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Abstract

The universal sl2 invariant is an invariant of bottom tangles from which one can recover
the colored Jones polynomial of links. We are interested in the relationship between topo-
logical properties of bottom tangles and algebraic properties of the universal sl2 invariant.
A bottom tangle T is called Brunnian if every proper subtangle of T is trivial. In this pa-
per, we prove that the universal sl2 invariant of n-component Brunnian bottom tangles takes
values in a small subalgebra of the n-fold completed tensor power of the quantized envelop-
ing algebra Uh(sl2). As an application, we give a divisibility property of the colored Jones
polynomial of Brunnian links.

1. Introduction

The universal invariant of tangles associated with a ribbon Hopf algebra [5, 6, 7, 9, 10,
12, 13] has the universality property for the colored link invariants which are defined by
Reshetikhin and Turaev [13].

The universal sl2 invariant JT of an n-component bottom tangle T takes values in the
n-fold completed tensor power Uh(sl2)

⊗̂n of Uh(sl2), and we can obtain the colored Jones
polynomial of the closure link cl(T ) from JT by taking the quantum traces. Here, a bottom
tangle is a tangle in a cube consisting of only arc components such that each boundary point
is on the bottom and the two boundary points of each arc are adjacent to each other, see
Figure 1 (a) for example. The closure of a bottom tangle is defined as in Figure 1 (b).

Our interest is in the relationship between topological properties of tangles and links and
algebraic properties of the universal sl2 invariant and the colored Jones polynomial. Habiro
[3] proved that the universal sl2 invariant of n-component, algebraically-split, 0-framed

(a) (b)

Fig. 1. (a) A bottom tangle T , (b) The closure link cl(T ) of T .
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bottom tangles takes values in a subalgebra (Ũ ev
q )⊗̃n of Uh(sl2)

⊗̂n (Theorem 4·3). A bot-
tom tangle is called ribbon if its closure is a ribbon link (cf. [3, 14]). A bottom tangle is
called boundary if its components admit mutually disjoint Seifert surfaces of bottom tangles
(cf. [3, 15]). The present author [14, 15] proved improvements of Habiro’s result in the spe-
cial cases of ribbon bottom tangles and boundary bottom tangles, with a smaller subalgebra
(Ū ev

q )ˆ⊗̂n ⊂ (Ũ ev
q )⊗̃n (Theorem 4·4). Here, the result for boundary bottom tangles is a refined

version of Habiro’s conjecture [3].
A link L is called Brunnian if every proper sublink of L is trivial. Similarly, a bottom

tangle T is called Brunnian if every proper subtangle of T is trivial, i.e., looks like � · · ·�.
Habiro [4, proposition 12] proved that for every Brunnian link L , there is a Brunnian bottom
tangle whose closure is isotopic to L .

In the present paper, we give a subalgebra U (n)

Br of Uh(sl2)
⊗̂n such that (Ū ev

q )ˆ⊗̂n ⊂ U (n)

Br ⊂
(Ũ ev

q )⊗̃n in which the universal sl2 invariant of n-component Brunnian bottom tangles takes
values (Theorem 4·6). As an application, we prove a divisibility property of the colored
Jones polynomial of Brunnian links (Theorem 5·4). These results are first announced in
[16].

The rest of this paper is organized as follows. In Section 2, we recall basic facts of the
quantized enveloping algebra Uh(sl2). In Section 3, we define the universal sl2 invariant of
bottom tangles. In Section 4, we give the main result for the universal sl2 invariant of Brun-
nian bottom tangles. In Section 5, we give an application for the colored Jones polynomial
of Brunnian links. Section 6 is devoted to the proofs of the results.

2. Quantized enveloping algebra Uh(sl2)

In this section, we recall the definitions of Uh(sl2) and its subalgebras. We follow the
notations in [3, 15].

2·1. Quantized enveloping algebra Uh(sl2)

We recall the definition of the universal enveloping algebra Uh(sl2).
We denote by Uh = Uh(sl2) the h-adically complete Q[[h]]-algebra, topologically gener-

ated by H, E, and F , defined by the relations

H E − E H = 2E, H F − F H = −2F, E F − F E = K − K −1

q1/2 − q−1/2
,

where we set

q = exp h, K = q H/2 = exp
h H

2
.

We equip Uh with the topological Z-graded algebra structure such that deg E = 1,
deg F = −1, and deg H = 0. For a homogeneous element x of Uh , the degree of x is
denoted by |x |.

2·2. Z[q, q−1]-subalgebras of Uh(sl2)

We recall Z[q, q−1]-subalgebras of Uh from [3, 15].
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In what follows, we use the following q-integer notations.

{i}q = qi − 1, {i}q,n = {i}q{i − 1}q · · · {i − n + 1}q, {n}q ! = {n}q,n,

[i]q = {i}q/{1}q, [n]q ! = [n]q[n − 1]q · · · [1]q,

[
i
n

]
q

= {i}q,n/{n}q !,

for i ∈ Z, n � 0.
Set

Ẽ (n) = (q−1/2 E)n/[n]q !, F̃ (n) = Fn K n/[n]q ! ∈ Uh, (2·1)

e = (q1/2 − q−1/2)E, f = (q − 1)F K ∈ Uh, (2·2)

for n � 0.
Let UZ,q ⊂ Uh denote the Z[q, q−1]-subalgebra generated by K , K −1, Ẽ (n), and F̃ (n) for

n � 1, which is a Z[q, q−1]-version of Lusztig’s integral form (cf. [11, 14]).
Let Uq ⊂ UZ,q denote the Z[q, q−1]-subalgebra generated by K , K −1, e, and F̃ (n) for

n � 1.
Let Ūq ⊂ Uq denote the Z[q, q−1]-subalgebra generated by K , K −1, e and f , which is a

