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Abstract
Reducing consumed power of a robotic machine has an essential role in enhancing its energy efficiency and must
be considered during its design process. This paper deals with dynamic modeling and power optimization of a
four-degrees-of-freedom flight simulator machine. Simulator cabin of the machine has yaw, pitch, roll and heave
motions produced by a 4RPSP+PS parallel manipulator (PM). Using the Euler–Lagrange method, a closed-form
dynamic equation is derived for the 4RPSP+PS PM, and its power consumption is computed on the entire workspace.
Then, a newly introduced optimization algorithm called multiobjective golden eagle optimizer is utilized to estab-
lish a Pareto front of optimal designs of the manipulator having a relatively larger workspace and lower power
consumption. The results are verified through numerical examples.

1. Introduction

Flight simulators are machines for artificially creating flight of an aircraft and are used for a variety
of reasons, including flight training, design and development of the aircraft itself, research into aircraft
characteristics and control handling qualities [1]. The first parallel manipulator (PM) having six degrees-
of-freedom (DOF) was introduced by Stewart [2] as a flight simulator. Since then PMs have been vastly
employed in industry. For several specific tasks, PMs with less than six DOFs are more preferred, because
they have simpler architecture, lower cost of manufacturing and larger workspace, compared to PMs with
six DOFs, see, for instance [3, 4, 5, 6, 7, 8].

Dynamic modeling of PMs is utilized in computer simulation for finding their dynamic characteris-
tics, [4, 5, 6, 7, 9, 10] and also used for the development of suitable control strategies of PMs [11, 12].
Moreover, it specifies all joint forces and moments that are necessary for sizing links, bearings and actu-
ators [13]. The dynamic analysis of PMs is divided into two branches [14]: the inverse dynamic analysis
which computes the required actuator forces or torques necessary to generate a desired trajectory of the
moving platform, and the forward dynamic analysis which finds resulting motion of the moving plat-
form for a given forces or torques applied to actuators. The inverse dynamic analysis is often used for
real-time feed-forward control of a manipulator, while the forward dynamic analysis is primarily applied
to simulations of a manipulator. Several approaches have been employed for dynamic modeling of PMs.
The main approaches are Newton–Euler method, [7, 15] Euler–Lagrange method [16, 17] and the prin-
ciple of virtual work [18]. The Newton–Euler method formulates dynamic equations of motion for all
moving links of the PM using the Newtonian mechanics. The Euler–Lagrange method is based on the
kinetic and potential energies of the manipulator system and formulates dynamic equations of motion
using Lagrangian functions. The principle of virtual work develops dynamic equations of motion using
D’Alembert’s principle stating that the work performed by external forces or moments through virtual
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displacements compatible with the system is zero. Other methods were also used by scholars for dynamic
analysis of PMs, for instance, Kane’s method, [19] combination of screw theory with the principle of
virtual work, [20] natural orthogonal complement [21] and motor algebra [22]. Efficiency of the chosen
method for dynamic analysis of a PM depends on DOF of the PM, complexity of the structure of the
PM and so on.

In mechanical engineering, power consumption refers generally to the energy per unit time, supplied
by actuators for a machine to accomplish a given task. The less the power consumption of a machine,
the high its energy efficiency. The importance of this concept is testified by abundant literature includ-
ing both theoretical and experimental studies for enhancing the energy efficiency in manipulators and
automatic machines [23]. The main approaches to achieve this goal are: (1) the proper choice of the
manipulator type, [24] (2) designing lightweight manipulators with lower inertia, [25, 26] (3) optimiza-
tion of manipulator structure, [27] using regenerative drive systems, [28, 29] trajectory planning and
motion planning, [30, 31, 32] applying redundancy on non-redundant manipulators, [33, 34, 35, 36]
optimizing location of the task with respect to the base of the manipulator [37, 38] and joint force/torque
minimization [13, 39, 40] and introduction of complaint or elastic elements into the manipulator [41, 42].

The above methods to evaluate power consumption of manipulators have some drawbacks. For
instance, they are generally time-dependent and not suitable for instantaneous energy change evaluation.
Moreover, they rely on the predefined trajectory and velocity of the end-effector, which are unchanged
during the experiments. On the other hand, in most of the existing researches, the results are obtained
regardless of the inherited relationship between energy consumption of the manipulator and its design
variables, such as geometry, mass and inertia. To alleviate these drawbacks, Liu et al. [43] proposed a
method to evaluate energy efficiency of parallel robot based on the kinetic energy change rate. Their
method is a quantitative evaluation method rather than an experiment-based method. Besides, it is
not focusing on specific trajectories or motions. The method builds the relationship between design
parameters and energy efficiency of manipulators.

Recently, the author [44] introduced a 4-DOF PM with symmetrical 4RPSP+PS topology and studied
its kinematics and workspace in detail. The letters R, P and S are representatives of a revolute joint, a
prismatic joint and a spherical joint, respectively, and P denotes an actuated prismatic joint. A CAD
model of the 4RPSP+PS PM is shown in Fig. 1. The moving platform of the manipulator is connected
to the fixed platform (or the base) through one passive PS leg and four active RPSP legs. The PS leg is
mounted at the center of the base platform, and RPSP legs are arranged symmetrically around it. Each
RPSP leg has three links, a cylinder, a piston and a small block that are connected to each other and
also to the fixed and moving platforms through R, P, S and P joints, respectively. The R joint is located
on the plane of the fixed platform. The actuated P joint (or prismatic actuator) connects the cylinder to
the piston. The S joint of RPSP leg is mounted on the small block sliding on the lower surface of the
moving platform through a passive P joint.

The passive PS leg of the 4RPSP+PS PM constrains the moving platform to move along the vertical
axis of its passive P joint, and simultaneously to rotate around the center of its S joint [44]. Thus, the
moving platform has three rotational (yaw, pitch, roll) and one translational (heave) DOF. These special
DOFs make the manipulator much more suitable for flight simulator machines, while simulator cabin
of the machine is mounted on the moving platform (Fig. 1). Nevertheless, heavy weight of the simulator
cabin increases power consumption of the manipulator during motion significantly. Therefore, a solution
should be thought of to minimize power consumption of the manipulator. The main purpose of this paper
is dynamic modeling and power optimization of the above 4RPSP+PS PM on its whole workspace,
regardless of trajectories or motions of the moving platform.

The reminder of this paper is organized as follows. Some brief descriptions of the manipulator struc-
ture and its inverse position kinematics are presented in Sections 2 and 3. Jacobian matrices of the
manipulator moving links are obtained in Section 4. Afterwards, in Section 5, through a complete
dynamic modeling, a closed-form dynamic equation is derived for the manipulator. A global power
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Figure 1. A CAD model of the 4RPSP+PS flight simulator machine.

Figure 2. Kinematic model of 4RPSP+PS PM.

transmission index is defined in Section 6, and then applied in Section 7 for power optimization of the
manipulator. Finally, a conclusion is given in Section 8 summarizing the present work.

