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Abstract. We define staircaseZd actions. We first prove that staircaseZ2 actions satisfying
a general condition are mixing. Then we describe how to extend the results to the staircase
Zd actions. Thus we have constructed explicitly rank one mixingZd actions which include
natural analogues to the well-known staircase transformation.

1. Introduction
Rank one transformations attracted increasing attention in ergodic theory after Ornstein
[O] constructed an example of a mixing transformation with no square root. Ornstein’s
transformation was constructed with a ‘random spacer’ method. Subsequently, deep results
were obtained for all mixing rank one transformations. We refer to [Fr ] for rank one
constructions and [Fe] for a recent survey of results and a bibliography on rank one
transformations.

In [AF] and [A2], a family of rank one transformations called the staircase constructions
were defined. An algorithm was given in [AF] which produced a mixing staircase
construction. In [A2] a condition was given which implied mixing. Hence, it followed
from [A2] that the well-known staircase transformation was mixing.

Here our purpose is first, to construct rank oneZ2 actions which are analogous to the
staircase constructions discussed in [AF] and [A2]. Second, to generalize and apply the
techniques of [A2] to prove that a class of staircaseZ2 actions are mixing. Then we
describe how to extend our methods toZd actions.

We denote ourZd action as a mapT : Zd × [0, 1) −→ [0, 1) where we agree to write
T vx in place ofT (v, x) for v ∈ Zd andx ∈ [0, 1). The mapT will be invertible measure
preserving which impliesµ(T vA) = µ(A) for all (measurable) setsA ⊂ [0, 1) and
v ∈ Zd . Given a sequencevn = (v1

n, . . . , v
d
n) ∈ Zd we sayvn →∞ if

∑d
i=1 |vi

n| → ∞ as
n→∞. If we viewZd as a topological group with the discrete topology thenv →∞ is
equivalent to sayingv eventually leaves any compact set.
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The actionT is (strong)mixing if for setsA andB we have

lim
v→∞µ(T vA ∩ B) = µ(A)µ(B).

Before we proceed with a formal proof, let us sketch informally the argument we use to
prove mixing ford = 2. Note that aZ2 action is given by the commuting transformations
T (1,0) andT (0,1). The symmetry in our constructions will imply thatT (1,0) andT (0,1) are
isomorphic.

With each construction we produce a sequencehn →∞ such that

lim
n→∞µ(T (hn,0)A ∩ B) = lim

n→∞µ(T (0,hn)A ∩ B) = µ(A)µ(B)

for all setsA andB. This will be obtained rather easily from the construction and the
mean ergodic theorem for the set{(i + j, j) : i, j ∈ Z+}. Hence, bothT (1,0) and
T (0,1) are weak mixing. Thus, any two-dimensional subgroup ofZ2 will give an ergodic
action. This implies the mean ergodic theorem holds over parallelograms of the form
{iu+ jv : u andv are linearly independent andi, j ∈ Z+}. Then we make the connection
betweenµ(T vA ∩ B) and an average over a parallelogram (possibly with large gaps).
Finally, we use the fact that the length of the sides of the parallelogram are comparable
to the gap size of the parallelogram in order to reduce the average to an average over a
parallelogram with small gaps.

We will make repeated use of the following theorem that is a direct consequence of the
mean ergodic theorem for amenable actions as stated in [OW].

THEOREM 1.1. (Mean ergodic theorem)Let T be a finite measure preserving ergodic
action ofZd on a probability space(X,µ), and{Fn} a Følner sequence forZd . Then for
any sequence of measurable sets{An} and any measurable setB

lim
n→∞

1

|Fn|
∑
v∈Fn

[µ(T vAn ∩ B)− µ(An)µ(B)] = 0.

2. Z2 Staircase actions
Rank oneZ2 actions were constructed in [R, PR, A1, MZ]. The construction in [R]
generalizes Ornstein’s ‘random space method’ toZ2. The actions in [PR] areZ2 analogues
of the well-known Chacon transformation, and these actions are weakly mixing, but not
mixing. They are also shown to have minimal self joinings. The actions in [A1] are lightly
mixing (and uniformly sweeping out), but not mixing. It is not difficult to constructZd

actions with the same properties as those constructed in [A1]. The actions in [MZ ] are
infinite measure preserving.

We will follow the setup in [MZ ] for defining rank oneZ2 actions.

Definition 1. Given a non-negative integerh, a grid G of lengthh is a bijection between
{0, 1, . . . , h − 1} × {0, 1, . . . , h − 1} and a set of distinct intervals of equal length. An
intervalI which is in the range ofG is called alevel. When the context is clear we may
refer toG as the set which is the union of intervals in the range ofG. So if I ⊂ G is a
level then there existsa andb with 0 ≤ a < h and 0≤ b < h such thatG(a, b) = I . In
this case denote Location(I) = (a, b).
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In visualizing the grids it may be helpful to think of each as a number of intervals,
arranged on a square grid inZ2 so that they project from the plane and are perpendicular
to it.

