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ON RESAMPLING SCHEMES FOR POLYTOPES

WEINAN QI∗ ∗∗ AND
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Abstract

The convex hull of a sample is used to approximate the support of the underlying distri-
bution. This approximation has many practical implications in real life. To approximate
the distribution of the functionals of convex hulls, asymptotic theory plays a crucial role.
Unfortunately most of the asymptotic results are computationally intractable. To address
this computational intractability, we consider consistent bootstrapping schemes for
certain cases. Let Sn = {Xi}n

i=1 be a sequence of independent and identically distributed
random points uniformly distributed on an unknown convex set in R

d (d ≥ 2). We
suggest a bootstrapping scheme that relies on resampling uniformly from the convex
hull of Sn. Moreover, the resampling asymptotic consistency of certain functionals of
convex hulls is derived under this bootstrapping scheme. In particular, we apply our
bootstrapping technique to the Hausdorff distance between the actual convex set and
its estimator. For d = 2, we investigate the asymptotic consistency of the suggested
bootstrapping scheme for the area of the symmetric difference and the perimeter
difference between the actual convex set and its estimate. In all cases the consistency
allows us to rely on the suggested resampling scheme to study the actual distributions,
which are not computationally tractable.
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1. Introduction

For any subset A ⊂R
d (d ≥ 2), let conv(A) be the convex hull of A, i.e. the smallest

convex set containing A. Most of the discussion below is for d = 2, but when the results are
valid for higher dimensions we use d for the dimension instead. Suppose Sn = {Xi}n

i=1 is a
sequence of independent and identically distributed (i.i.d.) random points in R

d. The random
convex polytopes (random convex hull) Kn = conv(Sn) is the smallest convex set containing
observations {Xi}n

i=1. Random convex polytopes (in short, random polytopes) have been widely
studied. For example, MacDonald et al. (1980) applied Kn for the estimation of the territorial
range of a wildlife species by tagging an individual of this species with a radio transmitter
and recording the position as Xi after release. Ripley and Rasson (1977) applied Kn for
the estimation of the homogeneous planar Poisson process support. Furthermore, in ordered
statistics, the method of convex-hull peeling constructs a nested sequence of random polytopes
based on the sample points. In this context, the number of convex layers for a sequence of
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given points is called convex-hull peeling depth, and the convex layers themselves are the
depth contours for this notion of data depth. In other words conv(Sn) plays the role of the
extreme layer, like the maximum of a sample, and the most internal layer can be considered as
the multivariate median. For an extensive connection with the concept of data depth we refer
the reader to Liu et al. (1979), Tukey (1974), and Barnett (1976).

Throughout this paper we use the following notation. For any Borel set A ⊂R
d (d ≥ 2), its

volume is denoted by |A| (the Lebesgue measure of A). The sample points, Sn = {Xi}n
i=1, are

i.i.d. random elements taking values in R
d with the probability distribution F. Suppose F has

the convex support K, which in this paper is referred to as the ‘underlying set’. When F is
the uniform distribution, the set Kn = conv(Sn) is called the uniform polytope. For functionals
of Kn, denote the volume by |Kn|, the perimeter ∂(Kn) (the boundary of Kn) by Ln, and the
probability content by F(Kn) = P (X1 ∈ Kn). In addition, if K is the underlying set, we denote
the set difference K \ Kn by Dn and the Hausdorff distance between K and Kn by H(K, Kn). In
the following section we provide a short list of some well-known results, which serve as the
theoretical basis for this paper.

2. Preliminaries

In this section we review some existing results. Let F be the uniform distribution on the
underlying convex set K. Suppose the underlying set K ⊂R

d is a convex polygon with r (≥ 3)
vertices. Problems related to convex hulls have received much attention from many authors.
For d = 2, according to Cabo and Groeneboom (1994), we have, as n → ∞,

|Dn|/|K| − βn

αn

D−→N (0, 1), (2.1)

where αn = 1
n

√
28
27 r log n, βn = 2

3n r log n, and ‘
D−→’ is convergence in distribution. For any

convex set K ⊂R
d,

lim
n→∞ n2/(d+1)E (|Dn|) = c(d)|K|2/(d+1)

∫
∂K

(κ(z))1/(d+1) dz, (2.2)

where κ is the generalized Gaussian curvature and c(d) is a constant only depending on d. See
Schütt (1994) for details.

Let K be a convex subset of R2. Suppose the boundary of K, i.e. ∂K, has curvature bounded
away from 0 and ∞, and ∂K ∈ C2(R) (the set of all functions with two continuous derivatives
with domain R). For definitions and more details, see the Appendix A. Let L and Ln be the
perimeters of K and Kn respectively. Bräker and Hsing (1998) showed that, as n → ∞,

n5/6(|Kn| − E (|Kn|), Ln − E (Ln))
D−→N (0, �), (2.3)

where � is a constant matrix. Convergence of expectations is given by

lim
n→∞ n2/3E (L − Ln) = c1

and
lim

n→∞ n2/3E (|Dn|) = c2, (2.4)

where c1 and c2 are constants.
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Let d (≥ 2) and s (≤ d − 1) be two nonnegative integers. Let K ⊂R
d be a convex set with

∂K ∈ C2(Rd−1) and positive Gaussian curvature bounded away from 0 and ∞. Let � be the
cumulative distribution function of the standard normal distribution. Then Reitzner (2005)
proved that there exists a sequence of constants Cn, bounded between two positive constants,
depending only on K, and another constant c, such that∣∣∣∣P

( |Kn| − E (|Kn|)√
Cnn−1−2/(d+1)

≤ t

)
− �(t)

∣∣∣∣ ≤ cε(n), (2.5)

where
ε(n) = n−1/(2(d+1))(log n)2+2/(d+1).

