}
be the first time all the components of R̄α1,α2 (t) are negative. Then, for any t> 0, we have

P{τmax(ū) ≤ t} ∼E(Mα1,α2 (t))m
m∏

j=1

(
1 − F(j)(uj)

)
,

as uj → ∞ for all j = 1, 2, . . . ,m.
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4. Compound generalized counting process

In this section we study the following process:

X(t) :=
M(t)∑
i=1

Yi, t ≥ 0,

which we call the compound generalized counting process (CGCP). Here {Yi}i≥1 is a sequence
of i.i.d. random variables with cumulative distribution function H and it is independent of the
GCP {M(t)}t≥0. Kataria and Khandakar [19] studied a risk process in which a version of the
CGCP is used to model the total claim received by the insurance company.

For k = 1, the CGCP reduces to the compound Poisson process as the GCP reduces to the
Poisson process. For H = δ1, the Dirac measure at 1, the CGCP reduces to the GCP. Further,
for k = 1 and H = δ1, the CGCP reduces to the Poisson process. On taking λj = λ for all j =
1, 2, . . . , k, the CGCP reduces to the compound Poisson process of order k (see [27]). Also, for
λj = λ(1 − ρ)ρj−1/(1 − ρk), 0 ≤ ρ < 1, j = 1, 2, . . . , k, the CGCP reduces to the compound
Pólya–Aeppli process of order k.

Theorem 4.1. Let 0 = t0 ≤ t1 ≤ · · · ≤ tn = t be a partition of [0,t]. Then the distribution
function of the CGCP has the following form:

P{X(t1) ≤ y1, X(t2) ≤ y2, . . . , X(tn) ≤ yn}

=
∑

j1,j2,...,jn

n∏
l=1

p(jl, �tl)
∫ y1

−∞

∫ y2−x1

−∞

. . .

∫ yn−∑n−1
l=1 xl

−∞
h∗j1

Y1
(x1)h∗j2

Y1
(x2) · · · h∗jn

Y1
(xn) dxn dxn−1 · · · dx1, (4.1)

where �tl = tl − tl−1, h∗jl
Y1

(·) denotes the jl-fold convolution of density function h of Y1 and the
summation is taken over all non-negative integers jl ≥ 0, l = 1, 2, . . . , n.

The proof of Theorem 4.1 follows similar lines to that of Theorem 1 of [27], and thus it is
omitted.

Remark 4.1. The marginal distribution of the CGCP can be obtained by taking n = 1 in (4.1),
and it is given by

P{X(t) ≤ y} =
∞∑

j=0

p(j, t)
∫ y

−∞
h∗j

Y1
(x) dx. (4.2)

If Y1 has discrete distribution then the summations will appear in place of integrations in
(4.1) and (4.2).

The mean of the CGCP can be obtained by using Wald’s identity as follows:

E(X(t)) =E(M(t))E(Y1) = tE(Y1)
k∑

j=1

jλj.
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The variance of the CGCP can obtained as follows:

Var(X(t)) =E(M(t)) Var(Y1) + (E(Y1))2 Var(M(t))

= t Var(Y1)
k∑

j=1

jλj + t(E(Y1))2
k∑

j=1

j2λj. (4.3)

In the following result, we obtain the PGF for a particular case of the CGCP.

Proposition 4.1. Let

D(t) =
M(t)∑
i=1

Yi, t ≥ 0

be a CGCP where P{Y1 = i} = αi, i = 0, 1, 2, . . . . Then the PGF of {D(t)}t≥0 is given by

GD(t)(u) = exp

(
t

k∑
j=1

λj

∞∑
i=1

α
∗j
i (ui − 1)

)
,

where
α

∗j
i =

∑
∑j

m=1 lm=i
lm∈N0

αl1αl2 · · · αlj for all j = 1, 2, . . . , k.

Proof. See Appendix A.4. �

The proof of the following result follows similar lines to that of Lemma 1 of [27].

Lemma 4.1. Let {Yi}i≥1be a sequence of non-negative i.i.d. random variables with PMF
P{Y1 = i} = αi, i = 0, 1, 2, . . . . Also, let

C(t) =
N(t)∑
i=1

Yi, t ≥ 0,

where {N(t)}t≥0 is the Poisson process with intensity � and which is independent of {Yi}i≥1.
Then

C(t)
d=

∞∑
i=1

iNi(t), t ≥ 0,

where {Ni(t)}t≥0 is the Poisson process with intensity �αi.