Given any two intervals of the same length, if we think of them in the real line, there is
a unique translation that sends the interval on the left to the one on the right. We think of a
grid G as partially defining transformationsT (1,0) andT (0,1) in the following way.T (1,0)

is the translation map taking levelG(i, j) onto levelG(i + 1, j), for 0 ≤ i < h − 1 and
0 ≤ j ≤ h, andT (0,1) mapsG(i, j) ontoG(i, j + 1), for 0≤ i < h and 0≤ j < h − 1.
We visualizeT (1,0) moving a level to the one on its right andT (0,1) moving a level to the
one above; if no interval exists to the right or above a given interval the transformations
remain undefined at this stage.

Let G andH be grids of lengthg andh respectively. Given non-negative integersa

andb we say the subgridG′ defined byG′(i, j) = H(a + i, b + j), for 0 ≤ i < g and
0≤ j < g, is acopyof G in H if G′(i, j) ⊂ G(i, j) for 0≤ i < g and 0≤ j < g, and

T (1,0)(G′(i, j)) = G′(i + 1, j), T (0,1)(G′(i, j)) = G′(i, j + 1).

This last condition guarantees that the definitions ofT (1,0) andT (0,1) on a copy of a grid
agree with their definitions on a grid. Let Location(G′) = (a, b).

Given a positive integerc, a gridH is astaircase c-cutof grid G of lengthg if G ⊂ H

andH contains(c + 1)2 copies ofG located at(
ig + i(i − 1)

2
+ ij, jg + j (j − 1)

2
+ ij

)
for 0≤ i ≤ c and 0≤ j ≤ c, where the length ofH is

h = (c + 1)g + c(c − 1)

2
+ c2.

Locations inH that do not correspond to copies ofG are assigned intervals not
previously used, calledspacers; all intervals inH have the same length. Figure 1 below
shows the staircase cut forc = 3. This corresponds to cutting each level ofG (or slicing
the gridG) into (3+ 1)2 = 16 subintervals of equal length. While keeping all subintervals
in their proper position according toT (1,0) andT (0,1), we place copies ofG in the locations
(ig+ i(i − 1)/2+ ij, jg+ j (j − 1)/2+ ij ) and place spacers in the remaining locations.

A staircase actionis defined by giving a sequence of positive numbers{cn} and a
sequence of grids{Gn} such thatGn+1 is a staircasecn-cut of Gn. Each gridGn has
lengthhn; G0 is a fixed grid of length one. We assume that limn→∞ cn = ∞, and that the
total length of the spacers that are added is finite and normalize the measure of the space to
be one. If lim supn→∞ cn < ∞ then one can show that the action is partially rigid, hence
not mixing.

The following notation will be used throughout. LetG
[i,j ]
n denote the copy ofGn in

Gn+1 at location(ihn + i(i − 1)/2+ ij, jhn + j (j − 1)/2+ ij ); we will say that this
copy isindexedby (i, j), 0 ≤ i, j ≤ cn, (recall thatGn(i, j) stands for the level ofGn at
location(i, j)). For any setA let

A[i, j ; n] = A ∩G
[i,j ]
n .

With eachn ∈ N and each(a, b) as specified below, we associate two vectors:
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FIGURE 1.

1. for (a, b) ∈ {0, . . . , cn − 1} × {0, . . . , cn} let σn(a, b) = (σ1, σ2) be such that

T (hn,0)G[a,b]
n = T (−σ1,−σ2)G[a+1,b]

n

and
2. for (a, b) ∈ {0, . . . , cn} × {0, . . . , cn − 1} let τn(a, b) = (τ1, τ2) be such that

T (0,hn)G[a,b]
n = T (−τ1,−τ2)G[a,b+1]

n .

If we use the definition of the staircase cut we get

σn(a, b)+ (hn, 0)

=
(

(a + 1)hn + (a + 1)a

2
+ (a + 1)b, bhn + b(b− 1)

2
+ (a + 1)b

)
−
(

ahn + a(a − 1)

2
+ ab, bhn + b(b − 1)

2
+ ab

)
= (hn + a + b, b).

Hence,σn(a, b) = (a+ b, b) and similarlyτn(a, b) = (a, a+ b). (These are special cases
of Lemma 2.3.) Below we use this property of the spacers, along with the mean ergodic
theorem forZ2 actions to prove that bothT (1,0) andT (0,1) are weak mixing.

