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This note builds on recent work by Serletis and Shahmoradi [Macroeconomic Dynamics 9
(2005), 542–559] and estimates the AIM model at different degrees of approximation,
using the same optimization procedures as in Gallant and Golub [Journal of Econometrics
26 (1984), 295–321]. We estimate the models subject to regularity and provide a
comparison between the different versions. We argue that the AIM(3) model estimated
subject to global curvature currently provides the best specification for research in
semiparametric modeling of consumer demand systems.

Keywords: Flexible Functional Forms, Asymptotically Ideal Model, Global Curvature
Restrictions

1. INTRODUCTION

In a recent paper, Serletis and Shahmoradi (2005) investigate the demand for
money in the United States in the context of two seminonparametric flexible
functional forms—the Fourier, introduced by Gallant (1981), and the Asymptoti-
cally Ideal Model (AIM), introduced by Barnett and Jonas (1983) and employed
and explained in Barnett and Yue (1988). They estimate these models subject to
regularity, as suggested by Barnett (2002) and Barnett and Pasupathy (2003), using
methods suggested by Gallant and Golub (1984). They make a strong case, using
(for the first time) parameter estimates that are consistent with global regularity,
for abandoning the simple sum approach to monetary aggregation, on the basis of
low elasticities of substitution among the components of the popular M2 aggregate
of money.

In this paper, we build on Serletis and Shahmoradi (2005) and estimate the
AIM model at different degrees of approximation, using the same optimization
procedures as in Gallant and Golub (1984) and Serletis and Shahmoradi (2005).
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We estimate the models subject to regularity and provide a comparison between
the different versions.

The note is organized as follows. Section 2 discusses the data and briefly
sketches out the neoclassical problem facing the representative agent. Section 3
presents the AIM model at different degrees of approximation and Section 4 is
devoted to computational considerations and estimation of the models. In Sec-
tion 5 we explore the economic significance of the results. The final section
concludes the paper.

2. THE DATA AND THE MONETARY PROBLEM

Following Serletis and Shahmoradi (2005), we assume a weakly separable mone-
tary utility function, so that the representative money holder faces the problem

max
x

f (x) subject to p′x = m,

where x is the vector of monetary assets; p is the corresponding vector of nominal
user costs; and m is the expenditure on the services of monetary assets. Because
our demand systems are parameter-intensive, we rationalize the estimation to
a small set of demand equations by using the database used by Serletis and
Shahmoradi (2005). It consists of quarterly data, from 1970:1 to 2003:2 (a total
of 134 observations), on three liquid asset groupings as follows:

Subaggregate A: currency, traveler’s checks, and other checkable deposits including
Super NOW accounts issued by commercial banks and thrifts

Subaggregate B: savings deposits issued by commercial banks and thrifts
Subaggregate C: small time deposits issued by commercial banks and thrifts

The assets in each category are aggregated using the Divisia index, defined in
discrete time as

logMt − logMt−1 =
n∑

j=1

s∗
j t (logxjt − logxj,t−1),

according to which the growth rate of each subaggregate is the weighted average
of the growth rates of its components, with the Divisia weights being defined as the
expenditure shares averaged over the two periods of the change, s∗

j t = (1/2)(sjt +
sj,t−1) for j = 1, . . . , n, where sjt = πjtxjt /

∑
πktxkt is the expenditure share of

asset j during period t , and πjt is the user cost of asset j .

3. THREE AIM MODELS

Our objective is to estimate a system of demand equations derived from an indirect
utility function. The most important advantage of using the indirect utility approach
is that prices enter into the estimation process as exogenous variables and the
demand system is easily derived by applying Roy’s identity. We follow Barnett and
Yue (1988) and use the reciprocal indirect utility function for the asymptotically
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ideal model for n = 3,

h(v) = a0 +
K∑

k=1

3∑
i=1

aikv
λ(k)
i +

K∑
k=1

K∑
m=1

⎡
⎣ 3∑

i=1

3∑
j=1

aijkmv
λ(k)
i v

λ(m)
j

⎤
⎦

+
K∑

k=1

K∑
m=1

K∑
g=1

⎡
⎣ 3∑

i=1

3∑
j=1

3∑
h=1

aijhkmgv
λ(k)
i v

λ(m)
j v

λ(g)

h

⎤
⎦ , (1)

where λ(z) = 2−z for z = {k,m, g} is the exponent set and aik, aijkm, and
aijhkmg , for all i, j, h = 1, 2, 3, are the parameters to be estimated. The number of
parameters is reduced by deleting the diagonal elements of the parameter arrays
so that i �= j, j �= h, and i �= h. This does not alter the span of the model’s
approximation.

