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Effects of fluctuating energy input on the small
scales in turbulence
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In the standard cascade picture of three-dimensional turbulent fluid flows, energy is
input at a constant rate at large scales. Energy is then transferred to smaller scales
by an intermittent process that has been the focus of a vast literature. However, the
energy input at large scales is not constant in most real turbulent flows. We explore the
signatures of these fluctuations of large-scale energy input on small-scale turbulence
statistics. Measurements were made in a flow between oscillating grids, with Rλ up
to 262, in which temporal variations in the large-scale energy input can be introduced
by modulating the oscillating grid frequency. We find that the Kolmogorov constant
for second-order longitudinal structure functions depends on the magnitude of the
fluctuations in the large-scale energy input. We can quantitatively predict the measured
change with a model based on Kolmogorov’s refined similarity theory. The effects
of fluctuations of the energy input can also be observed using structure functions
conditioned on the instantaneous large-scale velocity. A linear parametrization using
the curvature of the conditional structure functions provides a fairly good match with
the measured changes in the Kolmogorov constant. Conditional structure functions
are found to provide a more sensitive measure of the presence of fluctuations in the
large-scale energy input than inertial range scaling coefficients.

Key words: homogeneous turbulence, intermittency, turbulent flows

1. Introduction
One of the earliest recognitions of the importance of fluctuations in the energy

dissipation rate in turbulence can be found in a footnote by Landau in the 1944
Russian edition of the textbook on fluid mechanics (Landau & Lifschitz 1944). The
footnote explains that universal formulas for the small scales of structure functions
do not exist because the energy dissipation rate will fluctuate on long time scales,
and these fluctuations will be different in different flows. Frisch (1995) provides an
extended discussion of the footnote. In the refined similarity theory by Kolmogorov
(1962) and Obukhov (1962), this insight on universality is extended to include
fluctuations that result from the random character of the transfer of energy between
scales, which is often called internal intermittency. Kolmogorov (1962) gives Landau
credit for recognizing the importance of internal intermittency. However, this credit
seems to be somewhat misplaced since the available published text by Landau
observes only that large-scale fluctuations in the energy dissipation will destroy
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universality of the small scales (Frisch 1995; Mouri et al. 2006). A few years after
the footnote comment, Batchelor & Townsend (1949) provided experimental evidence
of the existence of internal intermittency. During the intensive effort to understand
internal intermittency over the past 60 years, the direct application of Landau’s insight
about the importance of large-scale fluctuations has often been obscured.

The refined similarity theory by Kolmogorov (1962) and Obukhov (1962) proposed
that in the inertial range the moments of velocity differences between two points
are universal functions when they are conditioned on the locally averaged value of
the energy dissipation rate, εr, defined as the instantaneous energy dissipation rate
averaged over a sphere of radius r. For simplicity we will consider the longitudinal
component of the velocity differences, ∆ru. The conditional moments are

〈(∆ru)
p|εr〉 = Cp(εrr)

p/3, (1.1)

where Cp are universal constants (Pope 2000). Averaging this expression over a
distribution of εr yields

〈(∆ru)
p〉 = Cp〈εp/3

r 〉rp/3 = Cp
〈εp/3

r 〉
εp/3

(εr)p/3, (1.2)

where ε = 〈εr〉 is the mean energy dissipation rate. Since the moments of εr depend on
r, this means that the inertial range scaling law is modified by internal intermittency.
Kolmogorov proposed that the fluctuations of εr could be described with a power law
scaling,

〈εp
r 〉
εp
∝
(

L

r

)ξp
, (1.3)

where L is a length characterizing the energy input scale. In Kolmogorov (1962), a
log-normal model was used to relate ξp for all p to ξ2 = µ, which is commonly called
the intermittency exponent. An extensive literature has explored the r dependence of
statistics of εr in order to understand anomalous scaling exponents in the inertial range
(Sreenivasan & Antonia 1997).

However, the effects of fluctuations in the energy dissipation rate due to the large
scales has been given much less attention, even though this is the direct application
of Landau’s original comment. Kolmogorov did state that the coefficients in the
scaling law should not be universal, presumably because he recognized that large-
scale fluctuations would not be universal (Kolmogorov 1962). Monin & Yaglom (1971)
provide a simple model at the beginning of their section titled ‘refined treatment of the
local structure of turbulence, taking into account fluctuations in the dissipation rate’.
An extended presentation of this model is in the textbook by Davidson (2004). They
consider averaging together equal numbers of samples from two different turbulent
states: state 1 with energy dissipation rate ε1 = (1 + γ )〈ε〉 and another state 2 with
ε2 = (1 − γ )〈ε〉. Here 〈ε〉 is the mean energy dissipation rate and γ is a measure of
the difference in energy dissipation between the two states. Then (1.2) implies that
a measured second-order structure function in the inertial range averaged over equal
contributions from each state would be

〈(∆ru)
2〉 = C2

2

[
(1+ γ )2/3 + (1− γ )2/3] (εr)2/3. (1.4)

So the large-scale fluctuations in the energy dissipation are predicted to change the
coefficient of the inertial range scaling law without changing the power law scaling. In
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this model, γ must be less than or equal to one, so the coefficient of the second-order
structure function can decrease to as low as C2/21/3 ≈ 0.794C2 for the case γ = 1
where there is no energy injection in state 2.

This model is easily extended to the case where samples are included from state 1
with probability β and from state 2 with probability 1− β. Now the energy dissipation
rates are ε1 = (1 + (1 − β)γ /β)〈ε〉 and ε2 = (1 − γ )〈ε〉. For this extended model, the
measured structure function of order p would be

〈(∆ru)
p〉 = κ(β, γ )Cp (〈ε〉r)p/3 , (1.5)

where the correction factor of the coefficient is

κ(β, γ )=
[
β

(
1+ 1− β

β
γ

)p/3

+ (1− β)(1− γ )p/3
]
. (1.6)

In the limiting case γ = 1 and β→ 0, the coefficient for p = 2 goes to zero, and the
coefficients for p > 3 go to infinity, so the effects of large-scale fluctuations on the
small-scale statistics can be very large. In this limiting case, the flow consists of brief
pulses of large energy input between long periods of no energy input.