2. Structure description of the 4RPSP+PS PM

Kinematic model of the symmetrical 4RPSP+PS PM is shown in Fig. 2. In this paper, subscript i refers
to the ith RPSP leg of the manipulator for i = 1, 2, 3 and 4. Subscript mp refers to the moving plat-
form, and subscripts cyl, pis and bl refer to the cylinder, piston and sliding block of the RPSP legs,
respectively. Moreover, subscript pl refers to the passive PS leg. R (S) joint of the ith RPSP leg is
located at Point Ai (Bi). Axes of R joints (passive P joints) of RPSP legs intersect at the centered point
O (C). Axes of R joints are perpendicular to each other consecutively. Stroke of the actuated P joint
(passive P joint) of the ith RPSP leg, shown by si (bi), is the distance from point Ai (C) to point Bi.
Axis of P joint of the PS leg is perpendicular to the plane of fixed platform, and its S joint is mounted
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at the center of the moving platform. Stroke of P joint of the PS leg, shown by h, is equal to the dis-
tance from point O to point C. A fixed coordinate frame O-xyz is attached at point O of the base plane
while its x and y axes are coincident with the axes of the first and the second R joint, respectively.
Thus, the z axis is along the axis of P joint of the PS leg. Another coordinate frame C-xmpympzmp is
attached at point C of the moving platform plane, whereas xmp (ymp) axis locates on the interior bisector
of the angle between the axes of passive P joints of the first (the second) and the second (the third)
RPSP leg. The passive P joints of the RPSP legs are co-axis two by two. The angle between the xmp
axis and the axis of passive P joint of the first (the second) RPSP leg is shown by −α (α). Three
unit vectors i, j and k (imp, jmp and kmp) are considered along the x, y and z axes (xmp, ymp and zmp
axes), respectively. Unit vectors ei, f i and ri represent axes of R, P and P joint of the ith RPSP leg,
respectively.

3. Inverse position kinematics

Pose of the moving platform is defined by pose vector q = [h ϕx ϕy ϕz]T where Euler angles ϕx, ϕy and
ϕz represent three successive rotations around the fixed x, y and z axes, respectively.

In ref. [44], it is shown that the inverse position kinematics of 4RPSP+PS PM, that is, determining
actuator strokes si for the given pose vector q of the moving platform, leads to

si =
√

(hk + biRmprmp,i − aei)T (hk + biRmprmp,i − aei) (1)

where rmp,i denotes vector ri in the moving coordinate frame C-xmpympzmp, such that

rmp,1 = [ cos α − sin α 0 ]T (2a)

rmp,2 = [ cos α sin α 0 ]T (2b)

rmp,3 = −rmp,1 (2c)

rmp,4 = −rmp,2 (2d)

and

e1 = [ 1 0 0 ]T , e2 = [ 0 1 0 ]T , e3 = −e1, e4 = −e2 (3)

Moreover, Rmp is the rotation matrix of the frame C-xmpympzmp with respect to the base frame O-xyz, as
follows:

Rmp =
⎡
⎣ cϕzcϕy cϕzsϕysϕx − sϕzcϕx cϕzsϕycϕx + sϕzsϕx

sϕzcϕy sϕzsϕysϕx + cϕzcϕx sϕzsϕycϕx − cϕzsϕx
−sϕy cϕysϕx cϕycϕx

⎤
⎦ (4)

where s(.) and c(.) denote sin(.) and cos(.), respectively, and three Euler angles ϕx, ϕy and ϕz are given
as ϕx ∈ (−π , π ], ϕy ∈ [−π /2, π /2] and ϕz ∈ (−π , π ]. Consequently, direction of the ith RPSP leg will
be obtained as [44]

fi = (hk + biRmprmp,i − aei)/si (5)

4. Jacobian matrices

4.1. Jacobian matrices of 4RPSP+PS PM

Let ωmp = [ ϕ̇x ϕ̇y ϕ̇z ]T be angular velocity vector of the moving platform. The relation between velocity
vector of the moving platform, q̇ = [ ḣ ωT

mp ]T , and velocity vector of the actuated prismatic joints, ṡ =
[ ṡ1 ṡ2 ṡ3 ṡ4 ]T , is [44]
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Jinv ṡ = Jfwd q̇ (6)

where Jinv and Jfwd are the 4×4 inverse and forward Jacobian matrices of the manipulator, respectively,
and expressed as

Jinv =

⎡
⎢⎢⎣

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

⎤
⎥⎥⎦

4×4

(7a)

Jfwd =

⎡
⎢⎢⎣

((e1 × f1) × r1)z b1(r1 × ((e1 × f1) × r1))T

((e2 × f2) × r2)z b2(r2 × ((e2 × f2) × r2))T

((e3 × f3) × r3)z b3(r3 × ((e3 × f3) × r3))T

((e4 × f4) × r4)z b4(r4 × ((e4 × f4) × r4))T

⎤
⎥⎥⎦

4×4

(7b)

with

di = ((ei × fi) × ri)T fi (8)

If Jfwd is invertible, Eq. (6) can be rewritten as

q̇ = JPM ṡ (9)

where

JPM = J−1
fwdJinv (10)

is defined as the 4×4 Jacobian matrix of the 4RPSP+PS PM.

4.2. Jacobian matrices of the moving platform and simulator cabin

The linear velocity ḣk of the moving platform can be written in terms of q̇ as follows:

ḣk = Jhmpq̇ (11)

where 3×4 matrix Jhmp is

Jhmp =
⎡
⎣ 1 01×3

0 01×3
0 01×3

⎤
⎦ (12)

and for the angular velocity ωmp, we can write

ωmp = Jωmpq̇ (13)

where the 3×4 matrix Jωmp is

Jωmp =
⎡
⎣0 1 0 0

0 0 1 0
0 0 0 1

⎤
⎦ (14)

Angular velocity of the simulator cabin attached to the moving platform is equal to ωmp, and linear
velocity of its mass center, csc, is

vsc = ḣk + ωmp × dsc (15)

where dsc = [dsc ,x, dsc ,y, dsc ,z]T is the position vector of mass center of the simulator cabin with respect
to point C (Fig. 3). Substituting ḣk and ωmp from Eqs. (11) and (13) into Eq. (15) and rearranging the
resultant equation lead to

vsc = Jscq̇ (16)
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Figure 3. Mass center csc of the simulator cabin.

where 3×4 matrix Jsc is

Jsc =
⎡
⎣ 1 0 dsc,z −dsc,y

0 −dsc,z 0 dsc,x
0 dsc,y −dsc,x 0

⎤
⎦ (17)

4.3. Jacobian matrices of the RPSP legs

4.3.1. Jacobian matrices of cylinder and piston of the ith RPSP leg
The relation between velocities of the moving platform, PS leg and the ith RPSP leg is [44]

