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Abstract We define staircasg” actions. We first prove that stairca&@actions satisfying

a general condition are mixing. Then we describe how to extend the results to the staircase
7% actions. Thus we have constructed explicitly rank one migifigctions which include
natural analogues to the well-known staircase transformation.

1. Introduction

Rank one transformations attracted increasing attention in ergodic theory after Ornstein
[O] constructed an example of a mixing transformation with no square root. Ornstein’s
transformation was constructed with a ‘random spacer’ method. Subsequently, deep results
were obtained for all mixing rank one transformations. We referRq for rank one
constructions andHe] for a recent survey of results and a bibliography on rank one
transformations.

In [AF] and [A2], a family of rank one transformations called the staircase constructions
were defined. An algorithm was given i\fF] which produced a mixing staircase
construction. In A2] a condition was given which implied mixing. Hence, it followed
from [A2] that the well-known staircase transformation was mixing.

Here our purpose is first, to construct rank dfeactions which are analogous to the
staircase constructions discussedA#] and [A2]. Second, to generalize and apply the
techniques of A2] to prove that a class of staircag® actions are mixing. Then we
describe how to extend our methodsb actions.

We denote ouZ? action as a maf : Z¢ x [0, 1) — [0, 1) where we agree to write
TVx in place ofT (v, x) for v € Z¢ andx < [0, 1). The mapr’ will be invertible measure
preserving which implieg«(T'A) = w(A) for all (measurable) setd < [0,1) and
v e Z4. Given asequenas, = (v}, ..., v%) € Z¢ we sayv, — ooif Y0, [vi| - oo as
n — oo. If we view Z? as a topological group with the discrete topology ther oo is
equivalent to saying eventually leaves any compact set.
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The actionT is (strong)mixingif for setsA and B we have
lim w(T"ANB) = u(A)u(B).
vV—>00

Before we proceed with a formal proof, let us sketch informally the argument we use to
prove mixing ford = 2. Note that &2 action is given by the commuting transformations
710 and7©D, The symmetry in our constructions will imply th&at:-® and7©D are
isomorphic.

With each construction we produce a sequengce> oo such that

lim w(T%"9%4NB)= lim w(TO"ANB) = u(A)u(B)
n—o00 n—oo

for all setsA and B. This will be obtained rather easily from the construction and the
mean ergodic theorem for the sgi + j, j) : i,j € Z%}. Hence, bothT &9 and
7D are weak mixing. Thus, any two-dimensional subgroufdfvill give an ergodic
action. This implies the mean ergodic theorem holds over parallelograms of the form
{iu + jv : u andv are linearly independent ardj € Z*}. Then we make the connection
betweenu(T'A N B) and an average over a parallelogram (possibly with large gaps).
Finally, we use the fact that the length of the sides of the parallelogram are comparable
to the gap size of the parallelogram in order to reduce the average to an average over a
parallelogram with small gaps.

We will make repeated use of the following theorem that is a direct consequence of the
mean ergodic theorem for amenable actions as stat€f [

THEOREM1.1. (Mean ergodic theorenbet 7 be a finite measure preserving ergodic
action of Z¢ on a probability spacéX, i), and{F,} a Fglner sequence f&“. Then for
any sequence of measurable dets} and any measurable st

lim
n—00 |Fn|

> (T Ay 0 B) = p(An)u(B)] = 0.

veF,

2. 772 Staircase actions
Rank oneZ? actions were constructed ifR] PR, A1, MZ]. The construction in R]
generalizes Ornstein’s ‘random space metho&4oThe actions infPR] areZ? analogues
of the well-known Chacon transformation, and these actions are weakly mixing, but not
mixing. They are also shown to have minimal self joinings. The action&ihdre lightly
mixing (and uniformly sweeping out), but not mixing. It is not difficult to constrzét
actions with the same properties as those constructefllih [The actions in [MZ] are
infinite measure preserving.

We will follow the setup in MZ ] for defining rank oné&? actions.