In both Monin & Yaglom (1971) and Davidson (2004), the presentation of the
model in (1.4) is followed by the observation that in typical situations this effect is not
large. Figure 1 shows a contour plot of the correction factor for p = 2 in (1.6) as a
function of the fluctuations in the energy input, γ , and the fraction of the time spent
in the high energy input state, or duty cycle, β. The observation that the correction is
not large in most cases is justified since the correction is less than 2.4 % for half of the
parameter space for p = 2. However, the correction can be very large in some flows.
There is always a divergence for γ = 1 and β → 0, and for large p, the correction
is larger. Although this two-state model is a simple idealization, we will show that it
provides a reasonably good description of some of our data.

In real flows, the energy dissipation rate and εr have continuous distributions. In the
continuous case, (1.2) can be used to predict the behaviour of structure functions, but
there are now contributions to the distribution of εr from both internal intermittency
and fluctuations in the energy input. In particular, εr for r > L has a distribution which
is determined not by cascade processes but by the mechanisms creating the turbulence.
For the case of second-order structure functions where internal intermittency has a
very small effect, we can estimate the fluctuations in the energy input and use this to
predict the coefficients of the scaling law. If the mean square velocity, 3U2 = 〈uiui〉,
and the energy input length scale, L, are defined using ensemble averages, then they
can be considered to be time-dependent. In this case, ε ∝ U3/L provides an estimate of
the instantaneous energy dissipation rate. If time averages of this dissipation rate are
then used in (1.2), we obtain

〈(∆ru)
p〉 = Cp

〈(U3/L)p/3〉
〈U3/L〉p/3 (εr)

p/3. (1.7)

If L has a weak dependence on the variations in the energy input, this simplifies to

〈(∆ru)
p〉 = Cp

〈Up〉
〈U3〉p/3 (εr)

p/3. (1.8)

If internal intermittency is important, then the effects of both fluctuations in the
energy input and fluctuations in the energy transfer might be captured using the
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FIGURE 1. (Colour online) Contour plot of the correction factor κ from (1.6) for p = 2. This
shows the change in the coefficient of the inertial range scaling law as a function of the
amplitude of fluctuations in the energy input γ , and the time spent in the high energy input
state, or duty cycle, β.

expression

〈(∆ru)
p〉 = C′p

〈εp/3Lξp〉
〈ε〉p/3〈L〉ξp (〈ε〉r)

p/3

( 〈L〉
r

)ξp
. (1.9)

It is important to determine the size of the effects of fluctuations in the large-scale
energy input in real turbulent flows. Surprisingly, there are no published results that we
know of that document a dependence of coefficients of inertial range scaling laws for
structure functions on systematic changes in the large scales of the flow. A compilation
of experimental (Sreenivasan 1995) and simulation (Donzis & Yeung 2010) results
have given credence to the notion that the second-order coefficients are close enough
to independent of the flow that they can be treated as universal constants. At least
three experimental studies have explored fluctuations in the large-scale energy input
in detail. Praskovsky et al. (1993) study two high Reynolds number flows, a mixing
layer and a return channel. They find a conditional dependence of the second-order
structure functions on the instantaneous velocity and connect this with spatial and
temporal variability of the energy flux passing through the cascade. They emphasize
that the conditional dependence they observe is not in violation of the assumptions
of the refined Kolmogorov theory since changes in the energy flux should change the
small scales. Sreenivasan & Stolovitzky (1996) use measurements in the atmospheric
boundary layer to demonstrate the conditional dependence of structure functions on
the velocity. They identify this conditional dependence as a result of mixed averages
over regions of the flow with different energy dissipation rates, and show that when
properly normalized by the instantaneous local energy dissipation rate the conditional
dependence is removed, in agreement with Kolmogorov’s refined similarity hypotheses.
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More recently, Mouri et al. (2006) explored the effects of large-scale fluctuations
of the turbulence energy dissipation rate. They measure grid and boundary layer
turbulence and clearly confirm that the large-scale energy fluctuations exist and that
they affect small-scale statistics. They explicitly state that the large-scale fluctuations
do not affect the power law scaling or the coefficients of second-order structure
functions in the inertial range.

There is another set of literature exploring time-dependent energy input in
turbulence that has identified the presence of response maxima when the energy input
oscillates about a mean value with a period of the order of the large-eddy turnover
time. This effect was first predicted in a mean field theory (von der Heydt, Grossmann
& Lohse 2003). It has been explored in a variety of models, numerical simulations and
experiments (Cadot, Titon & Bonn 2003; von der Heydt et al. 2003; Kuczaj, Geurts
& Lohse 2006; Bos, Clark & Rubinstein 2007a; Jin & Xia 2008; Kuczaj et al. 2008).
However, this work seems not to have considered the effects on structure functions.

In this paper we present a series of experimental measurements of the effects of
time-dependent energy input on the small scales of turbulence. We focus on second-
order structure functions where the effects of internal intermittency are small. We find
that the coefficient of the inertial range scaling law depends on the fluctuations in the
large-scale energy input and measure coefficients that are more than 20 % below the
value for the continuously driven case.