LEMMA 2.1. The transformationsT (1,0) andT (0,1) are weak mixing.

Proof. SinceT (1,0) andT (0,1) are isomorphic, it is enough to proveT (1,0) is weak mixing.
Let A andB each be a union of levels in gridGk. Forn > k, letFn = {(−i− j,−j) : 0 ≤

https://doi.org/10.1017/S0143385799133923 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385799133923


Zd Staircase actions 841

i < cn, 0≤ j ≤ cn}. We note that

A ∩Gn+1 =
cn⋃

i=0

cn⋃
j=0

[A ∩G
[i,j ]
n ]

and similarly forB.
Sinceσn(i, j) = (i + j, j), then for each(i, j) ∈ {0, . . . , cn − 1} × {0, . . . , cn},

T (−i−j,−j)A[i + 1, j ; n] ⊂ T (hn,0)A

with µ(A[i, j ; n]) = 1/(cn + 1)2µ(A).
We have

µ(T (hn,0)A ∩ B) = µ

(
T (hn,0)

( cn⋃
i=0

cn⋃
j=0

A[i, j ; n]
)
∩
( cn⋃

i=0

cn⋃
j=0

B[i, j ; n]
))

≥ µ

( cn−1⋃
i=0

cn⋃
j=0

T (hn,0)A[i, j ; n] ∩ B[i + 1, j ; n]
)

=
cn−1∑
i=0

cn∑
j=0

µ(T (hn,0)A[i, j ; n] ∩ B[i + 1, j ; n])

=
cn−1∑
i=0

cn∑
j=0

µ(T (−i−j,−j)A[i + 1, j ; n] ∩ B[i + 1, j ; n])

≥
cn−1∑
i=0

cn∑
j=0

1

(cn + 1)2

[
µ(T (−i−j,−j)A ∩ B)− i + 2j

hn

]

≥
[

1

(cn + 1)2

cn−1∑
i=0

cn∑
j=0

µ(T (−i−j,−j)A ∩ B)

]
− 3cn

hn

.

The fact thatT is finite measure preserving is sufficient to imply limn→∞(cn/hn) = 0.
Therefore using the mean ergodic theorem

lim inf
n→∞ µ(T (hn,0)A ∩ B) ≥ lim inf

n→∞
1

(cn + 1)2

cn−1∑
i=0

cn∑
j=0

µ(T (−i−j,−j)A ∩ B)

= lim
n→∞

1

(cn + 1)2

∑
(i,j)∈Fn

µ(T (i,j)A ∩ B) = µ(A)µ(B).

Hence, for all setsA andB,

lim inf
n→∞ µ(T (hn,0)A ∩ B) ≥ µ(A)µ(B).

Thus, lim supn→∞ µ(T (hn,0)A ∩ B) ≤ µ(A)µ(B), for all setsA andB, which completes
the proof. 2

Thus, we have that each ofT (1,0) and T (0,1) is totally ergodic. Therefore, by the
following proposition the mean ergodic theorem will hold along any two-dimensional
subgroup ofZ2.
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PROPOSITION2.2. Any two-dimensional subgroup of aZ2 action is ergodic if at least one
of the generating directions ofT is totally ergodic.

Proof. Suppose the direction generated by(1, 0) is totally ergodic. LetF be the subgroup
generated by linearly independent vectors(a, b) and(c, d). Then

d(a, b)− b(c, d) = (ad − bc, 0) ∈ F

and sinceT (ad−bc,0) is ergodic, so is the action ofF . 2

We refer toσ and τ as the spacer functions forT (1,0) and T (0,1) respectively. We
introduce thecumulative spacer functionsφk,` : Z2× Z2→ Z2, defined by

φ1,0(a, b) = (a + b, b) and φ0,1(a, b) = (a, a + b)

and for positive integersk and`

φk,`(a, b) =
k−1∑
i=0

φ1,0(a + i, b)+
`−1∑
j=0

φ0,1(a + k, b + j).

We extend the definition to negative integers by setting, for all positive integersk and`

φ−k,`(a, b) = −φk,`(a − k, b),

φk,−`(a, b) = −φk,`(a, b − `),

φ−k,−`(a, b) = −φk,`(a − k, b − `).

The main consequence of our spacer arrangement is thatφk,`(a, b) − φk,`(0, 0) is the
two-dimensional subgroup ofZ2 generated by(k + `, `) and(k, k + `).

LEMMA 2.3. For the cumulative spacer function the following formula holds for integers
k, `, a andb:

φk,`(a, b)− φk,`(0, 0) = a(k + `, `)+ b(k, k + `).