Z[q, q−1]-version of the integral form defined by De Concini and Procesi (cf. [1, 14]).
For X = UZ,q , Uq , Ūq , let X ev denote the Z[q, q−1]-subalgebra of Uh defined by the same

generators as X except that K ±2 replaces K ±1, i.e., U ev
Z,q ⊂ UZ,q denotes the Z[q, q−1]-

subalgebra generated by K 2, K −2, Ẽ (n), F̃ (n), n � 1; U ev
q ⊂ Uq denotes the Z[q, q−1]-

subalgebra generated by K 2, K −2, e, F̃ (n), n � 1; and Ū ev
q ⊂ Ūq denotes the Z[q, q−1]-

subalgebra generated by K 2, K −2, e, f .
To summarize, we have the following inclusions of the subalgebras of Uh .

Ū ev
q ⊂ U ev

q ⊂ U ev
Z,q

� � �
Ūq ⊂ Uq ⊂ UZ,q ⊂ Uh .

2·3. Completions

In this section, we recall from [3] the completion Ũ ev
q of U ev

q in Uh and its completed tensor

powers (Ũ ev
q )⊗̃n for n � 0.

For p � 0, let Fp(U ev
q ) be the two-sided ideal in U ev

q generated by ep. Let Ũ ev
q be the

completion of U ev
q in Uh with respect to the decreasing filtration {Fp(U ev

q )}p�0, i.e., we define

Ũ ev
q as the image of the homomorphism

lim←−
p�0

U ev
q /Fp

(
U ev

q

) −→ Uh

induced by U ev
q ⊂ Uh .

For n � 1 and p � 0, set

Fp

((
U ev

q

)⊗n) =
n∑

i=1

(
U ev

q

)⊗i−1 ⊗ Fp(U ev
q ) ⊗ (

U ev
q

)⊗n−i
.

For n � 1, we define (Ũ ev
q )⊗̃n as the completion of (U ev

q )⊗n in U ⊗̂n
h with respect to the

decreasing filtration {Fp

(
(U ev

q )⊗n
)}p�0, i.e., we define(

Ũ ev
q

)⊗̃n = Im
(

lim←−
p�0

(
U ev

q

)⊗n
/Fp

((
U ev

q

)⊗n) −→ U ⊗̂n
h

)
.

https://doi.org/10.1017/S0305004112000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000503


130 SAKIE SUZUKI

(a) (b)

Fig. 2. (a) A bottom tangle T , (b) a diagram of T .

For a Z[q, q−1]-subalgebra A of (U ev
q )⊗n , we denote by {A}̂ the closure of A in (Ũ ev

q )⊗̃n ,
i.e., we set

{A}̂ = Im
(

lim←−
p�0

(A/
(
Fp

((
U ev

q

)⊗n)
� A

) −→ U ⊗̂n
h

)
.

For n = 0, we define (Ũ ev
q )⊗̃0 = Z[q, q−1].

3. Universal sl2 invariant of bottom tangles

In this section, we recall the definition of the universal sl2 invariant of bottom tangles.

3·1. Bottom tangles

A bottom tangle (cf. [2, 3]) is an oriented, framed tangle in a cube consisting of arc
components such that each boundary point is on a line on the bottom, and the two bound-
ary points of each component are adjacent to each other. We give a preferred orientation
of the tangle so that each component runs from its right boundary point to its left bound-
ary point. For example, see Figure 2 (a), where the dotted lines represent the framing. We
draw a diagram of a bottom tangle in a rectangle assuming the blackboard framing, see
Figure 2 (b).

The closure link cl(T ) of a bottom tangle T is defined as the link in R3 obtained from
T by closing, see Figure 1 again. For each n-component link L , there is an n-component
bottom tangle whose closure is L . For a bottom tangle, we can define its linking matrix as
that of the closure link.

3·2. Universal R-matrix of Uh

Set

D = q
1
4 H⊗H = exp

(
h

4
H ⊗ H

)
∈ U ⊗̂2

h .

We use the following universal R-matrix of Uh ,

R±1 =
∑
n�0

α±
n ⊗ β±

n ∈ U ⊗̂2
h ,

where we set formally

αn ⊗ βn(= α+
n ⊗ β+

n ) = D
(

q
1
2 n(n−1) F̃ (n)K −n ⊗ en

)
,

α−
n ⊗ β−

n = D−1
(
(−1)n F̃ (n) ⊗ K −nen

)
.

(Note that the right-hand sides are sums of infinitely many tensors of the form x ⊗ y with
x, y ∈ Uh . We denote them by α±

n ⊗ β±
n for simplicity.)
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, , , ,

Fig. 3. Fundamental tangles, where the orientations of the strands are arbitrary.

(a) (b) (c)

Fig. 4. (a) A bottom tangle B, (b) A diagram B̃ of B, (c) The labels associated to a state t ∈ S(B̃).

3·3. Universal sl2 invariant of bottom tangles

For an n-component bottom tangle T = T1 � · · ·�Tn , we define the universal sl2 invariant
JT ∈ U ⊗̂n

h in four steps as follows. We follow the notation in [15].

Step 1. Choose a diagram. We choose a diagram T̃ of T obtained from the copies of the
fundamental tangles depicted in Figure 3, by pasting horizontally and vertically. We denote
by C(T̃ ) the set of the crossings of T̃ . For example, for the bottom tangle B depicted in
Figure 4 (a), we can take a diagram B̃ with C(B̃) = {c1, c2} as depicted in Figure 4 (b). We
call a map

s : C(T̃ ) −→ {0, 1, 2, . . .}
a state. We denote by S(T̃ ) the set of states of the diagram T̃ .