2. Experiment
The turbulence is generated in an octagonal Plexiglas tank that is 1 m× 1 m× 1.5 m

filled with approximately 1100 l of filtered and degassed water. Two identical
octagonal grids oscillate in phase to generate the turbulence. The grids have 8 cm
mesh size, 36 % solidity, and are evenly spaced from the top and bottom of the tank
with a 56.2 cm spacing between grids and a 1 cm gap between the grids and the tank
walls. The grid oscillation has 12 cm amplitude and is powered by an 11 kW motor. In
these experiments the grids were oscillated with frequencies up to 4 Hz, which allows
Taylor Reynolds numbers up to Rλ = 262. Details about the experimental setup are
available in Blum et al. (2010).

We use stereoscopic particle tracking using four cameras as shown in figure 2. The
cameras are two Bassler A504K video cameras capable of 1280×1024 pixel resolution
at 480 frames per second, and two Mikrotron MC1362 cameras with the same pixel
resolution and data rates, but with greater sensitivity. A 5 cm× 5 cm× 5 cm detection
volume at the centre of the flow was illuminated with a pulsed 50 W Nd:YAG laser. A
real-time image compression circuit with compression factors of 100 to 1000 enables
us to acquire data continuously, which allows access to large data sets of particle
trajectories (Chan, Stich & Voth 2007).

Previous work with this experiment has shown that there are measurable fluctuations
in the energy input even when the driving frequency of the oscillating grids is constant
(Blum et al. 2010). Here we augment this effect by modulating the driving frequency
of the oscillating grids. For example, rather than driving the grids continuously at
3 Hz, we can drive it at 3 Hz for 15 s, and then halt for 15 s, and repeat. This
produces a periodic time dependence in the energy input with a longer time scale than
the grid oscillation period. Figure 3 shows a schematic of the frequency modulation
along with variable definitions. In this paper, we explore three different ways to
augment the fluctuations in large-scale energy input: (i) change T , the time to
complete one modulation cycle; (ii) change the frequency modulation by holding fhigh
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1 m  

1.5 m 

FIGURE 2. (Colour online) Experimental setup. Four high-speed cameras obtain stereoscopic
images of a (5 cm)3 volume at the centre of the flow that is illuminated by a pulsed Nd:YAG
laser with 50 W average power.

0

T

Frequency 

Grid 
position 

Time

Time

0

thigh tlow

fhigh

flow

FIGURE 3. Sketches of the position and frequency of the oscillating grids as functions of
time. thigh is the time over which the grids oscillate at the higher frequency, tlow is the time
at lower frequency. T is the cycle period, the time to complete one cycle of modulation from
high to low frequency. fhigh is the high frequency of grids and flow is the low frequency. 1f is
the frequency differences between fhigh and flow.

constant and changing flow from 0 up to fhigh; and (iii) changing the duty cycle thigh/T .
Figure 4 shows a specific example of the time dependence of the mean square velocity,
〈uiui〉, which is a measure of the energy in the large scales. The mean is obtained as
a phase average over many cycles. It takes time for energy to propagate from the grid
to the detection volume, so the energy lags several seconds after the grid frequency
changes.

The inertia of the system used to drive the grids limited the rate at which the driving
frequency could be changed. We were able to reduce the time required to stop or start
to less than 1/3 of a second by minimizing the inertia in the experiment. The original
version of this apparatus (Blum et al. 2010) used a flywheel to improve symmetry
between the up and down stroke of the oscillating grids. For this experiment we
replaced the flywheel with a coupler. For the run with fhigh = 3 Hz shown in figure 4,
the start time is less than one oscillation and accounts for less than 3 % of the data.
However, limitations from the inertia of the drive system did limit our experiments to
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Time (s)

0

100

50

12 24 36

FIGURE 4. Time dependence of the mean square velocity measured by phase averaging over
many cycles for an experiment with fhigh = 3 Hz, flow = 0 Hz, period T = 24 s, and 50 % duty
cycle. Both the first and second cycle are phase averages over the whole experiment and
hence are identical.

fhigh
(Hz)

flow
(Hz)

T
(s)

Duty
cycle
(%)

U
(cm s−1)

L
(cm)

τ
(s)

ε
(cm2 s−3)

Rλ

Varying
amplitude

3 3 30 50 5.46 7.11 1.3 22.9 241
3 2 30 50 4.72 7.06 1.5 14.9 224
3 1 30 50 4.23 6.47 1.57 11.7 203
3 0 30 50 4.21 6.72 1.59 11.1 206

Varying
period

3 0 3 50 4.44 7.55 1.72 11.6 224
3 0 6 50 4.71 8.04 1.71 13 238
3 0 12 50 4.54 7.86 1.72 11.9 231
3 0 24 50 4.42 7.57 1.73 11.4 224
3 0 48 50 4.07 6.07 1.49 11.1 193
3 0 384 50 4.06 5.82 1.36 11.5 188

Varying
duty cycle

3 0 30 100 5.46 7.11 1.3 22.9 241
3 0 30 75 4.92 7.22 1.47 16.5 230
3 0 30 50 4.21 6.72 1.6 11.1 206
3 0 30 25 3.27 6.24 1.91 5.6 175

Varying
Reynolds
number

1 N/A N/A 100 1.96 6.38 3.28 1.18 137
2 N/A N/A 100 4.05 8.8 2.17 7.55 231
3 N/A N/A 100 5.46 7.11 1.3 22.9 241
4 N/A N/A 100 7.14 6.42 0.73 56.7 262

TABLE 1. Experimental parameters and resulting statistics for different sets of experiments.
The length scale characterizing the energy input is L = u3/ε. The eddy turnover time is
τ = L/U. Note that the case of fhigh = 3 Hz, flow = 3 Hz, duty cycle 50 % corresponds to
the same data as the case of fhigh = 3 Hz, flow = 0 Hz, duty cycle 100 %.

periods of T = 3 s and greater, which resulted in the period of the modulation of the
energy input always being longer than the large-scale turnover time.