Let K be a convex polygon with interior angles θ1, θ2, . . . , θr. Bräker et al. (1998) derived
that

lim
n→∞ P(

√
nH(K, Kn) ≤ x) = G1(x), (2.6)

where

G1(x) :=
r∏

k=1

(1 − pk(x))

with

pk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ θk

0
hk(x, θ ) dθ + exp

{
− x2

2|K| tan θk

}
, 0 < θk <

π

2
,

∫ π/2

θk−π/2
hk(x, θ ) dθ,

π

2
≤ θk < π,

(2.7)

and

hk(x, θ ) = exp
{
− x2

2|K| (tan θk + tan (θk − θ ))
} x2

2|K| tan2 θ .

Bräker et al. (1998) also derived the limit theory for uniform polytopes, when the underlying
set K satisfies a certain smoothness condition. Let K be a bounded convex set K ⊂R

2. Suppose
the boundary of K has length L and we parameterize it (positively oriented) as t → c(t), with
t the arc length between c(0) and c(t). Suppose the curvature K(t) = |c̈(t)| is well defined,
bounded away from 0 and ∞, and has a bounded derivative. Define the function

λ(t) = |K|√K(t), 0 ≤ t < L,

and let λ0 := maxt∈[0,L) λ(t). Suppose that there exists some bounded sequence of nonnegative
constants νn and positive constant μ such that, as n → ∞,

(log n)νn

|K|
∫ L

0
exp

{
− γn

(
λ0

λ(t)
− 1

)
log n

}
dt −→ μ ∈ (0, ∞), (2.8)

where

γn = 1

3
+

(
2

3
− νn

)
log log n

log n
.

Denote

cn = 3
√

2

8
λ0γn, an = n−2/3(log n)−1/3, and bn = n−2/3(cn log n)2/3.
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Then

G2(x) := lim
n→∞ P

(
H(K, Kn) − bn

an
≤ x

)
= exp{−d1e−d2x}, x ∈R, (2.9)

for some constants d1 and d2.
In practice, the statistical properties of different functionals of random polytopes are hard to

use. For example, the limiting results in (2.6) are impossible to use. To assess the distributions
of these functionals, a feasible idea is to apply the bootstrap method. In a general framework,
let Sn = {Xi}n

i=1 be a sequence of i.i.d. random points drawn from the underlying distribution F.
Let φn(Sn; F) be a real-valued functional of interest. To draw a precise inference for φn, we need
to know the exact form of the underlying distribution F. The plug-in principle suggests using
some other known approximate distribution to replace the underlying distribution F. Efron
(1979) suggested replacing F with the empirical distribution Fn, where

Fn(−∞, x] = 1

n

n∑
i=1

1(Xi ≤ x),

with 1 the indicator function.
However, this plug-in principle will still need to be examined for consistency for every

target functional. Specifically, suppose

P

(
φn(Sn; F) − bn

an
≤ x

)
→ G(x) as n → ∞

for any continuity point x ∈R of G. Conditional on Sn, draw a bootstrap sample of points
S∗

n,m = {X∗
n,i}m

i=1 from Fn. For convenience, the regular bootstrap takes m = n; however, for
generality we do not necessarily assume m = n in the forthcoming sections. We would like to
have

P

(
φm(S∗

n,m; Fn) − bm

am
≤ x | Sn

)
P−→ G(x),

where ‘
P−→’ is convergence in probability.

However, the asymptotic failure of the regular bootstrap (m = n) for extremes is well known
(see counterexamples in Bickel and Freedman (1981)). Obviously, this asymptotic failure will
still be the case for random polytopes (see Zarepour (1999)). When the regular bootstrap fails,
some authors suggest applying the m out of n resampling method, i.e. setting the resample
size as m = o(n) (m/n → 0 as n → ∞). By assuming m = o(n), Zarepour (1999) studied
the bootstrapping point processes and proved the bootstrap consistency if the underlying

distribution F satisfies the regularly varying condition: nF(an
−1X1 ∈ ·) V−→ μ(·), where μ is a

Radon measure and ‘
V−→’ is vague convergence (Kallenberg (1983)). By the continuous

mapping theorem, the conclusion can also be applied to the regular bootstrap for convex hulls
when the underlying distribution has regularly varying tails.

In this paper we investigate the consistency of some bootstrapping schemes for convex hulls.
In Section 3 we examine the consistency of the regular bootstrap for polygons. In Section 4, a
semi-parametric bootstrapping scheme is introduced and with two simple examples (in which
the underlying set K is either a circle or a rectangle) we discuss how this approach works.
This new semi-parametric bootstrapping scheme is developed in more detail for more general
underlying sets in Section 5. The bootstrapping consistency of the Hausdorff distance on the
uniform polytopes is proved in this section. Moreover, we also derive results for the symmetric
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K

de(ck, Kn)

Ck

α = 90

Kn

FIGURE 1: A representation of de(ck, Kn), where the sample points are drawn uniformly from K, and Kn

is the convex hull of the sample.

difference and the perimeter difference (see the forthcoming definitions) in Section 6. Since
the technique is similar to Section 5, only concise proofs are given for these two examples.

3. The consistency of the regular bootstrap on the Euclidean distance

Suppose Sn = {Xi}n
i=1 is a sequence of i.i.d. random points uniformly drawn from a polygon

K with vertices c1, c2, . . . , cr and interior angles θ1, θ2, . . . , θr. Let de be the Euclidean metric.
Define the distance between a point x ∈R

2 and a set A ⊂R
2 by de(x, A) := inf{de(x, y) : y ∈ A},

and as usual take Kn = conv(Sn). Given the vertex ck, Bräker et al. (1998) proved that

lim
n→∞ P(

√
nde(ck, Kn) ≤ x) = 1 − pk(x),

where pk is defined in (2.7). See Figure 1 for a graphical description of de(ck, Kn). Now,
conditionally on Sn, the bootstrapping points S∗

n,m = {X∗
n,i}m

i=1 are drawn from the empirical

distribution Fn(−∞, x] = 1
n

∑n
i=1 1(Xi ≤ x). Define K∗

n,m := conv(S∗
n,m). We would like to

know whether bootstrapping is asymptotically valid for de(ck, K∗
n,m). To prove consistency, we

will combine the point-process techniques in Zarepour (1999) and the results in Bräker et al.
(1998). Using the previously introduced notation, the following theorem is stated as follows.