Proof. We verify the formula for the casek and` are positive integers. The other cases
may be verified in the same manner. We get

φk,`(a, b)− φk,`(0, 0)

=
`−1∑
i=0

τn(a + k, b + i)+
k−1∑
i=0

σn(a + i, b)−
`−1∑
i=0

τn(k, i)−
k−1∑
i=0

σn(i, 0)

=
`−1∑
i=0

[τn(a + k, b + i)− τ (k, i)] +
k−1∑
i=0

[σn(a + i, b)− σn(i, 0)]

=
`−1∑
i=0

(a, a + b)+
k−1∑
i=0

(a + b, b)

= a(k + `, `)+ b(k, k + `). 2
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LEMMA 2.4. If {pn} a sequence of positive integers tending to infinity,un = (yn, zn) is a
sequence of vectors such thatyn ≥ zn ≥ 0 andhpn ≤ yn ≤ 2hpn , then for any setsA and
B and positive integerk we have

lim
n→∞µ(T kunA ∩ B) = µ(A)µ(B).

Proof. It is sufficient to prove the lemma whenA andB are each a union of levels in some
grid. Fix k and choosekn and`n such thatkyn = knhpn + qn andkzn = `nhpn + rn where

0≤ qn, rn < hpn . For eachn, we will partition the setA into four subsetsA(pn)

1 , . . . , A
(pn)

4 .
First let

3
(pn)

1 = {(i, j) : hpn − qn ≤ i < hpn, 0 ≤ j < hpn − rn}
3

(pn)

2 = {(i, j) : 0≤ i < hpn − qn, hpn − rn ≤ j < hpn}
3

(pn)

3 = {(i, j) : hpn − qn ≤ i ≤ hpn, hpn − rn ≤ j < hpn}
3

(pn)

4 = {(i, j) : 0≤ i < hpn − qn, 0 ≤ j < hpn − rn}
and ford = 1, . . . , 4 let

D
(pn)
d =

⋃
(i,j)∈3(pn)

d

Gpn(i, j).

Let A(pn)

d = A ∩D
(pn)

d . Below we prove that for allε > 0 there existsN such that for
all n ≥ N ,

µ(T kunA
(pn)

4 ∩ B) ≥ µ(A
(pn)

4 )µ(B)− ε.

A similar argument will hold for setsA(pn)

1 , A
(pn)

2 andA
(pn)

3 . It follows that

lim inf
n→∞ µ(T kunA ∩ B) ≥ µ(A)µ(B).

Since this is true for all sets, by consideringB andBc, we get that limn→∞ µ(T kunA ∩
B) = µ(A)µ(B), which will complete the proof of the lemma.

Now defineA
′(pn)

4 [i, j ;pn] = T (qn,rn)A
(pn)

4 [i, j ;pn]. We use the definition of the
cumulative spacer function to get that for alln sufficiently large,

T kunA
(pn)

4 [i, j ;pn] = T (qn,rn)T (knhpn ,`nhpn )A
(pn)

4 [i, j ;pn]
= T (qn,rn)T −φkn,`n (i,j)A

(pn)

4 [i + kn, j + `n;pn]
= T −φkn,`n (i,j)A

′(pn)

4 [i + kn, j + `n;pn].
We now apply the general formula of the cumulative spacer functions. LetRn =

cpn − (kn + 1) andSn = cpn − (`n + 1). Using thatA andB are each a union of levels of
the (Pn)th grid,

µ(T kunA
(pn)

4 ∩ B)

= µ

(
T kun

( cpn⋃
i=0

cpn⋃
j=0

A
(pn)

4 [i, j ;pn]
)
∩
( cpn⋃

i=0

cpn⋃
j=0

B[i, j ;pn]
))
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≥ µ

( Rn⋃
i=0

Sn⋃
j=0

T kunA
(pn)

4 [i, j ;pn] ∩ B[i + kn, j + `n;pn]
)

=
Rn∑
i=0

Sn∑
j=0

µ(T kunA
(pn)

4 [i, j ;pn] ∩ B[i + kn, j + `n;pn])

=
Rn∑
i=0

Sn∑
j=0

µ(T −φkn,`n (i,j)A
′(pn)

4 [i + kn, j + `n;pn] ∩ B[i + kn, j + `n;pn])

≥
Rn∑
i=0

Sn∑
j=0

1

(cn + 1)2

[
µ(T −φkn,`n (i,j)A

′(pn)

4 ∩ B)− 2kn

hpn

]

= 1

(cn + 1)2

∑
(i,j)∈Fn

[
µ(T −φkn,`n (i,j)A

′(pn)