Step 2. Attach labels. Given a state s ∈ S(T̃ ), we attach labels on the copies of the
fundamental tangles in the diagram following the rule described in Figure 5, where “S′”
should be replaced with the identity if the string is oriented downward, and with S otherwise.
For example, for a state t ∈ S(B̃), we put labels on B̃ as in Figure 4 (c), where we set
m = t (c1) and n = t (c2).

Step 3. Read the labels. We read the labels we have just put on T̃ and define an element
JT̃ ,s ∈ U ⊗̂n

h as follows. Let T̃ = T̃1 � · · · � T̃n , where T̃i corresponds to Ti . We define the
i th tensorand of JT̃ ,s as the product of the labels on T̃i , where the labels are read off along T̃i

reversing the orientation, and written from left to right. For example, for the bottom tangle
B and the state t ∈ S(B̃) in Figure 4, we have

JB̃,t = S(αm)S(βn) ⊗ αnβm .

Here, we identify the labels S′(α±
i ) and S′(β±

i ) with the first and the second tensorands,
respectively, of the element S′(α±

i ) ⊗ S′(β±
i ) ∈ U ⊗̂2

h . Also we identify the label K ±1 with

Fig. 5. How to place labels on the fundamental tangles.
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the element K ±1 ∈ Uh . Thus JT̃ ,s is a well-defined element in U ⊗̂n
h . For example, we have

JB̃,t = S(αm)S(βn) ⊗ αnβm

=
∑

q
1
2 m(m−1)q

1
2 n(n−1)S(D′

1 F̃ (m)K −m)S(D′′
2 en) ⊗ D′

2 F̃ (n)K −n D′′
1 em

= (−1)m+nq−n+2mn D−2(F̃ (m)K −2nen ⊗ F̃ (n)K −2mem) ∈ U ⊗̂2
h ,

where D = ∑
D′

1 ⊗ D′′
1 = ∑

D′
2 ⊗ D′′

2 . Note that JT̃ ,s depends on the choice of the diagram.

Step 4. Take the state sum. Set

JT =
∑

s∈S(T̃ )

JT̃ ,s .

For example, we have

JB =
∑

t∈S(B̃)

JB̃,t =
∑

m,n�0

(−1)m+nq−n+2mn D−2(F̃ (m)K −2nen ⊗ F̃ (n)K −2mem).

As is well known [12], JT does not depend on the choice of the diagram, and defines an
isotopy invariant of bottom tangles.

4. Results for the universal sl2 invariant of bottom tangles

In this section, we give the main result for the universal sl2 invariant of Brunnian bottom
tangles. In what follows, we assume that bottom tangles are 0-framed.

4·1. Universal sl2 invariant of algebraically-split bottom tangles, ribbon bottom tangles and
boundary bottom tangles

We recall several results for the value of the universal sl2 invariant of algebraically-split
bottom tangles. Recall the sequence of the subalgebras Ū ev

q ⊂ U ev
q ⊂ U ev

Z,q ⊂ Uh .

THEOREM 4·1 ([14, proposition 4·2, remark 4·7]). Let T be an n-component
algebraically-split bottom tangle. For every diagram T̃ of T and every state s ∈ S(T̃ ), we
have

JT̃ ,s ∈ (
U ev

q

)⊗n
.

More precisely, the proof of [14, proposition 4·2] implies the following:

PROPOSITION 4·2. Let T be an n-component algebraically-split bottom tangle. For any
diagram T̃ and any state s ∈ S(T̃ ), we have

JT̃ ,s ∈ F|s|
((
U ev

q

)⊗n)
,

where we set |s| = max{s(c) | c ∈ C(T̃ )}.
Recall from Section 2·3 the completion (Ũ ev

q )⊗̃n of (U ev
q )⊗n . Theorem 4·1 and Proposition

4·2 imply the following, which was first proved by Habiro [3] in a different way.

THEOREM 4·3 (Habiro [3]). For an n-component algebraically-split bottom tangle T , we
have

JT ∈ (
Ũ ev

q

)⊗̃n
.
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In [3], Habiro denoted by (Ū ev
q ) ˜⊗̃n the closure {(Ū ev

q )⊗n }̂ of (Ū ev
q )⊗n in (Ũ ev

q )⊗̃n . In [14]

and [15], we defined a refined completion (Ū ev
q )ˆ⊗̂n ⊂ (Ū ev

q ) ˜⊗̃n , and proved the following
theorem, which is an improvement of Theorem 4·3 in the case of ribbon bottom tangles and
boundary bottom tangles.

THEOREM 4·4 ([14, 15]). Let T be an n-component ribbon or boundary bottom tangle.
Then we have

JT ∈ (Ū ev
q )ˆ⊗̂n

.

Remark 4·5. Theorem 4·4 with (Ū ev
q )ˆ⊗̂n replaced with (Ū ev

q ) ˜⊗̃n for boundary bottom
tangles had been conjectured by Habiro [3, conjecture 8·9]. Here, we do not know whether
the inclusion (Ū ev

q )ˆ⊗̂n ⊂ (Ū ev
q ) ˜⊗̃n is proper or not, but the definition of (Ū ev

q )ˆ⊗̂n is more

natural than that of (Ū ev
q ) ˜⊗̃n in the settings in [14, 15].

4·2. Results for the universal sl2 invariant of Brunnian bottom tangles

The following is the main result of the present paper, which is an improvement of Theor-
ems 4·1 and 4·3 in the case of Brunnian bottom tangles.