Theorem 3.1. Under the assumptions above, suppose m = o(n). Then for any integer k, where
0 ≤ k ≤ r, we have

P(
√

mde(ck, K∗
n,m) ≤ x | Sn)

P−→ 1 − pk(x)

as n, m → ∞, where pk is defined in (2.7).

Proof. We divide our proof into three steps as follows.
Step 1: Construction of the original point process. Here and later, the additions and subtractions
between a set and a point are Minkowski sum and difference. In other words, if K is a nonempty
subset of Rd and x ∈R

d then

K ± x = {k ± x : k ∈ K}.
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Let λ be Lebesgue measure. For any measurable subset A ⊂R
2, we have

nP(
√

n(X1 − ck) ∈ A) = nP

(
X1 ∈

(
A√
n

+ ck

))

= n

|K|λ
(

A√
n

∩ (K − ck)

)

= 1

|K|λ(A ∩ √
n(K − ck))

−→ 1

|K|λ(A) as n → ∞.

This is due to the fact that
√

n(K − ck) ↑R
2. Therefore, according to Resnick (1987) we have

nP(
√

n(X1 − ck) ∈ ·) V−→ 1

|K|λ(·).

Define the point process ξn,k = ∑n
i=1 δ√

n(Xi−ck). Here, ξn,k can be regarded as a random
element in Mp(Cone ck) (the collection of all nonnegative point measures on the cone ck; see
Resnick (1987)) endowed with vague topology. The Laplace functional of ξn,k will be

�ξn,k ( f ) =
( ∫

R2
exp{−f (

√
n(x − ck))} 1

|K|μ(dx)

)n (
μ = λ( · ∩K)

)

=
(

1 −
∫
R2 (1 − e f (y))μ̃(dy)

n

)n

(y = √
n(x − ck))

→ exp

{
−

∫
R2

(1 − e f (y))
1

|K|λ(dy)

}
,

where

μ̃(A) = n

|K|λ
((

A√
n

+ ck

)
∩ K

)
= 1

|K|λ(A ∩ √
n(K − ck)) −→ 1

|K|λ(A) (n → ∞)

for any Borel set A ⊂R
2. Hence, given the vertex ck, we have ξn,k

D−→ ξ as n → ∞, where ξ

is a Poisson point process with intensity measure 1
|K|λ.

Step 2: Construction of the bootstrapping point process. Conditionally on Sn, let ξ∗
n,m,k =∑m

i=1 δ√
m(X∗

n,i−ck), which is also a random element in Mp(Cone ck). The Laplace functional

of ξ∗
n,m,k is

�ξ∗
n,m,k

( f ) =
( ∫

R2
e−f (

√
m(x−ck))Fn(dx)

)m

=
( ∫

R2
e−f (

√
m(x−ck)) 1

n

n∑
i=1

δXi(dx)

)m

=
(

1

n

n∑
i=1

e f (
√

m(Xi−ck))
)m
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=
( ∫

R2
e f (y) 1

n

n∑
i=1

δ√
m(Xi−ck)(dy)

)m

=
(

1 −
∫
R2 (1 − e−f (y)) m

n

∑n
i=1 δ√

m(Xi−ck)(dy)

m

)m

. (3.1)

If

ηn,m,k := m

n

n∑
i=1

δ√
m(Xi−ck),

then (3.1) becomes

�ξ∗
n,m,k

( f ) =
(

1 −
∫
R2 (1 − e−f (y))ηn,m,k(dy)

m

)m

. (3.2)

Since mP(
√

m(X1 − ck) ∈ ·) V−→ 1
|K|λ(·) and (ex − 1)/x → 1 as x → 0, we have

E(exp{tηn,m,k(A)})
= (etm/nP(

√
m(X1 − ck) ∈ A) + 1 − P(

√
m(X1 − ck) ∈ A))n

=
(

mP(
√

m(X1 − ck) ∈ A)( n
tm (etm/n − 1))t

n
+ 1

)n

→ exp
{ t

|K|λ(A)
}

as n, m → ∞.

Therefore, from Kallenberg (1983), Theorem 4.2, page 32, we have

ηn,m,k
P−→ 1

|K|λ as n, m → ∞. (3.3)

See also Zarepour (1999). Combining (3.3) with (3.2) implies that, as n, m → ∞,

ξ∗
n,m,k

D−→ ξ in probability. (3.4)

Step 3: The continuous mapping theorem. For any measure η ∈ Mp(Cone ck), suppose fk
maps η to the smallest distance between the origin and the convex hull of the points of η. It is
easy to find that

fk(ξ∗
n,m,k) = √

mde(ck, K∗
n,m).

Now apply Skorokhod’s representation theorem and the continuous mapping theorem on (3.4)
to get

P(
√

mde(ck, K∗
n,m) ≤ x | Sn)

P−→ P( fk(ξ ) ≤ x)

as n → ∞, noticing that m/n → 0. From Bräker et al. (1998), we have

P( fk(ξ ) ≤ x) = 1 − pk(x),

completing the proof. �
This proves that the result in Bräker et al. (1998), as stated in Theorem 3.1, is valid for the

regular bootstrap when m/n → 0.
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Kn

K

FIGURE 2: K is a convex polygon. The sample size n = 100. Kn is the convex hull of the sample points.

4. New bootstrapping scheme on uniform samples

Here we introduce the maximum likelihood estimator of the underlying set as follows.

Definition 4.1. Suppose Sn = {Xi}n
i=1 is a sequence of i.i.d. random points drawn from F,

where F has a nonempty, convex support K ⊂R
d and K is assumed to be unknown. We denote

the maximum likelihood estimator of K by ML(Sn).

Since ML(Sn) is the maximum likelihood estimator for K, the geometric features of K
determine the geometric features of ML(Sn). For example, if we only know that K is a convex
set, then ML(Sn) = conv(Sn) = Kn (see Figure 2).