We conducted three sets of experiments to explore the effects of fluctuations of
large-scale energy input on small scales. Parameters for each of the experiments
are given in table 1. In the first set of experiments we made measurements
with period T of 3, 6, 12, 24, 48, and 384 s while always modulating the grid
frequency with (fhigh–flow) = (3–0) Hz, with a duty cycle of 50 %. We will refer to
these experiments as ‘varying the period’. In the second set of experiments, we
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held fhigh = 3 Hz and made measurements with flow of 3, 2, 1, and 0 Hz to get
(fhigh–flow) = (3–3), (3–2), (3–1), (3–0) Hz with T = 30 s period and 50 % duty cycle.
We will refer to these experiments as ‘varying the amplitude’. In the third set of
experiments we made measurements with duty cycles of 25, 50, 75 and 100 %, while
always modulating the grid frequency with (fhigh–flow) = (3–0) Hz and a period of
T = 30 s. We will refer to these experiments as ‘varying the duty cycle’. We also took
data with continuous drive at grid frequencies ranging from 1 to 4 Hz to vary the
Reynolds number as our control group, to show that the effects we observe cannot be
simply attributed to the changes in Reynolds number.

In figure 5(a) we show the time dependence of the mean square velocity, 〈uiui〉, for
the set of experiments varying the period. Time zero is defined as the time when the
energy input halts. For all of these experiments, the energy dissipates at approximately
the same rate, so the decay curves nearly collapse. After half a period, the energy
input resumes. For the experiments of longer period such as T = 48 s, the energy has
decayed to 10 % of its initial value after half a period. In figure 5(b), these data are
shown with time normalized by the period. One additional data set with T = 384 s is
added in this plot. Only for this data set with a very long period does the fluid become
approximately quiescent before the energy input is resumed.

3. Results
3.1. Coefficients of the inertial range scaling law

3.1.1. Varying period
Figure 6 shows the third-order structure functions of the experiments varying the

period. When compensated by εr, the inertial and dissipation ranges of the third-order
structure functions collapse fairly well.

The energy dissipation rate is determined from the peak value of these compensated
third-order structure functions and the 4/5 law. It is known that this method will
slightly underestimate the energy dissipation rate for the moderate Reynolds numbers
that we study. From previous simulations (Ishihara, Gotoh & Kaneda 2009) and
experiments (Moisy, Tabeling & Willaime 1999), we estimate that this error is
between 5 and 10 %. This is consistent with an estimate from our own data in
which adding the viscous term in the Kolmogorov equation produces a value of the
energy dissipation rate between 7 and 10 % higher than the value from the 4/5 law.
We choose to use the 4/5 law estimate of the energy dissipation rate because we
will focus on measurements of the second-order Kolmogorov constant. The small
underestimate of that quantity due to moderate Reynolds number is partially cancelled
by the underestimate of the energy dissipation rate, leading to measurements of the
Kolmogorov constant that are closer to the high Reynolds number value.

However, the compensated second-order structure functions shown in figure 7(a)
do not collapse well at all. The maximum of these compensated structure functions,
which is an estimate of the coefficient in the inertial range scaling law, shows a
20 % decrease as the period increases. Increasing the fluctuations in the energy input
does have a significant effect on the small scales of the flow. The shape of the
second-order structure functions shows little change, which is consistent with the idea
that fluctuations in the energy input at large scales primarily change the coefficients
in scaling laws while leaving the scaling exponents unchanged. Figure 7(b) shows the
second-order structure functions scaled by the prediction of (1.8). The good collapse
of these curves after scaling indicates that the effects of fluctuations in the energy
input are largely captured by the refined model.
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FIGURE 5. (Colour online) (a) Time dependence of the mean square velocity measured by
phase averaging over many cycles. The motor is halted at t = 0, and turned back on after half
a cycle period, t = T/2. Data are from the experiments with varying cycle period: T = 3 s (+),
6 s (©), 12 s (∗), 24 s (×), 48 s (�). The symbols © and + are only plotted every four data
points for clarity, and other symbols show every data point. (b) The fluctuating energy versus
t/T with an additional data set T = 384 s (�). Here all data sets have symbols plotted for
every other data point.

Figure 8 shows the measured coefficient of the inertial range scaling of the second-
order structure function, commonly labelled as Kolmogorov constant C2. We use
the peak of the compensated structure functions in figure 7(a) to measure C2. The
decrease in the ‘constant’ C2 as the period increases is a clear indication that
the previous assessment by Praskovsky et al. (1993) and Mouri et al. (2006) that
large-scale fluctuations do not affect second-order structure functions is only an
approximation that is valid in cases where the fluctuations in the energy input are
small. Figure 8 also shows the prediction of our refined model from (1.8) with
the model value of C2 = 2.0. The experimental measurement and the refined model
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FIGURE 6. Third-order compensated structure functions for the experiments with varying
cycle period: T = 3 s (+), 6 s (©), 12 s (∗), 24 s (×), 48 s (�), 384 s (�). The driving
frequency modulation is (fhigh–flow)= (3–0) Hz and the duty cycle is 50 %.

are in fairly good agreement. There are many possible factors that contribute to
the difference between the measurements and the model, including the difficulty in
measuring scaling coefficients at modest Reynolds number and limitations of the
estimate ε ∝ U3/L in (1.7). These flows with flow = 0 contain both forced and decaying
turbulence, which has been observed to have different corrections for finite Reynolds
numbers (Antonia & Burattini 2006) and different coefficients in the relation ε ∝ U3/L
(Bos, Shao & Bertoglio 2007b). The dashed line is the prediction of the model by
Monin and Yaglom. Our experimental value of C2 approaches this dashed line when
the period is long, as it should, since in that case we are approaching the situation
Monin and Yaglom consider where the energy input is constant in time for both the
low-frequency and high-frequency states.