By applying the modified Roy’s identity,

si(v) = vi (∂h(v)/∂vi)∑n
i=1 vi (∂h(v)/∂vi)

, (2)

to (1), we obtain the AIM(K) demand system, where si = pixi/p
′x = vixi . With

n assets and a degree of approximation of K , the number of parameters to be
estimated in the AIM(K) model is given by the formula

nk

1!
+ n(n − 1)k2

2!
+ n(n − 1)(n − 2)k3

3!
+ · · · .

In what follows, we briefly present the basic properties of three AIM models—
the AIM models for K = 1, 2, and 3. Although there is some comparison in our
presentation in this section, our purpose is basically to make clear the properties
and complexities of the models. It is to be noted that we also attempted to estimate
the AIM model for K = 4, but we were not successful, mainly because of
computational difficulties in the large parameter space—for n = 3, the AIM(4)
has 124 parameters to be estimated!

3.1. The AIM(1) Model

For K = 1, equation (1) becomes, because λ(z) = 1/2 for z = {k,m, g},

hK=1(v) = a0 +
3∑

i=1

aiv
1/2
i +

3∑
i=1

3∑
j=1

aij v
1/2
i v

1/2
j +

3∑
i=1

3∑
j=1

3∑
h=1

aijhv
1/2
i v

1/2
j v

1/2
h .

(3)

We delete the diagonal terms (so that i �= j, j �= h, and i �= h) and follow Barnett
and Yue (1988) in reparameterizing by stacking the coefficients as they appear
in (3) into a single vector of parameters, b = (b0, · · · , b7)

′, containing the eight
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coefficients in (3), as follows:

hK=1(v) = b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3

+ b4v
1/2
1 v

1/2
2 + b5v

1/2
1 v

1/2
3 + b6v

1/2
2 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3 , (4)

where b0 = a0, b1 = a1, b2 = a2, b3 = a3, b4 = a12 + a21, b5 = a13 + a31,
b6 = a23 + a32, and b7 = a123 + a132 + a213 + a231 + a312 + a321.

Applying the modified Roy’s identity (2) to (4) yields the AIM(1) demand
system,

s1 =
(
b1v

1/2
1 + b4v

1/2
1 v

1/2
2 + b5v

1/2
1 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3

)
/D (5)

s2 =
(
b2v

1/2
2 + b4v

1/2
1 v

1/2
2 + b6v

1/2
2 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3

)
/D (6)

s3 =
(
b3v

1/2
3 + b5v

1/2
1 v

1/2
3 + b6v

1/2
2 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3

)
/D, (7)

where D is the sum of the numerators in equations (5), (6), and (7).

3.2. The AIM(2) Model

For K = 2, equation (1) becomes

hK=2(v) = a0 +
2∑

k=1

3∑
i=1

aikv
λ(k)
i +

2∑
k=1

2∑
m=1

⎡
⎣ 3∑

i=1

3∑
j=1

aijkmv
λ(k)
i v

λ(m)
j

⎤
⎦

+
2∑

k=1

2∑
m=1

2∑
g=1

⎡
⎣ 3∑

i=1

3∑
j=1

3∑
h=1

aijhkmgv
λ(k)
i v

λ(m)
j v

λ(g)

h

⎤
⎦ . (8)

Again, to avoid the extensive multiple subscripting in the coefficients aijhkmg , we
follow Barnett and Yue (1988) and reparameterize by stacking the coefficients as
they appear in (8) into a single vector of parameters, b = (b0, · · · , b26)