THEOREM 4·6. Let T be an n-component algebraically-split Brunnian bottom tangle
with n � 2.

(i) For each i = 1, . . . , n, there is a diagram T̃ (i) of T such that

JT̃ (i),s ∈ (
Ū ev

q

)⊗i−1 ⊗ U ev
Z,q ⊗ (

Ū ev
q

)⊗n−i

for any state s ∈ S(T̃ (i)).
(ii) We have JT ∈ U (n)

Br , where we set

U (n)

Br =
n⋂

i=1

{((
Ū ev

q

)⊗i−1 ⊗ U ev
Z,q ⊗ (

Ū ev
q

)⊗n−i
)

�
(
U ev

q

)⊗n
}̂
.

Note that the condition “algebraically-split” in Theorem 4·6 is for 2-component Brun-
nian bottom tangles, since every n-component Brunnian bottom tangle with n � 3 is
algebraically-split by the definition.

We prove Theorem 4·6 (i) in Section 6. Theorem 4·6 (ii) is derived from Theorem 4·6 (i)
and Proposition 4·2 as follows.

Proof of Theorem 4·6 (ii) by assuming Theorem 4·6 (i) For each i = 1, . . . , n, by The-
orem 4·6 (i) and Proposition 4·2, there is a diagram T̃ (i) of T such that

JT̃ (i),s ∈
((

Ū ev
q

)⊗i−1 ⊗ U ev
Z,q ⊗ (

Ū ev
q

)⊗n−i
)

� F|s|
((
U ev

q

)⊗n)
for any state s ∈ S(T̃ (i)). Hence we have

JT =
∑

s∈S(T̃ (i))

JT̃ (i),s

∈
{((

Ū ev
q

)⊗i−1 ⊗ U ev
Z,q ⊗ (

Ū ev
q

)⊗n−i
)

�
(
U ev

q

)⊗n
}̂

for all i = 1, . . . , n.
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(a) (b)

Fig. 6. (a) The Borromean bottom tangle TB , (b) A bottom tangle T ′
B .

To compare Theorem 4·6 (ii) with Theorems 4·3 and 4·4 for n � 2, we have the following:

{n-comp. alg. split bottom tangles} J−→ (Ũ ev
q )⊗̃n

�

{n-comp. alg. split Brunnian bottom tangles} J−→ U (n)

Br

�

{n-comp. ribbon or boundary bottom tangles} J−→ (Ū ev
q )ˆ⊗̂n .

Example 4·7. For the Borromean bottom tangle TB depicted in Figure 6 (a), we have

JT ∈
{(

U ev
Z,q ⊗ (

Ū ev
q

)⊗2
)

�
(
U ev

q

)⊗3
}̂

�
{(

Ū ev
q ⊗ U ev

Z,q ⊗ Ū ev
q

)
�

(
U ev

q

)⊗3
}̂

�
{((

Ū ev
q

)⊗2 ⊗ U ev
Z,q

)
�

(
U ev

q

)⊗3
}̂
.

See Example 6·2 for explicit expressions of JT .

Example 4·8. Let us add a trivial arc to the Borromean bottom tangle as in Figure 6 (b),
and denote it by T ′

B . Note that the bottom tangle T ′
B is not Brunnian but algebraically-split.

We have

JT ′
B

= JTB ⊗ 1 �
{(

(Ū ev
q )⊗3 ⊗ U ev

Z,q

)
� (U ev

q )⊗4
}̂
.

5. Application to the colored Jones polynomial

In this section, we give an application of Theorem 4·6 to the colored Jones polynomial of
Brunnian links (Theorem 5·4). In what follows, we assume that links are 0-framed.

5·1. Colored Jones polynomials of algebraically-split links, ribbon links and boundary links

We recall results for the colored Jones polynomials of algebraically-split links.
For m � 1, let Vm denote the m-dimensional irreducible representation of Uh . Let R

denote the representation ring of Uh over Q(q
1
2 ), i.e., R is the Q(q

1
2 )-algebra

R = Span
Q(q

1
2 )

{Vm | m � 1}
with the multiplication induced by the tensor product. It is well known that R = Q(q

1
2 )[V2].

For an n-component link L , take a bottom tangle T whose closure is L . For X1, . . . , Xn ∈
R, the colored Jones polynomial JL;X1,...,Xn of L with the i th component Li coloured by Xi

is given by

JL;X1,...,Xn = (
trX1

q ⊗ · · · ⊗ trXn
q

)
(JT ) ∈ Q(q

1
2 ),
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where, for Y = ∑
j y j Vj ∈ R and u ∈ Uh , we set

trY
q (u) = trY (K −1u) =

∑
j

y j trVj (K −1u).

Habiro [3] studied the following elements in R

Pl =
l−1∏
i=0

(V2 − qi+ 1
2 − q−i− 1

2 ) ∈ R, (5·1)

P̃ ′
l = q

1
2 l

{l}q ! Pl ∈ R, (5·2)

for l � 0, which are used in an important technical step in his construction of the unified
Witten–Reshetikhin–Turaev invariants for integral homology spheres.

Recall the notation {l}q,i = {l}q{l − 1}q · · · {l − i + 1}q for l ∈ Z, i � 0. Theorem 4·3
implies the following.

THEOREM 5·1 (Habiro [3]). Let L be an n-component algebraically-split link. For
l1, . . . , ln � 0, we have

JL;P̃ ′
l1

,...,P̃ ′
ln

∈ Z (l1,...,ln)
a . (5·3)

Here we set

Z (l1,...,ln)
a = {2lmax + 1}q,lmax+1

{1}q
Z[q, q−1],

where lmax = max(l1, . . . , ln).