Based on the maximum likelihood estimator of the underlying set, we introduce the
following semi-parametric bootstrap method when we know F to a certain degree. Let F be the
underlying distribution with nonempty convex support. Let FA be the restriction of F on a set
A ⊂R

d, i.e. for any Borel set B ⊂R
d,

FA(B) = F(B ∩ A)

F(A)
.

Then in our semi-parametric bootstrapping scheme, points S∗
n,m = {X∗

n,i}m
i=1 are independently

drawn from FML(Sn) when the sample points Sn are given.
In the following two examples we consider two simple cases to explain how our approach

works. In the first example we assume that the underlying set is a disk with an unknown
radius R centered at the origin; in the second, we consider a rectangle as the underlying set.
Additionally, the distribution on both sets is assumed to be uniform.

Example 4.1. Let de be the Euclidean metric on R
2. Define the Euclidean norm ‖x‖ =

de(0, x) for all x ∈R
2. Denote B(0, r) := {x ∈R

2 : ‖x‖ ≤ r}. Let Sn = {Xi}n
i=1 be the i.i.d.

random points uniformly drawn from the disk C := B(0, R). Let Cn := B(0, Rn) where

Rn = max
1≤i≤n

‖Xi‖,
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C

Cn

1

–2 –1

–1

–2

0
0

1 2

2

FIGURE 3: C is a disk centered at the origin.

i.e. Cn is the smallest disk with its center at the origin and containing all the sample points
(see Figure 3). It is easy to check that Cn is the maximum likelihood estimator for C, i.e.
ML(Sn) = Cn. Since the sample points are drawn independently and uniformly from C, we
have

P(|Rn − R| > ε) = P(Rn < R − ε)

=
(

π (R − ε)2

πR2

)n

→ 0 as n → ∞,

which implies Rn
P−→ R. Indeed,

var Rn = nR2

(n + 1)(2n + 1)2
= �(n−2).

Therefore,
∞∑

n=1

P(|Rn − R| > ε) ≤ ε−2
∞∑

n=1

var Rn < ∞,

which implies Rn converges to R completely (i.e. Rn
C−→ R, which is stronger than almost sure

convergence). See Hsu and Robins (1974) for the definition.
Now we can evaluate the asymptotic validity of a functional using our bootstrapping scheme

on this sample. Given Sn, define

R∗
n,m := max

1≤i≤m
‖X∗

n,i‖,
where X∗

n,i, 1 ≤ i ≤ m, are drawn uniformly from Cn. Notice that as n → ∞ we have

P(n(R − Rn) > x) = P(Rn < R − x/n)

=
(

π (R − x/n)2

πR2

)n

→ exp{−2x/R}, (4.1)
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FIGURE 4: T is a rectangle with its edges parallel to the coordinate axes.

and as n, m → ∞ we have

P(m(Rn − R∗
n,m) > x | Cn) = P(R∗

n,m < Rn − x/m | Cn)

=
(

π (Rn − x/m)2

πR2
n

)m
a.s.−−→ exp{−2x/R}. (4.2)

From (4.1) and (4.2), it can be seen that the bootstrap approximation is valid in this example.
Notice that the standard condition of m = o(n) (m out of n bootstrapping) is not required.

Example 4.2. Let (Xi, Yi), 1 ≤ i ≤ n, be a sequence of i.i.d. random points uniformly dis-
tributed on a rectangle T = [0, a] × [0, b], where a and b are two unknown positive constants.
Let Tn := [min1≤i≤n Xi, max1≤i≤n Xi] × [min1≤i≤n Yi, max1≤i≤n Yi], i.e. the smallest rectangle
containing all the sample points, and with all edges parallel to the coordinate axes (see
Figure 4). Since Tn is the maximum likelihood estimator for T , we have ML(Sn) = Tn. Here,
∂T and ∂Tn consist of the four edges of T and Tn, respectively. For any A, B ⊂R

2, let h(A, B)
be the shortest horizontal or vertical distance between A and B, i.e.

h(A, B) = min{x0, y0},

where

x0 = inf{|x1 − x2| : (x1, y) ∈ A, (x2, y) ∈ B, y ∈R},
y0 = inf{|y1 − y2| : (x, y1) ∈ A, (x, y2) ∈ B, x ∈R}.

Therefore, as n → ∞ we have

P(nh(∂T, ∂Tn) > x) = P(h(∂T, ∂Tn) > x/n)

= Pn(h(∂T, Xi) > x/n) → e−2x(a−1+b−1). (4.3)
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Given Sn, let (X∗
n,i, Y∗

n,i), 1 ≤ i ≤ m, be a sequence of i.i.d. random points uniformly drawn
from Tn. Denote

T∗
n,m = [ min

1≤i≤m
X∗

n,i, max
1≤i≤m

X∗
n,i] × [ min

1≤i≤m
Y∗

n,i, max
1≤i≤m

Y∗
n,i],

�n,1 := max
1≤i≤n

Xi − min
1≤i≤n

Xi,

�n,2 := max
1≤i≤n

Yi − min
1≤i≤n

Yi.

Since �n,1 and �n,2 are both nondecreasing sequences and �n,1
P−→ a, �n,2

P−→ b, then

�n,1
a.s.−−→ a, �n,2

a.s.−−→ b. Therefore, as n, m → ∞, we have

P(mh(∂Tn, ∂T∗
n,m) > x | Sn) = Pm(h(∂Tn, X∗

n,1) > x/m | Sn)

= �−m
n,1 �−m

n,2

(
�n,1 − 2x

m

)m(
�n,2 − 2x

m

)m

a.s.−−→ e−2x(a−1+b−1). (4.4)

From (4.3) and (4.4), we can conclude that our bootstrap approximation is valid for the
functional h in this example. Again, the condition m = o(n) is not necessary.

In the following sections we prove the consistency results for the Hausdorff distance when
applying our semi-parametric bootstrapping scheme on uniform polytopes. In this case, the
underlying distribution F is the uniform distribution on an unknown convex set K, which
implies that FML(Sn) is exactly the uniform distribution on ML(Sn) = Kn = conv(Sn), and the
bootstrapping points S∗

n,m = {X∗
n,i}m

i=1 are drawn from FML(Sn).