′, containing
the 27 coefficients in (8), as follows [because z = 1, 2, so that λ(1) = 1/2 and
λ(2) = 1/4, for z = {k,m, g}]:

hK=2(v)

= b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3 + b4v

1/4
1 + b5v

1/4
2 + b6v

1/4
3 + b7v

1/2
1 v

1/2
2

+ b8v
1/2
1 v

1/4
2 + b9v

1/4
1 v

1/2
2 + b10v

1/4
1 v

1/4
2 + b11v

1/2
1 v

1/2
3 + b12v

1/2
1 v

1/4
3

+ b13v
1/4
1 v

1/2
3 + b14v

1/4
1 v

1/4
3 + b15v

1/2
2 v

1/2
3 + b16v

1/2
2 v

1/4
3 + b17v

1/4
2 v

1/2
3

+ b18v
1/4
2 v

1/4
3 + b19v

1/2
1 v

1/2
2 v

1/2
3 + b20v

1/4
1 v

1/2
2 v

1/2
3 + b21v

1/2
1 v

1/4
2 v

1/2
3

+ b22v
1/2
1 v

1/2
2 v

1/4
3 + b23v

1/2
1 v

1/4
2 v

1/4
3 + b24v

1/4
1 v

1/2
2 v

1/4
3

+ b25v
1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3 . (9)
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Applying the modified version of Roy’s identity, (2), to (9), we obtain the AIM(2)
demand system,

s1 = (
2b1v

1/2
1 + b4v

1/4
1 + 2b7v

1/2
1 v

1/2
2 + 2b8v

1/2
1 v

1/4
2 + b9v

1/4
1 v

1/2
2 + b10v

1/4
1 v

1/4
2

+ 2b11v
1/2
1 v

1/2
3 + 2b12v

1/2
1 v

1/4
3 + b13v

1/4
1 v

1/2
3 + b14v

1/4
1 v

1/4
3 + 2b19v

1/2
1 v

1/2
2 v

1/2
3

+ b20v
1/4
1 v

1/2
2 v

1/2
3 + 2b21v

1/2
1 v

1/4
2 v

1/2
3 + 2b22v

1/2
1 v

1/2
2 v

1/4
3 + 2b23v

1/2
1 v

1/4
2 v

1/4
3

+ b24v
1/4
1 v

1/2
2 v

1/4
3 + b25v

1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3

)
/D (10)

s2 = (
2b2v

1/2
2 + b5v

1/4
2 + 2b7v

1/2
1 v

1/2
2 + b8v

1/2
1 v

1/4
2 + 2b9v

1/4
1 v

1/2
2 + b10v

1/4
1 v

1/4
2

+ 2b15v
1/2
2 v

1/2
3 + 2b16v

1/2
2 v

1/4
3 + b17v

1/4
2 v

1/2
3 + b18v

1/4
2 v

1/4
3 + 2b19v

1/2
1 v

1/2
2 v

1/2
3

+ 2b20v
1/4
1 v

1/2
2 v

1/2
3 + b21v

1/2
1 v

1/4
2 v

1/2
3 + 2b22v

1/2
1 v

1/2
2 v

1/4
3 + b23v

1/2
1 v

1/4
2 v

1/4
3

+ 2b24v
1/4
1 v

1/2
2 v

1/4
3 + b25v

1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3

)
/D (11)

s3 = (
2b3v

1/2
3 + b6v

1/4
4 + 2b11v

1/2
1 v

1/2
3 + b12v

1/2
1 v

1/4
3 + 2b13v

1/4
1 v

1/2
3 + b14v

1/4
1 v

1/4
2

+ 2b15v
1/2
1 v

1/2
3 + b16v

1/2
1 v

1/4
3 + 2b17v

1/4
2 v

1/2
3 + b18v

1/4
2 v

1/4
3 + 2b19v

1/2
1 v

1/2
2 v

1/2
3

+ 2b20v
1/4
1 v

1/2
2 v

1/2
3 + 2b21v

1/2
1 v

1/4
2 v

1/2
3 + b22v

1/2
1 v

1/2
2 v

1/4
3 + b23v

1/2
1 v

1/4
2 v

1/4
3

+ b24v
1/4
1 v

1/2
2 v

1/4
3 + 2b25v

1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3

)
/D, (12)

where now D is the sum of the numerators in equations (11), (12), and (12).