For l � 0, let Il denote the ideal in Z[q, q−1] generated by {l − k}q !{k}q ! for k = 0, . . . , l.
Theorem 4·4 implies the following, which is an improvement of Theorem 5·1 in the cases
of ribbon links and boundary links.

THEOREM 5·2 ([14, 15]). Let L be an n-component ribbon link or boundary link. For
l1, . . . , ln � 0, we have

JL;P̃ ′
l1

,...,P̃ ′
ln

∈ Z (l1,...,ln)

r,b . (5·4)

Here we set

Z (l1,...,ln)

r,b = ( ∏
1�i�n,i�iM

Ili

) · Z (l1,...,ln)
a

= {2lmax + 1}q,lmax+1

{1}q

∏
1�i�n,i�iM

Ili ,

where lmax = max(l1, . . . , ln) and iM is an integer such that liM = lmax.

For m � 1, let �m = ∏
d|m(qd − 1)μ( m

d ) ∈ Z[q] denote the mth cyclotomic polynomial,
where

∏
d|m denotes the product over all positive divisors d of m, and μ is the Möbius

function. For r ∈ Q, we denote by 	r
 the largest integer smaller than or equal to r .
In [16], we study the ideal Il and prove the following result, which we use later.
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PROPOSITION 5·3 ([16]). For l � 0, the ideal Il is the principal ideal generated by

gl =
∏
m�1

�tl,m
m , (5·5)

where

tl,m =
{

	 l+1
m 
 − 1 for 1 � m � l,

0 for l < m.

5·2. Result for the colored Jones polynomial of Brunnian links

The following is an application of Theorem 4·6 to the colored Jones polynomial of Brun-
nian links, which we prove in Section 6·2.

THEOREM 5·4. Let L be an n-component algebraically-split Brunnian link with n � 2.
For l1, . . . , ln � 0, we have

JL;P̃ ′
l1

,...,P̃ ′
ln

∈ Z (l1,...,ln)

Br . (5·6)

Here we set

Z (l1,...,ln)

Br = {2lmax + 1}q,lmax+1

{1}q{lmin}q !
∏

1�i�n,i�iM ,im

Ili ,

where lmax = max(l1, . . . , ln), lmin = min(l1, . . . , ln) and iM , im, iM � im, are two integers
such that liM = lmax, lim = lmin, respectively.

Note that an algebraically-split Brunnian link satisfies both (5·3) and (5·6). In fact, there
is no inclusion which satisfies for all l1, . . . , ln � 0 between Z (l1,...,ln)

a and Z (l1,...,ln)

Br . For
example, we have Z (2,2,2,2)

a � Z (2,2,2,2)

Br and Z (2,2,2,2)

Br � Z (2,2,2,2)
a since

Z (2,2,2,2)
a = {5}q,3

{1}q
Z[q, q−1]

= (q − 1)2(q + 1)(q2 + q + 1)(q2 + 1)(q4 + q3 + q2 + q1 + 1)Z[q, q−1],
Z (2,2,2,2)

Br = {5}q,3

{1}q{2}q ! {1}4
qZ[q, q−1]

= (q − 1)4(q2 + q + 1)(q2 + 1)(q4 + q3 + q2 + q1 + 1)Z[q, q−1].
For l1, . . . , ln � 0, set

Z̃ (l1,...,ln)

Br = Z (l1,...,ln)
a � Z (l1,...,ln)

Br .

The above argument implies the following refinement of Theorem 5·4.

THEOREM 5·5. Let L be an n-component algebraically-split Brunnian link with n � 2.
For l1, . . . , ln � 0, we have

JL;P̃ ′
l1

,...,P̃ ′
ln

∈ Z̃ (l1,...,ln)

Br .

For n � 2, we have

Z (l1,...,ln)

r,b = ( ∏
1�i�n,i�iM

Ili

) · Z (l1,...,ln)
a

= ({lmin}q !Ilmin

) · Z (l1,...,ln)

Br .
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Thus, comparing Theorem 5·5 with Theorems 5·1 and 5·2 for n � 2, we have the following:

{n-comp. alg. split links}
J∗;P̃′

l1
,...,P̃′

ln−−−−−→ Z (l1,...,ln)
a

�

{n-comp. alg. split Brunnian links}
J∗;P̃′

l1
,...,P̃′

ln−−−−−→ Z̃ (l1,...,ln)

Br

�

{n-comp. ribbon or boundary links}
J∗;P̃′

l1
,...,P̃′

ln−−−−−→ Z (l1,...,ln)

r,b .

Remark 5·6. By Proposition 5·3, the ideals Z (l1,...,ln)
a , Z (l1,...,ln)

r,b , Z (l1,...,ln)

Br and Z̃ (l1,...,ln)

Br are
principal, each generated by a product of cyclotomic polynomials. See [16] for details and
examples.

6. Proofs

In this section, we prove Theorem 4·6 (i) and Theorem 5·4.

6·1. Proof of Theorem 4·6 (i)

We use the following lemma.

LEMMA 6·1. For m � 0 and k, l ∈ Z, we have

Sk(α±
m ) ⊗ Sl(β±

m ) ∈ D±(−1)k+l (
(UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q)

)
,

Proof. For m � 0, we have

αm ⊗ βm = D
(
q

1
2 m(m−1) F̃ (m)K −m ⊗ em

)
= D

(
qm(m−1) f m K −m ⊗ Ẽ (m)

)
∈ D

(
(UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q)

)
,

(6·1)

α−
m ⊗ β−

m = D−1
(
(−1)m F̃ (m) ⊗ K −mem

)
= D−1

(
(−1)nq

1
2 m(m−1) f m ⊗ K −m Ẽ (m)

)
∈ D−1

(
(UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q)

)
.

