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Abstract

We extend answer set semantics to deal with inconsistent programs (containing classical

negation), by finding a “best” answer set. Within the context of inconsistent programs, it is

natural to have a partial order on rules, representing a preference for satisfying certain rules,

possibly at the cost of violating less important ones. We show that such a rule order induces

a natural order on extended answer sets, the minimal elements of which we call preferred

answer sets. We characterize the expressiveness of the resulting semantics and show that it can

simulate negation as failure, disjunction and some other formalisms such as logic programs

with ordered disjunction. The approach is shown to be useful in several application areas, e.g.

repairing database, where minimal repairs correspond to preferred answer sets.

KEYWORDS: nonmonotonic reasoning, knowledge representation, answer set programming,

preference

1 Introduction

The intuition behind the stable model semantics (Gelfond and Lifschitz 1988),

and, more generally, behind answer set semantics (Gelfond and Lifschitz 1991) for

(extended) logic programs is both intuitive and elegant. Given a program P and

a candidate answer set M, one computes a reduct program PM of a simpler type

for which a semantics P�
M is known. The reduct PM is obtained from P by taking

into account the consequences of accepting the proposed truth values of the literals

in M. The candidate set M is then an answer set just when P�
M = M, i.e. M is

“self-supporting”.

In this paper, we apply this reduction technique to deal with inconsistent programs,

e.g. programs with (only) classical negation (denoted as ¬) where the immediate con-

sequence operator wouldyield inconsistent interpretations. For example, computing
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the least fixpoint of the program {a ← , b ← , ¬a ← b}, where negative literals ¬a
are considered as fresh atoms, yields the inconsistent {a, b,¬a}. To prevent this, we

will allow for a rule to be defeated by an opposing rule w.r.t. an interpretation. In

the example, {a, b} will be accepted because the rule ¬a ← b is defeated by the rule

a ← . The definition of answer set remains the same (e.g. see Lifschitz (2002)), but

the reduct is restricted to rules that are not defeated. We show that the extended

answer set semantics thus obtained can be simulated by an extended logic program

E(P ) that is trivially constructed from the original program P .

The above technique can be generalized to ordered programs where a partial

order, representing preference or specificity, is defined on the rules of a program.

For example, one may prefer certain “constraint” rules to be satisfied, possibly at

the expense of defeating less important “optional” or “default” rules. We show

that such a preference structure on the rules induces a natural partial order on the

reducts of the program, and hence on its candidate (extended) answer sets. Minimal

elements in this induced partial order are called preferred answer sets.

Intuitively, an answer set M1 is preferred over an answer set M2 if any rule r2 that

is satisfied by M2 but not by M1, is “countered” by a more preferred (than r2) rule

r1 that is satisfied by M1 but not by M2. In other words, with preferred answer sets,

one tries to maximize rule satisfaction, taking into account the relative “priority” of

the rules. The approach has some immediate applications in e.g. diagnostic systems,

as illustrated in the example below.

Example 1

Consider the problem of diagnosing a simple system where the light fails to come

on. The normal operation of the system is described using the rules r1, r2 and r3.

r1 light ← power , bulb

r2 power ←
r3 bulb ←

which, by themselves, yield light . The fault model is given by the following rules

(r4 and r5), which indicate that the power may fail and the bulb may be broken.

r4 ¬power ←
r5 ¬bulb ←

Finally, the observation that something is wrong is encoded by the constraint-like

rule r6, i.e. a rule that can only be satisfied when there is no light.

r6 ¬light ← light

Obviously, the program {r1, r2, r3, r4, r5, r6} is inconsistent. On the other hand, it is

natural to structure the rules in a preference hierarchy where r1 (the “law” governing

the system) and r6 (the observation) are most preferred. Slightly less preferred (than

r1 and r6) are the assumptions r2 and r3 representing normal system operation.

Finally, the fault rules r4 and r5 are least preferred, indicating that, if the program

is inconsistent, such rules will be the first to be considered for defeat.

Without the observation r6, the program is still inconsistent and, following the

preference relation on the rules, M1 = {bulb, power , light} will be a preferred answer
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set satisfying all but the least preferred (r4 and r5) rules. If we take into account the

observation r6, M1, which does not satisfy r6, will turn out to be less preferred than

either of M2 = {¬bulb, power} or M3 = {bulb,¬power}. For example, M2 is preferred

over M1 because, unlike M1, M2 satisfies r6 which counters the non-satisfaction of

r3 by M2. It can be verified that both M2 and M3 are preferred answer sets, with

each corresponding to a minimal explanation of the observation.

Besides diagnostic systems, ordered logic programs may be useful in other

application areas. For instance, we show that the minimal repairs of a database

D (Arenas et al. 2000) w.r.t. a set of constraints C correspond with the preferred

answer sets of an ordered program where the constraints C are preferred over D,

which is itself preferred over ¬D, the latter representing the negation of the facts

in D.

Although simple, ordered programs turn out to be rather expressive under the

preferred answer set semantics. For example, it is possible to simulate both negation

as failure and disjunction in classical non-ordered programs.

Negation as failure has a long history, starting from the Clark completion (Clark

1978), over stable model semantics (Gelfond and Lifschitz 1988) and well-founded

semantics (van Gelder et al. 1988), to answer set programming (Gelfond and Lifschitz

1991; Lifschitz 2002). It is well-known that adding negation as failure to programs

results in a more expressive formalism. However, in the context of disjunctive logic

programming (Przymusinski 1991; Leone et al. 1997), (Inoue and Sakama 1998)

demonstrated that adding negation as failure positively in a program, i.e. in the

head of the rules, yields no extra computational power to the formalism. One of

the more interesting features of negation as failure in the head is that answers no

longer have to be minimal w.r.t. subset inclusion (e.g. the program {a ∨ not a ←}
has both {a} and ∅ as answer sets). Indeed, such minimality turns out to be

too demanding to express certain problems, e.g. in the areas of abductive logic

programming (Kakas et al. 1992; Inoue and Sakama 1996) or logic programming

with ordered disjunction (Brewka 2002; Brewka et al. 2002).

In light of the above, it is natural to consider extended ordered programs where

negation as failure is allowed in both the head and the body of a clause. Just as

for disjunctive logic programs, adding negation as failure positively results in a

formalism where answer sets are not anymore guaranteed to be subset minimal.

Nevertheless, we will present a construction that translates an extended ordered

program into a semantically equivalent ordered program without negation as failure,

thus demonstrating that negation as failure does not increase the expressiveness of

ordered programs.

Although extended ordered programs do not improve on ordered programs w.r.t.

computational power, they can be used profitably to express certain problems in

a more natural way. They also support the simulation of certain extensions of

answer set programming, which we illustrate by two intuitive transformations that

translate more complex concepts, i.e. ordered disjunction (Brewka 2002; Brewka et al.

2002) and consistency-restoring rules (Balduccini and Gelfond 2003; Balduccini and

Mellarkod 2003), into equivalent extended ordered programs. This demonstrates that
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ordered programs can be used successfully as an implementation vehicle for such

high level extensions of answer set programming, where the translation is processed

by an ordered logic program solver such as olps (section 3.2).

The rest of this paper is organized as follows. After some preliminary notions

and notations, section 2 presents an extension of the usual answer set semantics to

cover also inconsistent simple programs (without disjunction or negation as failure).

In section 3.1, we introduce ordered programs where rules are partially ordered

according to preference. It is shown that the rule-order induces a partial order on

extended answer sets. The minimal elements in the latter order are called preferred

answer sets. We characterize the expressiveness of the resulting semantics and show

that it can simulate negation as failure as well as disjunction. Section 3.2 proposes

an algorithm to compute such preferred answer sets and shows that the complexity

is the same as for disjunctive logic programming. In section 3.3, we show that adding

negation as failure to ordered programs does not yield any extra expressive power.

The relation of preferred answer set semantics with similar formalisms from

the literature is discussed in section 4. We consider Brewka’s preferred answer

sets (Brewka and Eiter 1999) in section 4.1, together with D- and W-preferred answer

sets (Delgrande et al. 2000; Wang et al. 2000). It turns out that these semantics are not

related to our framework as they yield, in general, different preferred answer sets, that

are sometimes less intuitive than the ones resulting from the semantics in section 3.1.

Section 4.2 shows that logic programs with ordered disjunction (Brewka 2002)

have a natural simulation using ordered programs with preferred answer sets. In

section 4.3 we elaborate on the simulation of consistency-restoring rules (Balduccini

and Gelfond 2003) using the preferred answer set semantics. In section 4.4, we

compare our semantics with DOL (Buccafurri et al. 1998), DLP< (Buccafurri

et al. 1999) and ordered logic (Laenens and Vermeir 1990). Section 5 illustrates

another application of the preferred answer set semantics: the minimal repairs of a

database D w.r.t. a set of constraints C can be obtained as the preferred answer sets

of an ordered program P (C,D).

In section 6 we conclude and give some directions for further research.

To increase readability, several proofs and lemmas have been moved to the

appendix.

2 Extended answer sets for simple programs

2.1 Preliminaries and notation

We use the following basic definitions and notation.

Literals

A literal is an atom a or a negated atom ¬a. An extended literal is a literal or of

the form not l where l is a literal. The latter form is called a naf-literal and denotes

negation as failure: not l is interpreted as “l is not true”. We use l̂ to denote the

ordinary literal underlying an extended literal, i.e. l̂ = a if l = not a while â = a if a
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is an ordinary literal. Both notations are extended to sets so X̂ = {ê | e ∈ X}, with

X a set of extended literals, while not Y = {not l | l ∈ Y } for any set of (ordinary)

literals Y .

For a set of (ordinary) literals X we use ¬X to denote {¬p | p ∈ X} where

¬(¬a) ≡ a. Also, X+ denotes the positive part of X, i.e. X+ = {a ∈ X | a is an atom}.
The Herbrand base of X, denoted BX , contains all atoms appearing in X, i.e.

BX = (X ∪ ¬X)+. A set I of literals is consistent if I ∩ ¬I = ∅.
For a set of extended literals X, we use X− to denote the literals underlying

elements of X that are not ordinary literals, i.e. X− = {l | not l ∈ X}. We say that X

is consistent iff the set of ordinary literals ¬X− ∪ (X\not X−) is consistent.

Programs

An extended disjunctive logic program (EDLP, e.g. see Lifschitz (2002)) is a countable

set of rules of the form α ← β where α ∪ β is a finite set of extended literals. In a

disjunctive logic program (DLP), the head α of each rule α ← β must contain only

ordinary literals.

If always |α| � 1, i.e. α is a singleton or empty, we drop the “disjunctive”

qualification. If, for all rules, all literals in α ∪ β̂ are atoms, the program is called

seminegative and if, furthermore, each rule satisfies β− = ∅, the program is said to

be positive.

Answer sets

The Herbrand base BP of and EDLP P contains all atoms appearing in P . An

interpretation I of P is any consistent subset ofBP∪¬BP (for seminegative programs,

we can restrict to a set of atoms). An interpretation I is total if BP ⊆ I ∪ ¬I .
An extended literal l is true w.r.t. an interpretation I , denoted I |= l if l ∈ I in

case l is ordinary, or I 
|= a if l = not a for some ordinary literal a. As usual, I |= X

for some set of (extended) literals l iff ∀l ∈ X · I |= l.

A rule r = α ← β is satisfied by I , denoted I |= r, if I |= l for some l ∈ α

and α 
= ∅, whenever I |= β, i.e. if r is applicable (I |= β), then it must be applied

(∃l ∈ α · I |= β ∪ {l}). As a consequence, a constraint, i.e. a rule with empty head

(α = ∅), can only be satisfied if it is not applicable (I 
|= β).

For a DLP P without negation as failure (β− = ∅), an answer set is a minimal

(w.r.t. set inclusion) interpretation I that is closed under the rules of P (i.e. ∀r ∈ P ·
I |= r).

For an EDLP P containing negation as failure and an interpretation I , the

Gelfond-Lifschitz transformation (Gelfond and Lifschitz 1988) yields the GL-reduct

program P I that consists of those rules (α\not α−)← (β\not β−) where α← β is in

P , I |= not β− and I |= α−.

Thus, P I is obtained from P by (a) removing all true naf-literals not a, a 
∈ I ,

from the bodies of rules in P , (b) removing all false naf-literals not a, a ∈ I from the

heads of rules in P , and (c) keeping in P I only the transformed rules that are free
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from negation as failure. An interpretation I is then an answer set of P iff I is an

answer set of the reduct P I .

Reducts

In this paper, we use the term “reduct” of a program, w.r.t. an interpretation, to

denote the set of rules that are satisfied w.r.t. the interpretation.

Definition 1

Let P be an EDLP program. The reduct PI ⊆ P of P w.r.t. an interpretation I

contains just the rules satisfied by I , i.e. PI = {r ∈ P | I |= r}.

Naturally, PM = P for any answer set M of P .

2.2 Simple programs and extended answer sets

In this section, we consider simple logic programs which are logic programs with

only classical negation and no disjunction in the head of a rule.

Definition 2

A simple logic program (SLP) is a countable set P of rules of the form α← β where

α ∪ β is a finite set of literals1 and |α| � 1, i.e. α is a singleton or empty.

A rule r = a ← β is defeated w.r.t. an interpretation I iff there exists an applied

(w.r.t. I) competing rule ¬a ← β′ in P; such a rule is said to defeat r.

We will often confuse a singleton set with its sole element, writing rules as a ← β

or ← β. Thus, a rule r = a ← β cannot be left unsatisfied unless one accepts the

opposite conclusion ¬a which is motivated by a competing applied rule ¬a ← β′

that defeats r. Obviously, it follows that a constraint can never be defeated.

Example 2

Consider the SLP P containing the following rules.

¬a← ¬b←
a←¬b b←¬a

For the interpretation I = {¬a, b} we have that I satisfies all rules in P but one:

¬a ← and b ← ¬a are applied while a ← ¬b is not applicable. The unsatisfied rule

¬b ← is defeated by b ← ¬a .

For a set of rules R, we use R� to denote the unique minimal (van Emden

and Kowalski 1976) model of the positive logic program consisting of the rules in

R where (a) negative literals ¬a are considered as fresh atoms and (b) constraint

rules ← β are replaced by rules of the form ⊥ ← β. Besides the normal notion of

inconsistency, a set of literals containing ⊥ is also considered inconsistent. Clearly,

the � operator is monotonic.

1 As usual, we assume that programs have already been grounded.
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For the program of Example 2, we have that P� = {¬a,¬b, a, b} is inconsistent.

The following definition allows us to not apply certain rules, when computing a

consistent interpretation for programs such as P .

Definition 3

An interpretation I of a SLP P is founded iff P�
I = I . A founded interpretation I is

an extended answer set of P if all rules in P are satisfied or defeated.

The following is a straightforward consequence of the above definition and the

fact that a simple (reduct) program has at most one answer set.

Theorem 1

An interpretation M is an extended answer set of a SLP P iff M is the unique

answer set (Section 2.1) of PM and every rule in P \PM is defeated w.r.t M.

Thus, the extended answer set semantics deals with inconsistency in a simple yet

intuitive way: when faced with contradictory applicable rules, just select one for

application and ignore (defeat) the other. In the absence of extra information (e.g.

regarding a preference for satisfying certain rules at the expense of others), this

seems a reasonable strategy for extracting a consistent semantics from inconsistent

programs.

Using the above definition, it is easy to verify that the program P from Example 2

has three extended answer sets, namely M1 = {¬a, b}, M2 = {a,¬b} and M3 =

{¬a,¬b}. Note that PM1
= P\{¬b ← } while PM2

= P\{¬a ← }, and PM3
= P\{a ←

¬b, b ← ¬a}, i.e. ¬b ← is defeated w.r.t. M1, ¬a ← is defeated w.r.t. M2 and both

a ← ¬b and b ← ¬a are defeated w.r.t. M3.

The definition of extended answer set is rather similar to the definition of answer

sets for (non-disjunctive) programs without negation as failure: the only non-

technical difference being that, for extended answer sets, a rule may be left unsatisfied

if it is defeated by a competing (i.e. a rule with opposite head) rule. This is confirmed

by the following theorem.

Theorem 2

Let P be a SLP and let M be an answer set of P . Then, M is the unique extended

answer set of P .

Proof

By definition, M is a minimal consistent interpretation that satisfies all rules in P .

The latter implies that PM = P . Because M is minimal, it follows that M = P�
M ,

making M founded. Obviously, M must be unique. �

While allowing for PM , with M an extended answer set, to be a strict subset of P ,

Definition 3 still maximizes the set of satisfied rules w.r.t. an extended answer set.

Theorem 3

Let P be a SLP and let M be an extended answer set for P . Then, PM is maximal

w.r.t. ⊆ among the reducts of founded interpretations of P .
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Proof

Assume that, on the contrary, PM is not maximal, i.e. there exists a founded

interpretation N such that PM ⊂ PN . From the monotonicity of the �-operator, it

follows that M ⊆ N. As M is an extended answer set, all constraints are included

in PM , thus, by PM ⊂ PN , also in PN . So, PN \PM does not contain any constraint.

Let r = (a ← β) ∈ PN \PM . Since r is not satisfied w.r.t. M, it must be the case

that β ⊆ M while a 
∈ M. Because M is an extended answer set, r must have

been defeated by an applied rule r′ = (¬a ← β′) ∈ PM ⊂ PN and, consequently,

¬a ∈ M ⊆ N. On the other hand, β ⊆ N and thus, since r ∈ PN , r must be applied

w.r.t. N, yielding that a ∈ N. This makes N inconsistent, a contradiction. �

The reverse of Theorem 3 does not hold in general, as can be seen from the

following example.

Example 3

Consider the program P containing the following rules.

¬a←
b←
¬b←¬a

The interpretation N = {b} is founded with PN = {b ← , ¬b ← ¬a} which is

obviously maximal since P� is inconsistent. Still, N is not an extended answer set

because ¬a ← is not defeated.

However, when considering simple programs without constraints, for total in-

terpretations, founded interpretations with maximal reducts are extended answer

sets.

Theorem 4

Let P be a SLP without constraints and let M be a total founded interpretation

such that PM is maximal among the reducts of founded interpretations of P . Then,

M is an extended answer set.

Proof

It suffices to show that each unsatisfied rule is defeated w.r.t. M. Assume that, on

the contrary, r = (a ← β) ∈ P \PM is not defeated, i.e. a 
∈ M while β ⊆ M and

there is no applied competitor ¬a ← β′. But then also ¬a 
∈ M, contradicting the

fact that M is total. �

The need for programs to be constraint free in the previous theorem is demon-

strated by the following example.

Example 4

Consider the program P containing the following rules.

a← ¬a← ← a

The total interpretation N = {a} is founded with PN = {a ← } which is obviously

maximal. However, N is not an extended answer set as the constraint ← a is neither

satisfied nor defeated w.r.t. N.
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The computation of extended answer sets reduces to the computation of answer

sets for seminegative non-disjunctive logic programs, using the following transform-

ation, which is similar to the one used in (Kowalski and Sadri 1990) for logic

programs with exceptions.

Definition 4

Let P be a SLP. The extended version E(P ) of P is the (non-disjunctive) logic

program obtained from P by replacing each rule a ← β by its extended version

a ← β, not ¬a .

Note that the above definition captures our intuition about defeat: one can ignore

an applicable rule a ← β if it is defeated by evidence for the contrary ¬a, thus

making not ¬a false and the rule a ← β, not ¬a not applicable.

Theorem 5

Let P be a SLP. The extended answer sets of P coincide with the answer sets of

E(P ).

When considering programs without constraints, the extended answer set se-

mantics is universal.

Theorem 6

Each simple logic program without constraints has extended answer sets.