For k = 1, the process {D(t)}t≥0 reduces to {C(t)}t≥0.

Remark 4.2. If

αi = 1

�

k∑
j=1

λjα
∗j
i ,

where P{Y1 = i} = αi for all i = 0, 1, . . . , then from the PGF of {C(t)}t≥0, that is,

E
(
uC(t))= exp

(
�t
(
E
(
uY1
)− 1

))= exp

(
�t

∞∑
i=1

(ui − 1)αi

)
,
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we get C(t)
d= D(t), t ≥ 0. So, in this case {D(t)}t≥0 is a Lévy process and hence it is infinitely

divisible. Moreover, the characteristic function of {D(t)}t≥0 is given by

E
(
eωξD(t))= exp

(
�t

∞∑
i=1

(eωiξ − 1)αi

)
, ω= √−1.

Thus the Lévy measure of {D(t)}t≥0 is

�(dx) =�

∞∑
i=1

αiδi dx.

Let

Q(t) = D(t) − tE(Y1)
k∑

j=1

jλj.

Under the given condition on αi , {D(t)}t≥0 has independent increments. Thus, for s ≤ t, we
have

E(Q(t) − Q(s) | Fs) =E(D(t) − D(s) | Fs) − (t − s)E(Y1)
k∑

j=1

jλj = 0,

where {Ft}t≥0 is a natural filtration. Thus {Q(t)}t≥0 is a martingale with respect to {Ft}t≥0.

Theorem 4.2. Let

αi = 1

�

k∑
j=1

λjα
∗j
i ,

where P{Y1 = i} = αi for all i = 0, 1, . . . and
∑∞

i=1 i2αi <∞. Then the process {D(t)}t≥0
exhibits the LRD property.

Proof. Note that {D(t)}t≥0 is a Lévy process under the given condition on αi (see Remark
4.2). So, its covariance can be obtained as follows:

Cov(D(s),D(t)) =E(D(s)(D(t) − D(s))) +E
(
(D(s))2)−E(D(s))E(D(t))

=E(D(s))E(D(t) − D(s)) + (E(D(s)))2 + Var(D(s)) −E(D(s))E(D(t))

= s Var(Y1)
k∑

j=1

jλj + s(E(Y1))2
k∑

j=1

j2λj, 0< s ≤ t. (4.4)

On substituting s = t in (4.4), we get the variance of {D(t)}t≥0. Alternatively, it can be obtained
from (4.3). Thus, for fixed s and large t, the correlation function of {D(t)}t≥0 has the following
asymptotic behaviour:

Corr (D(s),D(t)) = Cov(D(s),D(t))√
Var(D(s))

√
Var(D(t))

∼ √
st−1/2,

which implies that it has the LRD property. �
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5. Concluding remarks

We introduce a time-changed version of the GCP, namely the MFCP. It is defined as the
GCP time-changed by an independent IMSS. We obtain the system of fractional differential
equations that governs its state probabilities. Its various distributional properties are obtained,
such as its one-dimensional distribution, mean, variance, covariance, and PGF. It is shown that
the MFCP exhibits the LRD property whereas its increment process has the SRD property.
As pointed out in Remark 3.2, the processes that exhibit the LRD property have applications
in several areas, such as internet data traffic modelling, finance, econometrics, and hydrology.
So, the MFCP has potential applications in these areas and other related fields. Moreover, we
consider a risk process in which the MFCP is used to model the claim numbers received by
an insurance company, and we obtained some results related to its ruin probability. It is shown
that the introduced risk process has the LRD property. Also, we discuss some distributional
properties of a compound version of the GCP.

The MFCP can serve as a stress test for insurance companies as the initial number of claims
is higher. Thus it can be an important process for start-ups and re-insurers which have a
dependent claim structure in their portfolio. Further, it is shown that the MFCP exhibits the
overdispersion property, so it can potentially be used when the empirical count data exhibit
overdispersion. The TFPP is a useful model in finance, in optics to describe light propagation
through non-homogeneous media, and in the analysis of the transport of charged carriers (see
[6]). As the MFCP is a generalization of the TFPP, it might have potential applications in these
fields too.