3.3. The AIM(3) Model

For K = 3 and λ(z)= 2−z for z = {k,m, g}, equation (1) becomes, after reparam-
eterization by stacking the coefficients as they appear in (1) for K = 3 into a single
vector of parameters b = (b0, · · · , b63)

′ containing the 64 coefficients in (1) for
K = 3 and n = 3,

hK=3(v)

= b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3 + b4v

1/4
1 + b5v

1/4
2 + b6v

1/4
3 + b7v

1/8
1 + b8v

1/8
2 + b9v

1/8
3

+ b10v
1/2
1 v

1/2
2 + b11v

1/2
1 v

1/4
2 + b12v

1/2
1 v

1/8
2 + b13v

1/2
1 v

1/2
3 + b14v

1/2
1 v

1/4
3 + b15v

1/2
1 v

1/8
3

+ b16v
1/4
1 v

1/2
3 + b17v

1/4
1 v

1/4
2 + b18v

1/4
1 v

1/8
2 + b19v

1/4
1 v

1/2
3 + b20v

1/4
1 v

1/4
3 + b21v

1/4
1 v

1/8
3

+ b22v
1/8
1 v

1/2
2 + b23v

1/8
1 v

1/4
2 + b24v

1/8
1 v

1/8
2 + b25v

1/8
1 v

1/2
3 + b26v

1/8
1 v

1/4
3 + b27v

1/8
1 v

1/8
3

+ b28v
1/2
2 v

1/2
3 + b29v

1/2
2 v

1/4
3 + b30v

1/2
2 v

1/8
3 + b31v

1/4
2 v

1/2
3 + b32v

1/4
2 v

1/4
3 + b33v

1/4
2 v

1/8
3

+ b34v
1/8
2 v

1/2
3 + b35v

1/8
2 v

1/4
3 + b36v

1/8
2 v

1/8
3 + b37v

1/2
1 v

1/2
2 v

1/2
3 + b38v

1/2
1 v

1/4
2 v

1/2
3

+ b39v
1/2
1 v

1/8
2 v

1/2
3 + b40v

1/2
1 v

1/2
2 v

1/4
3 + b41v

1/2
1 v

1/4
2 v

1/4
3 + b42v

1/2
1 v

1/8
2 v

1/4
3 + b43v

1/2
1 v

1/2
2 v

1/8
3

+ b44v
1/2
1 v

1/4
2 v

1/8
3 + b45v

1/2
1 v

1/8
2 v

1/8
3 + b46v

1/4
1 v

1/2
2 v

1/2
3 + b47v

1/4
1 v

1/4
2 v

1/2
3 + b48v

1/4
1 v

1/8
2 v

1/2
3

+ b49v
1/4
1 v

1/2
2 v

1/4
3 + b50v

1/4
1 v

1/4
2 v

1/4
3 + b51v

1/4
1 v

1/8
2 v

1/4
3 + b52v

1/4
1 v

1/2
2 v

1/8
3 + b53v

1/4
1 v

1/4
2 v

1/8
3
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+ b54v
1/4
1 v

1/8
2 v

1/8
3 + b55v

1/8
1 v

1/2
2 v

1/2
3 + b56v

1/8
1 v

1/4
2 v

1/2
3 + b57v

1/8
1 v

1/8
2 v

1/2
3 + b58v

1/8
1 v

1/2
2 v

1/4
3

+ b59v
1/8
1 v

1/4
2 v

1/4
3 + b60v

1/8
1 v

1/8
2 v

1/4
3 + b61v

1/8
1 v

1/2
2 v

1/8
3 + b62v

1/8
1 v

1/4
2 v

1/8
3

+ b63v
1/8
1 v

1/8
2 v

1/8
3 . (13)