4 ∩ B)− 2kn

hpn

]
,

whereFn = {−φkn,`n(i, j) : 0≤ i < Rn, 0 ≤ j < Sn}.
By Lemma 2.3{φkn,`n(i, j) : i, j ∈ Z} is a translate of the subgroup generated by

(kn + `n, `n) and(kn, kn + `n). By Proposition 2.2, each subgroup acts ergodically. Since
hpn ≤ yn ≤ 2hpn , there are at most(2k + 1)(k + 1) subgroups generated by the pairs
(kn + `n, `n) and(kn, kn + `n) which vary withn. We apply the mean ergodic theorem to
the set of Følner sequencesFn corresponding to the six subgroups to obtain

1

|Fn|
∑

(i,j)∈Fn

[µ(T (i,j)A
′(pn)

4 ∩ B)− µ(A
′(pn)

4 )µ(B)] → 0

asn→∞.

Thus, for anyε, for all n sufficiently large,

µ(T kunA
(pn)

4 ∩ B) ≥ µ(A
(pn)

4 )µ(B)− ε,

which by an earlier remark completes the proof of the lemma. 2

LEMMA 2.5. If T is a finite measure preserving staircase action then

lim
p→∞

h2
p−1

hp

= ∞.

Proof. We have

lim
p→∞

h2
p−1

hp

= lim
p→∞

(
(cp−1+ 1)hp−1

hp

)(
hp−1

cp−1+ 1

)
= 1 · ∞. 2

3. Consequences of the mean ergodic theorem

We start with an extension to the case ofZ2 actions of a lemma in [A2].
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LEMMA 3.1. Let u andv be linearly independent vectors inZ2. For positive integersR,
S, ρ andL, and any measurable setB we have∫

[0,1)

∣∣∣∣ 1

RS

R−1∑
i=0

S−1∑
j=0

XB(T iu+jvx)− µ(A)

∣∣∣∣ dµ

≤
∫
[0,1)

∣∣∣∣ 1

L

L−1∑
i=0

XB(T iρux)− µ(B)

∣∣∣∣ dµ+ ρL

R
.

Proof. Separate the averaging set0 = {iu + jv : 0 ≤ i ≤ R − 1, 0 ≤ j ≤ S − 1}
into two disjoint sets:01 = {iu + jv : 0 ≤ i ≤ bR/ρLcρL − 1, 0 ≤ j ≤ S − 1} and
02 = {iu + jv : ρLbR/ρLc ≤ i ≤ R − 1, 0 ≤ j ≤ S − 1}. Let 02 = ∅ if R/ρL is a
natural number. Thus,∫

[0,1)

1

|0|
∣∣∣∣∑
w∈0

(XB(T wx)− µ(B))

∣∣∣∣ dµ

≤
∫
[0,1)

1

|0|
∣∣∣∣ ∑
w∈01

(XB(T wx)− µ(B))

∣∣∣∣ dµ

+
∫
[0,1)

1

|0|
∣∣∣∣ ∑
w∈02

(XB(T wx)− µ(B))

∣∣∣∣ dµ.

First we see that01 may be covered by disjoint translates of the set03 = {iρu + jv :
0≤ i ≤ L−1, 0 ≤ j ≤ S−1}. Using the fact thatT is measure preserving we obtain that
the first term on the right-hand side of the previous inequality will be less than or equal to
the mean ergodic average over03.

Now the second term has less thanρLS terms in the sum. Hence, this term is less than
ρLS/|0| = ρL/R. 2

LEMMA 3.2. Let un andvn be sequences of linearly independent vectors inZ2. Suppose
Rn andρn are sequences of positive integers such thatlimn→∞(Rn/ρn) = ∞. If for some
setB and positive integeri we have

lim
n→∞µ(T iρnunB ∩ B) = µ(B)2

then for any sequenceSn of positive integers,

lim
n→∞

∫
[0,1)

∣∣∣∣ 1

RnSn

Rn∑
i=0

Sn∑
j=0

XB(T iun+jvnx)− µ(B)

∣∣∣∣ dµ = 0.

Proof. A technique of Blum–Hanson [BH] implies that givenε > 0 there existsδ > 0 and
a positive integerL so that if|µ(T iρnunB ∩ B)− µ(B)2| < δ for 0 < i ≤ L− 1 then∫

[0,1)

∣∣∣∣ 1

L

L−1∑
i=0

XB(T iρnunx)− µ(B)

∣∣∣∣ dµ < ε.

Hence, ifRn is chosen so that alsoρnL/Rn < ε, then Lemma 3.1 implies that for allSn,∫
[0,1)

∣∣∣∣ 1

RnSn

Rn−1∑
i=0

Sn−1∑
j=0

XB(T iun+jvnx)− µ(B)

∣∣∣∣ dµ < 2ε. 2
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4. Mixing staircase actions
THEOREM 4.1. Let T be a finite measure preserving staircaseZ2 action with cuts{cn}
and lengths{hn} such thatlimn→∞ cn =∞. If

lim
n→∞

c2
n

hn

= 0

thenT is mixing.