Definition 1. Given a non-negative integér agrid G of length# is a bijection between
{0,1,...,h — 1} x {0,1,...,h — 1} and a set of distinct intervals of equal length. An
interval I which is in the range o€ is called alevel When the context is clear we may
refer to G as the set which is the union of intervals in the rang&ofSo if I ¢ G is a
level then there exists andb with 0 < a < hand 0< b < h such thatG(a,b) = I. In
this case denote Locatioh = (a, b).
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In visualizing the grids it may be helpful to think of each as a number of intervals,
arranged on a square grid #f so that they project from the plane and are perpendicular
toit.

Given any two intervals of the same length, if we think of them in the real line, there is
a unique translation that sends the interval on the left to the one on the right. We think of a
grid G as partially defining transformatiofis®-9 and7©1 in the following way.7®®
is the translation map taking levél(, j) onto levelG( + 1, j),forO<i < h — 1 and
0<j <h,andT©D mapsG(i, j) ontoG(i, j+ 1), for0<i < hand 0< j < h — 1.

We visualizeT &9 moving a level to the one on its right afd®? moving a level to the
one above; if no interval exists to the right or above a given interval the transformations
remain undefined at this stage.

Let G and H be grids of lengthg and i respectively. Given non-negative integers
andb we say the subgridi’ defined byG'(i, j) = H(a +i,b+ j),for0<i < g and
0<j<g, isacopyof Gin Hif G'(i, j) c G(@i, j)for0<i < gand0< j < g, and

TG 0, ) =G +1j), TOVGG ) =G6"Gj+D.
This last condition guarantees that the definitiong 6f% and7©D on a copy of a grid
agree with their definitions on a grid. Let Locati@¥) = (a, b).

Given a positive integet, a grid H is astaircase c-cubf grid G of lengthg if G ¢ H
andH contains(c + 1)2 copies ofG located at

o i1

g+ D e 1Y
2 2

forO<i <cand0< j < ¢, where the length off is

-1
h:(c—i—l)g—i—Lz)—i—cz.

Locations in H that do not correspond to copies 6f are assigned intervals not
previously used, calledpacersall intervals inH have the same length. Figure 1 below
shows the staircase cut for= 3. This corresponds to cutting each levelk®for slicing
the gridG) into (3+ 1)? = 16 subintervals of equal length. While keeping all subintervals
in their proper position according ®1-9 and7 @ we place copies af in the locations
(ig+i(i—1)/2+ij, jg+ j(j —1)/2+ij) and place spacers in the remaining locations.

A staircase actionis defined by giving a sequence of positive numbierg and a
sequence of grid$G,} such thatG,,1 is a staircase,-cut of G,,. Each gridG, has
lengthh,; Gg is a fixed grid of length one. We assume that,lim, ¢, = oo, and that the
total length of the spacers that are added is finite and normalize the measure of the space to
be one. If limsup_, ., ¢, < oo then one can show that the action is partially rigid, hence
not mixing. .

The following notation will be used throughout. Léfl”” denote the copy of;,, in
Gpy1 at location(ih, +i(i — 1)/2+ij, jhy + j(j — 1)/2+ ij); we will say that this
copy isindexedby (i, j), 0 < i, j < c,, (recall thatG, (i, j) stands for the level of;, at
location(i, j)). For any se let

Ali, jin] = AN G,

With eachn € N and eacha, b) as specified below, we associate two vectors:
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Gn[3.3]
2,3
6
1,3
ot
0,3
6
3,2]
682
2.2
o Gn
h, 02 "
Gn Gﬂ
Grid G, 311
[2.1] G
Gl Gn
G0 n
0,0] 1,0 | A
Gl cld cka G20
Grid G,,;
FIGURE L.