Proof

Let P be a simple logic program without constraints. Define δP : 2BP → 2BP by

δP (I) = {a 
∈ I | ¬a 
∈ I ∧ ∃(a ← β) ∈ P · β ⊆ I}

Then, clearly, any sequence I0 = ∅, I1, . . . where, for i � 0, Ii+1 = Ii ∪ {a} for some

a ∈ δP (Ii) if δP (Ii) 
= ∅, and Ii+1 = Ii otherwise, is monotonically increasing and thus

reaches a fixpoint I� which is easily verified to be an extended answer set.

Note that a similar result is well-known for normal default logic (Reiter 1980).

�

3 Ordered programs and preferred answer sets

3.1 Definitions and basic results

When constructing extended answer sets for simple logic programs, one can defeat

any rule for which there is an applied competing rule. In many cases, however, there

is a clear preference among rules in the sense that one would rather defeat less

preferred rules in order to keep the more preferred ones satisfied.

As an example, reconsider the program P from Example 2 and assume that

we prefer not to defeat the rules with positive conclusion ({a ← ¬b, b ← ¬a}).
Semantically, this should result in the rejection of M3 = {¬a,¬b} in favor of either

M1 = {¬a, b} or M2 = {a,¬b} because the latter two sets are consistent with our

preferences.

In ordered programs, such preferences are represented by a partial order on the

rules of the program.
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Definition 5

An ordered logic program (OLP) is a pair 〈R,<〉 where R is a a simple program and

< is a well-founded strict2 partial order on the rules in R3.

Intuitively, r1 < r2 indicates that r1 is more preferred than r2. In the examples we

will often represent the order implicitly using the format

. . .

R2

R1

R0

where each Ri, i � 0, represents a set of rules, indicating that all rules below a line

are more preferred than any of the rules above the line, i.e. ∀i � 0·∀ri ∈ Ri, ri+1 ∈ Ri+1·
ri < ri+1 or ∀i � 0 · Ri < Ri+1 for short.

Example 5

Consider the OLP P = 〈R,<〉 where < is as shown below.

f← b

¬f← p

b← p

p←

The program uses the preference order to indicate that the rule f ← b (“birds

fly”) should be considered a “default”, i.e. the rule ¬f ← p (“penguins don’t fly”) is

more preferred. The lowest rules, i.e. b ← p (“penguins are birds”) and p ← (“the

bird under consideration is a penguin”), are the “strongest” (minimal): an extended

answer set for P that respects the preference order should satisfy these minimal

rules, if at all possible.

For the interpretations I1 = {p, b, f} and I2 = {p, b,¬f}, the reducts are RI1 =

{f ← b, b ← p, p ← } and RI2 = {¬f ← p, b ← p, p ← }, respectively. Both I1 and

I2 are extended answer sets of P : for I1, the unsatisfied rule ¬f ← p is defeated by

f ← b while for I2, the reverse holds: f ← b is defeated by ¬f ← p.

Intuitively, if we take the preference order < into account, I2 is to be preferred over

I1 because I2 defeats less preferred rules than does I1. Specifically, I2 compensates

for defeating f ← b by satisfying the stronger ¬f ← p which is itself defeated

w.r.t. I1.

2 A strict partial order < on a set X is a binary relation on X that is antisymmetric, anti-reflexive and
transitive. The relation < is well-founded if every nonempty subset of X has a <-minimal element.

3 Strictly speaking, we should allow R to be a multiset or, equivalently, have labeled rules, so that the
same rule can appear in several positions in the order. For the sake of simplicity of notation, we will
ignore this issue in the present paper: all results also hold for the general multiset case.
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The following definition formalizes the above intuition by defining a preference

relation between reducts.

Definition 6

Let P = 〈R,<〉 be an OLP. For subsets R1 and R2 of R we define R1 � R2 iff

∀r2 ∈ R2\R1 · ∃r1 ∈ R1\R2 · r1 < r2. We write R1 � R2 just when R1 � R2 and not

R2 � R1.

Intuitively, a reduct R1 is preferred over a reduct R2 if every rule r2 which is in R2

but not in R1 is “countered” by a stronger rule r1 < r2 from R1 which is not in R2.

According to the above definition, we obtain that, indeed, RI2 � RI1 , for the

program P from Example 5.

Note that, unlike other approaches (e.g. Laenens and Vermeir (1992)), we do not

require that the stronger rule r1 ∈ R1\R2 that counters a weaker rule r1 < r2 ∈ R2\R1,

is applied and neither does r1 need to be a competitor of r2. Thus, unlike the

other approaches, we do not consider rule application as somehow “stronger” than

satisfaction. This is illustrated in the following example.

Example 6

Consider P = 〈R,<〉, were R is shown below and the interpretations M1 =

{study , pass}, M2 = {¬study , pass}, M3 = {¬study ,¬pass}, and M4 = {study ,¬pass}.
The program indicates a preference for not studying, a strong desire to pass4 and

an equally strong (and uncomfortable) suspicion that not studying leads to failure.

r4 : pass ← study

r3 : study ←

r2 : ¬study ←

r1 : ¬pass ← ¬study

r0 : pass ← ¬pass

It is easily verified that RM1
� RM2

, RM1
� RM3

, RM1
� RM4

(vacuously) and

RM3
� RM4

. Here, e.g. RM1
= {r0, r1, r3, r4} � RM2

= {r0, r2, r4} because r2 ∈ RM2
\RM1

is countered by r1 ∈ RM1
\RM2

which is neither applied nor a competitor of r2.

The following theorem implies that the relation � is a partial order on reducts.

Theorem 7

Let < be a well-founded strict partial order on a set X. The binary relation � on

2X defined by X1 � X2 iff ∀x2 ∈ X2\X1 · ∃x1 ∈ X1\X2 · x1 < x2 is a partial order.

Theorem 7 can be used to define a partial order on extended answer sets of R,

where 〈R,<〉 is an ordered logic program.

4 Note that, while the rule pass ← ¬pass can only be satisfied by an interpretation containing pass,
it does not provide a justification for pass. Thus such rules act like constraints. However, note that,
depending on where such a rule occurs, it may, unlike traditional constraints, be defeated.
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Definition 7

Let P = 〈R,<〉 be an OLP. For M1,M2 extended answer sets of R, we define

M1 �M2 iff RM1
� RM2

. As usual, M1 � M2 iff M1 �M2 and not M2 �M1.

Preferred answer sets for ordered programs correspond to minimal (according to

�) extended answer sets.

Definition 8

Let P = 〈R,<〉 be an OLP. An answer set for P is any extended answer set of R.

An answer set for P is called preferred if it is minimal w.r.t. �. An answer set is

called proper if it satisfies all minimal (according to <) rules in R.

Proper answer sets respect the strongest (minimal) rules of the program.

Lemma 1

Let M be a proper answer set of an OLP P . Then any more preferred answer set

N � M is also proper.

Proof

Assume that, on the contrary, N � M for some answer set N which is not proper.

It follows that there is some minimal rule r ∈ PM \PN which cannot be countered

by N, contradicting that N � M. �

The following theorem confirms that taking the minimal (according to �) elements

among the proper answer sets is equivalent to selecting the proper elements among

the preferred answer sets.

Theorem 8

Let P be an OLP. The set of minimal proper answer sets of P coincides with the

set of proper preferred answer sets of P .

Proof

Let M be a minimal proper answer set and suppose that, on the contrary, M is not

a proper preferred answer set. Since M is proper, this would imply that M is not

preferred, i.e. N � M for some answer set N. From Lemma 1, we obtain that N

must also be proper, contradicting that M is a minimal proper answer set.

To show the reverse, let M be a proper preferred answer set of P . If M were

not a minimal proper answer set, there would exist a proper answer set N � M,

contradicting that M is preferred. �

The program from Example 5 has a single preferred answer set {p, b,¬f} which is

also proper. In Example 6, M1 = {pass , study} is the only proper preferred answer

set.

While all the previous examples have a linear ordering, the semantics also yields

intuitively correct solutions in case of non-linear orderings, as witnessed by the

following example.
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Example 7

Consider a problem taken from Balduccini and Mellarkod (2003). We need to take

full-body exercise. Full-body exercise is achieved either by combining swimming

and ball playing, or by combining weight lifting and running. We prefer running

to swimming and ball playing to weight lifting, but we do not like to do more

than necessary to achieve our full-body exercise. This last condition implies that we

cannot have a solution containing our two most preferred sports as in that case

we also need a third sport to have a full-body exercise. The ordered program P

corresponding to this problem is shown below using a straightforward extension of

the graphical representation defined before.

lift weights ←
play ball ←
¬full body exercise ←

swim ←
run ←

¬swim ←

¬run ←¬play ball ←

¬lift weights ←

full body exercise ← lift weights , run

full body exercise ← play ball , swim

full body exercise ← ¬full body exercise

The rules in the least preferred component indicate a reluctance to do any sport;

they will be used only to satisfy more preferred rules. On the other hand, the rules

in the most preferred component contain the conditions for a full body exercise,

together with a constraint-like rule that demands such an exercise. The rules in the

middle components represent our preferences for certain sports. Note that, in order

to minimize the sports we need to do, preferences are expressed on the negated facts.

Consequently, for example, a preference for running over swimming is encoded as a

preference for not swimming over not running.

Consider the following extended answer sets:

M1 = {full body exercise, lift weights , run ,¬swim ,¬play ball},
M2 = {full body exercise, swim , play ball ,¬lift weights ,¬run},
M3 = {full body exercise, lift weights , run , swim ,¬play ball}.

Clearly, all extended answer sets satisfy the three most specific rules. Comparing the

reducts PM1
and PM3

yields that PM3
\PM1

= {swim ←} and PM1
\PM3

= {¬swim ←}.
From ¬swim ← < swim ← , it then follows that M1 is preferred over M3, fitting

our desire that we do not like to do more than necessary.

As for M1 and M2, it appears that the rule ¬play ball ← ∈ PM1
\PM2

is countered

by the rule ¬lift weights ← ∈ PM2
\PM1

. However, there is no rule in in PM2
\PM1

to counter ¬swim ← ∈ PM1
\PM2

, and thus M2 
� M1. On the other hand, M1

cannot counter ¬lift weights ← ∈ PM2
\PM1

, and thus M1 
� M2, making M1 and

M2 incomparable. It can be verified that both M1 and M2 are minimal w.r.t. �,

making them preferred extended answer sets.
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Example 8

Consider the ordered program 〈P ,<〉 where P is as in Example 2 and < is as shown

below.

¬a←
¬b←

a←¬b
b←¬a

The reducts of the extended answer sets of P are PM1
= P \{¬b ← }, PM2

=

P\{¬a ← }, and PM3
= P\{a ← ¬b, b ← ¬a} which are ordered by PM1

� PM3
and

PM2
� PM3

. Thus 〈P ,<〉 has two (proper) preferred answer sets: M1 = {¬a, b} and

M2 = {a,¬b}.

Note that, in the above example, the preferred answer sets correspond to the stable

models (answer sets) of the logic program {a ← not b, b ← not a}, i.e. the stronger

rules of 〈P ,<〉 where negation as failure (not) replaces classical negation (¬). In fact,

the ordering of P , which makes the rules ¬a ← and ¬b ← less preferred, causes

¬ to behave as negation as failure, under the preferred answer set semantics.

In general, we can easily simulate negation as failure using classical negation and

a trivial ordering.

Theorem 9

Let P be an (non-disjunctive) seminegative logic program The ordered version of

P , denoted N(P ) is defined by N(P ) = 〈P ′ ∪ P¬, <〉 with P¬ = {¬a ← | a ∈ BP }
and P ′ is obtained from P by replacing each negated literal not p by ¬p. The order

is defined by P ′ < P¬, i.e. ∀r ∈ P ′, r′ ∈ P¬ · r < r′ (note that P ′ ∩ P¬ = ∅). Then M

is a stable model of P iff M ∪ ¬(BP \M) is a proper preferred answer set of N(P ).

Note that 2-level programs as above can also be used to support an extension of

simple programs with “strict” rules. Such a program has the form 〈Ps∪Pd,<〉 where

Ps contains strict rules that may not be defeated and Pd contains “default” rules.

The order < is defined by Ps < Pd, i.e. rs < rd for all rs ∈ Ps, rd ∈ Pd. The proper

preferred answer sets then provide an intuitive semantics for such programs.

Interestingly, preference can also simulate disjunction.

Definition 9

Let P be a positive disjunctive logic program. The ordered version of P , denoted

D(P ), is defined by D(P ) = 〈P+ ∪ P− ∪ Pp,<〉 where P+ = {a ← | a ∈ BP },
P− = {¬a ← | a ∈ BP }, Pp = {a ← β ∪ ¬(α\{a}) | (α ← β) ∈ P ∧ a ∈ α}, and

Pp < P− < P+.

Intuitively, the rules from P+ ∪ P− guess a total interpretation I of P while the

rules in Pp ensure that I+ is a model of P . Minimality is assured by the fact that

negations are preferred.
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Example 9

Consider the disjunctive program P = {a ∨ b ← , a ← b, b ← a}. This program

illustrates that the shifted version5 of a disjunctive program need not have the same

models, e.g. see Dix et al. (1996) and De Vos and Vermeir (2001). The program D(P )

is represented below.

a← b←

¬a← ¬b←

b←¬a a←¬b
a← b b← a

D(P ) has a single proper preferred answer set {a, b} which is also the unique

minimal model of P , while the shifted version yields no models at all. Note that both

¬a ← and ¬b ← are defeated because minimization is overridden by satisfaction

of more preferred non-disjunctive rules.

Theorem 10

Let P be a positive disjunctive logic program. M is a minimal model of P iff

M ′ = M ∪ ¬(BP \M) is a proper preferred answer set of D(P ).

In view of Theorem 9 and Theorem 10, it is natural to try to simulate programs

that combine negation as failure and disjunction.

Definition 10

Let P be a seminegative disjunctive logic program. The ordered version of P , denoted

Dn(P ), is defined by Dn(P ) = 〈Pc ∪ P− ∪ Pp,<〉 where Pc = {a ← β′ | (α ← β) ∈
P ∧a ∈ α}, P− = {¬a ← | a ∈ BP }, Pp = {a ← β′ ∪ ¬(α\{a}) | (α← β) ∈ P ∧a ∈ α},
and Pp < P− < Pc. Here, β′ is obtained from β by replacing all occurrences of

not a ∈ β by ¬a ∈ β′.

Intuitively, the rules in Pc apply disjunctive rules by choosing a literal from the

head of the original rule; rules in Pp ensure that any proper answer set is a model

and the preference P− < Pc supports minimization.

Theorem 11

Let P be a seminegative disjunctive logic program. If M is an answer set of P then

M ∪ ¬(BP \M) is a proper preferred answer set of Dn(P ).

Proof

The theorem immediately follows from Theorem 12 and Proposition 3.3 in Sakama

and and Inoue (1994). �

Unfortunately, Dn(P ) may have too many proper preferred answer sets, as

illustrated by the following example.

5 The shifted version of a disjunctive program is a seminegative program where each disjunctive rule
α← β is replaced by the set of rules containing a ← β ∪ not (α\{a}) for each a ∈ α.
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Example 10

Consider the seminegative disjunctive program P = {a ∨ b ← , b ← a , a ← not a}.
This program does not have an answer set. Indeed, any answer set M would need

to contain a and thus, by the rule b ← a , also b, thus M = {a, b}. But the reduct

PM = {a ∨ b ← , b ← a} has only one minimal answer set {b} 
= M.

However, {a, b} is the unique minimal preferred answer set of Dn(P ) which is

shown below.

a← b←

¬a← ¬b←

b← a a←¬a
a←¬b b←¬a

In fact, the preferred answer sets semantics of Dn(P ) corresponds to the possible

model semantics of Sakama and Inoue (1994).

Definition 11

For a seminegative disjunctive logic program P , we define a split program as the

(non-disjunctive) seminegative program obtained from P by replacing each rule

α ← β ∈ P with a ← β for every a ∈ S , where S is some non-empty subset of α.

Now, a possible model of P is any answer set of any split program of P .

Theorem 12

Let P be a seminegative disjunctive logic program. An interpretation M is a proper

preferred answer set of Dn(P ) iff M+ is a minimal possible model of P .

In the next subsection, we shall see that, nevertheless, the expressiveness of the

preferred answer set semantics of OLP is similar to that of seminegative disjunctive

programs.

3.2 Computing preferred answer sets

In this subsection, we only consider finite programs (corresponding to datalog-like

rules).

Definition 12

Let 〈P ,<〉 be a partially ordered set (where < is strict). The downward closure of a

subset X ⊆ P is defined by down(X) = {u ∈ P | ∃x ∈ X · u < x}. A set X ⊆ P is

downward closed iff down(X) ⊆ X.

A specification for an ordered program poses restrictions on the sets of rules that

should be satisfied, respectively defeated, by a conforming extended answer set.

Definition 13

Let 〈P ,<〉 be an ordered program. A specification for P is pair 〈Ri, Ro〉 of disjoint

subsets of P such that Ri ∪ Ro is downward closed.

A specification 〈R′i , R′o〉 extends another specification 〈Ri, Ro〉, denoted 〈Ri, Ro〉 �
〈R′i , R′o〉, iff Ri ⊆ R′i and Ro ⊆ R′o.
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A set of rules R ⊆ P satisfies a specification 〈Ri, Ro〉, denoted R |= 〈Ri, Ro〉, iff R�

is an extended answer set for P , Ri ⊆ R, Ro ∩R = ∅ and, moreover, ∀r ∈ Ro ·R∗ 
|= r.

Obviously, if R satisfies 〈Ri, Ro〉 then R satisfies any weaker specification 〈R′i ,
R′o〉 � 〈Ri, Ro〉.

In the rest of this section, we will use the term “extended answer set” for both the

interpretation I and the corresponding set of rules {r ∈ P | I |= r} that it satisfies.

To force a conforming extended answer set to satisfy at least one out of a collection

of sets of rules, we define a constraint. Such constraints will be used to ensure that

conforming extended answer sets are not smaller (w.r.t. �) than others.

Definition 14

Let 〈P ,<〉 be an ordered program. A constraint is a set of sets of rules C ⊆ 2P . A

specification 〈Ri, Ro〉 is consistent with a constraint iff ∃c ∈ C ·Ro ∩ c = ∅. A rule set

R satisfies a constraint C , denoted R |= C , iff ∃c ∈ C · c ⊆ R.

The expansion of a specification and a constraint, denoted µ(〈Ri, Ro〉, C), is defined

by

µ(〈Ri, Ro〉, C) = {R ⊆ P | R |= 〈Ri, Ro〉 ∧ R |= C} .

We use min µ(〈Ri, Ro〉, C) to denote the minimal elements of µ(〈Ri, Ro〉, C) w.r.t. the

�-order.

By definition, min µ(〈Ri, Ro〉, C) contains minimal (according to �) answer sets

that satisfy both the specification 〈Ri, Ro〉 and the constraint C .

Definition 15

Let 〈P ,<〉 be an ordered program and R ⊆ P and T ⊆ P be sets of rules. A witness

of R against T is any rule r ∈ R\T such that ∀t ∈ T \R · t 
< r.

We use ω(T ) to denote the set {{r} ∪ (down({r}) ∩ T ) | r ∈ P \ T }.

In Lemma 4 from the Appendix, it is shown that T 
� R iff R has a witness

against T , which is itself equivalent to ∃X ∈ ω(T ) ·X ⊆ R.

The basic algorithm to compute preferred answer sets is shown in Figure 1.

Intuitively, aset(〈Ri, Ro〉, C) returns the minimal elements among the extended answer

sets from P that satisfy both the specification 〈Ri, Ro〉 and the constraint C .