Applying the modified Roy’s identity to (13) yields the AIM(3) demand system
s1

= (
4b1v

1/2
1 + 2b4v

1/4
1 + b7v

1/8
1 + 4b10v

1/2
1 v

1/2
2 + 4b11v

1/2
1 v

1/4
2 + 4b12v

1/2
1 v

1/8
2

+ 2b13v
1/4
1 v

1/2
2 + 2b14v

1/4
1 v

1/4
2 + 2b15v

1/4
1 v

1/8
2 + 4b16v

1/2
1 v

1/2
3 + 4b17v

1/2
1 v

1/4
3

+ 4b18v
1/2
1 v

1/8
3 + 2b19v

1/4
1 v

1/2
3 + 2b20v

1/4
1 v

1/4
3 + 2b21v

1/4
1 v

1/8
3 + b22v

1/8
1 v

1/2
2

+ b23v
1/8
1 v

1/4
2 + b24v

1/8
1 v

1/8
2 + b25v

1/8
1 v

1/2
3 + b26v

1/8
1 v

1/4
3 + b27v

1/8
1 v

1/8
3

+ 4b37v
1/2
1 v

1/2
2 v

1/2
3 + 4b38v

1/2
1 v

1/4
2 v

1/2
3 + 4b39v

1/2
1 v

1/8
2 v

1/2
3 + 4b40v

1/2
1 v

1/2
2 v

1/4
3

+ 4b41v
1/2
1 v

1/4
2 v

1/4
3 + 4b42v

1/2
1 v

1/8
2 v

1/4
3 + 4b43v

1/2
1 v

1/2
2 v

1/8
3 + 4b44v

1/2
1 v

1/4
2 v

1/8
3

+ 4b45v
1/2
1 v

1/8
2 v

1/8
3 + 2b46v

1/4
1 v

1/2
2 v

1/2
3 + 2b47v

1/4
1 v

1/4
2 v

1/2
3 + 2b48v

1/4
1 v

1/8
2 v

1/2
3

+ 2b49v
1/4
1 v

1/2
2 v

1/4
3 + 2b50v

1/4
1 v

1/4
2 v

1/4
3 + 2b51v

1/4
1 v

1/8
2 v

1/4
3 + 2b52v

1/4
1 v

1/2
2 v

1/8
3

+ 2b53v
1/4
1 v

1/4
2 v

1/8
3 + 2b54v

1/4
1 v

1/8
2 v

1/8
3 + b55v

1/8
1 v

1/2
2 v

1/2
3 + b56v

1/8
1 v

1/4
2 v

1/2
3

+ b57v
1/8
1 v

1/8
2 v

1/2
3 + b58v

1/8
1 v

1/2
2 v

1/4
3 + b59v

1/8
1 v

1/4
2 v

1/4
3 + b60v

1/8
1 v

1/8
2 v

1/4
3

+ b61v
1/8
1 v

1/2
2 v

1/8
3 + b62v

1/8
1 v

1/4
2 v

1/8
3 + b63v

1/8
1 v

1/8
2 v

1/8
3

)
/D (14)