1. for(a,b)e{0,...,c, —1} x{0O,...,c,}leto,(a, b) = (01, 02) be such that

7.0 Glab] _ (=01,-02) Gla+1]
n n

and
2. for(a,b)e{0,...,c,} x{0,...,c, — 1} lett,(a, b) = (11, T2) be such that

0,hy b _ (=11, — b+1
7O Gla-b) — p(-11.—12) Gla.b+1]
If we use the definition of the staircase cut we get

on(a, b) + (hy, 0)

(@a+Da b(b-1)
2

= ((a + Dh, + + (a4 1)b, bh, + — + (a + l)b)

_1 b(b -1
- (ah,,+a(a72)+ab,bh,,+%+ab>

=(hy+a+b,b).

Henceg, (a, b) = (a + b, b) and similarlyr, (a, b) = (a, a + b). (These are special cases
of Lemma 2.3.) Below we use this property of the spacers, along with the mean ergodic
theorem forZ? actions to prove that boti-9 and7©D are weak mixing.

LEMMA 2.1. The transformationg -9 and7©-D are weak mixing.

Proof. SinceT 9 andT @V are isomorphic, it is enough to pro#é-? is weak mixing.
Let A andB each be a union of levels in gr@;. Forn > k,letF, = {(—i—j,—j):0<
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i <cp,0=<j <cy}. We note that

Cn Cn

AnG=JUanar’h
i=0j=0

and similarly forB.
Sinceo, (i, j) = (i + j, j), thenforeachi, j) € {O,...,c, — 1} x {0, ..., ¢y},

T DAL 41, jin] c TH9 4

with 1 (Ali, j; nl) = 1/(cu + D?u(A).
We have

M(T(h”’o)AﬂB) (T(hn 0)<UUA1 J; n]) (ODB[! J I’l))

i=0j= i=0j=

cn—1 ¢,
> u( U YT Q4L j;n1n Bli + 1, j; n])

i=0 j=0

o
|

Cn

ZM(T(”” OAli, j;n1NBli +1, j;nl)

I
L

o
H

Il
M

ZH(T( =I=DA[i +1, j;n]NB[i +1, j;nl)

i

Il
Ho

v

i+2j}

n

Z — 1)2 [M(T(_i_j’_j)A N B) —

=1 ¢, 3 3cn
[(c T T ])AHB)} C

i=0 j=

v

The fact thafl is finite measure preserving is sufficient to imply liny, (¢, / h,) = 0.
Therefore using the mean ergodic theorem

cn—1 ¢,

lim inf T"94 N B) > liminf ———— TEi=i=DANB
w( ) = n—o0 (cp + 1)2 ZX(; JX:M( )

1 ..
= lim ——— w(T@DANB) = u(A)u(B).
n—oo (¢, + 1)2 (i,jge:Fn

Hence, for all setst and B,

liminf w(T"9A N B) > w(A)(B).

n—oo

Thus, limsup_, ., w(T"9YA N B) < u(A)u(B), for all setsA and B, which completes
the proof. ]

Thus, we have that each @19 and 7O is totally ergodic. Therefore, by the
following proposition the mean ergodic theorem will hold along any two-dimensional
subgroup ofzZ2.
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PROPOSITION2.2. Any two-dimensional subgroup o action is ergodic if at least one
of the generating directions df is totally ergodic.

Proof. Suppose the direction generated(tiyO) is totally ergodic. LetF be the subgroup
generated by linearly independent vect@rsb) and(c, d). Then

d(a,b) —b(c,d) = (ad — bc,0) e F
and sincer’ (@d-b¢.0) is ergodic, so is the action df. m]

We refer too and t as the spacer functions f@#1-9 and 7®D respectively. We
introduce thecumulative spacer functions , : Z? x 72 — 7?2, defined by

#10(a,b) = (a+b,b) and ¢o1(a,b) = (a,a+b)
and for positive integerk and?
k=1 -1
$re(a,b) = ¢rola+i,b)+ Y ¢oila+kb+ ).
i=0 j=0
We extend the definition to negative integers by setting, for all positive intéggnrd¢
¢—kea,b) = —pre(a —k, D),

Or,—¢e(a,b) = =g e(a, b —0),
Ok, —e(a,b) = —¢rela—k,b—1).

The main consequence of our spacer arrangement igthét, b) — ¢« ¢(0, 0) is the
two-dimensional subgroup @? generated byk + ¢, ¢) and(k, k + £).