ḣk + ḃiri + biωmp × ri = ṡifi + siωi × fi (18)

where ḣk denotes linear velocity vector of the moving platform, and ωi is the angular velocity of the ith
RPSP leg. Since the ith RPSP leg of the manipulator rotates about axis of the associate revolute joint at
Ai, vBi has no component along ei, that is, vT

Biei = 0. The same is true for the velocity of point C, that is,
ḣkT ei = 0. Thus, dot multiplying both sides of Eq. (18) by ei yields

ḃirT
i ei + bi(ωmp × ri)T ei = 0 (19)

from which we obtain

ḃi = −bi(ωmp × ri)T ei

rT
i ei

(20)

Cross multiplying both sides of Eq. (18) by f i gives

ḣk × fi + ḃiri × fi + bi(ωmp × ri) × fi = si(ωi × fi) × fi (21)

Since ωi is along ei, we have (ωi × fi) × fi = −ωi, and consequently Eq. (21) gives

ωi = −(1/si)(ḣk × fi + ḃiri × fi + bi(ωmp × ri) × fi) (22)

Based on the linear algebra, the third term on the right-hand side of Eq. (22) can be rewritten as

(ωmp × ri) × fi = (ωT
mpfi) − (ωT

mpri)fi (23)

Substituting Eqs. (11), (20), (13) and (23) into Eq. (22) results in

ωi = −(1/si)(Jhmpq̇ × fi − bi(ri × ei)Jωmpq̇
rT

i ei
ri × fi − bi((fT

i ri)Jωmpq̇ − (fT
i Jωmpq̇)ri) (24)

Writing Eq. (24) in a matrix form gives ωi in terms of q̇ as follows:

ωi = Jωiq̇ (25)
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where the 3×4 matrix Jωi will be

Jωi =
3∑

k=1

Jωi,k (26)

with

Jωi,1 = −(1/si)

⎡
⎣ fizJhmp,2×(1−4) − fiyJhmp,3×(1−4)

fixJhmp,3×(1−4) − fizJhmp,1×(1−4)
fiyJhmp,1×(1−4) − fixJhmp,2×(1−4)

⎤
⎦ (27a)

Jωi,2 = −(bi/rT
i ei)

⎡
⎣ (ri × ei)T Jωmp(rizfiy − riyfiz)

(ri × ei)T Jωmp(rixfiz − rizfix)
(ri × ei)T Jωmp(riyfix − rixfiy)

⎤
⎦ (27b)

Jωi,3 = −bi((fT
i ri)Jωmp +

⎡
⎣ fT

i Jωmprix
fT
i Jωmpriy

fT
i Jωmpriz

⎤
⎦ (27c)

With reference to Fig. 2, velocities of mass centers of cylinder and piston of the ith RPSP leg are
computed using the following relations, respectively:

vcyl,i = lcylωi × fi (28a)
vpis,i = (si − lpis)ωi × fi + ṡifi (28b)

From Eq. (9), variable ṡi can be determined in terms of q̇ as

ṡi = J−1
PM,i×(1−4)q̇ (29)

where J−1
PM,i×(1−4) denotes the ith row of the inverse matrix J−1

PM . Substituting ωi and ṡi from Eqs. (25)
and (29) into Eqs. (28) and doing some rearranging lead to

vcyl,i = Jcyl,iq̇ (30a)
vpis,i = Jpis,iq̇ (30b)

where the 3×4 matrices Jcyl,i and Jpis,i are defined as

Jcyl,i =
⎡
⎣ lcyl(fizJωi,2×(1−4) − fiyJωi,3×(1−4))

lcyl(fixJωi,3×(1−4) − fizJωi,1×(1−4))
lcyl(fiyJωi,1×(1−4) − fixJωi,2×(1−4))

⎤
⎦ (31a)

Jpis,i =
⎡
⎣ (si − lpis)(fizJωi,2×(1−4) − fiyJωi,3×(1−4)) + fixJ−1

ωi×(1−4)Jmp
(si − lpis)(fixJωi,3×(1−4) − fizJωi,1×(1−4)) + fiyJ−1

ωi×(1−4)Jmp

(si − lpis)(fiyJωi,1×(1−4) − fixJωi,2×(1−4)) + fizJ−1
ωi×(1−4)Jmp

⎤
⎦ (31b)

4.3.2. Jacobian matrix of sliding block of the ith RPSP leg
Sliding block of the ith RPSP leg has no rotational motion with respect to the moving platform, so
angular velocity of the ith sliding block will be

ωbl,i = ωmp (32)

Moreover, linear velocity of the ith sliding block is given by

vbl,i = ḣk + ḃiri (33)

Substituting ḣk, ḃi and ωmp from Eqs. (11), (20) and (13) into Eq. (33) and then rearranging the resultant
equation lead to

vbl,i = Jbl,iq̇ (34)

https://doi.org/10.1017/S0263574721000746 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000746


Robotica 653

where

Jbl,i = Jhmp − bi

rT
i ei

⎡
⎣ (ri × ei)T Jωmprix

(ri × ei)T Jωmpriy
(ri × ei)T Jωmpriz

⎤
⎦ (35)

5. Dynamic modeling of the 4RPSP+PS PM

In this section, dynamic equation of 4RPSP+PS PM is derived in closed form through the Euler–
Lagrange method [45]. In practice, it is desirable to define motion of a PM with regard to coordinates
of the moving platform. Thus, here, we choose the four components of pose vector p (i.e. h, ϕx, ϕy and
ϕz) as the generalized coordinates to formulate the equation of motion. Since the number of the chosen
generalized coordinates is equal to the number of DOF of the manipulator, there is no need to introduce
the Lagrange multipliers, [17] and the equation of motion will be achieved directly.

Since piston and cylinder of the ith RPSP leg have no relative rotational motion with respect to each
other, a common coordinate frame Ai-xaiyaizai is considered for both of them, and attached at point Ai
(Fig. 2), while the xai axis is along ei, zai axis is along f i and yai axis is determined by the right-hand
rule. The rotation matrix associated with the Aai-xaiyaizai frame is

Rleg,i = [ ei fi × ei fi ] (36)

For sliding block of the ith RPSP leg, a moving coordinate frame Bi-xbiybizbi is attached to point Bi
(Fig. 2), while the xbi and zbi axes are along ri and kmp, respectively, and ybi axis is determined by the
right-hand rule. Thus, the rotation matrix associated with the Bi-xbiybizbi frame is

Rbl,i = [ ri kmp × ri kmp ] (37)

Hereafter, parameter mΩ with Ω ∈ {mp, cyl, pis, bl, pl, sc} represents mass of the link Ω. Parameter IΩ

is the inertia matrix of the link Ω in the fixed coordinate frame O-xyz, and Ī� is the inertia matrix of
the link Ω in the associated local coordinate frame. The simulator cabin of the machine is considered as
a body with mass msc and inertia matrices Isc and Īsc in the fixed and moving coordinate frames O-xyz
and C-xmpympzmp, respectively.