This is achieved as follows:

• If 〈Ri, Ro〉 is inconsistent with C then, obviously, there are no elements

satisfying both.

• If Ri ∪ Ro = P , Ri should be returned, if it is an extended answer set.

• Otherwise, we first compute the set M of minimal extended answer sets

containing a minimal rule r from P\(Ri∪Ro), using the call aset(〈Ri ∪ {r}, Ro〉,
C).

• Next, we compute the minimal extended answer sets not containing r. Such

answer sets must contain a witness against each m ∈ M. This is ensured by

appropriately extending the constraint C to C ′. The missing solutions are then

computed using aset(〈Ri, Ro ∪ {r}〉, C ′).
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set<RuleSet>
aset (〈Ri, Ro〉, C) {
// precondition: C 
= ∅

if ( 〈Ri, Ro〉 and C are inconsistent)

return ∅

if ((Ri ∪ Ro) = P )

if ( R�
i is an extended answer set of P )

return {Ri}
else

return ∅

choose r minimal in P \(Ri ∪ Ro)

// compute preferred answer sets containing r

M = aset(〈Ri ∪ {r}, Ro〉, C);

// add constraints that guarantee that each element in

// µ(〈Ri, Ro ∪ {r}〉, C ′) has a witness against any m ∈M.

C ′ = C

for each m ∈M

C ′ = {c ∪ x | c ∈ C ′ ∧ x ∈ ω(m) ∧ r 
∈ x}
if (C ′ = ∅) // ∃m ∈M · ∀x ∈ ω(m) · r ∈ x

return M

// compute preferred answer sets not containing r

return M ∪ aset(〈Ri, Ro ∪ {r}〉, C ′);
}

Fig. 1. Basic algorithm.

Formally, we will have that aset(〈Ri, Ro〉, C) = min µ(〈Ri, Ro〉, C) from which, since

the preferred answer sets of P obviously correspond to min µ(〈∅, ∅〉, {∅}), it follows

that aset(〈∅, ∅〉, {∅}) returns exactly the preferred answer sets of P .

Theorem 13

Let 〈P ,<〉 be an ordered program, 〈Ri, Ro〉 be a specification and C a constraint.

Then aset(〈Ri, Ro〉, C) = min µ(〈Ri, Ro〉, C).

Since a preferred answer set is minimal w.r.t. the extended answer sets that satisfy

the “empty” specification and constraint, we obtain the following corollary.

Corollary 1

Let 〈P ,<〉 be an ordered program. The preferred answer sets of P are computed by

aset(〈∅, ∅〉, {∅}).

Clearly, the algorithm of Figure 1 can be further optimized, e.g. by proactively

computing certain conditions, such as the consistency of Ri, etc.

A first implementation of an ordered logic program solver (olps) is available

under the gpl at http://tinf2.vub.ac.be/olp/. After grounding, olps computes

(a selection of) the proper preferred answer sets of a finite ordered program which is
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FaultModel {
−power.

−bulb.

}
NormalOperation {

power.

bulb.

}
System {

light :− power, bulb.

}
System < NormalOperation < FaultModel

Observations { −light :− light . }

Fig. 2. The olps version of Example 1.

described using a sequence of module definitions and order assertions. A module is

specified using a module name followed by a set of rules, enclosed in braces while an

order assertion is of the form m0 < m1 < . . . < mn, n > 0, where each mi, 0 � i � n

is a module name. Such an assertion expresses that each rule in mi, 0 � i � n is

more preferred than any rule in mi+1. Figure 2 shows the olps version of the the

diagnostic problem from Example 1.

The following results shed some light on the complexity of the preferred answer

set semantics.

First we note that checking whether M is not a preferred answer set of an OLP

P is in NP because

1. Checking that M is an extended answer set of P , i.e. verifying foundedness

and verify that each non-satisfied rule is defeated, can be done in deterministic

polynomial time. (E.g. foundedness can be verified using a marking algorithm

that repeatedly scans all rules in P , marking elements of M that have a

“motivation” based on already marked elements from M).

2. Guess a set N � M, which can be done in polynomial time, and verify that N

is an extended answer set.

Finding a preferred answer set M can then be performed by an NP algorithm

that guesses M and uses an NP oracle to verify that it is not the case that M is not

a preferred answer set. Hence the following theorem.

Theorem 14

The problem of deciding, given an arbitrary ordered program P and a literal a,

whether a occurs in any preferred answer set of P is in ΣP
2 .

Theorem 15

The problem of deciding, given an arbitrary ordered program P and a literal a,

whether a occurs in every preferred answer set of P is in ΠP
2 .

Proof

Finding a preferred answer set M such that a 
∈ M is in ΣP
2 due to Theorem 14.

Thus, the complement is in ΠP
2 . �
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Theorem 16

The problem of deciding, given an arbitrary ordered program P and a literal a,

whether a occurs in any preferred answer set of P is ΣP
2 -hard.

Proof

The proof uses a reduction of the known ΣP
2 -hard problem of deciding whether a

quantified boolean formula φ = ∃x1, . . . , xn · ∀y1, . . . , ym · F is valid, where we may

assume that F = ∨c∈Cc with each c a conjunction of literals over X ∪ Y with

X = {x1, . . . , xn} and Y = {y1, . . . , ym} (n, m > 0). The construction is inspired by a

similar result in Eiter and Gottlob (1993) for disjunctive logic programs.

The program P corresponding to φ is shown below using a straightforward

extension of the graphical representation of Definition 5: the order in P is defined

by P4 < P3 < P2 (note that the rules in P1 are not related to any other rules).

P1 = {x ← ¬x ← | x ∈ X}

P2 = {y ← ¬y ← | y ∈ Y }

P3 = ¬sat ← sat

P4 = {sat ← c | c ∈ C}

Obviously, the construction of P can be done in polynomial time. Intuitively, the

rules in P1 and P2 are used to guess a truth assignment for X ∪ Y .

In the sequel, we will abuse notation by using xM and yM where M is an answer

set for P , to denote subsets of M, e.g. xM = X ∩M and in expressions such as

F(xM, yM) which stands for F(x1, . . . , xn, y1, . . . ym) with xi = true iff xi ∈ xM and,

similarly, yj = true iff yj ∈ yM . We will also sometimes abbreviate the arguments of

F , writing e.g. F(x, y) rather than F(x1, . . . , xn, y1, . . . ym).

The following properties of P are straightforward to show:

1. If we have an extended answer set M containing sat ∈M, then F(xM, yM) must

hold.

2. Any extended answer set satisfies all the rules in P4.

3. For extended answer sets M1 and M2, with M1∩X 
= M2∩X, neither M1 � M2

nor M2 � M1 holds, as the rules in P1 are unrelated to any other rules.

4. If M1 � M2 for some extended answer sets M1 and M2, then M1 ∩X = M2 ∩X
and, moreover, sat ∈M2 \M1, i.e. (¬sat ← sat) ∈ PM1

\ PM2
.

We show that φ is valid iff sat ∈M for some preferred answer set M of P .

To show the “if” part, assume that M is a preferred answer set with sat ∈ M.

By (1) we have that F(xM, yM) holds. To prove that φ is valid it remains to show

that ∀y · F(xM, y). Suppose that, on the contrary, ∃y · ¬F(xM, y) and consider the

extended answer set M ′ = (M ∩ (X ∪ ¬X)) ∪ y ∪ ¬(Y \ y). It is easy to verify that

M ′ � M since the rules in P1 satisfied by M are the same as the rules in P1 satisfied

by M ′; and all the rules in P4 are satisfied by both M and M ′ (due to (2)); and the

rule in P3 is defeated by M and satisfied by M ′. But M ′ � M contradicts the fact

that M is a preferred answer set. Thus, φ is valid.

To show the reverse, assume that φ is valid, i.e. there exists some xM ⊆ X such

that ∀y ·F(xM, y). Consider M = xM ∪¬(X \xM)∪ y∪¬(Y \ y)∪{sat} where y ⊆ Y
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is arbitrary. Clearly, M is an extended answer set. To show that M is preferred,

assume that, on the contrary, M ′ � M for some extended answer set M ′. By (4),

M ∩ X = M ′ ∩ X and sat 
∈ M ′. These imply that ¬F(xM, yM ′ ), contradicting that

∀y · F(xM, y). �

Theorem 17

The problem of deciding, given an arbitrary ordered program P and a literal a,

whether a occurs in every preferred answer set of P is ΠP
2 -hard.

Proof

Reconsider the program P in the proof of Theorem 16. Let a be a fresh atom not

occurring in P and define P ′ as P with two extra rules a ← and ¬a ← in the

component P2. Clearly, showing that a does not occur in every preferred answer set

is the same as showing that ¬a occurs in any preferred answer set of P . Deciding

the latter is ΣP
2 -hard by Theorem 16; thus deciding the complement of the former is

ΠP
2 -hard.

In the appendix an alternative proof is provided using quantified boolean formu-

las. �

The following is immediate from Theorem 14, Theorem 15, and Theorem 16.

Corollary 2

The problem of deciding, given an arbitrary ordered program P and a literal a,

whether a occurs in any proper preferred answer set of P is ΣP
2 -complete. The

problem of deciding, given an arbitrary ordered program P and a literal a, whether

a occurs in every proper preferred answer set of P is ΠP
2 -complete.

3.3 Adding negation as failure

In view of the results from section 3.1 and section 3.2, it is natural to wonder

whether adding negation as failure to ordered programs leads to a more expressive

formalism.

To study this question, we first extend simple logic programs to allow negation

as failure in both the head and the body of rules. The definition closely mirrors

Definition 2: we only generalize the notion of defeat to take into account the possible

presence of negation as failure in the head of a rule.

Definition 16

An extended logic program (ELP) is a countable set P of extended rules of the form

α← β where α∪ β is a finite set of extended literals, and |α| � 1, i.e. α is a singleton

or empty.

An extended rule r = a ← β is defeated w.r.t. P and I iff P contains an applied

competing rule r′ = a ′ ← β′ such that {a, a′} is inconsistent.

An interpretation I is an extended answer set of P iff I is an answer set (see

section 2.1) of PI and each unsatisfied rule from P \PI is defeated w.r.t. I .
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Example 11

Consider the extended program P containing the following rules.

¬a← ¬b← c←
a← not b b← not a not c← a

For the interpretation I = {a,¬b}, PI contains all rules but ¬a ← and c ← which

are defeated (w.r.t. I) by the applied rules a ← not b and not c ← a , respectively. I

is then an extended answer set because {a,¬b} is an answer set of (PI )
I = {¬b ←

, a ←}.
P has three more extended answer sets, namely J = {¬a, b, c}, K = {¬a,¬b, c}

and L = {a,¬b, c}. Here, PJ = P \{¬b ←}, and (PJ)
J contains ¬a ← , b ← , c ←

and ← a . For K , we have that PK = P \{a ← not b, b ← not a} and (PK )K contains

¬a ← , ¬b ← , c ← and ← a . Finally, L yields that PL = P \ {¬a ← , not c ← a}
and (PL)L contains a ← , ¬b ← and c ← .

Unlike as for simple logic programs, extended answer sets for extended logic

programs are not necessary minimal w.r.t. subset inclusion, as demonstrated by

the previous example where I ⊂ L. The same holds for extended disjunctive logic

programs as shown in Inoue and Sakama (1994).

Furthermore, the extended answer set semantics for extended logic programs is

not universal, even for programs without constraints, as witnessed by the following

example.

Example 12

Consider the extended logic program P containing the rules a ← not b and b ←
a , not c. Clearly, no extended answer set can contain c or ¬c.

For I = ∅ we obtain (PI )
I = {b ← a , not c}I = {b ← a}, which has a unique

answer set ∅ = I . However, a ← not b is neither satisfied nor defeated in I .

For I = {a}, (PI )
I = {a ← not b}I = {a ←} which has a unique answer set

{a} = I . However, b ← a , not c is neither satisfied nor defeated in I . For I = {b},
(PI )

I = P I = {b ← a} which has a unique answer set ∅ 
= I . Finally, for I = {a} we

obtain (PI )
I = P I = {b ← a} which has ∅ 
= I as a unique answer set.

Thus, P has no extended answer sets.

Obviously, any traditional answer set of an ELP P is also an extended answer

set. However, unlike for simple programs, a consistent ELP, i.e. a program that has

answer sets, may also have additional extended answer sets, as in the following

example.

Example 13

Consider the following program P .

¬b← a b← not b

a← not b b← not a

Clearly, I = {b} is an answer set with P I containing ¬b ← a and b ← which has

{b} as a minimal answer set. Since PI = P , {b} is also an extended answer set.

However, also J = {a,¬b} is an extended answer set because:
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• PJ contains all rules but b ← not b. The latter rule is defeated (w.r.t. J) by the

applied rule ¬b ← a .

• (PJ)
J contains just a ← and ¬b ← a and thus J is an answer set of PJ .

Clearly, though, J is not an answer set of P .

Note that the program in the above example does not contain negation as failure

in the head of a rule. In fact, negation as failure in the heads of rules can be removed

by a construction that is similar to the one used in Inoue and Sakama (1998) for

reducing DLPs with negation as failure in the head to DLPs without.

Definition 17

For P an ELP, define E(P ) as the ELP, without negation as failure in the head,

obtained from P by replacing each rule a ← β by (for a an ordinary literal, nota
is a new atom) by a ← β, not ¬a , not nota when a is an ordinary literal; or by

notâ ← β, not â when a is a naf-literal.

Intuitively, one can ignore an applicable rule a ← β if it is defeated by evidence

for either ¬a or not a, thus making either not ¬a or not nota false and the rule

a ← β, not ¬a , not nota not applicable.

The extended answer sets of P can then be retrieved from the traditional answer

sets of E(P ).

Theorem 18

Let P be an ELP. Then, S is an extended answer set of P iff there is an answer set

S ′ of E(P ) such that S = S ′ ∩ (BP ∪ ¬BP ).

For example, let P = {a ← , not a ←}, which has two extended answer sets {a}
and ∅. Then E(P ) = {a ← not ¬a , not nota , nota ← not a} which has two traditional

answer sets {a} and {nota} corresponding with {a} and ∅.
The definitions from section 3.1 can be reused to define extended ordered logic

programs and their preferred answer set semantics. However, unlike simple programs,

an extended program R can have extended answer sets M1 
= M2 while RM1
= RM2

.

For example, the program {a ← not b, b ← not a} has two (extended) answer sets

{a} and {b} that both satisfy all the rules. Intuitively, M1 should be incomparable

with M2, hence the extra condition RM1

= RM2

in the definition of � between

extended answer sets.

Definition 18

An extended ordered logic program (EOLP) is a pair 〈R,<〉 where R is an extended

program and < is a well-founded strict partial order on the rules in R6.

The partial order � between subsets of R is defined as in Definition 6. For M1,M2

extended answer sets of R, we define M1 � M2 iff RM1

= RM2

and RM1
� RM2

. As

usual, M1 � M2 iff M1 �M2 and M1 
= M2.

An answer set for an EOLP P is any extended answer set of R. An answer set for

P is called preferred if it is minimal w.r.t. �.

6 Strictly speaking, we should allow R to be a multiset or, equivalently, have labeled rules, so that the
same rule can appear in several positions in the order. For the sake of simplicity of notation, we will
ignore this issue: all results also hold for the general multiset case.
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Example 14

Reconsider the program from Example 11 with the following preference relation,

yielding an extended ordered program 〈P ,<〉.

¬a← ¬b← not c← a

a← not b b← not a c←

The reducts of the answer sets of P are PI = P \ {c ← , ¬a ← }, PJ = P \ {¬b ← },
PK = P \ {a ← not b, b ← not a} and PJ = P \ {¬a ← , not c ← a}, which are

ordered by PJ � PI , PJ � PK , PL � PI and PL � PK , making both J = {¬a, b, c}
and L = {a,¬b, c} preferred over both I = {a,¬b} and K = {¬a,¬b, c}.

An interesting interaction between defeat and negation as failure can occur when

default (minimally preferred) rules of the form not a ← are used. At first sight,

such rules are useless because nota is true by default. However, if present, such rules

can also be used to defeat others as in the following example.

Example 15

Consider the following EOLP.

not a←

a←

← a

This program has the empty set as its single preferred answer set, its reduct

containing the rules not a ← and ← a . Without not a ← , it would be impossible to

defeat a ← , thus violating ← a and thus the program would not have any answer

sets.

Extended (unordered) programs can be regarded as EOLP’s with an empty order

relation.

Theorem 19

For an ELP P , the extended answer sets of P coincide with the preferred answer

sets of the EOLP 〈P , ∅〉.

Proof

Trivial. If the order relation is empty, there are no rules to counter defeated rules,

so every extended answer set is also preferred. �

Interestingly, negation as failure can be simulated using order alone. However,

from Theorem 19 and Example 11 (where I ⊂ L are both preferred answer sets),

it follows that preferred answer sets for EOLPs are not necessarily subset-minimal,

which is not the case for the preferred answer sets of the ordered programs from

section 3.1. Hence, simulating an EOLP with an OLP will necessarily involve the

introduction of fresh atoms.

One might be tempted to employ a construction similar to the one used in

Definition 9 for simulating negation as failure using a two-level order. This would
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involve replacing extended literals of the form nota by fresh atoms nota and adding

“default” rules to introduce nota.

For example, the extended program P = {a ← not b, b ← not a} would be

simulated by the ordered program N(P )

nota← notb←

a← notb b← nota

¬a← nota ¬b← notb
¬nota← a ¬notb← b

where the rules on the lowest level act as constraints, forcing one of the “default

rules” in the top level to be defeated in any proper answer set of N(P ). The

“constraint rules” also serve to indirectly introduce competition between formally

unrelated atoms: in the example, we need e.g. a rule to defeat nota ← , based on the

acceptance of a.

This does not work, however, since it may introduce unwanted answer sets as for

the program {a ← not a} which would yield the OLP program

nota←

a← nota

¬a← nota
¬nota← a

which has a (proper) preferred answer set {nota,¬a} while the original program has

no extended answer sets.

The above examples seem to point to contradictory requirements for the cor-

responding OLP programs: for the first example, rules implying nota should be

(indirect) competitors for a-rules while for the second example, the nota-rule should

not compete with the a-rule, in order not to introduce spurious answer sets.

The solution is to add not only fresh atoms for extended literals of the form nota,

but also for ordinary literals. Thus each extended literal l will be mapped to an

independent new atom φ(l). A rule l ← β will then be translated to φ(l ) ← φ(β),

which does not compete with any other such rule. Defeat between such rules is

however supported indirectly by adding extra rules that encode the consequences of

applying such a rule: for an original rule of the form a ← β, a an ordinary literal, we

ensure that its replacement φ(a)← φ(β) can, when applied, indirectly defeat φ(¬a)-
and φ(nota)-rules by adding both ¬φ(¬a)← φ(β), φ(a) and ¬φ(not a)← φ(β), φ(a).

Similarly, for an original rule of the form not a ← β, a an ordinary literal, a

rule ¬φ(a) ← φ(β), φ(not a) will be added along with its replacement φ(not a) ←
φ(β). Consistency is assured by introducing a new most preferred component

containing, besides translated constraints ← φ(β) for the original ones, rules of the

form ← φ(a), φ(not a) and ← φ(a), φ(¬a). In addition, this new component also
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contains translations a ← φ(a) of the new atoms, that correspond to ordinary

literals, back to their original versions.

Negation as failure can then be simulated by introducing “default” rules of the

form φ(not a)← in a new least preferred component.