Proof. It is sufficient to prove that every sequence of vectors converging to infinity has a
subsequence(sn, tn) which is a mixing sequence, i.e. that for all measurable setsA andB

we have limn→∞ µ(T (sn,tn)A ∩ B) = µ(A)µ(B). SinceT (1,0) andT (0,1) are isomorphic,
by taking a subsequence if necessary, it suffices to prove that(sn, tn) is a mixing sequence
wheresn ≥ |tn|. Moreover, by passing to a subsequence if necessary and for convenience
of notation renaming it, we may assumehn ≤ sn < hn+1 for all positive integersn, and the
ratioskn/cn, `n/cn, qn/hn andrn/hn all converge asn→∞. Choose integerskn, `n, qn

andrn so that

sn = knhn + qn and tn = `nhn + rn

where 1≤ kn ≤ cn, 0 ≤ qn < hn, 0 ≤ |`n| ≤ cn and 0≤ |rn| < hn. Let A andB be
measurable sets which appear as a union of levels inGn for sufficiently largen. We fix
such ann and consider the gridGn. First assumèn andrn are non-negative. Partition
Gn+1 into four subsets:D(n), E

(n)
1 , E

(n)
2 , andE

(n)
3 . Whentn ≥ 0 define

0
(n)
1 = {(a, b) : hn+1 − sn ≤ a ≤ hn+1, 0 ≤ b < hn+1 − tn}

0
(n)
2 = {(a, b) : 0 ≤ a ≤ hn+1 − sn, hn+1 − tn ≤ b ≤ hn+1}

0
(n)
3 = {(a, b) : hn+1 − sn ≤ a ≤ hn+1, hn+1 − tn ≤ b ≤ hn+1}

3(n) = {(a, b) : 0 ≤ a < hn+1 − sn, 0 ≤ b < hn+1 − tn}.
Let

E
(n)
i =

⋃
(a,b)∈0(n)

i

Gn+1(a, b)

and

D(n) =
⋃

(a,b)∈3(n)

Gn+1(a, b).

Mixing on the four subsets can be shown separately. The argument for setsE
(n)
1 , E

(n)
2 ,

andE
(n)
3 are similar and follows from the method used in Lemma 2.1. Thus, we only give

the complete argument for the setE
(n)
3 . The proof of mixing onD(n) is more intricate and

requires techniques similar to those utilized in [A2].

Case 1: Mixing onE
(n)
3 . Let A

(n)
3 = A ∩ E

(n)
3 . Note thatA(n)

3 [i, j ; n + 1] =
A

(n)
3 ∩ G

[i,j ]
n+1, and B[i, j ; n+ 1] = B ∩ G

[i,j ]
n+1, but defineA

′(n)
3 [i, j ; n + 1] =

T (sn−hn+1,tn−hn+1)A
(n)
3 [i, j ; n + 1]. Our cumulative spacer function was defined so that
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for i andj satisfying 0≤ i, j < cn+1 we have,

T (sn,tn)A
(n)
3 [i, j ; n+ 1] = T (sn−hn+1,tn−hn+1)T (hn+1,hn+1)A

(n)
3 [i, j ; n+ 1]

= T (sn−hn+1,tn−hn+1)T −φ1,1(i,j)A
(n)
3 [i + 1, j + 1; n+ 1]

= T −φ1,1(i,j)A
′(n)
3 [i + 1, j + 1; n+ 1].

Now we give a computation similar to that shown in Lemma 2.1:

µ(T (sn,tn)A
(n)
3 ∩ B)

= µ

(
T (sn,tn)

( cn+1⋃
i=0

cn+1⋃
j=0

A
(n)
3 [i, j ; n+ 1]

)
∩
( cn+1⋃

i=0

cn+1⋃
j=0

B[i, j ; n+ 1]
))

≥ µ

( cn+1−1⋃
i=0

cn+1−1⋃
j=0

T (sn,tn)A
(n)
3 [i, j ; n+ 1] ∩ B[i + 1, j + 1; n+ 1]

)

=
cn+1−1∑

i=0

cn+1−1∑
j=0

µ(T (sn,tn)A
(n)
3 [i, j ; n+ 1] ∩ B[i + 1, j + 1; n+ 1])

=
cn+1−1∑

i=0

cn+1−1∑
j=0

µ(T −φ1,1(i,j)A
′(n)
3 [i + 1, j + 1; n+ 1] ∩ B[i + 1, j + 1; n+ 1])

≥
cn+1−1∑

i=0

cn+1−1∑
j=0

1

(cn+1+ 1)2

[
µ(T −φ1,1(i,j)A

′(n)
3 ∩ B)− 3i + 3j + 1

hn+1

]

≥
[

1

(cn+1+ 1)2

cn+1−1∑
i=0

cn+1−1∑
j=0

µ(T −φ1,1(i,j)A
′(n)
3 ∩ B)

]
− 6cn+1+ 1

hn+1
.