5.1. Kinetic energy

The kinetic energy of the 4RPSP+PS PM is generated by all moving links, including the moving
platform, the passive PS leg, proximal link, distal link and sliding block of the RPSP legs.

The moving platform and simulator cabin have a common rotational motion around the point C and
a common translational motion along the z axis, so their kinetic energies are given respectably by

Tmp = 1
2
ωT

mpImpωmp + 1
2

mmpḣ2kT k (38)

Tsc = 1
2
ωT

mpIscωmp + 1
2

mscvT
scvsc (39)

Using the parallel axis theorem, [15] Imp and Iscin Eqs. (38) and (39) are calculated as

Imp = Rmp[Īmp + mmp(ḣ2kT kE3 − h2kkT )]RT
mp (40)

Isc = Rmp[Īsc + msc((hk + dsc)T (hk + dsc)E3 − (hk + dsc)(hk + dsc)T )]RT
mp (41)

where E3 is the 3×3 identity matrix. Introducing ωmp, ḣk and vsc from Eqs. (13), (11) and (16) into
Eqs. (38) and (39) results in

Tmp = q̇T Mmpq̇ (42)
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Tsc = q̇T Mscq̇ (43)

where

Mmp = 1
2

JT
ωmpImpJωmp + 1

2
mmpJT

hmpJhmp (44)

Msc = 1
2

JT
ωmpIscJωmp + 1

2
mscJT

scJsc (45)

The passive PS leg has a pure translational motion along the z axis, so its kinetic energy is calculated as

Tpl = 1
2

mplḣ2kT k (46)

Substituting ḣk from Eq. (11) into Eq. (46) yields

Tpl = q̇T Mplq̇ (47)

where

Mpl = 1
2

mplJT
hmpJhmp (48)

The ith RPSP leg rotates about unit vector ei. Kinetic energies of cylinder and piston of the ith RPSP
leg are calculated, respectively, as

Tcyl,i = 1
2
ωT

i Icyl,iωi + 1
2

mcylvT
cyl,ivcyl,i (49a)

Tpis,i = 1
2
ωT

i Ipis,iωi + 1
2

mpisvT
pis,ivpis,i (49b)

Using the parallel axis theorem, Icyl,i and Ipis,i in Eqs. (49) are calculated as

Icyl,i = Rleg,i[Īcyl + mcyl(cT
cyl,iccyl,iE3 − ccyl,icT

cyl,i)]RT
leg,i (50a)

Ipis,i = Rleg,i[Īpis + mpis(cT
pis,icpis,iE3 − cpis,icT

pis,i)]RT
leg,i (50b)

where ccyl,i and cpis,i are position vectors of mass centers ccyl,i and cpis,i given, respectively, by

ccyl,i = −−−→
Occyl,i = aei + lcylfi (51a)

cpis,i = −−−→
Ocpis,i = aei + (si − lpis)fi (51b)

where lcyl (lpis) is the distance of mass center ccyl,i (cpis,i) of cylinder (piston) of the ith RPSP leg from
point Ai (Bi), see Fig. 2. By substituting ωi, vcyl,i and vpis,i from Eqs. (25) and (30) into Eqs. (49), we
get

Tcyl,i = q̇T Mcyl,iq̇ (52a)

Tpis,i = q̇T Mpis,iq̇ (52b)

where

Mcyl,i = 1
2

JT
ωiIcyl,iJωi + 1

2
mcylJT

cyl,iJcyl,i (53a)

Mpis,i = 1
2

JT
ωiIpis,iJωi + 1

2
mpisJT

pis,iJpis,i (53b)

Kinetic energy of sliding block of the ith RPSP leg is given by

Tbl,i = 1
2
ωT

bl,iIbl,iωbl,i + 1
2

mblvT
bl,ivbl,i (54)
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with

Ibl,i = Rbl,i[Ībl + mbl(cT
bl,icbl,iE3 − cbl,icT

bl,i)]RT
bl,i (55)

where cbl,i is the position vector of mass center cbl,i of the ith sliding block located at Bi (Fig. 2), and
given by

cbl,i = −→
OBi = aei + sifi (56)

Substituting ωbl,i, vbl,i and ωmp from Eqs. (32), (33) and (13) into Eq. (54) results in

Tbl,i = q̇T Mbl,iq̇ (57)

where

Mbl,i = 1
2

JT
ωmpIbl,iJωmp + 1

2
mblJT

bl,iJbl,i (58)

The inertia matrices Īmp, Īsc, Īcyl, Īpis and Ībl and masses mmp, msc, mpl, mcyl, mpis and mbl are computed
using CAD model of the corresponding link in SolidWorks software. The total kinetic energy of the
manipulator is

TPM = Tmp + Tsc + Tpl +
4∑

i=1

(
Tcyl,i + Tpis,i + Tbl,i

)
(59)

Substituting Tmp, Tsc, Tpl, Tcyl ,i, Tpis ,i and Tbl ,i from Eqs. (42), (43), (46), (49) and (57) into Eq. (59), and
rearranging the resultant equation, yields the following expression for total kinetic energy of 4RPSP+PS
PM:

TPM = q̇T M(q)q̇ (60)

where M(q) is the 4×4 inertia matrix of the manipulator given as

M(q) = Mmp + Msc + Mpl +
4∑

i=1

Mcyl,i +
4∑

i=1

Mpis,i +
4∑

i=1

Mbl,i (61)

5.2. Potential energy

Here, only the gravity force is considered as the conservative force acting on the 4RPSP+PS PM.
Therefore, the potential energy stored in a link of the manipulator is defined as the amount of work
required to raise mass center of the link from a horizontal reference xy plane to its current position
under the influence of gravity.

Potential energies of the moving platform and the simulator cabin are calculated as

Ump = −mmphgT k (62)

Usc = −mmpgT (hk + dsc) (63)

where g = [0 0 −9.81]T m/s2 is the vector of gravitational acceleration. It is assumed that the passive
PS leg is a uniform bar with length lpl, then potential energy of this leg will be

Upl = −mpl

(
h − lpl

2

)
gT k (64)
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Potential energies of the cylinder, piston and sliding block of the ith RPSP leg are calculated,
respectively, as

Ucyl,i = −mcylgT ccyl,i (65a)

Upis,i = −mpisgT cpis,i (65b)

and

Ubl,i = −mblgT cbl,i (66)

Hence, the total potential energy stored in the manipulator will be

UPM = Ump + Usc + Upl + ∑4
i=1 (Ucyl,i + Upis,i + Ubl,i) =

−mmphgT k − mmpgT (hk + dsc) − mpl

(
h − lpl

2

)
gT k − ∑4

i=1
(
mcyl,igT ccyl,i + mpis,igT cpis,i + mbl,igT cbl,i

)
(67)

5.3. Generalized forces

Except the gravitational and inertia forces, the generalized forces account for all other forces and
moments acting on moving links of the 4RPSP+PS PM. By the principle of virtual work, [45] the vector
of generalized forces λ = [λ1, λ2, λ3, λ4]T of the manipulator can be formulated as

λ =Fact + J−1
PMJmpηext (68)

where Fact = [F1F2F3F4]T is the 4×1 vector of joint forces generated by prismatic actuators, and ηext
= [fext ,z, next]T is the 4×1 vector composed of the z component of external force fext = [fext,x fext,y fext,z]T

and external moment next = [next,x next,y next,z]T acting on the moving platform. It is worth mentioning
that the frictional forces in the joints are not considered here.