(6·2)

For k, l ∈ Z, we have

(Sk ⊗ Sl)(D±1) = D±(−1)k+l
, (6·3)

(Sk ⊗ Sl)
(
(UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q)

) = (UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q). (6·4)

For x ∈ Uh homogeneous, we have

(x ⊗ 1)D±1 = D±1(x ⊗ K ∓|x |). (6·5)

Now, (6·1)–(6·5) imply the assertion. For example, we have

S(αm) ⊗ S(βm) = (S ⊗ S)(αm ⊗ βm)

∈ (S ⊗ S)
(

D
(
(UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q)

))
⊂ (

(UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q)
)
D

= D
(
(UZ,q ⊗ Ūq) � (Ūq ⊗ UZ,q)

)
.
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Fig. 7. Borromean rings TB and its diagram T̃B = T̃B,1 � T̃B,2 � T̃B,3 such that T̃B,2 � T̃B,3 has no
crossing. (Here, in order to show examples of self crossings, we put trivial ones on the leftmost strand.)

Fig. 8. The labels on a crossing.

Proof of Theorem 4·6 (i) Let T = T1 � · · · � Tn be an n-component algebraically-split
Brunnian bottom tangle with n � 2. We prove the assertion for i = 1, i.e., we prove that
there is a diagram T̃ of T such that

JT̃ ,s ∈U ev
Z,q ⊗ (Ū ev

q )⊗n−1 (6·6)

for any state s ∈ S(T̃ ). The other cases 2 � i � n are similar.
Since T is Brunnian, the subtangle T2 � · · · � Tn is trivial. Thus T has a diagram T̃ =

T̃1 � T̃2 � · · · � T̃n whose subdiagram T̃2 � · · · � T̃n has no crossing. See Figure 7 for an
example of such a diagram for the Borromean rings TB .

We prove that T̃ satisfies (6·6). Note that T̃ has only two types of crossings as follows:

Type A: Crossings between T̃1, and T̃2 � · · · � T̃n;
Type B: Self crossings of T̃1.

Recall from the definition of JT̃ ,s in Section 3·3 the labels which are put on the diagram.
For the crossings of type A, by Lemma 6·1, we can assume that the labels on T̃1 are legs of
copies of D±1 and elements of UZ,q , and the labels on T̃2 � · · ·� T̃n are legs of copies of D±1

and elements of Ūq . For the crossings of type B, we assume that the labels on T̃1 are legs of
copies of D±1 and elements of UZ,q . See Figure 8 for example, where s denote elements in
UZ,q and ◦s denote elements in Ūq .

Now, except copies of D±1, all labels on T̃1 are elements of UZ,q , and all labels on T̃2 �
· · · � T̃n are elements of Ūq , see Figure 9 for example. We gather every copy of D±1 to the
leftmost of the expression of JT̃ ,s by using (6·5), and cancel these since the linking matrix
of T is 0. Then we have

JT̃ ,s ∈ UZ,q ⊗ Ū⊗n−1
q .

By Theorem 4·3, we have

JT̃ ,s ∈ (
UZ,q ⊗ Ū⊗n−1

q

)
� (U ev

q )⊗n

⊂ U ev
Z,q ⊗ (

Ū ev
q

)⊗n−1
.

This completes the proof.

Example 6·2. The following is the universal sl2 invariant of the Borromean bottom tangle
calculated by using the diagram Figure 6 (a) (cf. [3]).
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Fig. 9. Labels except D±1s, where the black dots are K ±1.

JTB =
∑

m1,m2,m3,n1,n2,n3�0

qm3+n3(−1)n1+n2+n3q
∑3

i=1

(
− 1

2 mi (mi +1)−ni +mi mi+1−2mi ni−1

)

× F̃ (n3)em1 F̃ (m3)en1 K −2m2 ⊗ F̃ (n1)em2 F̃ (m1)en2 K −2m3 ⊗ F̃ (n2)em3 F̃ (m2)en3 K −2m1

∈ (
Ũ ev

q

)⊗̃3
,

where the index i should be considered modulo 3.
By using the diagram T̃B in Figure 7, after canceling the two self crossings of the leftmost

strand, we also have the following expression of JTB .

JTB =
∑

g,h,k,l,m,n�0

m∑
i=0

n∑
j=0

tg,h,i, j,k,l,m,n(q)

× K −2(h+k) F̃ (g) Ẽ (h) Ẽ ( j) F̃ (i) Ẽ (k) F̃ (l) F̃ (m−i) Ẽ (n− j) ⊗ K 2(k−l−m) f nem

⊗ K −2(h−i+ j+k)el f h+keg

∈
{(

U ev
Z,q ⊗ (Ū ev

q )⊗2
)

� (U ev
q )⊗3

}̂
,

where

tg,h,i, j,k,l,m,n(q) =(−1)g+h+m+n+i+ j q−2g(3h+k)+ 1
2 h(h−1)+h(2l−1)+k(2l+2n−i− j−1)− 1

2 l(l−1)

× q−l(2n+i−3 j)−m(6n−i− j)+ 1
2 n(n−1)−n( j+1)− 1

2 i(i−1)+ 1
2 j ( j−1).

6·2. Proof of Theorem 5·4
In this section, we prove Theorem 5·4.
First of all, we recall generators of Ū ev

q as Z[q, q−1]-modules. The following Lemma is a
variant of a well-known fact about the integral form defined by De Concini and Procesi (cf.
[1, 3]).