Spurious answer sets are prevented, as these new default rules introducing φ(nota),

which do not have defeat-enabling accompanying rules as described above, cannot

be used to defeat transformed rules of the original program, but only to make

them applicable. For instance, the program {a ← not a} mentioned above would be

translated as

φ(not a)← φ(not ¬a)←

φ(a)← φ(not a)

¬φ(not a)← φ(not a), φ(a)

¬φ(¬a)← φ(not a), φ(a)

← φ(a), φ(not a) a← φ(a)

← φ(a), φ(¬a) ¬a← φ(¬a)
← φ(¬a), φ(not ¬a)

which has no proper preferred answer sets.

Formally, for an EOLP 〈R,<〉, we define a mapping φ translating original extended

literals by: φ(a) = a′, φ(¬a) = a′¬, φ(not a) = nota and φ(not ¬a) = not¬a; where for

each atom a ∈ BR , a′, a¬
′, nota and not¬a are fresh atoms. We use φ(X), X a set of

extended literals, to denote {φ(x) | x ∈ X}.

Definition 19

Let P = 〈R,<〉 be an extended ordered logic program. The OLP version of P ,

denoted Ns(P ), is defined by Ns(P ) = 〈Rn ∪ R′ ∪ Rc, Rc < R′< < Rn〉, where

• Rn = {φ(not a)← | a ∈ BR ∪ ¬BR},
• R′ is obtained from R by replacing each rule

— a ← β, where a is a literal, by the rules φ(a) ← φ(β) and ¬φ(¬a) ←
φ(β), φ(a) and ¬φ(not a)← φ(β), φ(a);

— not a ← β by the rules φ(not a)← φ(β) and ¬φ(a)← φ(β), φ(not a);

• Rc = { ← φ(β) | ← β ∈ R} ∪ { ← φ(a), φ(not a); ← φ(a), φ(¬a); a ← φ(a) |
a ∈ BR ∪ ¬BR}.

Furthermore, R′< stands for the original order on R but defined on the corresponding

rules in R′.

Note that Ns(P ) is free from negation as failure.

Example 16

The OLP Ns(P ), corresponding to the EOLP of Example 14 is shown below.
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nota← notb← notc←
not¬a← not¬b← not¬c←

a′¬ ← b′¬ ← notc← a′

¬a′ ← a′¬ ¬b′ ← b′¬ ¬c′ ← a′, notc
¬not¬a← a′¬ ¬not¬b← b′¬

a′ ← notb b′ ← nota c′ ←
¬a′¬ ← notb, a

′ ¬b′¬ ← nota, b
′ ¬c′¬ ← c′

¬nota← notb, a
′ ¬notb← nota, b

′ ¬notc← c′

a← a′ b← b′ c← c′

¬a← a′¬ ¬b← b′¬ ¬c← c′¬
← a′, nota ← b′, notb ← c′, notc
← a′¬, not¬a ← b′¬, not¬b ← c′¬, not¬c
← a′, a′¬ ← b′, b′¬ ← c′, c′¬

The OLP has two proper preferred answer sets J ′ = {¬a, b, c, a′¬, b′, c′,¬a′, nota,

¬notb, ¬b′¬, ¬notc,¬c′¬,¬not¬a, not¬b, not¬c} and L′ = {a,¬b, c, a′, b′¬, c′,¬b′, ¬nota,

¬a′¬, notb, ¬notc, ¬c′¬, not¬a, ¬not¬b, not¬c}, corresponding to the preferred answer

sets J and L of P .

In the above example, the preferred answer set of P can be recovered from the

proper preferred answer set of Ns(P ) by selecting the literals from BP ∪ ¬BP . The

following theorem shows that this is a general property of Ns(P ).

Theorem 20

Let P = 〈R,<〉 be an extended ordered logic program. Then, M is a preferred

answer set of P iff there exists a proper preferred answer set M ′ of Ns(P ), such that

M = M ′ ∩ (BR ∪ ¬BR).

Since the construction of Ns(P ) is polynomial, the above result, together with

Theorems 9 and 11, suggests that order is at least as expressive as negation as

failure, even if the latter is used in combination with the former.

4 Relationship to other approaches

4.1 Brewka’s preferred answer sets

Preferred answer sets have been introduced in the setting of extended logic programs.

In Brewka and Eiter (1999) a strict partial order on the rules in a program is used to

prefer certain traditional answer sets above others. Intuitively, such preferred answer

sets, which we call B-preferred answer sets in what follows to avoid confusion, are

traditional answer sets that can be reconstructed by applying the rules in order

of their priorities, i.e. starting with a most specific rule and ending with the least

specific ones.
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First, we note that the semantics defined in Brewka and Eiter (1999) resides at the

first level of the polynomial hierarchy, i.e. ΣP
1 , while the semantics from Section 3.1 is

at the second level, i.e. ΣP
2 . The extra expressiveness of the latter semantics is useful

for diagnostic and abductive reasoning applications: e.g. finding a subset minimal

explanation is known to be ΣP
2 -complete (Eiter et al. 1997). In addition, we illustrate

with some simple examples the differences between both approaches.

Using the ordered programs from section 2 directly in the setting of the B-

preferred answer set semantics is not very useful since the latter applies only to

consistent programs that do have traditional answer sets. However, if we first apply

the translation from Definition 4 to our programs, thus transforming the extended

answer set semantics into the traditional one, we have a means to compare both

approaches.

We start with a brief, formal description of B-preferred answer sets. The programs

under consideration in Brewka and Eiter (1999) are prioritized extended logic

programs.

Definition 20

A prioritized extended logic program is a pair P = (R,<), where R is an extended

logic program (Definition 16) and < is a strict partial order on the rules7 in R.

The prerequisites of a rule r = a ← β are the literals from (β \ not β−), i.e.

the ordinary literals in its body. If β contains no ordinary literals, r is said to be

prerequisite-free.

The B-preferred answer set semantics is defined on programs having a well-

ordering8 relation on the rules. Therefore another definition is needed to go from

an ordinary prioritized program to one with a well-ordering.

Definition 21

A full prioritization of a prioritized program P = (R,<) is any pair P ∗ = (R,<∗)

where <∗ is a well-ordering on R compatible with <, i.e. r1 < r2 implies r1 <∗ r2,

for all r1, r2 ∈ R. By FP(P ) we denote the collection of all full prioritizations of P .

We say that P is fully prioritized, if FP(P ) = {P }, i.e. P coincides with its unique

full prioritization.

Like the traditional answer set semantics, B-preferred answer sets are defined in

two steps. In the first step, B-preferred answer sets are defined for prerequisite-free

programs, i.e. programs containing only prerequisite-free rules. A rule r is blocked9

by a literal l iff l ∈ B−r . On the other hand, r is blocked by a set of literals X, iff X

contains a literal that blocks r.

In the following construction, the rules in a full prioritization are applied in the

order of their priorities.

7 Again we only consider grounded programs, thus avoiding the complex definitions in Brewka and Eiter
(1999) dealing with the ground instantiations of prioritized rule bases.

8 A (strict) partial order < on S is called a (strict) total order iff ∀x, y ∈ S · x 
= y ⇒ x < y ∨ y < x. A
(strict) total order S,< is called a well-ordering iff each nonempty subset of S has a minimal element,
i.e. ∀X ⊆ S,X 
= ∅ · ∃x ∈ X · ∀y ∈ X · (x = y ∨ x < y).

9 We use the term “blocked” instead of the original “defeat” (Brewka and Eiter 1999) to avoid confusion
with the notion of defeat from Definition 2.
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Definition 22

Let P = (R,<) be a full prioritization of a prerequisite-free prioritized program; let S

be a set of literals and let (R,<) = {rα}<. We define the sequence Sα, 0 � α < ord(<),

of sets Sα ⊆ BR ∪ ¬BR as follows:

Sα =




⋃
β<α Sβ, if rα is blocked by

⋃
β<α Sβ or

Hrα ∈ S and rα is blocked by S ,⋃
β<α Sβ ∪ {Hrα} otherwise.

The set CP (S) is the smallest set of ground literals, i.e. CP (S) ⊆ BR ∪ ¬BR , such

that

1.
⋃

α<ord(<) Sα ⊆ CP (S), and

2. CP (S) is logically closed.

The condition “Hrα ∈ S and rα is blocked by S” in the above definition is necessary

to avoid situations in which a literal in S is derived by two rules r1 and r2 such that

r1 < r2, but r2 is applicable in S and r1 is not. This would result in the conclusion

Hr1 at a priority higher than effectively sanctioned by the rules, as in the following

example.

Example 17

Consider the following program, taken from (Brewka and Eiter 1999).

r4 : p ← not ¬p

r3 : ¬p ← not p

r2 : q ← not ¬q

r1 : p ← not q

This program has two classical answer sets, i.e. S1 = {p, q} and S2 = {¬p, q}. Without

the condition “Hrα ∈ S and rα is blocked by S” in Definition 22, the sequence for S1

would be {p}, {p, q}, {p, q}, {p, q} because r1 would be applied, even if it is blocked

w.r.t. the final set S1. This in turn blocks r3. On the other hand, using Definition 22

correctly, S1 yields the sequence {}, {q}, {¬p, q}, {¬p, q} where r1 is not applied and

r3 becomes applicable. With Definition 23, this implies that S1 is not B-preferred.

In general, CP does not necessarily return the consequences of R, i.e. an applied

rule rα may later be blocked by some less preferred rule rβ where α < β. However,

if a normal answer set A of R is a fixpoint of CP , then all preferences are taken

into account, i.e. a rule whose head is not in A is blocked by a more preferred rule

applied in A. Such answer sets will be preferred.

Definition 23

Let P = (R,<) be a full prioritization of a prerequisite-free prioritized program;

and let A be a normal answer set of R. Then A is a B-preferred answer set of P iff

CP (A) = A.
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The B-preferred answer sets for programs with prerequisites are obtained using a

reduction to prerequisite-free programs.

Definition 24

Let P = (R,<) be a full prioritization of a prioritized program; and let X ⊆
BR ∪ ¬BR . Then, XP = (XR,X<) is the fully prioritized program obtained from P ,

where XR is the set of rules obtained from R by

1. deleting every rule having a prerequisite l such that l 
∈ X, and

2. removing from each remaining rule all prerequisites,

and where X< is inherited from < by the mapping f : XR −→ R, i.e. r′1
X<r′2 iff

f(r′1) < f(r′2), where f(r′) is the first rule in R w.r.t. < such that r′ results from r by

step 2.

In the above reduction, a rule a ← β is removed from the program w.r.t. a

set of literals X iff the prerequisite part of the rule is not applicable w.r.t. X, i.e.

(β\notβ−) 
⊆ X. The prerequisites of the remaining rules can then be safely removed.

Definition 25

A set of ground literals A ⊆ BR ∪ ¬BR is a B-preferred answer set of a full

prioritization P = (R,<) of a prioritized program, if A is a B-preferred answer

set of AP . A is a B-preferred answer set of a prioritized program Q, if A is a

B-preferred answer set for some P ∈ FP(Q). We use ASB(Q) to denote the set of

all B-preferred answer sets of Q.

The following examples suggest that there is no clear relationship between the

preferred (section 3) and B-preferred (Brewka and Eiter 1999) semantics.

Example 18

Consider the OLP P on the left side below.

¬a ← ¬b ←

a ← b ←

¬b ← ¬a ¬a ← ¬b

a ← b b ← a

¬a ← not a ¬b ← not b

a ← not ¬a b ← not ¬b

¬b ← ¬a , not b ¬a ← ¬b, not a

a ← b, not ¬a b ← a , not ¬b

This program has only one preferred answer set, i.e. I = {a, b}. On the other hand,

the transformed program E(P ) (see Definition 4) with the same ordering among the

rules as in P (see the program on the right side above), has two B-preferred answer

sets, namely I and J = {¬a,¬b}.

While the above example illustrates that the B-preferred answer set semantics may

yield too many answers w.r.t. the preferred answer set semantics, the next example

shows that both approaches can yield different answers.
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Example 19

Consider the OLP P on the left side below, and its consistent version E(P ), with

the same order among the rules, on the right.

¬b ←

b ←

a ← b

¬a ←

¬b ← not b

b ← not ¬b

a ← b, not ¬a

¬a ← not a

Let us interpret a as “we have light” and b as “the power is on”. The fact that

we do not have any light (¬a) has the highest priority, followed by the rule that, if

there is power, we should have light (a ← b). The weakest rules assert that probably

the power is on (b), but on the other hand, it may not be (¬b).
Clearly, the only preferred answer set {¬a,¬b} of P fits well with our intuition:

we have no light because somehow, the power is cut (defeating the b ← rule). On

the other hand, the single B-preferred answer set is {¬a, b} which questions the rule

a ← b, although this rule is more preferred than b ← . This example illustrates

some form of contrapositive reasoning: since it is preferable to satisfy a ← b, and

¬a holds, any answer set that provides (a motivation for) ¬b will be preferred over

one that does not. It is this capability that is of interest in, for example, diagnostic

applications (Van Nieuwenborgh and Vermeir 2003a, 2003b).

In the literature two stricter version of the B-preferred answer set semantics have

been considered: the D-preferred answer set semantics (Delgrande et al. 2000) and

the W -preferred answer set semantics (Wang et al. 2000). A nice overview of and

comparison between the B-, W - and D- preferred answer sets can be found in

Schaub and Wang (2001). It turns out (Theorem 8 in Schaub and Wang (2001))

that ASD(R,<) ⊆ ASW (R,<) ⊆ ASB(R,<) ⊆ AS(R), i.e. B-preferredness is

more strict than traditional answer sets, W -preferredness is more strict than B-

preferredness and D-preferredness is the most strict preference relation. This is

illustrated by Example 18 where neither I or J is W - or D-preferred. Nevertheless,

in Example 19 the B-preferred answer set {¬a, b} is also W - and D-preferred,

suggesting that there is no relationship between those approaches and the preferred

answer set semantics from section 3.

Brewka and Eiter (1999) also introduces two principles, which we rephrase below

using the present framework, that every system based on prioritized defeasible rules

should satisfy.

Principle 1

Let M1 and M2 be two different extended answer sets of an ordered logic program

P = 〈R,<〉, generated by the rules R′ ∪ {d1} and R′ ∪ {d2}, where d1, d2 
∈ R′,

respectively. If d1 is preferred over d2, then M2 is not a (maximally) preferred

answer set of P .
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Principle 2

Let M be a preferred answer set of an ordered logic program P = 〈R,<〉 and let r

be an inapplicable rule w.r.t. M. Then M is a preferred answer set of 〈R ∪ {r}, <′〉
whenever <′ agrees with < on the preference among the rules in R.

In this context, a rule r is said to be generating w.r.t. an extended answer set M,

if it is applied w.r.t. M. It turns out that the preferred answer set semantics from

Section 3 violates Principle 1, as illustrated by the following example.

Example 20

Let P be the OLP

a←
b←

¬a←

¬b←¬a

b←¬b
and consider the interpretations I = {a, b} and J = {¬a, b}. The generating rules

for I are {a ← , b ← }, while those for J are {¬a ← , b ← }. Furthermore, we have

that ¬a ← < a ← . Since I is a preferred answer set of P , this violates Principle 1.

The problem with Principle 1 comes from the fact that it only considers “gener-

ating”, i.e. applied, rules while the semantics of Section 3 also takes into account

unapplied but satisfied rules, which have an equal influence on the shape of an

answer set. E.g. in the above example, the rule ¬b ← ¬a is violated by J but not by

I , which should lead one to prefer I over J .

These considerations lead to a modified version of Principle 1 where “generating

rules” is replaced by “reducts” (Definition 1) of the extended answer sets.

Principle 1’ Let M1 and M2 be two different extended answer sets of an ordered

logic program P = 〈R,<〉, with reducts RM1
= R′ ∪ {d1} and RM2

= R′ ∪ {d2}, where

d1, d2 
∈ R′, respectively. If d1 is preferred over d2, then M2 is not a (maximally)

preferred answer set of P .

Clearly, the semantics of section 3 obeys this principle (obviously, RM1
� RM2

).

The new principle is also vacuously satisfied for approaches, such as the B-preferred

semantics, that start from consistent programs. However, if we apply e.g. the B-

preferred semantics “indirectly” on inconsistent programs using the construction of

Definition 4, it appears from Example 19 that this semantics does satisfy Principle 1’.

Obviously, the second principle holds for the preferred answer set semantics.

Theorem 21

The preferred answer set semantics satisfies Principle 2.

Proof

Trivial. Adding inapplicable rules w.r.t. a preferred answer set to an ordered logic

program does not change anything to its preferredness. �

https://doi.org/10.1017/S1471068404002315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002315


Preferred answer sets for ordered logic programs 139

4.2 Logic programming with ordered disjunction

Logic programming with ordered disjunction (LPOD) (Brewka 2002; Brewka et al.

2002) combines qualitative choice logic (Brewka et al. 2002) with answer set

programming by adding a new connective, called ordered disjunction, to logic

programs. Using this connective, conclusions in the head of a rule are ordered

according to preference. Intuitively, one tries to satisfy an applicable rule by using

its most preferred, i.e. best ranked, conclusion.

Definition 26

A logic program with ordered disjunction (LPOD) is a set of rules of the form

a1 × . . .× an ← β, n � 1, where the ai’s are (ordinary) literals and β is a finite set of

extended literals.

An ordered disjunctive rule a1 × . . .× an ← β can intuitively be read as: if β is

true, then accept a1, if possible; if not, then accept a2, if possible; . . . ; if none of

a1, . . . , an−1 are possible, then an must be accepted.

Similarly to ordered programs, the semantics for LPOD’s is defined in two steps.

First, answer sets for LPOD’s are defined, which are then ordered by a relation that

takes into account to what degree rules are satisfied. The minimal elements in this

ordering are also called preferred answer sets. To avoid confusion, we will use the

term “preferred LPOD answer sets” for the latter.

Answer sets for LPOD’s are defined using split programs, a mechanism first used

in Sakama and Inoue (1994) to define the possible model semantics for disjunctive

logic programs.

Definition 27

Let r = a1 × . . .× an ← β be a LPOD rule. For k � n we define the kth option of r

as rk = ak ← β, not {a1 , . . . , ak−1 }.
An extended logic program P ′ is called a split program of a LPOD P if it is

obtained by replacing each rule in P by one of its options. An interpretation S is

then an (LPOD) answer set of P if it is an answer set of a split program P ′ of P .

Note that the split programs defined above do not contain negation as failure in

the head of rules.

Example 21

The LPOD

b× c× d←
c× a× d←

¬c← b

has five answer sets, namely S1 = {a, b,¬c}, S2 = {b,¬c, d}, S3 = {c}, S4 = {a, d}
and S5 = {d}.

Note that S5 ⊂ S4, illustrating that answer sets for LPOD programs need not be

subset-minimal. Intuitively, only S1 and S3 are optimal in that they correspond with

a best combination of options for each of the rules.

The above intuition is formalized in the following definition of a preference

relation on LPOD answer sets.
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Definition 28

Let S be an answer set of a LPOD P . Then S satisfies the rule a1 × . . .× an ← β

- to degree 1 if S 
|= β.

- to degree j (1 � j � n) if S |= β and j = min{i | ai ∈ S}.

For a set of literals S , we define Si(P ) = {r ∈ P | degS (r) = i}, where degS (r) is used

to denote the degree to which r is satisfied w.r.t. S .

Let S1 and S2 be answer sets of P . Then S1 is preferred over S2, denoted S1 �b S2,

iff there is a k such that Sk
2 (P ) ⊂ Sk

1 (P ), and for all j < k, Sj
1 (P ) = S

j
2 (P ). A minimal

(according to �b) answer set is called a (LPOD) preferred answer set of P .