5.4. Dynamic equation of the 4RPSP+PS PM

The essential step in dynamic modeling using the Lagrangian formulation is to determine the Lagrangian
function, which is defined as the difference between total kinetic energy and total potential energy of
the 4RPSP+PS PM, that is,

LPM = TPM − UPM (69)

Let Mij be the (i, j) element of the manipulator inertia matrix M in Eq. (61), and q̇i (q̇j) be the ith
(jth) component of vector q̇, then we can rewrite TPM in Eq. (60) as

TPM =
4∑

i=1

4∑
j=1

Mijq̇iq̇j (70)

Substituting TPM and UPM from Eqs. (60) and (67) into Eq. (70), we get

LPM =
4∑

i=1

4∑
j=1

Mijq̇iq̇j + mmpgT (hk + dsc) + mpl(h − l
2

)gT k

+
4∑

i=1

(mcylgT ccyl,i + mpisgT cpis,i + mbl,igT cbl,i) (71)

Lagrange’s equations of motion are formulated for 4RPSP+PS PM in terms of the Lagrangian
function [46] as follows:

d
dt

(
∂LPM

∂ q̇i

)
− ∂LPM

∂qi
= λi, i = 1, 2, 3, 4 (72)
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Thus, the terms included in above equation should be calculated. Since the potential energy does not
depend on q̇i, taking partial derivative of Eq. (71) with respect to q̇i yields

∂LPM

∂ q̇i
=

4∑
j=1

Mijq̇j (73)

Taking total derivative of Eq. (73) with respect to time gives

d
dt

(
∂LPM

∂ q̇i
) =

4∑
j=1

Mijq̈j +
4∑

j=1

(
dMij

dt

)
q̇j =

4∑
j=1

Mijq̈j +
4∑

j=1

4∑
k=1

∂Mij

∂xk
q̇kq̇j (74)

Taking partial derivative of Eq. (71) with respect to qi yields
∂LPM
∂qi

= ∂
∂xi

∑4
j=1

∑4
k=1 Mjkq̇j q̇k + (mmp + mpl)

(
∂h
∂qi

)
gT k

+ ∑4
j=1

(
mcylgT

(
∂ccyl,j
∂qi

)
+ mpisgT

(
∂cpis,j
∂qi

)
+ mblgT

(
∂cbl,j
∂qi

)) (75)

By substituting Eqs. (74) and (75) into (72), we get
4∑

j=1

Mijq̈j +
4∑

j=1

4∑
k=1

(
∂Mij

∂qk
− ∂Mjk

∂qi

)
q̇k q̇j + δi = λi (76)

where

δi = (mmp + mpl)
(

∂h
∂qi

)
gT k +

4∑
j=1

(
mcylgT

(
∂ccyl,j

∂qi

)
+ mpisgT

(
∂cpis,j

∂qi

)
+ mblgT

(
∂cbl,j

∂qi

))
(77)

Writing Eq. (76) for i = 1, 2, 3, 4, and casting the resultant equations into a matrix form gives

M(q)q̈ + N(q, q̇)q̇ + δ(q) = λ (78)

where vector δ(q) = [δ1, δ2, δ3, δ4]T is the 4×1 vector of gravity forces, and N(q, q̇) is

N(q, q̇) =

⎡
⎢⎢⎣

q̇T n11 q̇T n12 q̇T n13 q̇T n14
q̇T n21 q̇T n22 q̇T n23 q̇T n24
q̇T n31 q̇T n32 q̇T n33 q̇T n34
q̇T n41 q̇T n42 q̇T n43 q̇T n44

⎤
⎥⎥⎦

4×4

(79)

where the 4×1 vectors nij (i, j = 1, 2, 3, 4) is given by

nij =
[(

∂Mij
∂q1

− ∂Mj1
∂qi

) (
∂Mij
∂q2

− ∂Mj2
∂qi

) (
∂Mij
∂q3

− ∂Mj3
∂qi

) (
∂Mij
∂q4

− ∂Mj4
∂qi

)]T
(80)

In fact, N(q, q̇) is a 4×4 matrix representing Coriolis and centrifugal accelerations of the manipulator
moving links. By substituting the value of λ from Eq. (68) into Eq. (78), we obtain the closed-form
dynamic equation of 4RPSP+PS PM in terms of q̇ and q̈ as follows:

M(q)q̈ + N(q, q̇)q̇ + δ(q) =Fact + J−1
PMJmpηmp (81)

The matrices M(q), N(q, q̇), J−1
PMJmp and also vector δ(q) in Eq. (81) can be calculated easily, because

they only depend on q and q̇, and on known architectural parameters of the manipulator.

6. Global power transmission index

The total input power, Pinput , of the 4RPSP+PS PM equals sum of the three mechanical-typed powers:
(1) the useful power, Puseful, consumed by the moving platform, the PS leg and the simulator cabin, (2)
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the loss power, Ploss, caused by friction, (3) the time rate of the energy consumed by RPSP legs, that is,
the transmission power, Ptrans, of the manipulator. Namely,

Pinput = Puseful + Ploss + Ptrans (82)

As mentioned before, friction forces are neglected in this study, so Ploss = 0. In a high speed operation
process, the potential energy of the manipulator is ignorable with respect to its kinematic energy. Thus,
here, we only focus on time rate of the kinetic energy and influence of the gravity is not considered. The
energy efficiency of 4RPSP+PS PM based on the energy consumed by active RPSP legs is [43]:

ηe = Puseful

Pinput
= 1 − Ptrans

Pinput
(83)

The transmission power Ptrans of the manipulator is calculated by the following relation:

Ptrans =
4∑

i=1

dTcyl,i

dt
+

4∑
i=1

dTpis,i

dt
+

4∑
i=1

dTbl,i

dt
(84)

where the time rates of kinetic energies of the cylinder, piston and sliding block of the ith RPSP leg
are obtained from Eqs. (57) and (52) in terms of velocity q̇ and acceleration q̈ = [ ḧ ϕ̈x ϕ̈y ϕ̈z ]T of the
moving platform as follows:

dTcyl,i

dt
= q̈T Mcyl,iq̇ + q̇T Ṁcyl,iq̇ + q̇T Mcyl,iq̈ (85a)

dTpis,i

dt
= q̈T Mpis,iq̇ + q̇T Ṁpis,iq̇ + q̇T Mpis,iq̈ (85b)

dTbl,i

dt
= q̈T Mbl,iq̇ + q̇T Ṁbl,iq̇ + q̇T Mbl,iq̈ (85c)

The sign of Ptrans in Eq. (84) shows variation trend of kinetic energy of the RPSP legs. When it is
positive, the kinetic energy of the legs increases and negative sign indicates that the kinetic energy
decreases, meaning that it does work on actuators, moving platform or both.