Appendix A

A.1. Proof of Proposition 3.2

Proof. On taking the Z transform with respect to the state variable on both sides of (3.10),
we get

C1
dα1

dtα1
(Zpα1,α2 (n, t)) + C2

dα2

dtα2
(Zpα1,α2 (n, t))

= −�Zpα1,α2 (n, t) +
min{n,k}∑

j=1

λjZpα1,α2 (n − j, t)

= −�Zpα1,α2 (n, t) +
k∑

j=1

λjZpα1,α2 (n − j, t)

= −�(1 − GX1 (z−1)
)
Zpα1,α2 (n, t),

where we used (2.5) and (3.9).
Now we take the Laplace transform with respect to the time variable, and use (1.2) with

Zpα1,α2 (n, 0) = 1 to obtain

C1sα1L(Zpα1,α2 (n, t);s) − C1sα1−1 + C2sα2L(Zpα1,α2 (n, t);s) − C2sα2−1

= −�(1 − GX1 (z−1)
)L(Zpα1,α2 (n, t);s).

https://doi.org/10.1017/jpr.2023.70 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.70


734 M. KHANDAKAR AND K. K. KATARIA

Thus we get

L(Zpα1,α2 (n, t);s) = C1sα1−1 + C2sα2−1

C1sα1 + C2sα2 +�
(
1 − GX1 (z−1)

) .

On using (2.3), we get

Zpα1,α2 (n, t) =
∞∑

m=0

(−C2tα1−α2/C1)mEm+1
α1,(α1−α2)m+1

(−�(1 − GX1 (z−1)
)
tα1/C1

)

−
∞∑

m=0

(−C2tα1−α2/C1)m+1Em+1
α1,(α1−α2)(m+1)+1

(−�(1 − GX1 (z−1)
)
tα1/C1

)
,

which agrees with (3.8) for u = z−1. The proof is complete on using (2.6). �

A.2. Proof of Theorem 3.2

Proof. Let fα1,α2 (t, x) be the density function of the IMSS. From (1.3) and (3.1), the Laplace
transform of the PMF of the MFCP can be written as

L(pα1,α2 (n, t);s) =
∫ ∞

0

∑
�(k,n)

k∏
j=1

λ
xj
j

xj! xzk e−�x
(∫ ∞

0
e−stfα1,α2 (t, x) dt

)
dx

=
∑
�(k,n)

k∏
j=1

λ
xj
j

xj!
φ(s)

s

∫ ∞

0
e−�xxzk e−xφ(s) dx (using (2.7))

=
∑
�(k,n)

k∏
j=1

λ
xj
j

xj!
φ(s)

s

zk!
(�+ φ(s))zk+1

=
∑
�(k,n)

k∏
j=1

λ
xj
j

xj! zk! C1sα1−1 + C2sα2−1

(C1sα1 + C2sα2 +�)zk+1

=
∑
�(k,n)

k∏
j=1

λ
xj
j

xj!
zk!

Czk+1
1

[
C1

(
s(α1−1)/(zk+1)

sα1 + C2C−1
1 sα2 +�C−1

1

)zk+1

+ C2

(
s(α2−1)/(zk+1)

sα1 + C2C−1
1 sα2 +�C−1

1

)zk+1
]

.

The result follows on using (2.3). �

A.3. Proof of Proposition 3.3

Proof. Let

ζ (u, t) = − tα1

C1

k∑
j=1

(1 − uj)λj.
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Then

ψα1,α2 (r, t)

= ∂r

∂ur
Gα1,α2 (u, t)

∣∣∣∣
u=1

=
∞∑

m=0

(−C2tα1−α2/C1)m ∂r

∂ur
Em+1
α1,(α1−α2)m+1(ζ (u, t))

∣∣∣∣
u=1

+ C2

C1
tα1−α2

∞∑
m=0

(−C2tα1−α2/C1)m ∂r

∂ur
Em+1
α1,(α1−α2)(m+1)+1(ζ (u, t))

∣∣∣∣
u=1

. (A.1)

On using the rth derivative of composition of two functions (see [15, eq. (3.3)]), we get