LEMMA 2.3. For the cumulative spacer function the following formula holds for integers
k,¢,a andb:

Pke(a,b) — dre(0,0) =atk +£,£) + bk, k+ ).

Proof. We verify the formula for the case and¢ are positive integers. The other cases
may be verified in the same manner. We get

or.e(a, b) — ¢ ¢(0,0)

-1 k—1 -1 k—1
=Y mla+kb+i)+) oua+ib) =Y wk, i)=Y 04,0
i=0 i=0 i=0 i=0

&~
[N

k=1

= lw@+kb+i) =tk DI+ ) [on(a+i.b) = 0,(i, 0]
i=0 i=0
-1
=Za a—i—b)—i—Z(a—i—b b)
=0
alk +€,8) + bk, k+20). o
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LEMMA 2.4. If {p,} a sequence of positive integers tending to infimity= (y,, z,) is a
sequence of vectors such thgt> z, > 0Oandh,, <y, < 2h,,, then for any setd and
B and positive integet we have

lim w(T*"A N B) = w(A)u(B).

Proof. It is sufficient to prove the lemma whehandB are each a union of levels in some
grid. Fixk and choose, and¢, such thaky, = k,h,, + g, andkz, = €,hp, +r, where

0 < gu, 72 < hp,. For eactn, we will partition the set4 into four subsets\(l””), . Af{”’).
First let

A(lpn) ={@,J) hp, —qn <i <hp,,0<j<hp, —r,}

AP =G, ) 0<i <hp, —quhp, —ra < j <hp,)

AP =G ) thpy —qn i< hp, by, =10 < J < hp,)

AP =G, j):0<i<hp, —qn0<j<hp —ry)
andford =1,...,4 let

D;m: U G, iy ).
(i,j)EAEdpn)

Let A% = An D). Below we prove that for ak > 0 there existsV such that for
alln > N,
kuy, (pn) (pn) _
u(T* A" N B) = p(A, " )u(B) —e.
A similar argument will hold for setsgp”), A(zp") andAép”). It follows that
liminf (T AN B) > n(A)p(B).
n—o0
Since this is true for all sets, by consideriBgand B¢, we get that lim_, o u(T*» A N
B) = u(A)u(B), which will complete the proof of the lemma.

Now defineAil(””)[i, jipal = T(‘lnv’n)Agp”)[i, j: pnl. We use the definition of the
cumulative spacer function to get that for alsufficiently large,

T* APV, ji pp) = T T Eahn bahip) APO[ G
= T @ T=b0tn CD AP 4 Ky, o+ 03 pal
= T7¢knl" (i’j)Ail(pn)[i + kn, Jj+ Ln; pn]-

We now apply the general formula of the cumulative spacer functions. Rl.et=
cp, — (ky +1) andS, = cp, — (¢, +1). Using thatd and B are each a union of levels of
the (P,)th grid,

M(TkunAan) N B)

= [L(Tku"(ij ij Agpn)[i, Js pn]) N <ij Lj B[i, j; pn]))

i=0j=0 i=0 j=0
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Rn n
> (U U 75 AP, 2 pu) O BU + k. i+ s pn])

i=0,;=0
R}‘l S}‘l
=35 (@ APV, i pal O Bl + k. j o+ €as pal)
i=0 j=0
R}‘l S}‘l
— i i) A/ (Pn) s . . .
= Z ZM(T ¢k"’én(l’])A¢{p )[l +ky, j 4+ L pul VBl +ky, j+ Lus pal)
i=0 j:O
> T~ 0untn GD) AP0 ) By _n}
o+ 12 [“( 4
10]0(c"+1) hpn
. 2k
— Pk tn (l,J)A/(Pn) N B) — =2
— 1 > [“(T 4 ) ,
(Cn + 1) (l ])EF hpn

whereF, = {—¢z,.¢,(i,j) :0<i <R,,0<j < S,}.