Example 22

In the LPOD from Example 21, both S1 and S3 satisfy the third rule to degree 1. In

addition, S1 satisfies the first rule to degree 1 and the second rule to degree 2, while

S3 satisfies the second rule to degree 1 and the first rule to degree 2. Thus S1 and

S3 are incomparable w.r.t. �b. All other answer sets are less preferred than either S1

or S3: e.g. S5 satisfies the first and second rule only to degree 3, and the third rule

to degree 1, from which S1 �b S5 and S3 �b S5. It follows that S1 and S3 are both

preferred.

Next, we show that the preference relation which is implicit in ordered disjunctive

rules can be intuitively simulated using preference between non-disjunctive rules in

one single ordered program. In Brewka et al. (2002), an algorithm is presented to

compute LPOD preferred answer sets using traditional answer set programming.

The algorithm needs two different programs, i.e. a generator that computes answer

sets and a tester for checking preferredness, which are executed in an interleaved

fashion. On the other hand, using the following translation together with the olps

solver (see section 3.2) does the job in a single run.

Definition 29

The EOLP version of a LPOD P , denoted L(P ), is defined by L(P ) = 〈Pr ∪ P1 ∪
. . . ∪ Pn ∪ Pd, Pr < P1 < . . . < Pn < Pd〉, where

• n is the size of the greatest ordered disjunction in P;

• Pr contains every non-disjunctive rule a ← β ∈ P . In addition, for every

ordered disjunctive rule r = a1 × . . .× an ← β ∈ P , Pr contains a rule ai ←
β, not {a1 , . . . , an} \ {ai} for every 1 � i � n, a rule napr ← not l for every literal

l ∈ β and a rule napr ← l for every not l ∈ β.

• Pd contains for every ordered disjunctive rule r = a1 × . . .× an ← β ∈ P a

rule not napr ← and rules not ai ← β, not {a1 , . . . , ai−1 } for every 1 � i � n.

• for 1 � k � n, Pk is defined by Pk = {ak ← β, not {a1 , . . ., ak−1 }|a1× . . .× am ←
β ∈ P with k � m � n}.

Intuitively, the rules in Pr ensure that all rules in P are satisfied, while the rules

in Pd allow to defeat a rule in one of the P1, . . . , Pn−1 in favor of a rule in a less

preferred component (see also Example 15). Finally, the rules in P1, . . . , Pn encode

the intuition behind LPOD, i.e. better ranked literals in an ordered disjunction are

preferred.
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The napr-literals (and their corresponding rules) serve to prevent LPOD answer

sets that block disjunctive rules to be preferred over others in L(P ). For example,

the program

c× d← a

a← not b

b← not a

has both {a, c} and {b} as preferred LPOD answer sets, with the latter blocking the

disjunctive rule. Applying Definition 29 yields the EOLP

not napc×d←a ←
not c← a

not d← a, not c

d← a, not c

c← a

c← a, not d

d← a, not c

napc×d←a ← not a

a← not b

b← not a

which has two preferred answer sets {a, c} and {b, napc×d←a}. Without the napc×d←a

construct, only {b} would be preferred as {b} would satisfy all rules, while {a, c}
would defeat not c ← a .

Example 23

The result of the transformation of the LPOD from Example 21 is shown below,

where r = b × c × d ← and s = c × a × d ← .

not b← not c←
not c← not b not a← not c

not d← not b, not c not d← not c, not a

not napr← not naps←

d← not b, not c d← not a, not c

c← not b a← not c

b← c←

b← not c, not d c← not a, not d

c← not b, not d a← not c, not d

d← not b, not c d← not a, not c

¬c← b
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This EOLP program has two proper preferred answer sets, i.e. S1 = {a, b,¬c} and

S3 = {c}.

In general, the preferred LPOD answer sets for a LPOD program P coincide with

the proper preferred answer sets of L(P ).

Theorem 22

An interpretation S is a preferred LPOD answer set of a LPOD P iff there exists a

proper preferred answer set S ′ of L(P ) such that S = S ′ ∩ (BP ∪ ¬BP ).

4.3 Answer set programming with consistency-restoring rules

In Balduccini and Gelfond (2003) and Balduccini and Mellarkod (2003) an ex-

tension of answer set programming with consistency-restoring rules (cr-rules) and

preferences10 is presented. The approach allows problems to be described in a

concise, and easy to read, manner. While Balduccini and Gelfond (2003) introduce

cr-rules, Balduccini and Mellarkod (2003) combine them with ordered disjunction

(section 4.2). A possible application is presented in Balduccini (2004), where cr-rules

are used to improve the quality of solutions in the planning domain.

Intuitively, cr-rules in a program are like normal rules, but they can only be used

as a last resort to obtain solutions, i.e. only when the program without cr-rules is

inconsistent we can apply some of the cr-rules to obtain a solution for the problem,

taking into account the preferences among the cr-rules. Consider for example the

following program where ←cr is used to denote cr-rules:

r1 : p ←cr not t

r2 : q ←cr not t

r3 : s ←

and r2 is preferred over r1. As the single rule r3 is consistent, the above program has

only one answer set, i.e. {s}. Adding the constraint

r4 :← not p, not q

causes the combination of r3 and r4 to be inconsistent. In this case, one of the cr-

rules r1 or r2 is selected for application. Either of them yields, when combined with

r3 and r4, a consistent program, making both {p, s} and {q, s} candidate solutions

for the program. However, since r2’s application is preferred over r1’s, only the latter

candidate solution should be sanctioned as an answer set of the program.

It turns out that the intuition behind consistency restoring rules can be captured

by the preferred answer set semantics using a translation similar to the one used

for diagnostic and abductive reasoning with preferences (Van Nieuwenborgh and

Vermeir 2003a; Van Nieuwenborgh and Vermeir 2003b). For instance, the above

10 Balduccini and Gelfond (2003) and Balduccini and Mellarkod (2003) allow for both static and dynamic
preferences; here we only consider the static case.
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program can be captured by the following ordered program:

p ← not t , inconsistent

q ← not t , inconsistent

not q ← inconsistent

not p ← inconsistent

s ←
inconsistent ← not s

← not p, not q

inconsistent ← not p, not q

Intuitively, the non cr-rules, which must always be satisfied, are placed in the

most specific component, together with rules that check when the normal program

is inconsistent, so allowing consistency-restoring rules to be applied. The cr-rules are

placed at the least preferred level because they will only be applied as a last resort.

In the middle levels we introduce rules that allow for the defeat of the cr-rules,

i.e. allowing an applicable cr-rule not to be applied. The ordering relation on these

rules is the opposite of the preference relation between cr-rules as preferring (the

application of) r2 over r1 corresponds to preferring the satisfaction of not p ←
upon not q ← . It can be verified that the above ordered program has only one

preferred answer set {q, s, inconsistent} corresponding with the application of the

most preferred cr-rule, while removing r4 from the ordered program will result in

the single preferred answer set {s} implying that no cr-rules are used.

Example 7 (section 3.1) provides another illustration of the above translation11:

the ordered program there is obtained by applying the construction on the following

program with cr-rules:

lift weights ←cr

play ball ←cr

run ←cr

swim ←cr

full body exercise ← lift weights , run

full body exercise ← swim , play ball

← not full body exercise

with, additionally, run ←cr < swim ←cr and ball play ←cr < lift weights ←cr
12.

As with the translation of LPOD (section 4.2), this illustrates how OLP can be

used to encode other extensions of answer set programming. Together with an OLP

solver such as olps (section 3.2), it also provides a convenient translation-based

implementation of such higher level formalisms.

11 As the program, except the constraint, is positive we can use classical negation (¬) and dispense the
inconsistent literals and rules.

12 We use r1 < r2 to indicate that (the application of) the cr-rule r1 is preferred over r2.
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4.4 Ordered logic, DOL and DLP<

Ordered logic programming has a long history: in Laenens and Vermeir (1990, 1992)

and Gabbay et al. (1991), semantics are given for ordered programs containing non-

disjunctive rules, while Buccafurri et al. (1998, 1999) apply the same ideas to the

disjunctive case.

In all these approaches, the partial order on rules is used to decide conflicts

between contradictory rules, i.e. applicable rules that cannot both be applied in a

consistent interpretation. Specifically, an applicable rule r may be left unapplied,

i.e. defeated, iff there exists an applied competitor r′ that is more preferred, i.e.

r < r′13. Clearly, these classical semantics for ordered logic use the order relation

on a local basis, i.e. to resolve conflicts between individual contradicting rules,

while the semantics from section 3 is based on a global comparison of the reducts

corresponding to the candidate answer sets.

This difference in using the order relation has important consequences on the

complexity of the resulting formalisms: while the semantics that use the order in

a “local” way all stay in the same complexity class of the underlying non-ordered

language, i.e. ΣP
1 -complete for (Laenens and Vermeir 1990; Gabbay et al. 1991;

Laenens and Vermeir 1992) and ΣP
2 -complete for (Buccafurri et al. 1998; Buccafurri

et al. 1999), the “global order” semantics from Section 3 increments the complexity in

the polynomial hierarchy, i.e. ΣP
2 -complete instead of ΣP

1 -complete (see section 3.2).

The following example illustrates how the classical semantics leads to different,

and, in our opinion less intuitive, results from the preferred answer set semantics.

Example 24

Consider the following ordered program.

a←

¬a←

b←

¬b←¬a

Using the semantics from section 3 yields one preferred answer set, i.e. I = {a, b}.
However, in the setting of the classical semantics I cannot be a model as the rule

¬a ← is applicable, not applied and no better rule with opposite head exists. On

the contrary, those classical semantics will yield J = {¬a,¬b} as a model, which is

certainly not a preferred answer set as the rule b ← is defeated w.r.t. J , while it is

satisfied w.r.t. I .

13 In some approaches one demands that the competitor r′ cannot be less preferred then r, i.e. r′ 
> r,
thus allowing rules on the same level or on unrelated levels to defeat each other. However, this does
not change anything to the conclusions made in this section.
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5 Application: repairing databases

The notion of database repair was first introduced in Arenas et al. (1999) to address

the problem of consistent query answering in inconsistent databases, which was first

mentioned in Bry (1997). Arenas et al. (1999) describe an algorithm to compute such

query answers using database repairs, while Arenas et al. (2000) provide an algorithm

to compute such repairs themselves, using a complex translation to disjunctive logic

programs with exceptions (Kowalski and Sadri 1990).

Here we show that database repairs can be obtained as the preferred answer sets

of a simple and intuitive ordered program corresponding to the original database

and constraints. We review some definitions from Arenas et al. (2000), using a

simplified notation.

Definition 30

A database is a consistent set of literals. A constraint is a set A of literals, to be

interpreted as a disjunction, c = ∨a∈Aa. The Herbrand base BC of a set of constraints

C is defined by BC = ∪c∈CBc. A database D is consistent with a set of constraints

C , where BC ⊆ BD , just when D |= ∧c∈Cc, i.e. D is a classical model of C . A set

of constraints C is consistent iff there exists a database D such that D is consistent

with C .

Definition 31

Let D and D′ be databases with BD = BD′ . We use ∆D(D′) to denote the difference

D′ \D. A database D induces a partial order relation14 �D defined by

D1 �D D2 iff ∆D(D1) ⊆ ∆D(D2).

Intuitively, ∆D(D′) contains the update operations that must be performed on D

to obtain D′. A negative literal ¬a in ∆D(D′) means that the fact a must be removed

from D while a ∈ ∆D(D′) suggests adding a to D.

The �D relation represents the closeness to D: D1 �D D2 means that D1 is a better

approximation of D than D2 (note that D �D D).

Definition 32

Let D be a database and let C be a set of constraints with BC ⊆ BD . A database

D′ is a C-repair of D iff D′ |= C and D′ is minimal in the �D partial order; i.e.

D′′ �D D′ implies that D′′ = D′.

This definition differs from the one in (Arenas et al. 2000) where �D was defined

based on the symmetric difference ∆(D,D′) = (D+\D′+)∪ (D′+\D+) rather than our

∆D(D′).

The following lemma shows that �D is the same using both relations.

Lemma 2

Let D , D1 and D2 be databases over the same Herbrand base. ∆D(D1) ⊆ ∆D(D2) iff

∆(D,D1) ⊆ ∆(D,D2).

14 The proof that �D is a partial order is straightforward.
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From Lemma 2, it follows that Definition 32 is equivalent to the one in Arenas

et al. (2000).

Next we provide a construction that maps a database D and a set of constraints

C to an ordered logic program P (D,C) which, as shall be shown further on, has

the C-repairs of D as preferred answer sets. Using ordered logic instead of logic

programs with exceptions (Kowalski and Sadri 1990) greatly simplifies (w.r.t. Arenas

et al. (2000)) constructing repairs: we can dispense with the shadow versions of

each predicate and we do not need disjunction. Moreover, our approach handles

constraints of arbitrary size, while Arenas et al. (2000) is limited to constraints

containing up to two literals.

Definition 33

Let D be a database and let C be a consistent set of constraints with BC ⊆ BD . The

ordered version of D w.r.t. C , denoted P (D,C), is shown below.

{¬a ← | a ∈ D} (n)

{a ← | a ∈ D} (d)

{a ← ¬(A\{a}) | ∨a∈Aa ∈ C} (c)

Intuitively, the c-rules enforce the constraints (they are also the strongest rules

according to the partial order). The d-rules simply input the database as “default”

facts while the n-rules will be used to provide a justification for literals needed

to satisfy certain c-rules, thus defeating d-rules that would cause constraints to be

violated.

Theorem 23

Let D be a database and let C be a consistent set of constraints with BC ⊆ BD .

Each repair of D w.r.t. C is a preferred answer set of P (D,C).

The reverse of Theorem 23 also holds.

Theorem 24

Let D be a database and let C be a consistent set of constraints with BC ⊆ BD .

Each preferred answer set of P (D,C) is a C-repair of D.

Example 25

Consider the propositional version of the example from Arenas et al. (2000) where

the database D = {p, q, r} and the set of constraints C = {¬p ∨ q,¬p ∨ ¬q,¬q ∨
r,¬q ∨ ¬r,¬r ∨ p,¬r ∨ ¬p, }. The program P (D,C) is shown below.

¬p← ¬q← ¬r←

p← q← r←

¬p←¬q q← p ¬p← q

¬q← p ¬q←¬r r← p

¬r← q ¬q← r p← r

¬r←¬p ¬p← r ¬r← p
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It is easily verified that R = {¬p,¬q,¬r} is the only repair of D w.r.t. C and the

only proper preferred answer set of P (D,C).

The example below illustrates that the simple translation of Definition 33 for

database repairs does not work with other ordered formalisms (see section 4), where

a rule may be left unsatisfied if there exists an applicable (or applied) better rule

with an opposite head.

Example 26

Consider the database D = {¬a,¬b} and the following set of constraints C =

{a∨¬b,¬a∨b}. Obviously, D itself is the only repair w.r.t. C . Now, consider P (D,C)

which is shown below.

a← b←

¬a← ¬b←

a← b b← a

¬a←¬b ¬b←¬a

This program has only one proper preferred answer set, namely D itself. But,

when we consider the same program in most other ordered formalisms (e.g. Laenens

and Vermeir (1992)), we get two solutions, i.e. D and {a, b}.

6 Conclusions and directions for further research

The preferred answer set semantics for ordered programs is based on a few simple

intuitions: ignore rules that are defeated by other applied rules and order answer sets

according to the natural order between the sets of rules that they satisfy. The resulting

system is surprisingly powerful and versatile and turns out to be useful for several

application areas such as database repair (section 5) or diagnostic systems (Van

Nieuwenborgh and Vermeir 2003a, 2003b). It may also serve as a “common base

language” for the encoding and implementation (through an OLP solver) of other

higher level extensions of answer set programming such as ordered disjunctions

(Brewka 2002; Brewka et al. 2002) or programs with consistency-restoring rules

(Balduccini and Gelfond 2003; Balduccini and Mellarkod 2003).

A first implementation of an ordered logic program solver (olps) is available

under the gpl at http://tinf2.vub.ac.be/olp/. After grounding, olps computes

(a selection of) the proper preferred answer sets of a finite ordered program.

Besides research topics relating to the theory and implementation of the preferred

answer set semantics, there are also some other application areas that still need

to be explored. One such area concerns updates of logic programs (e.g. see Eiter

et al. (2000) and Alferes and Pereira (2000)). Here, it is natural to consider a

new update as an addition of a new most specific level to the ordered program

representing the previous version. The preferred answer set semantics will then

return solutions that favor compatibility with more recent knowledge, possibly at

the expense of earlier rules.
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The formalism can also be extended to consider hierarchies of preference orders.

Such a system could be used to model hierarchical decision making where each

agent has her own preferences, and agents participate in a hierarchy representing

relative authority or confidence. The semantics of such a system should reflect both

individual preferences and the decision hierarchy.

Finally, it would be interesting to apply the intuition of Definition 6 to a system

where preferences are expressed on literals rather than on rules. Intuitively, in such

a formalism, preference would depend on the content of the candidate answer

sets, rather than how well they satisfy the underlying rules.15 In fact, a system

that combines both rule- and literal-preferences, perhaps in a complex hierarchy as

mentioned above, could be useful for certain applications.

Appendix: Proofs

Theorem 5

Let P be a SLP. The extended answer sets of P coincide with the answer sets of

E(P ).

Proof

=⇒ Let M be an extended answer set of P . We must show that M is an answer

set of E(P ), i.e. M is an answer set of the simple program E(P )M which is obtained

from E(P ) by keeping (a) the rules a ← β from P where ¬a 
∈ M and (b) the

constraints ← β from P . Thus it suffices to show that P�
M = E(P )M

�
.

Consider a rule r = a ← β in E(P )M . Since ¬a 
∈M, this rule cannot be defeated

and hence r ∈ PM . Further, constraints s = ← β in E(P )M can never be defeated

and as M is an extended answer set they are satisfied w.r.t. M, so s ∈ PM . As a

result E(P )M ⊆ PM and, by the monotonicity of the �-operator,

E(P )M
� ⊆ P�

M. ( 1)

Next, note that P�
M = {r | r applied w.r.t. M}�, i.e. only the applied rules in PM

suffice to generate M. Each applied rule r = a ← β in PM must belong to E(P )M

since a ∈ M, and thus ¬a 
∈ M, because r is applied. Thus P�
M ⊆ E(P )M

�
and, by

( 1), P�
M = E(P )M

�
.

⇐= Let M be an answer set of E(P ), i.e. M = E(P )M
�

where E(P )M is as above.

We show that M is an extended answer set of P . Obviously, all rules in E(P )M are

satisfied by M and thus E(P )M ⊆ PM and, by the monotonicity of the �-operator,

M ⊆ P�
M .

The constraints in E(P ) do not contain negation as failure and, obviously, they

are satisfied by M. So, all rules r not kept in E(P )M have the form a ← β.

For a rule r = a ← β not in E(P )M we know that ¬a ∈ M. If β 
⊆ M, r is not

applicable and thus r ∈ PM . If, on the other hand, β ⊆ M, r is defeated because

¬a ∈ M ⊆ P�
M , which implies the existence of an applied competitor in PM . Thus

15 A system using preferences on literals has been proposed in Sakama and Inoue (1996), but the way
these preferences are used to obtain a ranking of answer sets is different from our proposal.
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each unsatisfied rule in P is defeated w.r.t. M. It remains to be shown that P�
M = M.

This follows from E(P )M ⊆ PM and the fact that only rules that are not applicable

w.r.t. M are in PM\E(P )M . �

Theorem 7

Let < be a well-founded strict partial order on a set X. The binary relation � on

2X defined by X1 � X2 iff ∀x2 ∈ X2\X1 · ∃x1 ∈ X1\X2 · x1 < x2 is a partial order.