Measurement of inertial range scaling coefficients from these data at modest
Reynolds numbers presents some difficulties. We have tried different methods to
determine the coefficients. Averaging the three bins at the maxima of both the third-
and second-order structure functions produces energy dissipation rates that are smaller
by up to 9 % while yielding changes of up to 5 % in the measured values of C2.
These differences have no effect on the conclusions we draw. Data at larger Reynolds
numbers will be necessary to provide more precise quantitative measurements of how
scaling coefficients depend on fluctuations in the energy input, but our data clearly
show a dependence that is several times larger than our measurement uncertainty.

3.1.2. Varying amplitude
Similar effects of large-scale energy fluctuations on small scales are also seen in

the experiments where the amplitude of the energy input is varied by changing the
grid oscillation frequency. Figure 9(a) shows the second-order compensated structure
functions for the data sets with varying amplitude. Similar to the experiments varying
the period, the curves do not collapse, indicating that the coefficient of the scaling law
depends on the large scales. Figure 9(b) shows the second-order structure functions
scaled by the prediction of (1.8). The better collapse of these curves after scaling
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FIGURE 7. (a) Second-order compensated structure functions for the experiments with
varying period. Symbols are the same as in figure 6. (b) Second-order structure functions
scaled by the ratio of moments of the energy dissipation rate predicted by the refined model in
(1.8).

again indicates that the refined model is accurately describing the effects of fluctuating
energy input.

Figure 10 shows the measured Kolmogorov constants C2 along with predictions
from the refined model and the Monin and Yaglom model. The main point is
that increasing the amplitude of the fluctuations in the energy input systematically
decreases the constant as predicted. Quantitatively, the refined model has coefficients
larger than those measured, meaning that it underestimates the effect of the large-
scale fluctuations. This deviation is probably due to the refined model using the time
dependence of the root mean square velocity to estimate the fluctuations in the energy
input, but this does not capture all of the fluctuations. The Monin and Yaglom model
works well for small amplitudes of the energy input fluctuations, but for the largest
fluctuation amplitude (3 − 0) Hz, it predicts a much larger effect of the large-scale
fluctuations than are observed experimentally. This is expected since these data are for
period T = 30 s, and at large amplitudes of the energy input fluctuations, there is not
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2.2

C2

FIGURE 8. Experimental measurements of Kolmogorov constant C2 (•) along with the
prediction of the refined model (×) for the experiments of varying period. The dashed line
represents the prediction of the model by Monin and Yaglom.

enough time for the energy to decay to the constant values assumed by the Monin and
Yaglom model.

For the experiments varying the amplitude of the fluctuations in the energy input, we
did not directly measure the phase-averaged fluctuating velocity needed in the refined
model. To make predictions with this model, we had to model the fluctuation velocity
using the known values for continuous driving at different frequencies and the decay
rate data in figure 5. The limitations of this model probably also contribute to the
poorer agreement with the refined model in this case.

3.1.3. Varying duty cycle
The set of experiments varying the duty cycle in figure 11 also shows that the

compensated second-order structure functions show strong dependence on fluctuations
in the energy input. We show the measured Kolmogorov constant C2 in figure 12.
When the duty cycle is smaller, we observe a smaller Kolmogorov constant. For the
25 % duty cycle we see the smallest value of the Kolmogorov constants of any data set
with C2 = 1.62. Note that the 25 % duty cycle and the 75 % duty cycle do not have the
same C2. Because times with large energy input dominate the moments of the energy
dissipation rate, the effects on the Kolmogorov constant are largest for low duty cycles,
where bursts of large energy input are followed by a long quiescent period.

The predictions of the Monin and Yaglom model shown in figure 12 are consistently
below the measured constants. We expect that if the experiments were performed for
a larger period rather than T = 30 s, they would approach the Monin and Yaglom
predictions.

3.1.4. Varying Reynolds number
The set of experiments varying the Reynolds number for constant energy input in

figure 13 shows that the Kolmogorov constants for the second-order structure functions
do not have a strong dependence on Reynolds number. We vary the Reynolds number
from Rλ = 137 at 1 Hz continuous driving to Rλ = 262 at 4 Hz continuous driving.
The shape of the structure function changes at the lowest Reynolds number as

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

57
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.575


Effects of fluctuating energy input on the small scales in turbulence 539

10
1

10
2

r/ 

101 102

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

(a)

(b)

FIGURE 9. (a) Second-order compensated structure functions for the experiments with
varying amplitude. (b) Second-order structure functions scaled by the ratio of moments
of the energy dissipation rate predicted by the refined model. Symbols represent different
frequency modulations: (fhigh–flow)= (3–3) Hz (+), (3–2) Hz (©), (3–1) Hz (∗), (3–0) Hz (×).
The cycle period T is 30 s, and the duty cycle is 50 %.

expected, but after using the third-order structure functions to determine the energy
dissipation rate, the peak value remains relatively constant. There is a slight trend for
the peak to become larger for lower Reynolds numbers. This trend is in the opposite
direction to the variations we observe due to fluctuations in the energy input, and
significantly smaller. Our measurements in flows with large fluctuations in the energy
input rate have slightly smaller Reynolds numbers and significantly smaller values
of the Kolmogorov constants than the steadily driven flows. This indicates that the
variation we observe in the Kolmogorov constant is not simply the result of different
effective Reynolds numbers in different experiments.

3.2. Conditional structure functions
Previous work has used conditional structure functions to quantify the effects of the
large scales on small scales in turbulent flows (Praskovsky et al. 1993; Sreenivasan &
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FIGURE 10. Experimental measurements of Kolmogorov constant C2 (•), compared with
predictions from the refined model (×), and the Monin and Yaglom model (�) for the
experiments of varying amplitude. The predictions of the refined model and the Monin and
Yaglom model assume C2 = 2.