5. The bootstrap consistency of the Hausdorff distance on uniform polytopes with a
semi-parametric bootstrapping scheme

5.1. Notation

Here and later the following notation is used. Suppose F is the uniform distribution on
an unknown convex set K. Let Sn := {Xi}n

i=1 be a sequence of i.i.d. random points drawn
from F and Kn = conv(Sn). Let S∗

n,m := {X∗
n,i}m

i=1 be a sequence of i.i.d. random points drawn
from FKn . Let S′

m := {X′
i}m

i=1 be another sequence of i.i.d. random points drawn from F and
independent from Sn. For any set A, we denote An = A × · · · × A︸ ︷︷ ︸

n times

. For simplicity, we also use

the following notation:

K′
m = conv(S′

m),

K∗
n,m = conv(S∗

n,m).

The following convergences are equivalent:

m(1 − F(Kn))
P−→ 0 as n, m → ∞,

m log (F(Kn))
P−→ 0 as n, m → ∞.

(5.1)

Note that P(m(1 − F(Kn)) > m(1 − exp{−ε/m})) → 0 if anf only if P(|m log (F(Kn))| > ε) → 0,
where ε > 0 and m(1 − exp (− ε/m)) → ε as m → ∞.
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5.2. The problem

For any functional φ, suppose we have

φ(Sn; F) − βn

αn

D−→ Z, (5.2)

where αn and βn are real numbers and Z is a random variable. Since F is the uniform
distribution on K, FKn is the uniform distribution on Kn. Then we will investigate the following
two types of convergence:

Type I: P

(
φ(S∗

n,m; F) − βm

αm
≤ x | Sn

)
D−→ P(Z ≤ x) as n, m → ∞.

Type II: P

(
φ(S∗

n,m; FKn ) − βm

αm
≤ x | Sn

)
D−→ P(Z ≤ x) as n, m → ∞.

Type I convergence is used for derivation of type II convergence and also for theoretical
interest. Of course, type II convergence establishes that the suggested bootstrap scheme works
for the given functional φ.

According to (2.6) and (2.9), the convergence in (5.2) holds if we let

φ(Sn; F) = H(K, Kn).

In this case, in the next section we will establish both type I convergence where

φ(S∗
n,m; F) = H(K, K∗

n,m),

and type II convergence where

φ(S∗
n,m; FKn ) = H(Kn, K∗

n,m).

5.3. Uniform distribution on convex polygons

Suppose F is the uniform distribution on K ⊂R
2, where K is a convex polygon with r

vertices c1, c2, . . . , cr and interior angles θ1, θ2, . . . , θr. From (2.6), we have

√
nH(K, Kn)

D−→ Z1, as n → ∞,

where Z1 has the distribution function G1 as in (2.6). Based on this result, we get the following
theorem.

Theorem 5.1. Let m log n/n → 0 as n → ∞. Then, as n, m → ∞,

P(
√

mH(K, K∗
n,m) ≤ x | Sn)

P−→ G1(x).

Proof. Define the event
En,m � {S′

m ⊂ Kn}.
First, we show that, as n, m → ∞,

P(En,m | Sn)
P−→ 1. (5.3)
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This is equivalent to

log (P(En,m | Sn))
P−→ 0.

Notice that P(En,m | Sn) = (|Kn|/|K|)m. Then we have

log (P(En,m Sn)) = m log (|Kn|/|K|).
Let |Dn| := |K \ Kn| = |K| − |Kn|. Using the equivalence in (5.1), we only need to show that

m|Dn|/|K| P−→ 0.

Notice that (2.1) shows that (|Dn|/|K| − βn)/αn converges weakly where βn = 2
3n r log n

and αn = 1
n

√
28
27 r log n, and also notice that as n, m → ∞, mαn → 0 and mβn → 0 since

m log n/n → 0. Then, as n, m → ∞ we have

m|Dn|/|K| = m

(
αn

|Dn|/|K| − βn

αn
+ βn

)

= mαn

( |Dn|/|K| − βn

αn

)
+ mβn

P−→ 0.

Now we develop our proof for Theorem 5.1. Define the function fn : Rn →R such that

fn(x1, . . . , xn) = √
nH(K, conv{x1, . . . , xn}).

From (2.6), we get, as n → ∞,

fn(X1, . . . , Xn)
D−→ Z1,

i.e. for any continuity point of G1, say x ∈R, as n → ∞,

P( fn(X1, . . . , Xn) ≤ x) → G1(x). (5.4)

Let An := ( f −1
n (−∞, x]) ∩ Kn, where f −1

n (A) = {u : fn(u) ∈ A} for any subset A of the range of
function fn. Since, given Sn, the random vector (X∗

n,1, . . . , X∗
n,m) is independent of En,m, we

have

P((X∗
n,1, . . . , X∗

n,m) ∈ Am | Sn) = P((X∗
n,1, . . . , X∗

n,m) ∈ Am | Sn, En,m)

= P((X∗
n,1, . . . , X∗

n,m) ∈ Am ∩ Km
n | Sn, En,m)

= P((X′
1, . . . , X′

m) ∈ Am ∩ Km
n | Sn, En,m). (5.5)

The last equation holds because the joint distribution of (X′
1, . . . , X′

m) is the same as that of
(X∗

n,1, . . . , X∗
n,m) when its distribution is restricted on Kn. Applying the multiplication rule to

the probability condition on Sn (Lemma B.1), we have

P((X′
1, . . . , X′

m) ∈ Am ∩ Km
n | Sn, En,m)P(En,m | Sn)

= P({(X′
1, . . . , X′

m) ∈ Am ∩ Km
n } ∩ En,m | Sn)