Proof

The relation � is clearly reflexive.

To show that it is antisymmetric, assume that both X1 � X2 and X2 � X1. We

show that X1\X2 = X2\X1 = ∅, from which X1 = X2. Assume that, on the contrary,

X2 \X1 
= ∅ and let x0 be a minimal element in X2 \X1 (such an element exists

because < is well-founded). Because X1 � X2, there exists x1 ∈ X1\X2 for which

x1 < x0. Since X2 � X1, x1 ∈ X1\X2 implies the existence of x2 ∈ X2\X1 such that

x2 < x1 < x0, contradicting the fact that x0 is minimal in X2\X1.

To show that � is transitive, let X1 � X2 � X3 and let x0 ∈ X3\X1. We consider

two possibilities.

• If x0 ∈ X2 then, because X1 � X2, there exists x1 ∈ X1\X2 with x1 < x0, where

we choose x1 to be a minimal element satisfying these conditions. Again there

are two cases:

— If x1 
∈ X3 then x1 ∈ X1\X3, showing that X1 � X3.

— If x1 ∈ X3 then x1 ∈ X3\X2 and thus, since X2 � X3, there exists x2 ∈ X2\X3

such that x2 < x1 < x0. If x2 ∈ X1 we are done. Otherwise x2 ∈ X2\X1

and thus, since X1 � X2, there exists x3 ∈ X1\X2 where x3 < x2 < x1 < x0,

contradicting the minimality assumption on x1.

• Otherwise, x0 
∈ X2 and thus, because X2 � X3, there exists an element

x1 ∈ X2\X3 such that x1 < x0 where we choose x1 to be a minimal element

satisfying these conditions. Again there are two cases:

— If x1 ∈ X1 then we are done as x1 < x0.

— Otherwise, since X1 � X2, there exists an element x2 ∈ X1\X2 such that

x2 < x1. If x2 
∈ X3 then we are done as x2 < x0. If, on the other hand,

x2 ∈ X3, X2 � X3 implies the existence of an element x3 ∈ X2\X3 with

x3 < x2, contradicting our earlier assumption of the minimality of x1.

Hence, in call cases, there exists an element x ∈ X1\X3 such that x < x0 and thus

X1 � X3. �

Theorem 9

Let P be an (non-disjunctive) seminegative logic program The ordered version of

P , denoted N(P ) is defined by N(P ) = 〈P ′ ∪ P¬, <〉 with P¬ = {¬a ← | a ∈ BP }
and P ′ is obtained from P by replacing each negated literal not p by ¬p. The order

is defined by P ′ < P¬, i.e. ∀r ∈ P ′, r′ ∈ P¬ · r < r′ (note that P ′ ∩ P¬ = ∅). Then M

is a stable model of P iff M ∪ ¬(BP \M) is a proper preferred answer set of N(P ).
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Proof

=⇒ Let M ⊆ BP be a stable model of P . Thus, by definition, PM∗ = M

where PM is the result of the Gelfond-Lifschitz transformation. We show first that

M ′ = M∪¬(BP\M) is an extended answer set of R = P ′∪P¬. Besides {¬a | ¬a ∈M ′}
the reduct RM ′ also contains all rules from P ′: if not, there would be a rule a ← β in

PM where β ⊆M while a 
∈M, contradicting that PM�
= M. Also, it is is easy to see

that applying the RM ′ -rules from {¬a ← | ¬a ∈M ′} blocks16 all rules corresponding

to rules from P \PM . Consequently, R�
M ′ = ({¬a ← | ¬a ∈M ′} ∪ PM)� = M ′.

To show that RM ′ is minimal (and M ′ is preferred), note for any R-extended

answer set X with RX � RM ′ , it must be the case that RX ⊃ RM ′ and, moreover,

(RX\RM ′ ) ⊆ P¬ since the only rules defeated by M ′ are in P¬. Let ¬a ← ∈ RX\RM ′ .

Since � is monotonic and P ′ ⊆ RX , it follows that R�
X ⊇ {a,¬a}, contradicting that

X is an extended answer set. From the fact that P ′ ⊆ RM ′ , it follows that M ′ is

proper.

⇐= Let M ′ be a proper preferred answer set of N(P ) = 〈R = P ′ ∪ P¬, <〉.
As M ′ is proper, P ′ ⊆ RM ′ . Clearly M ′ ∩ ¬BP = {¬a | ¬a ← ∈ (P¬ ∩ RM ′ } and

M ′+ = (R�
M ′ )+ = Q�, where Q is obtained from P ′ ⊆ RM ′ by removing all rules that

contain a literal ¬a in the body such that a ∈M ′ and, moreover, removing ¬a ∈M ′

from the bodies of the remaining rules. Then Q = PM+

, yielding that M+ is a stable

model of P . �

Theorem 10

Let P be a positive disjunctive logic program. M is a minimal model of P iff

M ′ = M ∪ ¬(BP \M) is a proper preferred answer set of D(P ).

Proof

=⇒ Let M be a minimal model of P . Clearly, M ′ is total for D(P ) and, by

construction, each rule in D(P ) is either satisfied or defeated. On the other hand,

the rules from D(P )M ′ ∩ (P+ ∪ P−) suffice to generate M ′ which is thus founded.

Hence, by Definition 3, M ′ is an extended answer set of D(P ). Since all rules in Pp

are satisfied by any model of P , M ′ is also proper.

To show that M ′ is preferred, assume it is not, i.e. N � M ′ for some proper

extended answer set N of D(P ), for which, obviously, N+ is also a model of P . From

the construction of D(P ) and Definition 6, we obtain that D(P )M ′\D(P )N ⊆ P+ from

which N+ ⊂M, contradicting the fact that M is a minimal model of P .

⇐= Let M ′ = M ∪¬(BP\M) be a proper preferred answer set of D(P ). Clearly,

since M ′ |= Pp, M must be a model of P by construction of the rules in Pp. To

show that M is minimal, assume that it is not, i.e. N ⊂ M for some model N of P .

A similar reasoning as above yields that N ′ = N ∪ ¬(BP \N) is a proper extended

answer set of D(P ). Moreover, from N ⊂ M, it is straightforward to show that

N ′ � M ′, contradicting that M ′ is preferred. �

Lemma 3

Let P be a seminegative DLP and let M1 and M2 be proper extended answer sets

of Dn(P ). Then M+
1 ⊂M+

2 iff M1 � M2.

16 A rule a ← α is blocked w.r.t. and interpretation I if α ∩ ¬I 
= ∅.
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Proof

=⇒ Assume that M+
1 ⊂ M+

2 and let r ∈ Dn(P )M2
\Dn(P )M1

and let s ∈ Dn(P )M1
\

Dn(P )M2
. Since both M1 and M2 are proper, it must be the case that r, s ∈ P− ∪ Pc.

Obviously, Dn(P )M2
∩ P− = {¬a ← ∈ P− | ¬a ∈M2\M+

2 }. As both M1 and M2 are

total and M+
1 ⊂M+

2 , we know that ∀¬a ∈M2\M+
2 ·¬a ∈M1\M+

1 and ∀a ∈M+
2 \M+

1 ·
¬a ∈M+

1 . Combining the above yields that Dn(P )M1
∩P− = (Dn(P )M2

∩P−)∪{¬a ←
∈ P− | a ∈M+

2 \M+
1 }. Thus, (Dn(P )M2

∩P−) ⊂ (Dn(P )M1
∩P−), making M1 preferred

upon M2, i.e. M1 � M2.

⇐= Assume that M1 � M2 (from which, M1 
= M2) and let a ∈M+
1 \M+

2 . Since

a 
∈ M+
2 , the P− rule r¬a = ¬a ← cannot be defeated and thus ¬a ∈ M2 and

r¬a ∈ Dn(P )M2
. On the other hand, r¬a 
∈ Dn(P )M1

because the rule is defeated by a

rule introducing a into M1. Thus r¬a ∈ Dn(P )M2
\Dn(P )M1

but, since M1 and M2 are

proper, r¬a is not countered by Dn(P )M1
, contradicting that M1 � M2. �

Theorem 12

Let P be a seminegative DLP. An interpretation M is a proper preferred answer set

of Dn(P ) iff M+ is a minimal possible model of P .

Proof

We show that the proper extended answer sets of Dn(P ) coincide with the possible

models of P , from which, by Lemma 3, the theorem readily follows.

=⇒ Let M be a proper extended answer set of Dn(P ) and consider SM(P ) =

(Dn(P )M) ∩ Pc where all occurrences of negative literals ¬a have been replaced by

their negation-as-failure counterparts not a. We claim that SM(P ) is a split program

of P because SM(P ) contains at least one split clause for each rule α ← β from P .

Indeed, if this were not the case, there would exist a rule α ← β such that β ⊆ M

while α ∩M = ∅, violating the corresponding rules in Pp and thus contradicting the

assumption that M is proper.

To show that M is a possible model, it then suffices to show that P ′� = M+,

where P ′ = SM(P )M
+

is the result of applying the Gelfond-Lifschitz transformation

to SM(P ) and M+. However, we already know that P ′′� = M where P ′′ = (Dn(P )M)∩
(Pc ∪ P−) because rules from Dn(P )M ∩ Pp are not needed to “produce” M (indeed,

for any applicable (and thus applied) rule a ← β ∪ ¬(α\{a}) in Dn(P )M ∩ Pp, there

exists an “equivalent” applied rule a ← β in Dn(P )M ∩ Pc). It is then not difficult to

see that P ′ can also be obtained from P ′′ by (a) removing all negative literals ¬a,
where ¬a ← is in P ′′, from all rule bodies, and (b) removing any rules that still

contain negative literals, thus also the rules ¬a ← which were not affected by (a).

Since this this operation can be viewed as part of the computation of (P ′′�)+ = M+,

it follows that P ′� = M+.

⇐= Let N ⊆ BP be a possible model corresponding to a split program SN(P )

of P and let M = N ∪ ¬(BP \N). We use P ′ to denote the program obtained from

SN(P ) by replacing not β by ¬β in all its rules. It follows that P ′′ = Dn(P )M =

X ∪ {¬a ← | a ∈ (BP \N} ∪ Pp where P ′ ⊆ X ⊆ Pc. To show that M is a proper

extended answer set we must show that (1) M |= r for any r ∈ Pp, (2) P ′′� = M,

and (3) each rule in Dn(P )\P ′′ is defeated. Clearly, (1) follows from the fact that M

is a model of P (Proposition 3.1 in (Sakama and Inoue 1994)). To establish (2), it
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suffices to note that (P ′ ∪ (P ′′ ∩ P−))� = M because M+ is a possible model, from

which P ′′� = M because (P ′ ∪ (P ′′ ∩ P−) ⊆ P ′′ (and, by definition of P ′′, P ′′� ⊆M).

(3) then follows immediately from the fact that M is total and (2). �

Lemma 4

Let 〈P ,<〉 be an ordered program and R ⊆ P and T ⊆ P be sets of rules. Then

T 
� R iff R has a witness against T , which is equivalent to ∃X ∈ ω(T ) ·X ⊆ R.

Proof

From the definition of �, it immediately follows that T 
� R iff R has a witness

against T .

To show the second part of the lemma, suppose X ⊆ R for some X ∈ ω(T ). Then

X = {r} ∪ (down({r}) ∩ T ) for some r 
∈ T . It is then straightforward to verify that

r is a witness for R against T and thus T 
� R.

Conversely, if T 
� R then, according to the first part of the lemma, there exists a

witness r ∈ R\T for which it is easy to verify that r 
∈ T while down({r}) ∩ T ⊆ R,

and thus r ∈ ω(T ). �

Lemma 5

Let 〈P ,<〉 be an ordered program, 〈Ri, Ro〉 be a specification, C a constraint and r

a minimal (according to <) element from P \(Ri ∪ Ro). Let R, with r ∈ R, be a set

of rules. Then R ∈ min µ(〈Ri, Ro〉, C) iff R ∈ min µ(〈Ri ∪ {r}, Ro〉, C).

Proof

=⇒ Let R ∈ min µ(〈Ri, Ro〉, C). Then, by definition, R ∈ µ(〈Ri ∪ {r}, Ro〉, C)

because r ∈ R. Assume that, on the contrary, R 
∈ min µ(〈Ri ∪ {r}, Ro〉, C). Hence

∃T ∈ µ(〈Ri ∪ {r}, Ro〉, C)·T � R. But then also T ∈ µ(〈Ri, Ro〉, C) because µ(〈Ri∪{r},
Ro〉, C) ⊆ µ(〈Ri, Ro〉, C). Consequently, R would not be minimal in µ(〈Ri, Ro〉, C), a

contradiction.

⇐= Let R ∈ min µ(〈Ri ∪ {r}, Ro〉, C) and assume that, on the contrary,

∃T ∈ µ(〈Ri, Ro〉, C) · T � R. Surely, r 
∈ T , since otherwise T ∈ µ(〈Ri ∪ {r}, Ro〉,
C) and R would not be minimal in µ(〈Ri ∪ {r}, Ro〉, C). Because r is minimal in

P\(Ri∪Ro), down({r})∩T = down({r})∩R, and thus r ∈ R is a witness for R against

T . It follows that T 
� R, contradicting our assumption. �

Lemma 6

Let 〈P ,<〉 be an ordered program, 〈Ri, Ro〉 be a specification, C a constraint and r

a minimal (according to <) element from P \(Ri ∪ Ro). Let R, with r 
∈ R be a set

of rules. Then, R ∈ min µ(〈Ri, Ro〉, C) iff R ∈ min µ(〈Ri, Ro ∪ {r}〉, C) and

∀T ∈ min µ(〈Ri ∪ {r}, Ro〉, C) · T 
� R.

Moreover, if C ′ is such that

µ(〈Ri, Ro ∪ {r}〉, C ′) =

{T | T ∈ µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T } ( 2)

with M = min µ(〈Ri ∪ {r}, Ro〉, C), then

min µ(〈Ri, Ro ∪ {r}〉, C ′) =

{T | T ∈ min µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T } ( 3)
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Proof

=⇒ Suppose that R ∈ min µ(〈Ri, Ro〉, C). Since µ(〈Ri, Ro ∪ {r}〉, C) ⊆ µ(〈Ri, Ro〉,
C) and R ∈ µ(〈Ri, Ro ∪ {r}〉, C), R ∈ min µ(〈Ri, Ro ∪ {r}〉, C).

Let T ∈ min µ(〈Ri ∪ {r}, Ro〉, C). By Lemma 5, T ∈ min µ(〈Ri, Ro〉, C). Con-

sequently, R can only be minimal in µ(〈Ri, Ro〉, C) if T 
� R.

⇐= Let R ∈ min µ(〈Ri, Ro ∪ {r}〉, C) such that ∀T ∈ min µ(〈Ri ∪ {r}, Ro〉, C) ·T 
�
R and assume that, on the contrary, S � R for some S ∈ µ(〈Ri, Ro〉, C). Without

loss of generality, we can assume that S is minimal in µ(〈Ri, Ro〉, C). Note that r 
∈ S

is impossible since that would put S in µ(〈Ri, Ro ∪ {r}〉, C), contradicting that R is

minimal in µ(〈Ri, Ro ∪ {r}〉, C). It follows that r ∈ S and thus, by our assumption

that S is minimal in µ(〈Ri, Ro〉, C) and by Lemma 5, that S is minimal in µ(〈Ri ∪{r},
Ro〉, C). But then our assumption guarantees S 
� R, a contradiction.

⊇ of ( 3) Let T be any set in min µ(〈Ri, Ro ∪ {r}〉, C) that satisfies ∀m ∈M ·
∃x ∈ ω(m) · T ∩ ω(m) 
= ∅. By ( 2), T ∈ µ(〈Ri, Ro ∪ {r}〉, C ′). If T would not be

minimal in µ(〈Ri, Ro ∪ {r}〉, C ′), there would exist a S � T in µ(〈Ri, Ro ∪ {r}〉,
C ′). But, by ( 2), S ∈ µ(〈Ri, Ro ∪ {r}〉, C), contradicting that T is minimal in µ(〈Ri,

Ro ∪ {r}〉, C).

⊆ of ( 3) Assume, on the contrary, that S ∈ min µ(〈Ri, Ro ∪ {r}〉, C ′) while S 
∈
{T | T ∈ min µ(〈Ri, Ro ∪ {r}〉, C)∧∀m ∈M ·∃x ∈ ω(m)·x ⊆ T }. Obviously, S ∈ µ(〈Ri,

Ro ∪ {r}〉, C ′) which, combined with ( 2), yields that ∀m ∈M · ∃x ∈ ω(m) · x ⊆ S

holds. So, it must be the case that S 
∈ min µ(〈Ri, Ro ∪ {r}〉, C), but from ( 2) we

have that S ∈ µ(〈Ri, Ro ∪ {r}〉, C), thus ∃U ∈ µ(〈Ri, Ro ∪ {r}〉, C) · U � S . Since

S ∈ min µ(〈Ri, Ro ∪ {r}〉, C ′) we have that U 
∈ min µ(〈Ri, Ro ∪ {r}〉, C ′), but also

U 
∈ µ(〈Ri, Ro ∪ {r}〉, C ′) and thus ∃m ∈M · ∀x ∈ ω(m) · x 
⊆ U. As a result, U has no

witness against some m ∈M, from which, by Lemma 4, m � U. Since � is a partial

order, transitivity with U � S yields m � S , contradicting that S has a witness

against any m ∈M. �

Lemma 7

Let 〈P ,<〉 be an ordered program. If R is minimal w.r.t. � in µ(〈Ri, Ro〉, C) then

R ∈ aset(〈Ri, Ro〉, C).

Proof

Let R ∈ min µ(〈Ri, Ro〉, C). We show the result by induction on the cardinality of

P \(Ri ∪ Ro).

For the base case, we have that Ri ∪ Ro = P and, consequently, µ(〈Ri, Ro〉,
C) = {R} which is also returned by aset(〈Ri, Ro〉, C).

For the induction step, take a minimal rule r ∈ P \ (Ri ∪ Ro), such that

aset(〈Ri, Ro〉, C) calls aset(〈Ri ∪ {r}, Ro〉, C) and aset(〈Ri, Ro ∪ {r}〉, C ′).
We consider two cases.

• If r ∈ R then, by Lemma 5, R ∈ min µ(〈Ri ∪ {r}, Ro〉, C). From the induc-

tion hypothesis, it follows that R ∈ aset(〈Ri ∪ {r}, Ro〉, C). It is clear that

aset(〈Ri ∪ {r}, Ro〉, C) ⊆ aset(〈Ri, Ro〉, C) and thus R ∈ aset(〈Ri, Ro〉, C).

• If r 
∈ R then, by Lemma 6, R ∈ min µ(〈Ri, Ro ∪ {r}〉, C) and, moreover, S 
� R

for any S ∈ min µ(〈Ri ∪ {r}, Ro〉, C). The latter condition is ensured by the
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definition of C ′ in the code of Figure 1: it is straightforward to show that

R |= C ′ iff R |= C and R has a witness against every m ∈M. Hence

µ(〈Ri, Ro ∪ {r}〉, C ′) =

{T | T ∈ µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T }

From ( 3) in Lemma 6 and the induction hypothesis, it then follows that R ∈
aset(〈Ri, Ro ∪ {r}〉, C ′), from which R ∈ aset(〈Ri, Ro〉, C) by the last line in

Figure 1.

�

Lemma 8

Let 〈P ,<〉 be an ordered program, 〈Ri, Ro〉 be a specification and C a constraint.

Then aset(〈Ri, Ro〉, C) ⊆ min µ(〈Ri, Ro〉, C).