Equations (85) reveals that the time rates of kinetic energies of RPSP legs depend on the velocity q̇ and
acceleration q̈ of the moving platform. According to Eq. (83), the minimum value of energy efficiency
of the manipulator (i.e. ηe = 0) occurs when Ptrans = Pinput . On this condition, the energy from actuators
is only used to change kinestate (i.e. velocity and acceleration) of RPSP legs, and kinetic energy of the
moving platform remains unchanged. Thus, the moving platform moves at a constant velocity (q̈ = 0),
and Eqs. (85) are summarized to

dTcyl,i

dt
= q̇T Ṁcyl,iq̇ (86a)

dTpis,i

dt
= q̇T Ṁpis,iq̇ (86b)

dTbl,i

dt
= q̇T Ṁbl,iq̇ (86c)

Introducing Eqs. (86) into Eq. (84), we get transmission power of the 4RPSP+PS PM as

Ptrans =
4∑

i=1

q̇T (Ṁcyl,i + Ṁpis,i + Ṁbl,i)q̇ (87)

When velocity magnitude of the moving platform, ‖q̇‖, varies, Ptrans changes proportionally for all
points in the workspace of the manipulator. Thus, in order to compute Ptrans, one can take a constant
value for velocity magnitude of the moving platform as ‖q̇‖ = D. Apart from the velocity magnitude,
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Ptrans is also affected by velocity direction of the moving platform significantly. The velocity direction,
for which the Ptrans becomes maximal at a specific point, is obtained through solving the following
system of equations: {∇(Pmax) = λ∇(ḣ2 + ϕ̇2

x + ϕ̇2
y + ϕ̇2

z )

ḣ2 + ϕ̇2
x + ϕ̇2

y + ϕ̇2
z = ‖q̇‖2 = D2

(88)

where ∇(·) denotes gradient of function (·) with respect to (ḣ, ϕ̇x, ϕ̇y, ϕ̇z), and λ is the Lagrange multiplier.
Equation (88) is, in fact, a system of five equations in five unknowns ḣ, ϕ̇x, ϕ̇y, ϕ̇z and λ, that are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Pmax
∂ ḣ − 2λḣ = 0

∂Pmax
∂ϕ̇x

− 2λϕ̇x = 0
∂Pmax
∂ϕ̇y

− 2λϕ̇y = 0
∂Pmax
∂ϕ̇z

− 2λϕ̇z = 0

ḣ2 + ϕ̇2
x + ϕ̇2

y + ϕ̇2
z − D2 = 0

(89)

On this basis, a local power transmission index is defined as

λpt = max ( |Ptrans| ) (90)

where λpt denotes the maximum value of Ptrans for different velocity directions of the moving platform
at a specific point in the workspace. The less the index, the less the energy the RPSP legs need for self-
motion, and energy efficiency ηe of the manipulator will be higher. Figure 4 shows distribution of λpt
for three arbitrary sets of α, ϕz at h = 1 m. The values of required architectural and dynamic parameters
of the manipulator are given in Appendix A. As shown in Fig. 4, λpt has a less value especially at the
central region of the workspaces and becomes larger when approaching the workspace boundaries. The
singular configuration of the manipulator occurs when RPSP legs are parallel with the central PS leg,
and α = π /4 [44]. In this configuration, the input power of the manipulator is completely consumed by
the RPSP legs (i.e., Ptrans = Pinput). Consequently, for α = π /4, ηe = 0 and λpt becomes so large (Fig. 4).

Since λpt is a pose-dependent index, in order to evaluate energy efficiency of the 4RPSP+PS PM in
the whole workspace, a global power transmission index is proposed [43].

�pt =
∫

w λptdw∫
w dw

(91)

where w denotes total 4D workspace of the manipulator in (h, ϕx, ϕy, ϕz) space. The less the value
of �pt , the more energy efficient the manipulator will be in its corresponding workspace. On the other
hand, since λpt is obtained on the worst condition with maximum Ptrans, the index �pt can be utilized
as a criterion for design optimization of the manipulator, regardless of trajectory or kinestate of the
moving platform. Note that, for the given dynamic properties of the manipulator, λpt in Eq. (90) and
consequently �pt in Eq. (91) depend only on two architectural parameters of the manipulator that are a
and α.

7. Power optimization of the 4RPSP+PS PM

The main problem is to find the best design of the 4RPSP+PS PM with maximal workspace volume, VT ,
and minimal �pt over the workspace. The common method to solve this problem is to find a minimum
value of a single objective function which is a weighted sum of the two criteria 1/VT and �pt . In ref.
[44], it was shown that the minimum value of 1/VT occurs when α = π /4. But, as shown in Fig. 4, the
maximum values of �pt occurs at the same value of α. Therefore, there is a converse relation between
the values of the two criteria, and it is more reasonable to minimize them through a multiobjective
optimization problem and to find a Pareto front of optimal solutions, instead of a single solution.
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Figure 4. λpt of the 4RPSP+PS PM for three arbitrary sets of α and ϕz at h =1 m.

Let hmin and hmax be the minimum and maximum values of h for which the manipulator has orienta-
tion workspaces in (ϕx, ϕy, ϕz) space. Through discretizing each orientation workspace in k elements,
volume of total workspace of the manipulator is defined as the summation of volumes of the orientation
workspaces [44]:

VT =
n∑

i=1

k∑
j=1

�Vij (92)

where n is the number of equally distant points between hmin and hmax, and

�Vij = �ϕx,ij�ϕy,ij�ϕz,ij (93)

is the volume of the jth element (j = 1, 2, . . . , k) in the ith orientation workspace (i = 1, 2, . . . , n). The
above global power transmission index �pt and VT will be used as two functions to define a multiobjective
optimization problem as follows:

Minimize g1(x) = 1/VT (94a)
Minimize g2(x) = �pt (94b)

Over the design parameters:

x = [a, α] (95)

and subject to the following kinematic constraints [44]:
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Figure 5. Pareto fronts of (a) MOGEO and (b) MOPSO for the multiobjective optimization problem.

Radius of base circle:

amin ≤ a ≤ amax (96a)

Angle between axes of passive P joints:

0 ≤ α ≤ π/2 (96b)

The actuators stroke:

smin ≤ si ≤ smax (96c)

Motion range of the passive spherical joints:

0 ≤ cos−1 (kT kmp) ≤ γmax (96d)
0 ≤ cos−1 (fT

i kmp) ≤ γmax (96e)

Range of the passive prismatic joints:

0 ≤ bi ≤ bmax (96f)

Kinematic conditioning index (KCI):

KCI ≥ 0.3 (96g)

where KCI is the ratio of the smallest to the largest singular values of the Jacobian matrix JPM [44]. The
larger the KCI, the farther the manipulator is from singularities. The values of lower and upper bounds
of the constraints are given as amin = 0.45 m, amax = 1.5 m, smin = 1.8 m, smax = 2.2 m, γ max = 40◦ and
bmax = 1.1 m.