∂r

∂ur
Em+1
α1,(α1−α2)m+1(ζ (u, t))

∣∣∣∣
u=1

=
r∑

n=0

1

n!
(
Em+1
α1,(α1−α2)m+1(ζ (u, t))

)(n)
Ar,n(ζ (u, t))

∣∣∣∣
u=1
, (A.2)

where

Ar,n(ζ (u, t))
∣∣
u=1 =

n∑
i=0

n!
i!(n − i)! (−ζ (u, t))n−i ∂

r

∂ur
(ζ (u, t))i

∣∣∣∣
u=1

= tnα1

Cn
1

dr

dur

(
k∑

j=1

(uj − 1)λj

)n∣∣∣∣
u=1

.

Using (2.1), we get(
Em+1
α1,(α1−α2)m+1(ζ (u, t))

)(n)∣∣
u=1

= (m + 1)(m + 2) · · · (m + n)Em+n+1
α1,nα1+(α1−α2)m+1(ζ (u, t))

∣∣
u=1

= (m + 1)(m + 2) · · · (m + n)

�(nα1 + (α1 − α2)m + 1)
.

Using the result (see [15, eq. (3.6)])

dr

dwr (g(w))n =
∑

m1+m2+···+mn=r
mi∈N0

r!
m1!m2! · · · mn!g(m1)(w)g(m2)(w) · · · g(mn)(w),

we get

dr

dur

(
k∑

j=1

(uj − 1)λj

)n∣∣∣∣
u=1

= r!
∑

∑n
i=1 mi=r
mi∈N0

n∏
�=1

1

m�!
dm�

dum�

(
k∑

j=1

(uj − 1)λj

)∣∣∣∣
u=1

= r!
∑

∑n
i=1 mi=r
mi∈N

n∏
�=1

(
1

m�!
k∑

j=1

(j)m�λj

)
. (A.3)
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On substituting (A.2)–(A.3) in the first sum of (A.1), we get

(−C2tα1−α2/C1)m ∂r

∂ur
Em+1
α1,(α1−α2)m+1(ζ (u, t))

∣∣∣∣
u=1

=
r∑

n=1

fm,n(r, t)

�(nα1 + (α1 − α2)m + 1)
,

where fm,n(r, t) is given in (3.12). Similarly, for the second sum of (A.1), we have

(−C2tα1−α2/C1)m ∂r

∂ur
Em+1
α1,(α1−α2)(m+1)+1(ζ (u, t))

∣∣∣∣
u=1

=
r∑

n=1

fm,n(r, t)

�(nα1 + (α1 − α2)(m + 1) + 1)
.

Finally, the result follows on substituting the above values in (A.1). �

A.4. Proof of Proposition 4.1

Proof. The PGF of the GCP is given by (see [19])

GM(t)(u) = exp

(
k∑

j=1

λj(u
j − 1)t

)
= exp

(
t

k∑
j=1

λju
j −�t

)
.

Let G∗k
Y1

(u) =E
(
u
∑k

i=1 Yi
)
. Then

GD(t)(u) = exp

(
t

k∑
j=1

λj(GY1 (u))j −�t

)

= exp

(
t

k∑
j=1

λj

j∏
i=1

GYi(u) −�t

)
(Yi are identical)

= exp

(
t

k∑
j=1

λjGY1+Y2+···+Yj(u) −�t

)
(Yi are independent)

= exp

(
t

k∑
j=1

λj

∞∑
i=0

P{Y1 + Y2 + · · · + Yj = i}ui −�t

)

= exp

⎛
⎜⎝t

k∑
j=1

λj

∞∑
i=0

∑
∑j

m=1 lm=i
lm∈N0

αl1αl2 · · · αlju
i −�t

⎞
⎟⎠

= exp

(
t

k∑
j=1

λj

∞∑
i=0

α
∗j
i ui − t

k∑
j=1

λj

)
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= exp

(
t

k∑
j=1

λj

∞∑
i=0

α
∗j
i (ui − 1)

) (
as

∞∑
i=0

α
∗j
i = 1

)

= exp

(
t

k∑
j=1

λj

∞∑
i=1

α
∗j
i (ui − 1)

)
.

This completes the proof. �
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