Proof

Clearly, the function terminates since, within a call aset(〈Ri, Ro〉, C), any recursive

call aset(〈R′i , R′o〉, C ′) satisfies Ri ∪Ro ⊂ R′i ∪R′o while Ri ∪Ro is bounded from above

by the finite set P .

Since the function aset is recursive, we can show the result by induction on the

depth of the recursion.

For the base case, we consider two possibilities:

• If 〈Ri, Ro〉 is inconsistent with C then µ(〈Ri, Ro〉, C) = ∅ and the lemma holds

vacuously.

• If Ri ∪ Ro = P , R�
i is an extended answer set and 〈Ri, Ro〉 is consistent with C

then µ(〈Ri, Ro〉, C) = {Ri} and, again, the lemma holds vacuously.

For the induction step, let R ∈ aset(〈Ri, Ro〉, C). There are two possibilities.

• R ∈ aset(〈Ri ∪ {r}, Ro〉, C) and thus, by the induction hypothesis, R ∈
min µ(〈Ri ∪ {r}, Ro〉, C). Lemma 5 then implies R ∈ min µ(〈Ri, Ro〉, C).

• If R ∈ aset(〈Ri, Ro ∪ {r}〉, C ′) where C ′ satisfies

µ(〈Ri, Ro ∪ {r}〉, C ′) =

{T | T ∈ µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T } ( 4)

The induction hypothesis implies R ∈ min µ(〈Ri, Ro ∪ {r}〉, C ′). Together with

( 4) and Lemma 6, this implies that R ∈ min µ(〈Ri, Ro〉, C).

�

Theorem 13

Let 〈P ,<〉 be an ordered program, 〈Ri, Ro〉 be a specification and C a constraint.

Then aset(〈Ri, Ro〉, C) = min µ(〈Ri, Ro〉, C).

Proof

Immediate from Lemma 7 and Lemma 8 �
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Theorem 17

The problem of deciding, given an arbitrary ordered program P and a literal a,

whether a occurs in every preferred answer set of P is ΠP
2 -hard.

Proof

The proof uses a reduction of the known ΠP
2 -hard problem of deciding whether

a quantified boolean formula φ = ∀x1, . . . , xn · ∃y1, . . . , ym · F is valid, where we

may assume that F = ∧c∈Cc with each c a disjunction of literals over X ∪ Y with

X = {x1, . . . , xn} and Y = {y1, . . . , ym} (n, m > 0).

The program P corresponding to φ is shown below.

P1 = {x ← ¬x ← | x ∈ X}

P2 = sat ←

P3 = {y ← ¬y ← | y ∈ Y }

P4 = sat ← ¬sat

P5 = {¬sat ← c′ | c ∈ C}

where c′ is obtained from c by taking the negation, i.e. if c = l1 ∨ . . . ∨ ln, then c′

denotes ¬l1 ∧ . . . ∧ ¬ln.
Obviously, the construction of P can be done in polynomial time. Intuitively, the

rules in P1 and P3 are used to guess a truth assignment for X ∪ Y .

In the sequel, we will abuse notation by using xM and yM where M is an answer

set for P , to denote subsets of M, e.g. xM = X ∩M and in expressions such as

F(xM, yM) which stands for F(x1, . . . , xn, y1, . . . ym) with xi = true iff xi ∈ xM and,

similarly, yj = true iff yj ∈ yM . We will also sometimes abbreviate the arguments of

F , writing e.g. F(x, y) rather than F(x1, . . . , xn, y1, . . . ym).

The following properties of P are straightforward to show:

1. A rule in P5 is only applicable if F does not hold. If we have an extended

answer set M containing ¬sat ∈M, then F(xM, yM) does not hold.

2. Any preferred answer set M of P always satisfies all the rules in P5, otherwise

M ′ = (M \ {sat}) ∪ {¬sat} would be better then M, a contradiction.

3. For each combination Xi of X we have at least one preferred answer set

containing Xi. For extended answer sets M1 and M2, with M1 ∩ X 
= M2 ∩ X,

neither M1 � M2 nor M2 � M1 holds, as the rules in P1 are unrelated to any

other rules.

We show that φ is valid iff sat ∈M for every preferred answer set M of P .

To show the “if” part, assume that every preferred answer set M contains

sat ∈M. Suppose φ is not valid, then there exists a combination Xi of X such that

∀y · ¬F(Xi, y). By (3) we know that there must exist at least one preferred answer

set M ′ with Xi ⊆M ′. Combining (1) and (2) with the fact that ∀y · ¬F(Xi, y) yields

¬sat ∈ M ′, contradicting that every preferred answer set contains sat. Thus, φ is

valid.

To show the reverse, assume that φ is valid. Suppose there exists a preferred

answer set M of P not containing sat, i.e. sat 
∈ M. Then, by construction of P ,
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¬sat ∈ M. By (1), this yields that F(xM, yM) does not hold. As M is preferred any

other preferred answer set M ′ containing xM (we will have one for each combination

of Y due to the rules in P3) must also make F not valid, otherwise M could not be

preferred, as the one making F valid would satisfy the rule P4 which is defeated w.r.t.

M, making it obviously preferred upon M. This yields that for the combination xM
of X no combination of Y exists making F true, i.e. ∃x ·∀y ·¬F(x, y), a contradiction.

Thus, every preferred answer set contains sat. �

Theorem 18

Let P be an ELP . Then, S is an extended answer sets of P iff there is an answer

set S ′ of E(P ) such that S = S ′ ∩ (BP ∪ ¬BP ).

Proof

=⇒ Let S be an extended answer set of P and consider the interpretation S ′ =

S ∪ {nota | not a ← β ∈ P ∧ S |= β ∪ {not a}}. Then, S ′ is an answer set of E(P ).

First we show that every rule in E(P ) is satisfied w.r.t. S ′. Constraint rules are

clearly satisfied w.r.t. S ′. Suppose there is a rule a ← β, not ¬a , not (nota ) ∈ E(P )

such that S ′ |= β ∪ {not ¬a, not (nota)} and S ′ 
|= a. By construction of the rule,

the corresponding rule in P is also applicable and not applied w.r.t. S . As S is an

extended answer set, this means that there must be an applied rule X ← β with

X = ¬a or X = not a in P defeating the rule a ← β. By construction of the rules

in E(P ) and the construction of S ′, the corresponding rule in E(P ) is also applied

w.r.t. S ′, i.e. either S ′ |= ¬a or S ′ |= nota, contradicting S ′ |= {not¬a, not (nota)}. The

same reasoning can be done for the rules nota ← β, not a in E(P ).

From S an extended answer set of P we know that (PS )
S � = S . Consider

the rules a ← β ∈ P with a an ordinary literal, such that S |= β ∪ {a} and thus

a ← β \ not (β−) ∈ (PS )
S . This rule is represented in E(P ) as a ← β, not ¬a , not (nota )

and by construction of S ′ we have that a ← β \ not (β−) ∈ E(P )S
′
. Thus, S ⊆ E(P )S

′�
.

Clearly, if S |= β ∪ {not a} for a rule not a ← β ∈ P , then the corresponding rule

nota ← β, nota ∈ E(P ) is also applicable w.r.t. S ′ by construction of S ′, thus

nota ← β\not (β−) ∈ E(P )S
′
, yielding that S ′ \ S ⊆ E(P )S

′�
. Finally, S ′ ⊆ E(P )S

′�

and because all rules are satisfied w.r.t. S ′, E(P )S
′�

= S ′.

⇐= Let S ′ be an answer set of E(P ) and let S = S ′ ∩ (BP ∪ ¬BP ). We show

that S is an extended answer set of P .

First we show that every rule in P is either satisfied or defeated w.r.t. S . Again,

constraints are clearly satisfied w.r.t. S . Suppose there is a rule a ← β ∈ P such that

S |= β and S 
|= a. The corresponding rule in E(P ), i.e. either a ← β, not ¬a , not (nota )

or nota ← β, not a , is satisfied w.r.t. S ′, yielding that either S ′ 
|= not¬a, S ′ 
|= not(nota)

or S ′ 
|= nota. Thus, there is an applied rule X ← Y ∈ E(P ) with X = ¬a, X = nota or

X = a. By construction of the rules in E(P ) this means that the corresponding rule

in P is also applied w.r.t. S , defeating the rule a ← β.

Finally we have to show that (PS )
S � = S , which is quite obvious as the generating,

i.e. applicable and applied, rules a ← β \ not (β−) ∈ E(P )S
′

for E(P )S
′�

are also

in (PS )
S and they clearly do not depend on any literal of the form nota. Thus,

(PS )
S � = S . �
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Lemma 9

Let P = 〈R,<〉 be an extended ordered logic program. Every proper extended

answer set S ′ of Ns(P ) is of the form S ′ = S ∪ {φ(a),¬φ(not a),¬φ(¬a) | a ∈
S} ∪ {φ(not a) | a ∈ (BR ∪ ¬BR) \ S} ∪ {¬φ(a) | not a ← β ∈ R ∧ S |= β ∪ {not a}},
where S ⊆ BR ∪ ¬BR .

Proof

Take S ′ a proper extended answer set of Ns(P ). Let S = S ′ ∩ (BP ∪ ¬BP ).

First consider a ∈ S . For a to be in S ′, we must have that φ(a) ∈ S ′, by

construction of the rules a ← φ(a) in Rc. Combining φ(a) ∈ S ′, with the constraint

← φ(a), φ(not a) and the rule φ(not a) ← , yields that ¬φ(not a) ∈ S ′ as otherwise

S ′ cannot be proper, i.e. φ(not a)← cannot be defeated.

As φ(a) ∈ S ′, there must be an applied rule φ(a) ← φ(β) ∈ Ns(P ), i.e. φ(β) ∪
{φ(a)} ⊆ S ′. Then, also ¬φ(¬a) ← φ(β), φ(a) is applicable and yields, combined

with the constraint ← φ(a), φ(¬a) and the fact that S ′ is proper, ¬φ(¬a) ∈ S ′.

Thus, X = {φ(a),¬φ(not a),¬φ(¬a) | a ∈ S} ⊆ S ′.

Let Y = (BR ∪ ¬BR) \ S . By construction of the rules in Ns(P ), we can never

defeat the rules {φ(not a)← | a ∈ Y }, yielding that Z = {φ(not a) | a ∈ Y } ⊆ S ′.

Finally, one can easily see that the only rules left which can derive something new

into S ′, i.e. something in T = S ′ \ S \X \Z , are of the form ¬φ(a)← φ(β), φ(not a),

where a ∈ (BR ∪ ¬BR) \ S . Thus, T ⊆ {¬φ(a) | a ∈ Y }.
To end, we show that T = {¬φ(a) | not a ← β ∈ R ∧ S |= β ∪ {not a}}. The ⊇

direction is obvious, as the corresponding rules ¬φ(a) ← φ(β), φ(not a) in Ns(P )

will be applicable, thus applied by construction of the rules, by construction of S ′

and the fact that S ′ is a proper extended answer set. The ⊆ direction is also quite

obvious. Take ¬φ(a) ∈ T with a ∈ (BR ∪ ¬BR) \ S and suppose there is no rule

not a ← β in P that is applied w.r.t. S . Then, by construction of the rules in Ns(P ),

there is no applied rule in Ns(P ) with ¬φ(a) in the head, contradicting that S ′ is a

proper extended answer set, as T ⊆ S ′. �

Lemma 10

Let P = 〈R,<〉 be an extended ordered logic program. Then, S is an extended

answer set of P iff S ′ = S ∪ {φ(a),¬φ(not a),¬φ(¬a) | a ∈ S} ∪ {φ(not a) | a ∈
(BR ∪ ¬BR) \ S} ∪ {¬φ(a) | not a ← β ∈ R ∧ S |= β ∪ {not a}} is a proper extended

answer set of Ns(P ).

Proof

=⇒ Take S an extended answer set of P and take S ′ as defined. First we show

that every rule r of Ns(P ) is either satisfied or defeated w.r.t. S ′.

• Every rule φ(not a) ← ∈ Rn is either satisfied or defeated w.r.t. S ′. Suppose

φ(not a) 
∈ S ′. Then, by construction of S ′, a ∈ S . As S is an extended answer

set of P , there is a rule a ← β ∈ P such that S |= {a}∪β. For this rule we have

three corresponding rules in Ns(P ), i.e. φ(a) ← φ(β), ¬φ(¬a) ← φ(β), φ(a)

and ¬φ(not a) ← φ(β), φ(a). By construction of S ′ and φ(β) we have that

φ(β)∪{φ(a),¬φ(nota)} ⊆ S ′, which yields that ¬φ(not a)← φ(β), φ(a) defeats

φ(not a)← .
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• The rules of type φ(a) ← φ(β) are either satisfied or defeated w.r.t. S ′.

Suppose that φ(β) ⊆ S ′ and φ(a) 
∈ S ′, implying that a 
∈ S ′, which yields that

the corresponding rule a ← β in P is applicable w.r.t. S by construction of the

rules in Ns(P ) and the construction of S ′. As a 
∈ S ′ we have a 
∈ S , implying

that the rule a ← β in P must be defeated w.r.t. S by an applied rule ¬a ← β′

or not a ← β′, as S is an extended answer set of P . Again by construction

of S ′ and the rules in Ns(P ), the rule φ(¬a) ← φ(β′) or φ(not a) ← φ(β′) in

Ns(P ) is applied w.r.t. S ′, making either the rule ¬φ(a)← φ(β′), φ(¬a) or the

rule ¬φ(a)← φ(β′), φ(not a) applied, defeating φ(a)← φ(β).

• The rules of type φ(not a) ← φ(β) are either satisfied or defeated w.r.t. S ′.

Suppose that φ(β) ⊆ S ′ and φ(not a) 
∈ S ′. This implies that a ∈ S , by

construction of S ′. As S is an extended answer set, there must be a rule

a ← β′ ∈ P such that S |= β′∪{a}. Then, by construction of S ′, the rule φ(a)←
φ(β′) ∈ R′ is applied w.r.t. S ′, but also the rule ¬φ(not a) ← φ(β′), φ(a) ∈ R′

is, defeating φ(not a)← φ(β).

• The rules left in R′, i.e. rules of type ¬φ(¬a) ← φ(β), φ(a); ¬φ(not a) ←
φ(β), φ(a) and ¬φ(a) ← φ(β), φ(not a), are always satisfied w.r.t. S ′ by

construction of S ′.

• All the rules in Rc are always satisfied w.r.t. S ′. By construction of S ′, the

constraints ← φ(a), φ(not a) and ← φ(a), φ(¬a) are always satisfied w.r.t. S ′,

i.e. inapplicable. Clearly, rules of the form a ← φ(a) will be either applied,

or inapplicable. Finally, the constraints in P are satisfied w.r.t. S , thus the

constraints ← φ(β) ∈ Rc are satisfied w.r.t. S ′, yielding that S ′ is proper.

The only thing left to proof is that Ns(P )�S ′ = S ′. First of all, let T = {φ(not a) |
φ(nota) ∈ S ′}. Obviously, T ⊆ Ns(P )�S ′ as φ(not a)← ∈ Ns(P )S ′ for every φ(nota) ∈
S ′.

We know that (RS )
S � = S as S is an extended answer set of P . A rule a ← β ∈ R

with a an ordinary literal that is kept in (RS )
S is of the form a ← β \ not β−.17 For

all those rules in (RS )
S we have that {φ(nota) | a ∈ β−} ⊆ T , and by construction of

the rules in Ns(P ), the construction of S ′, the fact that T can be derived immediately

in Ns(P )�S ′ and the fact that (RS )
S � = S , this yields that {φ(a) | a ∈ S} ⊆ Ns(P )�S ′ ,

implying that also S ⊆ Ns(P )�S ′ by the rules a ← φ(a) in Rc.

For every applied rule φ(a)← φ(β) ∈ Ns(P ) with a ∈ S , we have that ¬φ(¬a)←
φ(β), φ(a) and ¬φ(not a)← φ(β), φ(a) are satisfied w.r.t. S ′ and thus are in Ns(P )S ′ ,

yielding that {¬φ(¬a),¬φ(not a) | a ∈ S} ⊆ Ns(P )�S ′ .

Finally, consider the applied rules not a ← β ∈ P . By construction of S ′ and

the rules φ(not a) ← φ(β) and ¬φ(a) ← φ(β), φ(not a) in Ns(P ), both rules are

satisfied w.r.t. S ′, thus in Ns(P )S ′ . From not a ← β applied w.r.t. S we have that

S |= β ∪ {not a} and by construction of S ′, both rules in Ns(P )S ′ are applicable w.r.t.

S∪{φ(a),¬φ(nota),¬φ(¬a) | a ∈ S}∪{φ(nota) | a ∈ (BR ∪ ¬BR)\S}, which is already

shown to be in Ns(P )�S ′ . Thus, {¬φ(a) | not a ← β ∈ R ∧ S |= β ∪ {not a}} ⊆ Ns(P )�S ′ .

17 Constraints, i.e. ← β, in (RS )S are not important in here, as they do not play a role in (RS )S
�

because
S is an extended answer set.
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As a conclusion, S ′ ⊆ Ns(P )�S ′ and S ′ = Ns(P )�S ′ by the fact that each rule is satisfied

or defeated w.r.t. S ′.

⇐= Take S ′ a proper extended answer set of Ns(P ). From Lemma 9 we know

that S ′ is of the form S ′ = S ∪ {φ(a),¬φ(not a),¬φ(¬a) | a ∈ S} ∪ {φ(not a) | a ∈
(BR ∪ ¬BR) \S}∪ {¬φ(a) | not a ← β ∈ R∧S |= β ∪{not a}}, where S ⊆ BR ∪ ¬BR .

The only thing we have to show is that S is an extended answer set of P .

By construction, all constraints in ← β ∈ P are satisfied w.r.t. S as the constraints

← φ(β) ∈ Rc are satisfied w.r.t. S ′. Every rule a ← β in P , with a an extended

literal, is either satisfied or defeated w.r.t. S . Suppose not, i.e. S |= β ∧ S 
|= a and

there is no defeater w.r.t. S in P for a ← β. By construction of the rules in Ns(P ),

the corresponding rule φ(a) ← φ(β) ∈ Ns(P ) is applicable w.r.t. S ′, but not applied

by construction of S ′. As S ′ is a proper extended answer set, the rule φ(a) ← φ(β)

must be defeated w.r.t. S ′, i.e. there must be an applied rule ¬φ(a) ← β′, φ(X ) in

Ns(P ) with X = ¬a or X = not a when a is an ordinary literal and X = â when a is

an extended literal. This yields that the corresponding rule in P is also applied w.r.t.

S , defeating a ← β ∈ P , a contradiction.

Finally, we show that (RS )
S � = S . For every applied rule φ(a) ← φ(β) ∈ Ns(P )

w.r.t. S ′ and a an ordinary literal, we have that {a | φ(not a) ∈ φ(β)} ∩ S = ∅
by construction of S ′ and thus of S . This implies that a ← β \ not β− ∈ (RS )

S and

β \notβ− ⊆ S . We know that Ns(P )�S ′ = S ′ and that {φ(a) | a ∈ S} are only produced

by the applied rules of the form φ(a) ← φ(β) with a an ordinary literal, starting

from {φ(not a) | a ∈ (BR ∪ ¬BR) \ S}.
Now, combining the above with the construction of the rules in Ns(P ) yields

that S ⊆ (PS )
S �. As every rule in P is either applied or defeated w.r.t. S we have

S = (PS )
S �. �

Theorem 20

Let P = 〈R,<〉 be an extended ordered logic program. Then, M is a preferred

answer set of P iff there exists a proper preferred answer set M ′ of Ns(P ), such that

M = M ′ ∩ (BR ∪ ¬BR).