SinceT is finite measure preserving limn→∞(cn/hn) = 0. By Lemma 2.3,{φ1,1(i, j) :
i, j ∈ Z} is a translation of the two-dimensional subgroup generated by(2, 1) and(1, 2)

and by Proposition 2.2 acts ergodically. We apply the mean ergodic theorem to the Følner
sequenceFn+1 = {−φ1,1(i, j) : 0 ≤ i < cn+1, 0 ≤ j < cn+1} for the subgroup action to
obtain ∣∣∣∣ 1

(cn+1+ 1)2

∑
(i,j)∈Fn+1

µ(T (i,j)A
′(n)
3 ∩ B)− µ(A

′(n)
3 )µ(B)

∣∣∣∣→ 0.

Case 2: Mixing onD(n). Define the following sets:

3
(n)
1 = {(i, j) : hn − qn ≤ i < hn, 0 ≤ j < hn − rn}

3
(n)
2 = {(i, j) : 0 ≤ i < hn − qn, hn − rn ≤ j < hn}

3
(n)
3 = {(i, j) : hn − qn ≤ i ≤ hn, hn − rn ≤ j < hn}

3
(n)
4 = {(i, j) : 0 ≤ i < hn − qn, 0≤ j < hn − rn}

and forp = 1, . . . , 4 let

D(n)
p =

( ⋃
(i,j)∈3(n)

p

Gn(i, j)

)
∩D(n).
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Let A
(n)
4 = A ∩ D(n) andA

(n)
4,p = A ∩ D

(n)
p for p = 1, . . . , 4. This produces a partition

of A
(n)
4 . Below we show mixing onA(n)

4,4 and a similar argument works for setsA
(n)
1 , A

(n)
2

andA
(n)
3 . Note thatA(n)

4,4[i, j ; n] = A
(n)
4,4 ∩ G

[i,j ]
n , andB[i, j ; n] = B ∩ G

[i,j ]
n but define

A
′(n)
4,4 [i, j ; n] = T (qn,rn)A

(n)
4,4[i, j ; n]. Use the general formula of the cumulative spacer

function to obtain the following.

T (sn,tn)A
(n)
4,4[i, j ; n] = T (qn,rn)T (knhn,`nhn)A

(n)
4,4[i, j ; n]

= T (qn,rn)T −φkn,`n (i,j)A
(n)
4,4[i + kn, j + `n; n]

= T −φkn,`n (i,j)A
′(n)
4,4 [i + kn, j + `n; n].

Once again we use the idea from Lemma 2.1 which was also used to prove mixing on
E

(n)
3 . However, in this case we will need the condition that limn→∞(c2

n/hn) = 0. For the
following expression letRn = cn − (kn + 1) andSn = cn − (`n + 1).

µ(T (sn,tn)A
(n)
4,4 ∩ B)

= µ

(
T (sn,tn)

( cn⋃
i=0

cn⋃
j=0

A
(n)
4,4[i, j ; n]

)
∩
( cn⋃

i=0

cn⋃
j=0

B[i, j ; n]
))

≥ µ

( Rn⋃
i=0

Sn⋃
j=0

T (sn,tn)A
(n)
4,4[i, j ; n] ∩ B[i + kn, j + `n; n]

)

=
Rn∑
i=0

Sn∑
j=0

µ(T (sn,tn)A
(n)
4,4[i, j ; n] ∩ B[i + kn, j + `n; n])

=
Rn∑
i=0

Sn∑
j=0

µ(T −φkn,`n (i,j)A
′(n)
4,4 [i + kn, j + `n; n] ∩ B[i + kn, j + `n; n])

≥
Rn∑
i=0

Sn∑
j=0

1

RnSn

[
µ(T −φkn,`n (i,j)A

′(n)
4,4 ∩ B)− 10c2

n

hn

]

≥
[

1

RnSn

Rn∑
i=0

Sn∑
j=0

µ(T −φkn,`n (i,j)A
′(n)
4,4 ∩ B)

]
− 10c2

n

hn

.