s2

= (
4b2v

1/2
2 + 2b5v

1/4
2 + b8v

1/8
2 + 4b10v

1/2
1 v

1/2
2 + 2b11v

1/2
1 v

1/4
2 + b12v

1/2
1 v

1/8
2

+ 4b13v
1/4
1 v

1/2
2 + 2b14v

1/4
1 v

1/4
2 + b15v

1/4
1 v

1/8
2 + 4b22v

1/8
1 v

1/2
2 + 2b23v

1/8
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s3

= (
4b3v

1/2
3 + 2b6v

1/4
3 + b9v

1/8
3 + 4b16v

1/2
1 v

1/2
3 + 2b17v

1/2
1 v

1/4
3 + b18v

1/2
1 v

1/8
3

+ 4b19v
1/4
1 v

1/2
3 + 2b20v

1/4
1 v

1/4
3 + 4b25v

1/8
1 v

1/2
3 + 2b26v

1/8
1 v

1/4
3 + b27v

1/8
1 v

1/8
3

+ 4b28v
1/2
2 v

1/2
3 + 2b29v

1/2
2 v

1/4
3 + b30v

1/2
2 v

1/8
3 + 4b31v

1/4
2 v

1/2
3 + 2b32v

1/4
2 v

1/4
3

+ b33v
1/4
2 v

1/8
3 + 4b34v

1/8
2 v

1/2
3 + 2b35v

1/8
2 v

1/4
3 + b36v

1/8
2 v

1/8
3 + 4b37v

1/2
1 v

1/2
2 v

1/2
3

+ 4b38v
1/2
1 v

1/4
2 v

1/2
3 + 4b39v

1/2
1 v

1/8
2 v

1/2
3 + 2b40v

1/2
1 v

1/2
2 v

1/4
3 + 2b41v

1/2
1 v

1/4
2 v

1/4
3

+ 4b42v
1/2
1 v

1/8
2 v

1/4
3 + b43v

1/2
1 v

1/2
2 v

1/8
3 + b44v

1/2
1 v

1/4
2 v

1/8
3 + b45v

1/2
1 v

1/8
2 v

1/8
3

+ 4b46v
1/4
1 v

1/2
2 v

1/2
3 + 4b47v

1/4
1 v

1/4
2 v

1/2
3 + 4b48v

1/4
1 v

1/8
2 v

1/2
3 + 2b49v

1/4
1 v

1/2
2 v

1/4
3

+ 2b50v
1/4
1 v

1/4
2 v

1/4
3 + 2b51v

1/4
1 v

1/8
2 v

1/4
3 + b52v

1/4
1 v

1/2
2 v

1/8
3 + b53v

1/4
1 v

1/4
2 v

1/8
3

+ b54v
1/4
1 v

1/8
2 v

1/8
3 + 4b55v

1/8
1 v

1/2
2 v

1/2
3 + 4b56v

1/8
1 v

1/4
2 v

1/2
3 + 4b57v

1/8
1 v

1/8
2 v

1/2
3

+ 2b58v
1/8
1 v

1/2
2 v

1/4
3 + 2b59v

1/8
1 v

1/4
2 v

1/4
3 + 2b60v

1/8
1 v

1/8
2 v

1/4
3

+ 2b61v
1/8
1 v

1/2
2 v

1/8
3 + b62v

1/8
1 v

1/4
2 v

1/8
3 + b63v

1/8
1 v

1/8
2 v

1/8
3

)
/D, (16)

where now D is the sum of the numerators in equations (14)–(16).

4. COMPUTATIONAL CONSIDERATIONS AND ESTIMATION

Demand systems (5)–(7), (10)–(12), and (14)–(16) can be written as

st = ψ(vt ,θ) + εt (17)

with an error term appended. In (17), s = (s1, · · · , sn)
′, ψ(v,θ) =

[ψ1 (v,θ) , · · · , ψn (v,θ)]′, and ψi (v,θ) is given by the right-hand side of each
of (5)–(7), (10)–(12), and (14)–(16).

As Gallant and Golub (1984, p. 298) put it,

all statistical estimation procedures that are commonly used in econometric research
can be formulated as an optimization problem of the following type [Burguete,
Gallant and Souza (1982)]:

θ̂ minimizes ϕ(θ) over �

with ϕ(θ) twice continuously differentiable in θ.

We follow Gallant and Golub (1984) and use Zellner’s (1962) seemingly unre-
lated regression method to estimate θ. Hence, ϕ(θ) has the form

ϕ(θ) = 1

T
ε′

tεt = 1

T

T∑
t=1

[st − ψ(vt ,θ)]′ 	̂−1 [st − ψ(vt ,θ)] , (18)
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TABLE 1. AIM(1), AIM(2), and AIM(3) parameter estimatesa