Proof

=⇒ Take S a preferred answer set of P and take S ′ as defined in Lemma 10. By

that same lemma we get that S ′ is a proper extended answer set of Ns(P ). Suppose

S ′ is not preferred, then there exists a proper extended answer set S ′′ 
= S ′ of Ns(P )

such that S ′′ � S ′. Let T = S ′′ ∩ (BP ∪ ¬BP ). From Lemma 10 we know that

T is an extended answer set of P . As both S ′ and S ′′ are proper, we have that

Ns(P )S ′ \Ns(P )S ′′ and Ns(P )S ′′ \Ns(P )S ′ only contain rules from R′ and Rn.

Suppose Ns(P )S ′ \ Ns(P )S ′′ contains a rule r from R′. Then, S ′′ � S ′ implies

that there exists a rule r′ ∈ Ns(P )S ′′ \ Ns(P )s′ such that r′ < r. From the proof

of Lemma 10 we know that only rules of the type φ(a) ← φ(β) ∈ R′, with a an

extended literal, can be defeated and we also know from the same proof that the

rules in P corresponding with the defeated rules in R′ w.r.t. S ′ (S ′′) are also defeated

w.r.t. S (T ), yielding that T � S , a contradiction.

Suppose Ns(P )S ′ \Ns(P )S ′′ contains only rules from Rn, which implies that PS\PT =

∅. Then S ′′ � S ′ yields that Ns(P )S ′′ \ Ns(P )S ′ must contain at least a rule from R′
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to counter the Rn rules in Ns(P )S ′ \ Ns(P )S ′′ . As a result, PS 
= PT , implying that,

combined with PS \ PT = ∅, we have T � S , a contradiction.

Thus, S ′ is a proper preferred answer set of Ns(P ) and S = S ′ ∩ (BP ∪ ¬BP ).

⇐= Take S ′ a proper preferred answer set of Ns(P ). Let S = S ′ ∩ (BP ∪ ¬BP ).

Again from Lemma 10 we know that S is an extended answer set of P . Suppose S

is not preferred. Then, there exists an extended answer set T of P such that T � S ,

which implies PS 
= PT . Take T ′ as described by Lemma 10 and we get that T ′

is a proper extended answer of Ns(P ) with the same defeated rules in R′ as the

corresponding defeated rules in P . The same holds for defeated rules w.r.t. S and

S ′. Then T � S implies T ′ � S ′, a contradiction. �

Lemma 11

Let P be an LPOD. S is answer set of P iff S ′ = S ∪{napa1×...×an←β | a1 × . . .× an ←
β ∈ P ∧ S 
|= β} is a proper extended answer set of L(P ).

Proof

=⇒ Take S an answer set of P , yielding that there exists a split program P ′ of P

such that S is an answer set of P ′. Take S ′ as defined. We first show that every rule

in L(P ) is either satisfied or defeated w.r.t. S ′.

Obviously, all rules in Pr corresponding with normal rules in P are satisfied as

these rules are contained in every split program. The rules ai ← β, not {a1 , . . . , an}\ai

for every 1 � i � n for each ordered disjunctive rule are clearly satisfied w.r.t. S ′ as

every split program contains an option that is satisfied w.r.t. S , thus also w.r.t. S ′.

Furthermore, the rules napr ← not l and napr ← l in Pr are also satisfied w.r.t. S ′ by

construction of S ′, i.e. when an ordered disjunctive rule r is not applicable w.r.t. S ,

we have napr ∈ S ′ making the rules clearly satisfied, while in the case r is applicable,

none of the rules are applicable.

The rules not napr ← ∈ Pd for which napr 
∈ S ′ are clearly satisfied, while the ones

for which napr ∈ S ′ are clearly defeated by an applied rule napr ← l or napr ← not l ,

this by construction of S ′. Further, the rules not ai ← β, not {a1 , . . . , ai−1 } ∈ Pd for

which S ′ |= β ∪ not {a1, . . . , ai−1} and ai ∈ S ′ are defeated by the corresponding

applied rule ai ← β, not {a1 , . . . , ai−1 } ∈ Pi.

Finally, if a rule a ← β ∈ P1 ∪ . . . ∪ Pn is applicable but not applied, it is defeated

by a rule not a ← β ∈ Pd, by construction of Pd.

The only thing left to show is (L(P )S ′)
S ′� = S ′. By construction of L(P ) we get that

P ′ ⊆ L(P ). This yields, as all rules in P ′ are satisfied w.r.t. S , that P ′S ⊆ (L(P )S ′)
S ′ .

As a result, S ⊆ (L(P )S ′)
S ′�. Clearly, for each unapplicable ordered disjunctive rule

r = a1 × . . .× an ← β, i.e. ∃l ∈ β · S 
|= l, we have that napr ← not l (when l is a

literal) or napr ← l (when l is a naf-literal) is in L(P )S ′ , yielding that S ′ ⊆ (L(P )S ′)
S ′�.

As all rules are satisfied or defeated w.r.t. S ′, this results in S ′ = (L(P )S ′)
S ′�.

⇐= Take S ′ a proper extended answer set of L(P ) and let S = S ′ ∩ (BP ∪ ¬BP ).

Consider L(P )S ′ , i.e. all satisfied rules in L(P ) w.r.t. S ′. Take P ′ ⊆ L(P )S ′ in the

following way:

1. Take all rules in Pr corresponding with normal rules in P . As S ′ is proper and

the satisfaction of the selected rules does not change w.r.t. S , every normal rule

in P is also in P ′.
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2. Take every applicable and applied rule r from the Pi’s. By construction of L(P )

at most one option for every ordered disjunctive rule is taken, as options in

Pj with j > i are not applicable, because they contain not H(r) in the body;

and options r′ in Pj with j < i must be defeated, otherwise r would not be

applicable because it contains not H(r′) in the body.

3. For every ordered disjunctive rule that is not applicable w.r.t. S ′ (or S) take an

arbitrary option to be in P ′.

Clearly, P ′ as constructed above, is a split program of P .

The rules ci ← β, not ({c1 , . . . , cn} \ {ci}) ∈ Pr that are applicable and applied

are not needed to produce the S part in (L(P )S ′)
S ′�, as also the rule ci ←

β, not {c1 , . . . , ci−1 } ∈ Pi is applicable and applied, thus in (L(P )S ′)
S ′ . Furthermore,

the rules with napr in the head are also not needed to derive S . Thus, all rules needed

to produce S in L(P ) are also in P ′, yielding that P ′S
�

= S , making S an answer set

of P . �

Lemma 12

Let P be a LPOD and let S 
= T be proper extended answer sets for L(P ). Then,

the following is equivalent:

1. S � T ,

2. L(P )S 
= L(P )T and ∀r ∈ L(P )T \ L(P )S , ∃r′ ∈ L(P )S \ L(P )T · r′ < r ,

3. L(P )S 
= L(P )T and ∃k · SatkL(P )(T ) ⊂ SatkL(P )(S) ∧ ∀j < k · SatjL(P )(T ) =

Sat
j
L(P )(S).

where SatkL(P )(S) denotes the set of rules in Pk ⊆ L(P ) that are satisfied w.r.t. S .

Proof

By Definition (1)⇔ (2) holds.

(2)⇒ (3) First, it can never happen that L(P )T \L(P )S = ∅. Suppose it is, than

together with L(P )T 
= L(P )S , it implies L(P )T ⊂ L(P )S . We have three cases:

• r = ai ← β, not {a1 , . . . , ai−1 } ∈ Pi with r ∈ L(P )S \L(P )T yields T |= β ∪
not {a1, . . . , ai−1} and T 
|= ai. By virtue of Lemma 11 we have that T ∩
(BP ∪ ¬BP ) is an LPOD answer set, thus we must have a satisfied, w.r.t.

T , option r′ = aj ← β, not {a1 , . . . , aj−1 } ∈ Pj with j > i. For this rule, the

corresponding rule r′′ = not aj ← β, not {a1 , . . . , aj−1 } ∈ Pd is defeated w.r.t. T .

Further, all rules not ak ← β, not {a1 , . . . , ak−1 } ∈ Pd with k � j are satisfied

w.r.t. T , thus also w.r.t. S . Now consider S which satisfies the rule r. We get

two cases:

— ∃k � i · ak ← β, not {a1 , . . . , ak−1 } ∈ Pk is applied w.r.t. S . However, this

implies the rule not ak ← β, not {a1 , . . . , ak−1 } ∈ Pd is defeated w.r.t. S , a

contradiction.

— S 
|= β, i.e. the ordered disjunctive rule s corresponding with the rules r,

r′ and r′′ is not applicable w.r.t. S . Then, Lemma 11 yields that naps 
∈ T ,

while naps ∈ S . The former implies that the rule not naps ← ∈ Pd is

satisfied w.r.t. T and while it should also be satisfied by S , the latter clearly

shows its defeated, a contradiction.
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• r = not ai ← β, not {a1 , . . . , ai−1 } ∈ Pd with r ∈ L(P )S \L(P )T yields that there

also must be a rule r′ = aj ← β, not {a1 , . . . , aj−1 } ∈ Pj with r′ ∈ L(P )S\L(P )T ,

which is handled in the previous case.

• r = not naps ← ∈ Pd with r ∈ L(P )S \L(P )T yields that s is applicable w.r.t. S

and not applicable w.r.t. T . However, s applicable w.r.t. S implies at least one

option ai ← β, not {a1 , . . . , ai−1 } ∈ Pi of s will be applied w.r.t. S , defeating the

rule t = not ai ← β, not {a1 , . . . , ai−1 } ∈ Pd. However, s not applicable w.r.t. T

implies t is satisfied w.r.t. T , yielding t ∈ L(P )T \L(P )S , a contradiction.

As L(P )T\L(P )S 
= ∅, S � T implies that L(P )S\L(P )T 
= ∅. Take the most specific

rule r′ ∈ L(P )S \L(P )T . Clearly, r′ < r for every r ∈ L(P )T \L(P )S . As S and T are

proper we must have r′ ∈ Pk for a certain k ∈ [1 . . . n]. As r′ is the most specific rule

in L(P )S \L(P )T , we have ∀j < k · (L(P )S \L(P )T )∩Pj = (L(P )T \L(P )S )∩Pj = ∅,
which is equivalent with ∀j < k · SatjL(P )(T ) = Sat

j
L(P )(S). As r′ is the most specific

rule in L(P )S \ L(P )T , every rule r ∈ L(P )T \ L(P )S must belong to a Pi with i > k

(or to Pd), which yields that (L(P )T \ L(P )S ) ∩ Pk ⊂ (L(P )S \ L(P )T ) ∩ Pk; and as a

result SatkL(P )(T ) ⊂ SatkL(P )(S).

(3)⇒ (2) Take a k so that (3) holds. From ∀j < k · SatjL(P )(T ) = Sat
j
L(P )(S)

it follows that ∀j < k · (L(P )S \ L(P )T ) ∩ Pj = (L(P )T \ L(P )S ) ∩ Pj = ∅. From

SatkL(P )(T ) ⊂ SatkL(P )(S), we get (SatkL(P )(S) \ SatkL(P )(T )) ⊂ (L(P )S \ L(P )T ) and

(L(P )T \L(P )S )∩ Pk = ∅, which directly yields that r′ < r for every r′ ∈ SatkL(P )(S) \
SatkL(P )(T ) and every r ∈ L(P )T \ L(P )S . �

Theorem 22

An interpretation S is a preferred LPOD answer set of a LPOD P iff there exists a

proper preferred answer set S ′ of L(P ) such that S = S ′ ∩ (BP ∪ ¬BP ).

Proof

=⇒ Take S a preferred LPOD answer set of P . From Lemma 11 we have that

there exists a proper extended answer set S ′ of L(P ) such that S = S ′ ∩ (BP ∪ ¬BP ).

Suppose S ′ is not preferred, i.e. there exists a proper extended answer set T ′ 
= S ′

of L(P ) such that T ′ � S ′. Again, by virtue of Lemma 11, we have that T =

T ′ ∩ (BP ∪ ¬BP ) is an LPOD answer set of P .

Applying Lemma 12 to T ′ � S ′ w.r.t. L(P ) yields

∃k · SatkL(P )(S
′) ⊂ SatkL(P )(T

′) ∧ ∀j < k · SatjL(P )(S
′) = Sat

j
L(P )(T

′). ( 5)

By construction of L(P ) we have that Sat1L(P )(S
′) = S1(P ) \ {a ← β ∈ P } and

Sat
j
L(P )(S

′) \ Satj−1
L(P )(S

′) = Sj(P )18 (and the same for T and T ′). Combined with ( 5)

this yields

∃k · Sk(P ) ⊂ Tk(P ) ∧ ∀j < k · Sj(P ) = Tj(P ). ( 6)

But, ( 6) implies that T is LPOD-preferred upon S for P , a contradiction.

18 This is not completely correct as rules in Sat
j
L(P )(S

′) \ Satj−1
L(P )(S

′) are options from ordered disjunctive
rules, while Sj (P ) contains ordered disjunctive rules. However, as only one option for such a rule can
be in the former, there is a one-to-one mapping between the elements in the former and the elements
in the latter.
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⇐= Take S ′ a proper preferred answer set of L(P ). By Lemma 11, S =

S ′ ∩ (BP ∪ ¬BP ) is an LPOD answer set of P . Suppose S is not LPOD preferred,

i.e. there exists an LPOD answer set T such that T �b S . This yields

∃k · Sk(P ) ⊂ Tk(P ) ∧ ∀j < k · Sj(P ) = Tj(P ). ( 7)

Again from Lemma 11 we have that there must exist a proper extended answer

set T ′ of L(P ) such that T = T ′ ∩ (BP ∪ ¬BP ). By construction of L(P ), for every

ordered disjunctive rule r that is satisfied to degree k, the corresponding options in

P1, . . . , Pk−1 are defeated, while the corresponding options in Pk, . . . , Pn are satisfied,

yielding that (it also hold for T and T ′)

Sat1L(P )(S
′) = S1(P ) \ {a ← β ∈ P }, ( 8)

SatkL(P )(S
′) = Satk−1

L(P )(S
′) + Sk(P ). ( 9)

Combining ( 8), ( 9) and ( 7) results in

∃k · SatkL(P )(S
′) ⊂ SatkL(P )(T

′) ∧ ∀j < k · SatjL(P )(S
′) = Sat

j
L(P )(T

′). ( 10)

Using ( 10) with Lemma 12 yields T ′ � S ′, a contradiction. �

Lemma 2

Let D , D1 and D2 be databases over the same Herbrand base. ∆D(D1) ⊆ ∆D(D2) iff

∆(D,D1) ⊆ ∆(D,D2).

Proof

To show the “only if” part, assume that p ∈ ∆(D,D1) = (D+\D1
+) ∪ (D1

+\D+). We

consider two possibilities:

1. If p ∈ D+\D1
+ then p ∈ D and ¬p ∈ D1. Hence, by definition, ¬p ∈ ∆D(D1)

Since ∆D(D1) ⊆ ∆D(D2), ¬p ∈ D2\D and thus p ∈ D+\D2
+ ⊆ ∆(D,D2).

2. If p ∈ D1
+\D+ then p ∈ ∆D(D1) ⊆ ∆D(D2). Since p is an atom, this implies that

p ∈ D2
+\D+ ⊆ ∆(D,D2).

To show the “if” part, assume that p ∈ ∆D(D1) = D1\D. We consider two cases.

1. If p is an atom, then p ∈ D1
+\D+ ⊆ ∆(D,D1) ⊆ ∆(D,D2). Thus p ∈ D+\D2

+ or

p ∈ D2
+\D+. The former is impossible because p 
∈ D+. The latter implies that

p ∈ (D2\D) = ∆D(D2).

2. If p is a negative literal, then ¬p ∈ (D+\D1
+) ⊆ ∆(D,D1). Thus ¬p ∈ ∆(D,D2)

and, because ¬p ∈ D, ¬p ∈ D+\D2
+. Consequently, p ∈ (D2

+\D+) ⊆ ∆D(D2).

�

Lemma 13

Let D be a database and let C be a consistent set of constraints with LC the set of

literals occurring in C . For any C-repair R of D, we have that R\LC = D\LC , i.e.

D and R agree on BD\BLC
.

Proof

Straightforward. Suppose e.g. that D and R do not agree on l 
∈ LC , i.e. l ∈ R and

¬l ∈ D. Since l does not occur in any constraint, R′ = (R \{l}) ∪ ¬l |= C and,

moreover R′ �D R, contradicting that R is a repair. �
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Theorem 23

Let D be a database and let C be a consistent set of constraints with BC ⊆ BD .

Each repair of D w.r.t. C is a preferred answer set of P (D,C).

Proof

Let R be a repair of D w.r.t. C . By definition, BR = BD and R is consistent. On the

other hand, P (D,C)R obviously contains a rule d : a← for each a ∈ R ∩ D and a

rule n : ¬a← for each a ∈ R\D. Thus P (D,C)�R = R.

We next show that R satisfies or defeats each rule in P (D,C). By definition, and

the construction of P (D,C), all c-rules are satisfied. On the other hand, any n-rule

n : a← which is not satisfied is defeated by an applied d-rule d : ¬a←. As to the

d-rules, Lemma 13 implies that each rule d : a← where a does not occur in C is

applied.

The remaining case concerns d-rules d : a← where a occurs in C and a 
∈ R,

i.e. the rule is not satisfied. We consider two possibilities: either ¬a occurs in C

and thus, by the construction of P (D,C), there exists a satisfied c-rule c : ¬a← α,

defeating d : a←, or ¬a does not occur in C . The latter case is impossible since

then, by Lemma 13, R should agree with D on ¬a, contradicting our assumption

that ¬a ∈ R\D.

Hence, R is an extended answer set.

To show that R is minimal w.r.t �, assume that, on the contrary, there exists an

extended answer set M � R of P (D,C) such that M 
= R. Thus, by Definition 6,

∀r ∈ P (D,C)R\P (D,C)M · ∃r′ ∈ P (D,C)M\P (D,C)R · r′ < r. ( 11)

Note that P (D,C)R \P (D,C)M 
= ∅ (otherwise, M = R would follow). Since c-rules

cannot be defeated, any r as in ( 11) must have a label d or n. By definition, R satisfies

all c-rules and thus any r′ satisfying ( 11) must also be a d or n rule. Combining

these observations yields that any r and r′ satisfying ( 11) must be an n-rule and a

d-rule, respectively. But this implies that ∆D(M) ⊂ ∆D(R), contradicting the fact that

R is a C-repair of D. �

Lemma 14

Let D be a database and let C be a consistent set of constraints with BC ⊆ BD .

Each preferred answer set M of P (D,C) satisfies C , i.e. M |= C .

Proof

Clearly, as C is consistent, there must exist a proper extended answer set I , i.e.

I |= C . By Lemma 1, each preferred answer set must be proper, from which this

lemma follows. �

Theorem 24

Let D be a database and let C be a consistent set of constraints with BC ⊆ BD .

Each preferred answer set of P (D,C) is a C-repair of D.

Proof

Let M be a preferred answer set of P (D,C). From Lemma 14 it follows that M |= C .

Assume that, on the contrary, M is not a C-repair of D, i.e. there exists a C-repair R
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such that ∆D(R) ⊂ ∆D(M) (Definition 32). Let l be a literal in ∆D(M)\∆D(R). Thus

l ∈ M while ¬l ∈ D ∩ R. By construction, P (D,C) contains an d-rule r = d : ¬l ←
in PR \PM . Since M is preferred and, by Theorem 23, R is an extended answer set,

M � R implies the existence of a rule r′ < r with r′ ∈ PM \PR . But any such rule r′

must be a c-rule which, by definition, is satisfied by R, a contradiction. �
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