101 102
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FIGURE 11. Second-order compensated structure functions for the experiments with varying
duty cycle: 100 % (+), 75 % (©), 50 % (∗), 25 % (×). The driving frequency modulations are
(fhigh–flow)= (3–0) Hz and the period T is 30 s.

Stolovitzky 1996; Sreenivasan & Dhruva 1998; Blum et al. 2010, 2011). Velocity
differences between two points separated by r are dominated by structures near
r in scale, while velocity sums of two points are dominated by the large scales
in the flow. So moments of velocity differences conditioned on sums provide a
convenient way to observe the effects of the largest scales on other scales. We
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FIGURE 12. Experimental measurements of Kolmogorov constant C2 (•), and the prediction
of Monin and Yaglom model (�) for the experiments of varying duty cycle.
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FIGURE 13. Second-order compensated structure functions for the experiments with varying
Reynolds numbers: Rλ = 262 (∗), 241 (×), 231 (�), 137 (�).

find that conditional structure functions provide a more sensitive measurement of the
existence of fluctuations in the large-scale energy input than the coefficients of inertial
range structure functions. However, theoretical tools to predict the effects of large-
scale fluctuations on conditional structure functions are not available. In this section
we present measured conditional structure functions as we systematically change the
fluctuations in the energy input.

3.2.1. Varying amplitude
Figure 14 shows conditional structure functions for the data sets varying the

amplitude of the fluctuations in the energy input. We condition the structure function
on the velocity component that is transverse to r and denoted by Σu⊥. In order to
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FIGURE 14. (Colour online) Eulerian second-order conditional structure function versus
large-scale velocity for the experiments with varying amplitude. The frequencies
modulated were (fhigh–flow) = (3–3) Hz (a), (3–2) Hz (b), (3–1) Hz (c), (3–0) Hz (d).
The curves represent the separation distances: r/η = 2.67–5.33 (+), 5.33–10.67 (©),
10.67–21.33 (∗), 21.33–42.67 (×), 42.67–85.33 (�), 85.33–170.67 (�), 170.67–341.33 (M),
341.33–682.67 (O).
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compare the conditional structure function for different length scales, we normalize the
vertical axis by the unconditioned structure function. The horizontal axis is normalized
by the characteristic velocity U = (〈uiui/3〉)1/2. In figure 14(a) for constant driving
of the oscillating grids, we see the results published by Blum et al. (2010) that
the conditional structure functions for all length scales show a similar dependence
on the large-scale velocity. There is a slight dependence on length scale, with the
smallest length scales showing a stronger dependence on the large-scale velocity. This
small dependence on length scale remains unexplained since it is the opposite of the
expectation that the small scales are approaching universality. The same effect is seen
in direct numerical simulation data in Blum et al. (2011). However, in this paper we
focus on fluctuations of the energy input, and we will see that these produce much
bigger effects than the small differences for different length scales.

Figures 14(b)–14(d) show that increasing the fluctuations in the energy input
produces a large increase in the dependence of the conditional structure functions
on the large-scale velocity. In each subfigure the curves for different length scales
remain very similar, which confirms the fact observed earlier that fluctuating energy
input does not change the length scale dependence. It primarily changes a prefactor
scaling the entire structure function. Note that figure 14(a) still has dependence on
the large-scale velocity even though the oscillating grid is driven at a constant 3 Hz
frequency. We interpret this as fluctuations in the energy input that remain even in the
case of constant driving (Blum et al. 2010). To more directly compare the effects of
changing the energy input fluctuations, we extract the curve for r/η = 10.7–21.3 from
figure 14(a–d) and plot them on one graph as shown in figure 15(a). In figures 14
and 15 the symmetry around zero large-scale velocity is a result of conditioning
on the transverse component of the large-scale velocity, for which Σu⊥ > 0 is
indistinguishable from Σu⊥ < 0.

To quantify the observed dependence of the conditional structure function, we fit
all the curves in figure 14 to the functional form au4 + bu2 + c. Figure 15(b) shows
the fit coefficient b as a function of the separation distance r/η. The coefficient b
measures the curvature of the conditional structure functions at the origin, and it
captures the primary dependence on the large-scale velocity. Measuring the coefficient
of the second-order term b is also in keeping with a previous study (Sreenivasan &
Dhruva 1998). There is an increase by more than a factor of 5 in the curvature, b,
as the fluctuations in the energy input increase from driving at 3 Hz continuously to
alternating between 3 and 0 Hz. The degree to which all length scales show similar
dependence on the large scales can also be evaluated from figure 15(b). In § 3.3 we
will show that changes in b are closely related to the changes in the Kolmogorov
constant that we presented in § 3.1.

3.2.2. Varying period
Figure 16(a) shows the conditional second-order structure functions for the

experiments with varying period. When period T increases, there is a stronger
dependence on large-scale velocity. The two shortest periods T = 3 s and 6 s have
similar and relatively low curvatures. Increasing the period allows the turbulence
to decay closer to quiescent before the energy input resumes, so the conditional
dependence on the large-scale velocity is stronger at longer periods. For the very long
period, T = 384 s, the conditional structure function has a different shape with a sharp
minimum at the centre of a region with less curvature. This is the result of the high
energy state providing the samples with large velocity sum, while the low energy state
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FIGURE 15. (Colour online) (a) The velocity dependence of conditional second-order
structure functions of one separation distance r/η = 10.67–21.33 for the experiments with
varying amplitude: (fhigh–flow) = (3–3) Hz (+), (3–2) Hz (©), (3–1) Hz (∗), (3–0) Hz (×)
with 50 % duty cycle and T = 30 s. (b) The coefficient b as a function of the separation
distance for the experiments with varying amplitude. Symbols are the same as in (a).

provides only samples with velocity sum near zero. For these data at T = 384 s there
is also a much stronger dependence on the length scale, as shown in figure 16(b).