AIM(1) AIM(2) AIM(3)

b1 1.220 b1 −6.926 b1 23.639 b27 13.481 b52 −37.896
b2 4.631 b2 −1.935 b2 −15.531 b28 37.097 b53 −24.348
b4 9.783 b4 −2.977 b4 37.152 b29 15.006 b54 −32.874
b5 31.940 b5 −14.185 b5 25.708 b30 27.463 b55 −32.210
b6 28.92 b6 −4.432 b6 28.984 b31 10.649 b56 −23.317
b7 −25.146 b7 −3.326 b7 1.909 b32 −15.161 b57 −32.610

b8 −11.115 b8 −26.289 b33 18.378 b58 −13.859
b9 14.818 b9 −32.888 b34 32.645 b59 10.234
b10 2.416 b10 29.205 b35 −31.968 b60 −29.066
b11 −12.377 b11 35.927 b36 −9.359 b61 −19.955
b12 12.813 b12 29.789 b37 −33.307 b62 −33.444
b13 −10.896 b13 14.989 b38 19.922 b63 −32.505
b14 4.425 b14 −7.987 b39 38.002
b15 3.568 b15 2.704 b40 −18.815
b16 −13.164 b16 18.594 b41 −0.300
b17 −4.136 b17 −32.112 b42 21.614
b18 5.035 b18 −1.365 b43 12.656
b19 −7.425 b19 27.250 b44 11.074
b20 2.626 b20 12.357 b45 29.289
b21 13.912 b21 27.581 b46 −27.686
b22 −0.721 b22 36.119 b47 −24.265
b23 1.980 b23 36.892 b48 −14.171
b24 5.727 b24 35.297 b49 37.909
b25 −7.050 b25 −33.044 b50 36.103
b26 5.627 b26 16.543 b51 29.294

Value of the objective function:
0.216 0.236 0.225

a Sample period, quarterly data 1970:1–2003:2. The normalization
b3 = 1 − b1 − b2 is used.

where T is the number of observations and 	̂ is an estimate of the variance–
covariance matrix of (17).

In minimizing (18), as in Serletis and Shahmoradi (2005), we use the
TOMLAB/NPSOL tool box with MATLAB. We also follow Serletis and Shah-
moradi (2005) and impose the curvature restriction globally, using methods sug-
gested by Gallant and Golub (1984)—see Serletis and Shahmoradi (2005) for
details regarding the method for imposing the curvature restriction.

Using NPSOL, we perform the computations and report the parameter estimates
in Table 1 for each of the three models, together with the minimized value of the
objective for each model, in the last row of the table. It is to be noted that the impo-
sition of curvature globally does not produce spurious violations of monotonicity,
mentioned by Barnett and Pasupathy (2003), thereby ensuring true theoretical
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TABLE 2. Income elasticities at the meana

Asset AIM(1) AIM(2) AIM(3)

A 1.112 0.988 0.905
B 1.208 1.821 1.838
C 0.620 0.115 0.286

a Sample period, quarterly data 1970:1–2003:2.

regularity. Hence, in what follows we discuss the income and price elasticities as
well as the elasticities of substitution based on the three models that (with our data
set) satisfy both the neoclassical monotonicity and curvature conditions.

5. ELASTICITIES

We present the income elasticities in Table 2, evaluated at the mean of the data,
for the three subaggregates (and the three models)—all elasticities in this paper
have been acquired using numerical differentiation and the formulas presented in
Serletis and Shahmoradi (2005). The elasticities ηAm, ηBm, and ηCm are all positive
(suggesting that assets A, B, and C are all normal goods), which is consistent with
economic theory. However, there are differences between the models, with the
AIM(1) model shown to be inconsistent with the other two models.

In Table 3 we show the uncompensated (Cournot) own- and cross-price elastic-
ities, evaluated at the mean of the data, for the three models and the three assets.
The own-price elasticities are all negative, as predicted by the theory. For the
cross-price elasticities, economic theory does not predict any signs, but we note
that most of the off-diagonal terms are negative, indicating that the assets, taken
as a whole, are gross complements. This is a frequent finding in this literature. It is
also apparent that the AIM(1) price elasticities are typically different from those
of the AIM(2) and AIM(3) models.