= P((X′
1, . . . , X′

m) ∈ Am ∩ Km
n | Sn). (5.6)
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From (5.3), we have P(En,m | Sn)
P−→ 1 as n → ∞. Therefore, (5.6) implies

|P((X′
1, . . . , X′

m) ∈ Am ∩ Km
n | Sn, En,m) − P((X′

1, . . . , X′
m) ∈ Am ∩ Km

n | Sn)|
P−→ 0 as n, m → ∞. (5.7)

Since (Am ∩ Km
n ) ⊂ Am and Am \ (Am ∩ Km

n ) ⊂ Dm
n , we have

|P((X′
1, . . . , X′

m) ∈ Am ∩ Km
n | Sn) − P((X′

1, . . . , X′
m) ∈ Am | Sn)|

≤ P((X′
1, . . . , X′

m) ∈ Dm
n | Sn)

= (|Dn|/|K|)m

a.s.−−→ 0 as n, m → ∞. (5.8)

(Note that for almost all ω ∈ �, |Dn(ω)|/|K| < |D3(ω)|/|K| < 1 implies (|Dn(ω)|/|K|)m

→ 0, as n, m → ∞.) Thus, combining (5.5), (5.7), and (5.8) implies that

|P((X∗
n,1, . . . , X∗

n,m) ∈ Am | Sn) − P((X′
1, . . . , X′

m) ∈ Am | Sn)|
P−→ 0 as n, m → ∞.

This is equivalent to

|P( fm(X∗
n,1, . . . , X∗

n,m) ≤ x | Sn) − P( fm(X′
1, . . . , X′

m) ≤ x | Sn)|
P−→ 0 as n, m → ∞. (5.9)

Since fm(X′
1, . . . , X′

m) is independent of Sn, using (5.4) we have

P( fm(X′
1, . . . , X′

m) ≤ x | Sn) = P( fm(X′
1, . . . , X′

m) ≤ x)

→ G1(x) as n, m → ∞. (5.10)

Finally, (5.9) and (5.10) imply that

P( fm(X∗
n,1, . . . , X∗

n,m) ≤ x | Sn)
P−→ G1(x) as n, m → ∞. �

In the following theorem, we extend Theorem 5.1, which is of type I convergence, to type II
convergence.

Theorem 5.2. Under the same conditions as Theorem 5.1, we have

P(
√

mH(Kn, K∗
n,m) ≤ x | Sn)

P−→ G1(x) as n, m → ∞.

Proof. In the proof of Theorem 5.1, given Sn = {Xi}n
i=1, we reset Am = (g−1

m (−∞, x]) ∩ Km,
where

gm(x1, . . . , xm) = √
mH(Kn, conv{x1, . . . , xn}).

Let x be a continuity point of G1. Then follow the steps of the proof of Theorem 5.1 to get

|P((X∗
n,1, . . . , X∗

n,m) ∈ Am | Sn) − P((X′
1, . . . , X′

m) ∈ Am | Sn)|
P−→ 0 as n, m → ∞.
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This is equivalent to

|P(gm(X∗
n,1, . . . , X∗

n,m) ≤ x | Sn) − P(gm(X′
1, . . . , X′

m) ≤ x | Sn)|
P−→ 0 as n, m → ∞.

So,

|P(
√

mH(Kn, K∗
n,m) ≤ x | Sn) − P(

√
mH(Kn, K′

m) ≤ x | Sn)| P−→ 0 (5.11)

as n, m → ∞. From Theorem 5.1, we have

P(
√

mH(Kn, K∗
n,m) ≤ x | Sn) ≥ P(

√
mH(K, K∗

n,m) ≤ x | Sn) (5.12)

and
P(

√
mH(K, K∗

n,m) ≤ x | Sn)
P−→ G1(x) (5.13)

as n, m → ∞. Notice that H(K, K∗
n,m) ≥ H(Kn, K∗

n,m). Suppose G1,m is the distribution
function of fm(X′

1, . . . , X′
m), where fm is the same as in the proof of Theorem 5.1. Then

limm→∞ G1,m(x) = G1(x). Since the Hausdorff distance satisfies the triangle inequality

H(Kn, K′
m) ≥ H(K, K′

m) − H(K, Kn),

we have

P(
√

mH(Kn, K′
m) ≤ x | Sn) ≤ P(

√
m(H(K, K′

m) − H(K, Kn)) ≤ x | Sn)

= P(
√

mH(K, K′
m) ≤ √

mH(K, Kn) + x | Sn)

= G1,m

(√
m

n
(
√

nH(K, Kn)) + x

)

P−→ G1(x) as n, m → ∞, (5.14)

where the last convergence follows from (2.6) and applying Skorokhod’s representation
theorem. Then use Lemma B.4 with (5.11), (5.12), (5.13), and (5.14) to get

P(
√

mH(Kn, K∗
n,m) ≤ x | Sn)

P−→ G1(x) as n, m → ∞. �

5.4. Uniform distribution on convex sets with a smooth boundary

A similar technique can also be applied to the smooth case. Let K ⊂R
2 be a convex set

with ∂K ⊂ C2(R). Suppose the curvature of ∂K is bounded away from 0 and ∞ and has a
bounded derivative. Suppose our underlying distribution F is the uniform distribution on K.
Also suppose F satisfies (2.8). From (2.9), we get

H(K, Kn) − bn

an

D−→ Z2 as n → ∞,

where Z2 has the distribution G2. Based on this result, we have the following theorem.

Theorem 5.3. Let m/n2/3 → 0 as n → ∞. Then we have

P

(
H(K, K∗

n,m) − bm

am
≤ x | Sn

)
P−→ G2(x) as n, m → ∞,

where G2(x) = exp{−d1e−d2x}, and am, bm, and G2 are all defined in (2.9).
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Proof. The proof follows the same lines as in the case of Theorem 5.1. Define the events
En,m � {S′

m ⊂ Kn}. First we need to show that, as n, m → ∞,

P(En,m | Sn)
P−→ 1. (5.15)

Suppose Dn = K \ Kn. Since P(En,m | Sn) = (|Kn|/|K|)m, when taking logs of both sides and
using the equivalence in (5.1), (5.15) becomes

m|Dn| P−→ 0.