Now we will work out the combinatorics on the set{φkn,`n(i, j) : i, j ∈ Z}. Note that
{φkn,`n(i, j) : i, j ∈ Z} is a translation of the subgroup generated by(kn + `n, `n) and
(kn, kn + `n). In particular, Lemma 2.3 impliesφkn,`n(i, j) = i(kn + `n, `n)+ j (kn, kn +
`n) + φkn,`n(0, 0). Choose positive integerspn so thathpn−1 < kn + `n ≤ hpn . If

kn/cn→ 1 asn→∞ thenµ(A
′(n)
4,4 )→ 0 asn→∞. Otherwise Lemma 2.5 implies

lim
n→∞

(cn − kn − 1)(kn + `n)

hpn

= lim
n→∞

(
cn − kn − 1

2kn

)
(2kn)(kn + `n)

hpn

≥ lim
n→∞

(
cn − kn − 1

2kn

)(
h2

pn−1

hpn

)
=∞.
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Let ρn = inf{ρ ∈ N : ρ(kn + `n) ≥ hpn}. Hence limn→∞(Rn/ρn) = ∞. If we let
un = (kn+`n, `n), then by Lemma 2.4, for alli andB, limn→∞ µ(T iρnunB∩B) = µ(B)2.
Therefore by Lemma 3.2

|µ(T (sn,tn)A
(n)
4,4 ∩ B)− µ(A

(n)
4,4)µ(B)| = |µ(T (sn,tn)A

(n)
4,4 ∩ B)− µ(A

′(n)
4,4 )µ(B)| → 0.

This completes the proof wheretn ≥ 0. Whentn < 0 the argument may be handled in
the same manner. The positions of the setsE

(n)
i andD

(n)
i change but the basic ideas are

the same. In fact, in this case we define

0
(n)
1 = {(a, b) : hn+1 − sn ≤ a ≤ hn+1, 0 ≤ b < −tn}

0
(n)
2 = {(a, b) : 0≤ a ≤ hn+1 − sn, 0 ≤ b ≤ −tn}

0
(n)
3 = {(a, b) : hn+1 − sn ≤ a ≤ hn+1,−tn ≤ b ≤ hn+1}

3(n) = {(a, b) : 0≤ a < hn+1 − sn,−tn ≤ b < hn+1}.
Then let

E
(n)
i =

⋃
(a,b)∈0(n)

i

Gn+1(a, b)

and

D(n) =
⋃

(a,b)∈3(n)

Gn+1(a, b)

and finally define the sets3(n)
p in the following way to obtain the corresponding setsD

(n)
p .

3
(n)
1 = {(i, j) : hn − qn ≤ i < hn, 0 ≤ j < −rn}

3
(n)
2 = {(i, j) : 0 ≤ i < hn − qn,−rn ≤ j < hn}

3
(n)
3 = {(i, j) : hn − qn ≤ i ≤ hn,−rn ≤ j < hn}

3
(n)
4 = {(i, j) : 0 ≤ i < hn − qn, 0 ≤ j < −rn}. 2

5. Zd Staircase actions
In this section we extend our construction to the case ofZd actions. Given a positive
integerc, a grid H is a staircase c-cutof grid G of lengthg if G ⊂ H and for each
(a1, . . . , ad) ∈ {0, . . . , c}d , H contains a copy ofG located at(b1, . . . , bd) where

bi =
(

aig + [ai(ai − 1)/2] +
d∑

j 6=i

aj

)
and the length ofH is

h = (c + 1)g + c(c− 1)

2
+ (d − 1)c2.

For the cumulative spacer function, thej th coordinate ofφei (a1, . . . , ad) is aj if j 6= i

and
∑d

t=1 at if j = i. We give the general formula below in Lemma 5.1.
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LEMMA 5.1. For the cumulative spacer functions, the set of vectors

V = {φ(k1,...,kd )(a1, . . . , ad)− φ(k1,...,kd )(0, . . . , 0) : (a1, . . . , ad) ∈ Zd }
is generated by vectorsv1, . . . , vd where thej th component ofvi is kj for j 6= i and∑d

t=1 kt for j = i.

Since for eachj , Fn = {φej (a) : a = (a1, . . . , ad) ∈ {0, . . . , cn}d} is a Følner sequence,
applying the mean ergodic theorem as in Lemma 2.1 gives that each direction is weak
mixing. Hence, the mean ergodic theorem holds on alld-dimensional subgroups ofZd .
This allows one to use an averaging argument similar to that in Theorem 4.1 to show that
the action is mixing.

THEOREM 5.2. Let T be a finite measure preserving staircaseZd action with cuts{cn}
and lengths{hn} such thatlimn→∞ cn =∞. If

lim
n→∞

c2
n

hn

= 0,

thenT is mixing.
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