TABLE 3. Price elasticities at the meana

Asset Model ηiA ηiB ηiC

AIM(1) −0.616 −0.367 −0.128
A AIM(2) −0.551 −0.225 −0.211

AIM(3) −0.502 −0.252 −0.150

AIM(1) −0.558 −0.555 −0.086
B AIM(2) −0.750 −0.751 −0.322

AIM(3) −0.756 −0.758 −0.323

AIM(1) 0.015 0.081 −0.716
C AIM(2) 0.025 0.130 −0.270

AIM(3) 0.039 0.123 −0.453

a Sample period, quarterly data 1970:1–2003:2.
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TABLE 4. Allen elasticities at the meana

Asset Model σiA σiB σiC

AIM(1) −0.351 −0.125 0.656
A AIM(2) −0.212 0.190 0.170

AIM(3) −0.290 0.039 0.383

AIM(1) −0.670 0.894
B AIM(2) −0.833 0.575

AIM(3) −0.764 0.714

AIM(1) −1.920
C AIM(2) −0.934

AIM(3) −1.282

a Sample period, quarterly data 1970:1–2003:2.

From the point of view of monetary policy, the measurement of the elasticities of
substitution among the three monetary assets is of prime importance, and there are
currently two methods for calculating the partial elasticity of substitution between
two variables, the Allen and the Morishima—see Serletis and Shahmoradi (2005)
for a discussion and the formulas that we use in this paper. In Table 4 we show
estimates of the Allen elasticities of substitution, evaluated at the means of the data.
We expect the nine diagonal terms, representing the own-elasticities of substitution
for the three assets and the three models, to be negative. This expectation is clearly
achieved. However, because the Allen elasticity of substitution produces ambigu-
ous results off-diagonal, we will use the Morishima elasticity of substitution to
investigate the substitutability/complementarity relation between assets. Based on
the Morishima elasticities of substitution, the assets are all Morishima substitutes,
as documented in Table 5. Moreover, all Morishima elasticities of substitution are
less than unity, irrespective of the model used. This clearly indicates difficulties
for a simple sum–based monetary policy, consistent with the conclusions reached
by Serletis and Shahmoradi (2005).

TABLE 5. Morishima elasticities at the meana

Asset Model σm
iA σm

iB σm
iC

AIM(1) 0.094 0.424
A AIM(2) 0.185 0.176

AIM(3) 0.138 0.283

AIM(1) 0.161 0.836
B AIM(2) 0.289 0.427

AIM(3) 0.234 0.582

AIM(1) 0.727 0.441
C AIM(2) 0.285 0.363

AIM(3) 0.480 0.426

a Sample period, quarterly data 1970:1–2003:2.
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6. CONCLUSIONS

As Barnett, Geweke, and Wolf (1991) show in the context of production func-
tions, the AIM(1) model is exactly Diewert’s (1971) generalized Leontief model.
Although the demand version of the AIM(1) model is a little different from its
production version, it is obvious that the AIM(1) with only 8 structural parameters
does not exhibit anything like the same cyclical sensitivity as the AIM(2) with 27
structural parameters and the AIM(3) model with 64 parameters.

As the AIM model belongs to the class of seminonparametric models, there is
no unique rule for selecting the optimal order of approximation. In this regard,
Barnett, Geweke and Yue (1991) mention that the most systematic approaches cur-
rently available are those of Eastwood and Gallant (1991), who show that Fourier
functions produce consistent and asymptotically normal parameter estimates when
the number of parameters to be estimated equals the number of effective obser-
vations raised to the power of 2/3—this result follows from Huber (1981) and
is similar to optimal bandwidth results in many nonparametric models. In our
case, with 3 assets and 134 observations, we should estimate (approximately) 42
parameters.

If we follow the Eastwood and Gallant (1987) approach to selecting the order
of approximation in the AIM model, we should set K = 3, in which case we
end up with 64 parameters. Although in general it is possible to overfit the data,
as Barnett and Yue (1988) argue, overfitting is impossible if one imposes global
regularity, as we did in this paper.

We believe that the AIM(3) model estimated subject to global curvature cur-
rently provides the best specification for research in semiparametric modeling of
consumer demand systems.
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