Notice that

m|Dn| = m(|K| − |Kn|)
= (mn−2/3)(n2/3E(|Dn|)) − (mn−5/6)(n5/6(|Kn| − E(|Kn|))),

where mn−2/3 → 0 and mn−5/6 → 0 according to our assumption about m. Finally, using (2.3)

and (2.4), we complete the proof for P(En,m | Sn)
P−→ 1.

Now, define the function fn : Rn →R such that

fn(x1, . . . , xn) = H(K, conv{x1, . . . , xn}) − bn

an
.

We only need to follow the steps in the proof of Theorem 5.1 and use (2.9). Therefore, for any
continuity point x of G2, we get

P( fm(X∗
n,1, . . . , X∗

n,m) ≤ x | Sn)
P−→ G2(x) as n, m → ∞. �

Again, in the following theorem we extend Theorem 5.3 (which is of type I convergence)
to type II convergence.

Theorem 5.4. Under the same conditions as Theorem 5.3, we have

P

(
H(Kn, K∗

n,m) − bm

am
≤ x | Sn

)
P−→ G2(x) as n, m → ∞.

Proof. Here we use the same technique as for Theorem 5.1. Given Sn = {Xi}n
i=1, we reset

Am = (g−1
m (−∞, x]) ∩ Km, where

gm(x1, . . . , xm) = H(Kn, conv{x1, . . . , xm}) − bm

am
.

Let x be a continuity point of G2. Then follow the steps in the proof of Theorem 5.1 to get

|P((X∗
n,1, . . . , X∗

n,m) ∈ Am | Sn) − P((X′
1, . . . , X′

m) ∈ Am | Sn)|
P−→ 0 as n, m → ∞.

This is equivalent to

|P(gm(X∗
n,1, . . . , X∗

n,m) ≤ x | Sn) − P(gm(X′
1, . . . , X′

m) ≤ x | Sn)|
P−→ 0 as n, m → ∞.
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Therefore, we have∣∣∣∣P
(

H(Kn, K∗
n,m) − bm

am
≤ x | Sn

)
− P

(
H(Kn, K′

m) − bm

am
≤ x | Sn

)∣∣∣∣ P−→ 0 (5.16)

as n, m → ∞. From Theorem 5.3, we have

P

(
H(Kn, K∗

n,m) − bm

am
≤ x | Sn

)
≥ P

(
H(K, K∗

n,m) − bm

am
≤ x | Sn

)
(5.17)

and

P

(
H(K, K∗

n,m) − bm

am
≤ x | Sn

)
P−→ G2(x) (5.18)

as n, m → ∞. Suppose G2,m is the distribution function of fm(X′
1, . . . , X′

m), where fm is the
same as in the proof of Theorem 5.3. Then limm→∞ G2,m(x) = G2(x). Since the Hausdorff
distance satisfies the triangle inequality

H(Kn, K′
m) ≥ H(K, K′

m) − H(K, Kn),

we have

P

(
H(Kn, K′

m) − bm

am
≤ x | Sn

)
≤ P

(
H(K, K′

m) − H(K, Kn) − bm

am
≤ x | Sn

)

= P

(
H(K, K′

m) − bm

am
≤ H(K, Kn)

am
+ x | Sn

)

= G2,m

(
H(K, Kn)

am
+ x

)
. (5.19)

Since an/am → 0 and bn/am → 0, we get

H(K, Kn)

am
= an

am

H(K, Kn) − bn

an
+ bn

am

D−→ 0 as n, m → ∞. (5.20)

Therefore, according to (5.20) and Skorokhod’s representation theorem, we have

G2,m

(
H(K, Kn)

am
+ x

)
P−→ G2(x) as n, m → ∞. (5.21)

Finally, use Lemma B.4 and (5.16), (5.17), (5.18), (5.19), and (5.21) to get

P

(
H(Kn, K∗

n,m) − bm

am
≤ x | Sn

)
P−→ G2(x) as n, m → ∞. �

Remark 5.1. We can also get another bonus convergence result:

H(Kn, K′
m) − bm

am

D−→ Z2 as m → ∞.

(This result is only a by-product of our proof and has nothing to do with our bootstrapping
scheme.) By Lemma B.3 and (2.9), it is sufficient to prove

H(K, Kn)

am

D−→ 0 as m → ∞,

which is similar to (5.20).

https://doi.org/10.1017/jpr.2019.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.56


976 W. QI AND M. ZAREPOUR

6. Two more examples

In addition to the Hausdorff distance, the same technique can also be applied to
other functionals. Two noticeable examples are the symmetric difference and the perimeter
difference.

The following example is the symmetric difference on R
d. Suppose d (≥ 2) is a fixed integer

and K is a convex set in R
d such that ∂K ∈ C2(Rd−1) with positive Gaussian curvature (see

Appendix A for details) bounded away from 0 and ∞. With these assumptions, we can use the
results in (2.5) and (2.2).

Example 6.1. Let φ1(A, B) be the area of the symmetric difference between A and B, i.e.
φ1(A, B) = |(A \ B) ∪ (B \ A)|. Since Kn ⊂ K, we have φ1(K, Kn) = |Dn|. From (2.5) we have

C−1/2
n n

1
2 + 1

d+1 (|Dn| − E(|Dn|)) D−→N (0, σ 2) as n → ∞, (6.1)

and (2.2) gives

lim
n→∞ n

2
d+1 E(|Dn|) = c,

where σ and c are constants. Rewrite (6.1) using φ1 to get

φ1(K, Kn) − bn

an

D−→N (0, 1) as n → ∞,

where an = σC1/2
n n− 1

2 − 1
d+1 and bn = E(|Dn|) = �(n− 2

d+1 ). Let � be the cumulative distribu-
tion function for the standard normal distribution. Our goal is to find a proper assumption about
m such that the type I convergence holds for φ1, i.e., as n, m → ∞ we have

P

(
φ1(K, K∗

n,m) − bm

am
≤ x | Sn

)
P−→ �(x). (6.2)

As before, define the events En,m � {S′
m ⊂ Kn} for the positive integers m and n. To impose a

proper assumption on m, we must ensure that

P(En,m | Sn) = Pm(|Kn|/|K|) P−→ 1 as n, m → ∞.