Mohammadi-Balani et al. [47] have recently introduced a novel swarm-intelligence metaheuris-
tic algorithm called golden eagle optimizer (GEO) that is based on golden eagles’ hunting process.
GEO is founded on intelligent adjustments of attack and cruise propensities that golden eagles perform
while searching for prey and hunting. They also extend GEO to multiobjective golden eagle optimizer
(MOGEO) to solve multiobjective optimization problems.

Here, we utilize MOGEO to solve formulated optimization problem in Eq. (94). The resulting Pareto
front of the solutions is shown in Fig. 5(a), revealing that the larger the manipulator workspace, the
larger the value of �pt (and consequently the smaller ηe) for the obtained solutions (or optimal designs).
In order to compare the solutions, two optimal designs are selected from both ends of the Pareto front,
as shown by blue solid points in Fig. 5(a). Values of design parameters and objective functions for the
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Table I. Values of design parameters, objective functions, ηV and η� for the selected optimal designs.

Variables 1st optimal 2nd optimal 1st optimal 2nd optimal Non-optimal
design design design design design

by MOGEO by MOGEO by MOPSO by MOPSO

a [m] 0.83 0.96 0.84 0.99 0.5
α [rad] 0.46 0.69 0.45 0.70 π /4
1/VT 1.39 0.76 1.395 0.81 0.49
�pt 73.9 139.6 79.69 159.3 284.41
ηV ×100 64.70 35.5 64.87 39.50 –
η�×100 74.0 50.9 71.98 43.98 –

Figure 6. The 3D orientation workspaces of (a) the 1st optimal design and (b) the 2nd optimal design
at h = 1 m.

selected optimal designs and also for a reference non-optimal design are listed in Table I, and their 3D
orientation workspaces are plotted in Fig. 6 at an arbitrary value of h = 1 m. As well, λpt of the selected
optimal designs are plotted in Figs. 7 and 8 at three arbitrary values of h and ϕz. It can be observed
from Table I and Figs. 6, 7 and 8 that the value of �pt for the 1st optimal design is lower than that of the
2nd optimal design, while the volume of total workspace of the 2nd optimal design is larger than that
of the 1st design. In other words, the 1st optimal design is a more energy efficient manipulator, but with
smaller workspace. In Table I, the variables ηV and η� are defined as

ηV =
∣∣∣∣VT ,opt − VT ,non−opt

VT ,non−opt

∣∣∣∣ (97a)

η� =
∣∣∣∣�pt,opt − �pt,non−opt

�pt,non−opt

∣∣∣∣ (97b)

where VT ,non−opt and VT ,opt denote volumes of total workspaces of the reference non-optimal design
and of the 1st and 2nd optimal designs, respectively. Moreover, �pt,non−opt and �pt,opt denote �pts of
the reference non-optimal design and of the 1st and 2nd optimal designs, respectively. In fact, ηV and
η� show relative variations of VT and �pt of the optimal designs with respect to the reference non-
optimal design, respectively. The values of ηV and η� in Table I reveal that VT of the 1st and the 2nd
optimal designs are 64.7% and 35.5% less than that of the reference non-optimal design, respectively,
but �pt of those optimal designs are 74% and 50.9% lower than that of the reference non-optimal design,
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Figure 7. λpt of the 1st optimal design for three arbitrary sets of h and ϕz.

respectively. As a consequence, all the optimal solutions in the Pareto front of MOGEO (Fig. 5(a)) are
more energy efficient than the reference non-optimal design, and a designer can easily select his/her
favorite design from the Pareto front, based on the desired values of �pt and VT .

Moreover, to show efficiency of MOGEO, the above optimization problem is also solved by the
classical multiobjective particle swarm optimization (MOPSO) [48]. The resulting Pareto front of the
solutions is shown in Fig. 5(b). Similarly, two optimal designs are selected from both ends of this Pareto
front, as shown by blue solid points in Fig. 5(b). Values of the corresponding design parameters and
objective functions are listed in Table I. But, by comparison between Figs. 5(a) and (b) and also between
the 1st and the 2nd solutions of the two methods in Table I, one can find that the solutions obtained by
MOGEO method are non-dominated by those derived through MOPSO method. The optimization is run
on Intel (R) Pentium CPU G3250 with 4.00 GB RAM. Computational times of running MOGEO and
MOPSO for this problem are 26.15 and 23.31 s with 500 iterations, respectively. Consequently, although
MOGEO converges to the optimal solutions more slowly, it can find optimal designs of the manipulator
with higher VT ’s and lower �pt’s than MOPSO.

7.1. Numerical example

To show efficiency of the above methodology, a numerical example with a given trajectory is presented
to compare consumed powers of two optimal designs obtained in the previous section using MOGEO.
Except for the design parameters a and α, values of other architectural and dynamic parameters of
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Figure 8. λpt of the 2nd optimal design for three arbitrary sets of h and ϕz.

the 4RPSP+PS PM are taken from Appendix A. Dynamics of the manipulator is also simulated using
SimMechanics toolbox of Matlab software. Time trajectory of the moving platform is given as follows:

h(t) = 1.2( sin (0.2t) + 0.8 cos (0.2t)) m (98a)

ϕx(t) = 0.37 + 0.1 cos (t) (98b)

ϕy(t) = 0.2( cos (0.2t) − 0.4 sin (t)) + 0.3 (98c)

ϕz(t) = 0.1 sin (t) + 0.4 (98d)

where 0 ≤ t ≤ 2π s. To compute input power of the manipulator, at first, its inverse dynamics is analyzed.
In inverse dynamic analysis, the actuator forces Fact are calculated for the given trajectory, q(t) = [h(t)
ϕ1(t) ϕ2(t) ϕ3(t)]T , of the moving platform. To this aim, Eq. (81) is rewritten as

Fact = M(q)q̈ + N(q, q̇)q̇ + δ(q) − J−1
PMJmpηmp (99)

The actuator velocities ṡi and their forces F i are calculated for the two selected optimal designs
presented above using Eqs. (29) and (99). The actuator velocities and forces are plotted in Figs. 9 and
10. Consequently, the instantaneous required driving power of the ith actuator will be

Pinput,i =Fi ṡi (100)

and the total input power of the four actuators is

Pinput =
4∑

i=1

Pinput,i (101)
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Table II. The maximum and minimum values of input powers for the two selected optimal designs.

Selected designs Pinput,max [W] Pinput,min [W]

The 1st optimal design 220.7 −176.4
The 2nd optimal design 588.6 −450.9

Figure 9. The actuator velocities of 4RPSP+PS PM for (a) the 1st optimal design and (b) the 2nd
optimal design obtained by MOGEO.