3.2.3. Varying duty cycle
Figure 17(a) shows the second-order conditional structure functions for the

experiments with varying duty cycle. It shows that reducing the duty cycle produces
a large increase in the dependence of the conditional structure functions on the large-
scale velocity. The result is consistent with our previous findings that increasing the
fluctuations of the large-scale energy input increases the dependence of the second-
order conditional structure functions on the large-scale velocity. Here all length scales
show fairly similar dependence on the large scales, as seen in figure 17(b).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

57
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.575


Effects of fluctuating energy input on the small scales in turbulence 545

101 102

0

0.5

1.0

1.5

2.0

2.5

3.0

–3 –2 –1 0 1 2 3

0

0.5

1.0

1.5

2.0

b

(a)

(b)

FIGURE 16. (Colour online) (a) The velocity dependence of second-order conditional
structure functions of one separation distance r/η = 10.67–21.33 for the experiments with
varying cycle period: T = 3 s (+), 6 s (©), 12 s (∗), 24 s (×), 48 s (�), 384 s (�). The
driving frequency modulations are (fhigh–flow)= (3–0) Hz, and the duty cycle is 50 %. (b) The
coefficient b as a function of separation distance for the experiments with varying period.
Symbols are the same as in (a).

3.3. Connecting conditional structure functions and coefficients of inertial range scaling
laws

The curvature b of the conditional structure functions increases as the fluctuations of
the large-scale energy input increase. This suggests that it might be possible to connect
b with changes in the coefficients of inertial range scaling law presented in § 3.1.

A simple linear parametrization C2 = 2(1 − 0.15b) seems to match the measured
scaling coefficients fairly well, as shown in figure 18. However, we do not have a
solid theoretical foundation for choosing this functional form and the value of 0.15 is
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FIGURE 17. (Colour online) The velocity dependence of conditional second-order structure
functions of one separation distance r/η = 10.67–21.33 for the experiments with varying
duty cycle: 100 % (+), 75 % (©), 50 % (∗), 25 % (×), with driving frequency modulations
(fhigh–flow) = (3–0) Hz and period T = 30 s. (b) The coefficient b as a function of separation
distance for the experiments with varying duty cycle. Symbols are the same as in (a).

a rough fit. For weak fluctuations in the energy input, which includes most turbulent
flows of interest, this parametrization seems to work fairly well. But for extreme cases
it fails. At low duty cycles in figure 18(b), this parametrization is well above the
measured coefficient. In the limit where one of the states is actually quiescent (γ = 1
in figure 1), the curvature b should go to infinity while the coefficient of the scaling
law would not go to zero. Conditional structure functions and coefficients of inertial
range scaling laws are both modified by fluctuations in the large-scale energy input
of turbulence. A more complete understanding of the relationship between these two
could be very useful, since the effects of fluctuations in the large-scale energy input
are much easier to measure using conditional structure functions.
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FIGURE 18. The relationship of the curvature b of the conditional second-order structure
function with the coefficient of the inertial range scaling law: (a) varying the amplitude,
(b) varying the period, and (c) varying the duty cycle. Symbols: �, the parametrization
2(1 − 0.15b); •, the experimental measurements of the Kolmogorov constant C2; ×, the
refined model; �, the Monin and Yaglom model.
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4. Discussion
In this paper we have focused on inertial range effects of fluctuations in the energy

input because they are most easily measured with our apparatus. But it should be
noted that the non-universality of the inertial range scaling coefficients implies non-
universality of the functional form of structure functions in the dissipation range.
Because the Kolmogorov scale depends on the energy flux, the functional form in the
dissipation range will depend on the distribution of the energy flux, which depends on
the fluctuations of the energy input at large scales.

A problem facing research into the effects of large-scale fluctuations on the small
scales of turbulence is that the terminology that has accumulated over many years
is not always as clear as it could be. The word ‘intermittency’ appears to have
entered the turbulence literature to describe the fluctuations between turbulent and
non-turbulent fluid flowing past a point in a free shear flow. For example, the
textbook by Hinze in 1959 uses ‘intermittent’ only in this sense. The second edition
of this textbook (Hinze 1975) introduces the use of a flatness factor to measure
the ‘degree of intermittency’ (p. 242), but even here, the goal is to quantify the
fraction of the time that turbulence occurs. Over the decades a major change has
occurred in how the word intermittency is used. In the parlance of a large part of
the turbulence research community, intermittency has become associated with the rare
events of large dissipation that are responsible for anomalous scaling (Sreenivasan
& Antonia 1997). A good example of this usage is the book by Frisch (1995)
which uses the word ‘intermittency’ to refer to the fluctuations produced by uneven
energy transfer through the cascade, which we refer to above as internal intermittency.
Frisch briefly describes the turbulent/non-turbulent fluctuations seen in free shear flows
with a footnote that says ‘This phenomenon is known as “external intermittency”; its
relation to the intermittency discussed in Chapter 8 is not clear.’ In general use, the
word ‘intermittency’ has often taken on a connotation about large deviations from
the mean that is entirely absent in the standard English definition of the word or
in the traditional application of this word to turbulent flows. However, the earlier
terminology is also still used. In the textbook by Pope (2000), the word intermittency
is reserved for the turbulent/non-turbulent fluctuations in free shear flows, while small-
scale effects are called ‘internal intermittency’. Other sources use the phrase ‘large-
scale intermittency’ to refer to the turbulent/non-turbulent fluctuations in free shear
flows. (Mi & Antonia 2001).