Taking logs of both sides and using the equivalence in (5.1), we have

m|Dn| P−→ 0 as n, m → ∞.

Since

m|Dn| = mφ1(K, Kn)

= m

[
an

φ1(K, Kn) − bn

an
+ bn

]

= man

[
φ1(K, Kn) − bn

an

]
+ mbn,

the assumption required for m is

man → 0, mbn → 0
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as n, m → ∞. So, the resample size m should satisfy m = o(n
2

d+1 ). We omit the details for
getting type I convergence in (6.2) as the proof mimics those for Theorems 5.1 and 5.3.

Furthermore, to prove type II convergence for φ1, i.e.

P

(
φ1(Kn, K∗

n,m) − bm

am
≤ x | Sn

)
D−→ �(x) as n, m → ∞,

notice that
φ1(K, K∗

n,m) ≥ φ1(Kn, K∗
n,m)

and
φ1(Kn, K′

m) ≥ φ1(K, K′
m) − φ1(K, Kn),

which are easy to verify. On the other hand, observe that

an/am → 0, bn/am → 0

as n, m → ∞.

Now we can consider the perimeter difference (defined below) on R
2. To use the result in

(2.3), suppose K satisfies ∂K ∈ C2(R) with positive curvature bounded away from 0 and ∞.

Example 6.2. Let d = 2 and define φ2(A, B) = |perimeter of A − perimeter of B|. From (2.3)
we have

n5/6(Ln − E(Ln))
D−→N (0, (σ ′)2) as n → ∞ (6.8)

and
lim

n→∞ n2/3E(L − Ln) = c′,

where σ ′ and c′ are two constants. Rewriting (6.8) in terms of φ2, we have

φ2(K, Kn) − b′
n

a′
n

D−→N (0, 1) as n → ∞,

where a′
n = σ ′n−5/6 and b′

n = E(L − Ln) = �(n−2/3). To prove type I convergence, i.e.

P

(
φ2(K, K∗

n,m) − b′
m

a′
m

≤ x | Sn

)
P−→ �(x) as n, m → ∞,

we need to show that

P(En,m | Sn) = Pm(|Kn|/|K|) P−→ 1 as n, m → ∞.

As in Example 6.1, m should satisfy the condition

m|Dn| P−→ 0 as n, m → ∞.

Thus, our assumption for m should follow m = o(n2/3)). (Notice that d = 2.)
To prove type II convergence, i.e.

P

(
φ2(Kn, K∗

n,m) − b′
m

a′
m

≤ x | Sn

)
P−→ �(x) as n, m → ∞,
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notice that
φ2(K, K∗

n,m) ≥ φ2(Kn, K∗
n,m)

and
φ2(Kn, K′

m) ≥ φ2(K, K′
m) − φ2(K, Kn),

which are easy to verify using Lemma B.2. Obviously,

a′
n/a′

m → 0, b′
n/a′

m → 0

as n, m → ∞.

Appendix A. Basic definitions and notation

A.1. Curvature and Gaussian curvature

Let the planar curve c(t) = (x(t), y(t)), where x, y ∈ C2(R) and t is the arc length between
c(0) and c(t). Then the curvature κ(t) = |c̈(t)|.

Let S be a surface in Euclidean space with second fundamental form II (see Kobayashi and
Nomizu (1996)). Given a point z on S, suppose {v1, v2} is an orthonormal basis of tangent
vectors at z. Suppose κ1 and κ2 are the eigenvalues of the following matrix:[

II(v1, v1) II(v1, v2)
II(v2, v1) II(v2, v2)

]
.

Then the Gaussian curvature at the point z is given by κ = κ1κ2.

Appendix B. Some lemmas

The following multiplication rule is obvious, but we mention it for completeness.

Lemma B.1. For any events A, B, and C we have

P(A | B ∩ C)P(C | B) = P(A ∩ C | B).

Lemma B.2. If P ⊂ K ⊂R
2 such that P is a convex polygon and K is a convex set, we have

L(P) ≤ L(K),

where L(P) and L(K) are the perimeters of P and K, respectively.

Proof. We refer the reader to Figure 5 in the proof of this lemma. Suppose P has r vertices.
Let e1, e2, . . . , er be the edges of P. It is enough to show that disjoint segments s1, s2, . . . , sr

on the boundary of K exist such that

ei ≤ si, i = 1, 2, . . . , r.

Consider the segments s1, s2, . . . , sr in Figure 5. Since the length of ei, for any 1 ≤ i ≤ r, is
the distance between the two parallel lines, the length of si is not shorter than the length of ei.
Hence,

L(P) =
r∑

i=1

ei ≤
r∑

i=1

si ≤ L(K). �
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90˚
90˚

90˚
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90˚

90˚

90˚
90˚90˚

90˚

sr

s4

s3

er

e1

e2

e3

e4

FIGURE 5: The edges e1, e2, . . . , er and the segments s1, s2, . . . , sr.

Lemma B.3. (Billingsley (1999), Theorem 3.1, page 27) Suppose d is the metric on S. If

(Xn, Yn) are random elements of S × S such that Xn
D−→ X0 and d(Xn, Yn)

D−→ 0, then Yn
D−→ X0.

Lemma B.4. If |An − Bn| P−→ 0, An ≥ Cn, Cn
P−→ Z, Bn ≤ Dn, and Dn

P−→ Z, then we have

An
P−→ Z and Bn

P−→ Z.

Proof. For any given ε > 0, as n → ∞,

P(An − Z > ε) = P(An − Bn + Bn − Dn + Dn − Z > ε)

≤ P(An − Bn > ε/3) + P(Bn − Dn > ε/3) + P(Dn − Z > ε/3) → 0;

P(Z − An > ε) = P(Z − Cn + Cn − An)

≤ P(Z − Cn > ε/2) + P(Cn − An > ε/2) → 0. �
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