The values of Pinput,i and Pinput along the given trajectory are plotted in Figs. 11 and 12 for the two optimal
designs. Note that the negative values of driving input powers in Figs. 11 and 12 are due to the negative
values of actuator velocities ṡi in Eq. (100) during motion. However, for computing energy efficiency of
the manipulator (Eq. (83)), the absolute values of Pinput are used. The maximum and minimum values
of actuator input powers during the motion are given in Table II for the two designs.

It is clear from Fig. 12 and Table II that the required power of the 1st optimal design is much less than
that of the 2nd optimal design for the given trajectory. Although the values of actuator forces for the both
designs are approximately equal (Fig. 10), the actuators move more slowly for the 1st optimal design
compared to the 2nd one (Fig. 9). This leads to a less Pinput of the 1st optimal design. Next, the forward
dynamic analysis of the manipulator is analyzed. In forward dynamic analysis, the actuator forces Fact
calculated in previous step for the two optimal designs, initial pose and initial velocity of the moving
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Figure 10. The actuator forces of 4RPSP+PS PM for (a) the 1st optimal design and (b) the 2nd optimal
design obtained by MOGEO.

platforms are given and the problem is to find resulting motion of the moving platform. To this aim, we
rewrite Eq. (81) as

q̈ = M−1(q)(Fact + J−1
PMJmpηmp − N(q, q̇)q̇ − δ(q)) (102)

Initial pose and velocity of the moving platform are obtained from the given time trajectory of the moving
platform (Eqs. (98)) as follows:

q(0) = [ 0.96 0.47 0.5 0.4 ]T (103a)
q̇(0) = [ 0.24 0.0 −0.08 0.1 ]T (103b)

Using the above data, the value of q̈ is computed through Eq. (102), and then q̈ is integrated to calculate
new values of q̇ and q. This process is repeated for t = 0 to 2π to obtain time trajectory of the moving
platform. The calculated time trajectories for the two optimal designs along with the given one (Eqs.
(98)) are presented in Figs. 13 and 14. One can see that the given and calculated trajectories of the
moving platform are indistinguishable, that is to say, the obtained output of forward dynamic analysis
is coincident with the given input of inverse dynamic analysis. Moreover, both of the optimal designs
give the same time trajectory of the moving platform. SimMechanics model for the forward dynamics
of the 4RPSP+PS PM is shown in Fig. 15. The trajectories of the moving platform obtained by the
SimMechanics model are also shown in Figs. 13 and 14 that are so close to two previous mathematical
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Figure 11. The driving power of actuators for (a) the 1st optimal design and (b) the 2nd optimal design
obtained by MOGEO.

Figure 12. The total input power of the 4RPSP+PS PM for the two selected optimal designs obtained
by MOGEO.
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Figure 13. The given, calculated and simulated heights of the moving platform by mathematical and
SimMechanics models.

Figure 14. The given, calculated and simulated orientations of the moving platform by mathematical
and SimMechanics models.

trajectories. The results of this numerical example verify correctness of the presented dynamic modeling
and power optimization of the manipulator.

8. Conclusion

Dynamic modeling and power optimization of a 4RPSP+PS flight simulator PM were presented in this
paper. After description of the manipulator structure, the coordinate frames and rotation matrices of its
moving links were defined. The inverse position kinematics of the manipulator was reviewed. Through
velocity analysis, Jacobian matrices of the manipulator and its moving links were obtained. Using the
Euler–Lagrange method, a closed-form dynamic equation of the manipulator was derived in terms of
time derivatives of pose vector q of the moving platform without resorting to acceleration analysis. This

https://doi.org/10.1017/S0263574721000746 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000746


Robotica 669

B
F

Weld

Pose
To Workspace

B F

Spherical4

B F

Spherical3

B F

Spherical2

B F

Spherical1

Scope

B F

Revolute4

B F

Revolute3

B F

Revolute2

B F

Revolute1

B F

Prismatic9

B F

Prismatic8

B F

Prismatic7

B F

Prismatic6

B F

Prismatic5

B
F

Prismatic4

B
F

Prismatic3

B
F

Prismatic2

B
F

Prismatic1

CS1

CS2

CS3

CS4

CS5

CS6

Moving Platform

Env
Machine

Environment

Joint Actuator4

Joint Actuator3

Joint Actuator2

Joint Actuator1

Ground

Tau4

From
inverse dynamics4Tau3

From
inverse dynamics3

Tau2
From

inverse dynamics2

Tau1

From
inverse dynamics1

CS1 CS2

Body9

CS1 CS2

Body8

CS1 CS2

Body7

CS1 CS2

Body6

CS1 CS2

Body5

CS1 CS2

Body4

CS1 CS2

Body3

CS1 CS2

Body2

CS1 CS2

Body13

CS1 CS2

Body12

CS1 CS2

Body11

CS1 CS2

Body10

CS1 CS2

Body1

Body Sensor

CS1

CS2

CS3

CS4

CS5

CS6

Base

Figure 15. SimMechanics model for forward dynamics of 4RPSP+PS PM.

simplifies dynamic analysis of the 4RPSP+PS PM and decreases the computational time significantly.
A global power transmission was defined to measure the power consumption and the energy efficiency
of the manipulator in its workspace. Then, a multiobjective optimization problem was defined to max-
imize workspace and to minimize power consumption of the manipulator. The problem was solved by
MOGEO and resulted in a Pareto front of the solutions from which a designer can easily select his/her
favorite optimal design with the desired energy deficiency and workspace volume. A numerical exam-
ple was presented to compare power consumptions of the two arbitrarily selected optimal designs from
the Pareto front, revealing that the optimal designs with smaller workspaces have a much less power
consumptions (and conversely higher energy efficiencies) than the designs with larger workspaces. In
addition, dynamic modeling of the manipulator was validated by a SimMechanics model. The author
hopes that the contents of this paper will be helpful for future research of the proposed 4RPSP+PS PM
in the field of control and motion planning.
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Appendix A

Values of architecture parameters:

a = 0.5m, lpl = 1.5m, lcyl = 0.55m, lpis = 0.5m

Mass properties of the simulator machine:

mpl = 1.5kg, mmp = 3.5kg, msc = 14kg, dsc = [001.1]T m,

Īmp =
⎡
⎣1.82 0 0

0 1.82 0
0 0 1.65

⎤
⎦ kg.m2, Īsc =

⎡
⎣10.82 0 0

0 7.33 0
0 0 8.54

⎤
⎦ kg.m2

mcyl = 1.75kg, kg, Icyl =
⎡
⎣0.89 0 0

0 0.89 0
0 0 0.24

⎤
⎦ kg.m2

mpis = 1.65kg, Ipis =
⎡
⎣ 0.79 0 0

0 0.79 0
0 0 0.33

⎤
⎦ kg.m2

mbl = 0.25kg, Ibl =
⎡
⎣ 0.33 0 0

0 0.23 0
0 0 0.27

⎤
⎦ kg.m2
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