LEMMA 6·3. Ū ev
q is freely Z[q, q−1]-spanned by the elements f i K 2 j ek with i, k � 0 and

j ∈ Z.

For the elements Pl, P̃ ′
l ∈ R defined in (5·1), (5·2) in Section 5·1, we have the following

results.

LEMMA 6·4 (Habiro [3, lemma 8·8]).

(1) If l, i, i ′ � 0, i � i ′, and j ∈ Z, then we have trPl
q (F̃ (i)K 2 j ei ′

) = 0.
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(2) If 0 � l < i and j ∈ Z, then we have trPl
q (F̃ (i)K 2 j ei ) = 0.

(3) If 0 � i � l and j ⊂ Z, then we have

trPl
q (F̃ (i)K 2 j ei ) = q

1
2 l−l j+2i j+i2−il{l}q !{l − i}q !

[
j + l − 1

l − i

]
q

[
j − 1
l − i

]
q

.

For l � 0, recall the ideal Il in Z[q, q−1], which is generated by {l − i}q !{i}q ! for i =
0, . . . , l.

COROLLARY 6·5 (Habiro [3]). For l � 0, we have tr
P̃ ′

l
q (Ū ev

q ) ⊂ Il .

Proof. The assertion follows from Lemma 6·3, Lemma 6·4 (1), (2) and

tr
P̃ ′

l
q ( f i K 2 j ei ) = q− 1

2 i(i−1){i}q ! tr
P̃ ′

l
q (F̃ (i)K 2 j ei )

= q− 1
2 i(i−1){i}q ! q

1
2 l

{l}q ! trPl
q (F̃ (i)K 2 j ei )

= q− 1
2 i(i−1)+l−l j+2i j+i2−il{i}q !{l − i}q !

[
j + l − 1

l − i

]
q

[
j − 1
l − i

]
q

∈ Il

for 0 � i � l and j ∈ Z.

PROPOSITION 6·6. For l � 0, we have {l}q ! tr
P̃ ′

l
q (U ev

Z,q) ∈ Z[q, q−1].
Proof. Since we have F̃ (i) = q

1
2 i(i−1) f i/{i}q !, Ẽ (i) = ei/{i}q ! for i � 0, we have

U ev
Z,q ⊂ Ū ev

q ⊗Z[q,q−1] Q(q).

This and Corollary 6·5 imply

tr
P̃ ′

l
q (U ev

Z,q) ∈ Q(q). (6·7)

In what follows, we prove

{l}q ! tr
P̃ ′

l
q (UZ,q) ∈ Z[q1/2, q−1/2], (6·8)

which together with (6·7) imply

{l}q ! tr
P̃ ′

l
q (U ev

Z,q) ∈ Q(q) � Z[q1/2, q−1/2] = Z[q, q−1]. (6·9)

Let UZ be Lusztig’s integral form, which is the Z[q1/2, q−1/2]-subalgebra of Uh gen-
erated by K ±1, Fi/[i]! and Ei/[i]! for i > 1, where [i]! = [i][i − 1] · · · [1] with
[n] = (qn/2 − q−n/2)/(q1/2 − q−1/2) for n � 0. Here, we have

UZ = UZ,q ⊗Z[q,q−1] Z[q1/2, q−1/2]. (6·10)

Recall that Vm denotes the m-dimensional irreducible representation of Uh . It is well-
known that there is a UZ-submodule VZ,m of Vm such that

Vm = VZ,m ⊗Z[q1/2,q−1/2] Q[[h]].
Since

trVZ,m
q (UZ) ⊂ Z[q1/2, q−1/2]
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and

{l}q !P̃ ′
l = ql/2 Pl ∈ SpanZ[q1/2,q1/2]{Vm | m � 0},

it follows that

{l}q ! tr
P̃ ′

l
q (UZ) ∈ Z[q1/2, q−1/2].

This and (6·10) imply (6·8). Hence we have the assertion.

In [3], Habiro proved that if T is an n-component algebraically-split bottom tangle, then we
have (

id⊗i−1 ⊗ tr
P̃ ′

li
q ⊗ id⊗n−i

)
(JT ) ∈ (

Ũ ev
q

)⊗̃n−1

for 1 � i � n and li � 0. We use the following proposition.

PROPOSITION 6·7. Let T be an n-component algebraically-split Brunnian bottom tangle
with n � 2. For 1 � i � n and li � 0, we have:

(i) (id⊗i−1 ⊗ tr
P̃ ′

li
q ⊗ id⊗n−i )(JT ) ∈ (U ev

q )⊗n−1;
(ii) {li }q !(id⊗i−1 ⊗ tr

P̃ ′
li

q ⊗ id⊗n−i )(JT ) ∈ (Ū ev
q )⊗n−1.

Proof. We prove the assertion with i = 1. The other cases are similar. Let T̃ = T̃ (1) be
a diagram of T as in Theorem 4·6 (i). By the proof of Theorem 4·6 (i), we can assume that
T̃ = T̃1 � · · · � T̃n has only two types of crossings as follows:

Type A: Crossings between T̃1 and T̃2 � · · · � T̃n;
Type B: Self crossings of T̃1.

Let s ∈ S(T̃ ). Set |s| = max{s(c) | c ∈ C(T̃ )}. Note that, for 0 � m < p, the elements
E p and F p act as 0 on the m-dimensional irreducible representation Vm of Uh . Since each
crossing of either type involves the strand T̃1, there is a crossing c on T̃1 such that s(c) = |s|.
Since P̃ ′

l1
∈ SpanQ(q1/2){V0, . . . , Vl1}, if |s| > l1, then we have

(tr
P̃ ′

l1
q ⊗ id⊗n−1)(JT̃ ,s) = 0. (6·11)

By (6·11), Theorem 4·1 implies (i), and Theorem 4·6 (i), Proposition 6·6 imply (ii).