In this paper, we quantify the effects that fluctuations in the energy input at
large scales have on the coefficients of inertial range power laws. The success
of models based on the refined similarity hypotheses suggests we should use
terminology that connects this phenomenon with the closely related phenomenon of
internal intermittency that is already widely understood. However, the history of the
terminology for these phenomena makes it difficult to find suitable terms. Davidson
(2004) provides a clear description of the phenomenon of fluctuations at large scales
and uses the phrases ‘integral-scale intermittency’ and ‘large-scale intermittency’ to
refer to them in his section 6.5.1. We prefer this terminology, but the possibility of
confusion with the older use of the phrase ‘large-scale intermittency’ led us not to use
this terminology in this paper.

One way to view the contributions from this and a previous sequence of papers
(Blum et al. 2010, 2011) is that in quantifying the effects of large-scale fluctuations
on small scales, we find that large-scale fluctuations which affect the entire cascade
are a standard feature of turbulence and not a special feature of free shear flows
or periodically modulated flows. Conditional structure functions are a sensitive way
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to quantify this dependence, and with them we find that the effects of large-scale
fluctuations can be detected in all flows except for a few special cases such as
turbulence behind a passive grid (Blum et al. 2011). This observation is in contrast to
the usual assessment (see e.g. Praskovsky et al. 1993 and Mouri et al. 2006), where
the large-scale fluctuations are viewed as not affecting second-order statistics except
in free shear flows where conditional sampling of the turbulent regime can be used to
restore the universal result.

Our interpretation is that, in general, turbulent flows have fluctuations in the large-
scale energy input. In many cases these are not large enough to have measurable
effects on second-order statistics, but by explicit control of the time dependence of
the energy input we can make these effects big enough to produce a 20 % change in
the Kolmogorov constant for the second-order structure function. In other flows that
appear to have constant energy input such as boundary layers, or von Kármán flow
between counter-rotating disks, the strong inhomogeneity allows fluctuations at the
large scales to intermittently transport fluid from different parts of the flow, creating
fluctuations in the energy input rate which should change the constants in inertial
range scaling law in ways predicted by (1.2). The effects of turbulent/non-turbulent
fluctuations in free shear flows are then seen to be a special case of this more general
problem of transport in an inhomogeneous flow by the large-scale fluctuations. To be
sure, it is an extreme case, where the entrained fluid has no vorticity and the viscous
super-layer separating turbulent from non-turbulent fluid can be very thin. But the
extreme case is smoothly connected to other flows where the large-scale fluctuations
entrain fluid with different turbulence characteristics. For example, experiments in a
shearless mixing layer (Veeravalli & Warhaft 1989; Kang & Meneveau 2008) can
continuously vary the turbulence on the two sides of the mixing layer from the
extreme case of turbulent to non-turbulent to the case where the turbulence on both
sides of the layer are the same.

In the future, we hope that the community can adopt some terminology that will
allow us to talk more clearly about fluctuations at the large scales of turbulence.
We have shown here that we can quantify and predict the the effects of large-scale
fluctuations using a refined similarity framework. These large-scale fluctuations destroy
universality in the Kolmogorov (1941) sense in exactly the way that Landau predicted,
and they seem to naturally be called ‘large-scale intermittency’ since they are to
the large scales what internal intermittency is to inertial and dissipation range scales.
Furthermore, they are the general case into which the traditional use of the phrase
‘large-scale intermittency’ can cleanly fall. We hope that further work on this topic will
develop tools to more precisely quantify the fluctuations at large scales, and that this
will lead to a consensus about the terminology to use in discussing these effects.

5. Conclusion
Previous research has established that the small scales in turbulence are not

entirely independent of the large scales (Kolmogorov 1962; Mouri et al. 2006;
Blum et al. 2010). Landau’s footnote remark suggests that the fluctuations in the
energy dissipation due to non-universal large scales will destroy the universality of
small scales. Kolmogorov’s paper on the refined similarity hypotheses (Kolmogorov
1962) identified the fact that the coefficients of scaling laws will not be universal.
However, during the extensive effort to understand internal intermittency, the effects
of fluctuations in the large scales have been largely ignored. The consensus in the
literature has been that the coefficient of the inertial range scaling law for second-order

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

57
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.575


550 C.-C. Chien, D. B. Blum, and G. A. Voth

structure functions, known as the Kolmogorov constant C2, is a universal constant
(Praskovsky et al. 1993; Sreenivasan 1995; Yeung & Zhou 1997; Mouri et al. 2006).

In this paper, we systematically change the fluctuations in the energy input at the
large scales and find that this leads to a decrease in the Kolmogorov constant C2 that
can be more than 20 %. An extension of the idea behind Kolmogorov’s refined theory
provides a model that successfully predicts these changes of the coefficients in the
inertial range scaling laws.

We also use structure functions conditioned on the velocity sum to measure the
effect of fluctuations of large-scale energy input on small scales. These conditional
structure functions are able to identify the effects of fluctuations of the energy input
even when the fluctuations are small. The curvature of the second-order conditional
structure functions appears to be determined by fluctuations in the energy input
in a way similar to the changes in the Kolmogorov constant, but a quantitative
understanding of this relationship is not available.

The turbulent flows that have been the focus of most laboratory and simulation
work appear to have small enough fluctuations in the energy input that the effects
on the second-order Kolmogorov constant are usually negligible. However, in many
geophysical flows such as turbulent clouds, the large-scale fluctuations are a dominant
feature of the flow. Our measurements show that fluctuations in the energy input at
large scales can be determined by measuring the coefficients of the inertial range
scaling law or conditional structure functions. This allows small-scale measurements
to provide a useful diagnostic of large-scale dynamics. When it is possible to make
direct measurements or predictions of the fluctuations in the large-scale energy input,
then the models we use here can provide predictions of the inertial range scaling
coefficients from the properties of the large scales.
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