For a subalgebra X of Uh , let Z(X) denote the center of X . Habiro [3, proposition 8·6]
proved that for an n-component algebraically-split bottom tangle T , we have(

id ⊗ tr
P̃ ′

l2
q ⊗ tr

P̃ ′
l3

q ⊗ · · · ⊗ tr
P̃ ′

ln
q

)
(JT ) ∈ Z

(
Ũ ev

q

)
.

We can improve this result in the case of Brunnian bottom tangles as follows.

PROPOSITION 6·8. Let T be an n-component algebraically-split Brunnian bottom tangle
with n � 2. For l2, . . . , ln � 0, we have(

id ⊗ tr
P̃ ′

l2
q ⊗ tr

P̃ ′
l3

q ⊗ · · · ⊗ tr
P̃ ′

ln
q

)
(JT ) ∈ Z

(
U ev

q

)
.

Proof. By Proposition 6·7 (i) and tr
P̃ ′

l
q (U ev

q ) ⊂ Z[q, q−1] for l � 0, we have

(
id ⊗ tr

P̃ ′
l2

q ⊗ tr
P̃ ′

l3
q ⊗ · · · ⊗ tr

P̃ ′
ln

q

)
(JT ) ∈ (

id ⊗ tr
P̃ ′

l3
q ⊗ · · · ⊗ tr

P̃ ′
ln

q

)((
U ev

q

)⊗n−1)
⊂ U ev

q .
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It is well known that JT is contained in the invariant part of U ⊗̂n
h (cf. Kerler [8, corollary

12]). This fact implies

(id ⊗ tr
P̃ ′

l2
q ⊗ tr

P̃ ′
l3

q ⊗ · · · ⊗ tr
P̃ ′

ln
q )(JT ) ∈ Z(Uh).

Since U ev
q � Z(Uh) ⊂ Z(U ev

q ), we have the assertion.

Let C = (q1/2 −q−1/2)2 F E +q1/2 K +q−1/2 K −1 denote the Casimir element. Recall from
[3] that Z(U ev

q ) is freely generated by C2 as a Z[q, q−1]-algebra, and thus, freely spanned by
the following monic polynomials in C2 as a Z[q, q−1]-module.

σp =
p∏

i=1

(C2 − (qi + 2 + q−i )), p � 0.

Habiro proved the following.

PROPOSITION 6·9 (Habiro [3, proposition 6·3]). For l, m � 0, we have

tr
P ′′

l
q (σm) = δl,m,

where P ′′
l = ql(l+1)({1}q/{2l + 1}q,l+1)P̃ ′

l .

Proposition 6·9 implies the following.

COROLLARY 6·10 (Habiro [3]). For l � 0, we have

tr
P̃ ′

l
q

(
Z
(
U ev

q

)) ⊂ {2l + 1}q,l+1

{1}q
Z[q, q−1].

Now, we prove Theorem 5·4.

Proof of Theorem 5·4. Let L be an n-component algebraically-split Brunnian link with
n � 2 and T a Brunnian bottom tangle whose closure is L . Let l1, . . . , ln � 0. Without loss
of generality, we assume l1 = max(l1, . . . , ln) and l2 = min(l1, . . . , ln). By Proposition 6·7
(ii) and Corollary 6·5, we have

{l2}q !
(

id ⊗ tr
P̃ ′

l2
q ⊗ tr

P̃ ′
l3

q ⊗ · · · ⊗ tr
P̃ ′

ln
q

)
(JT )

∈ (
id ⊗ tr

P̃ ′
l3

q ⊗ · · · ⊗ tr
P̃ ′

ln
q

)
((Ū ev

q )⊗n−1)

⊂ ( ∏
3�i�n

Ii

) · Ū ev
q

⊂ ( ∏
3�i�n

Ii

) · U ev
q

= gl3 · · · glnU ev
q ,

(6·12)

where the last equation is follows from Proposition 5·3.
Since U ev

q has no non-trivial zero divisor, we have(
gl3 · · · glnU ev

q

)
� Z

(
U ev

q

) ⊂ gl3 · · · gln Z
(
U ev

q

)
. (6·13)

By (6·12), (6·13) and Proposition 6·8, we have

{l2}q !
(

id ⊗ tr
P̃ ′

l2
q ⊗ tr

P̃ ′
l3

q ⊗ · · · ⊗ tr
P̃ ′

ln
q

)
(JT ) ⊂ gl3 · · · gln Z

(
U ev

q

)
. (6·14)
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By (6·14) and Corollary 6·10, we have

{l2}q !JL;P̃ ′
l1

,...,P̃ ′
ln

= {l2}q !
(

tr
P̃ ′

l1
q ⊗ tr

P̃ ′
l2

q ⊗ tr
P̃ ′

l3
q ⊗ · · · ⊗ tr

P̃ ′
ln

q

)
(JT )

∈ tr
P̃ ′

l1
q

(
gl3 · · · gln Z

(
U ev

q

))
⊂ {2l1 + 1}q,l1+1

{1}q
gl3 · · · gln Z[q, q−1]

= {2l1 + 1}q,l1+1

{1}q

∏
3�i�n

Ili .

Hence we have

JL;P̃ ′
l1

,...,P̃ ′
ln

= {2l1 + 1}q,l1+1

{1}q{l2}q !
∏

3�i�n

Ili .

This completes the proof.
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