By Lemma 2.3{¢, ¢, (i, j) : i,j € Z} is a translate of the subgroup generated by
(kp + €5, £,) and(k,, k, + £,). By Proposition 2.2, each subgroup acts ergodically. Since
hp, < yn < 2hp,, there are at mosk + 1)(k 4+ 1) subgroups generated by the pairs
(kp + €5, £,) and(ky,, k,, + £,,) which vary withn. We apply the mean ergodic theorem to
the set of Fglner sequencEs corresponding to the six subgroups to obtain

Y TP A 0 B) — A ) — 0
"G j)eFy

asn — o0.
Thus, for any, for all n sufficiently large,

M(TkunA(Pn) N B) > M(A(pn))M(B) — €,
which by an earlier remark completes the proof of the lemma. |

LEMMA 2.5. If T is a finite measure preserving staircase action then

h2
lim 2= — 00
p—>0 h,
Proof. We have
h? h h
fim 2=t _ jim ozt Do rl ) _1.00 O
p—oo hy p—00 hp cp-1+1 '

3. Consequences of the mean ergodic theorem
We start with an extension to the caseZgfactions of a lemma in42].
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LEmMA 3.1. Letu andv be linearly independent vectors #f. For positive integerst,
S, p andL, and any measurable s8twe have

R-1S5-1
/01)

=5 2 Z X (T V) — M(A)' dp

i=0 j=

)
[0.1)

Proof. Separate the averaging fét= {iu + jv : 0 <i < R-10< j < § -1}
into two disjoint setsT'y = {iu + jv: 0<i < |[R/pL|pL —-1,0< j < §-1}and
I'p={iu+jv:pL|R/pL] <i < R-10=<j<S-1}. LetI', =0 if R/pLisa

natural number. Thus,
> (Xp(T"x) — M(B))’ dp

/01) TN 2=
< Xp(T" B))|d
/[01) | 2 (T — ut >>‘ "

1
+ — Xp(T%x) — uw(B))|du.
/[0,1) | 2 @ ))‘ "

wely
First we see thaf'1 may be covered by disjoint translates of thelBgt= {ipu + jv :
0<i=<L-10<j=<S8-1}. Usingthe fact thal is measure preserving we obtain that
the first term on the right-hand side of the previous inequality will be less than or equal to
the mean ergodic average oV&y.
Now the second term has less thahsS terms in the sum. Hence, this term is less than
pLS/|IT| = pL/R. O

L 1
L
ZXB(T"O“x) M(B)‘du—i—%.

LEMMA 3.2. Letu, andv, be sequences of linearly independent vectot&inSuppose
R, and p, are sequences of positive integers such timat_, - (R, /pn) = oo. If for some

setB and positive integer we have
lim w(T™ " BN B) = u(B)>?
n—o0

then for any sequenc$, of positive integers,

R?l S?l
lim /
n— oo 0 l)

Z Z Xp (T M) — M(B)‘ du = 0.
Sn i=0 j=

Proof. A technique of Blum—HansomH] implies that givere > 0 there exists > 0 and

a positive integeL so that if|u(Tip'1”"B NB) —u(B)?| <sfor0<i <L —1then

/[0 b

Hence, ifR, is chosen so that aIsuz;,L/Rn < €, then Lemma 3.1 implies that for &},

Z X (TPrtny) — H(B)’ dp < e.

1 R,—1S5,-1
Xp(THntivnyy — M(B)‘du < 2e. O
»/[0,1) Ry Sn i—0 jZ
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4. Mixing staircase actions
THEOREMA4.1. Let T be a finite measure preserving stairca&e action with cuts{c,}
and lengthgx,} such thalim,,_, - ¢, = oco. If

2
. C
im 2 =0

n—oo h,
thenT is mixing.

Proof. It is sufficient to prove that every sequence of vectors converging to infinity has a
subsequence,, t,) which is a mixing sequence, i.e. that for all measurable 4etad B
we have lim_ .o u(T®" A N B) = w(A)u(B). SinceT 19 and7©-D are isomorphic,
by taking a subsequence if necessary, it suffices to provéshat) is a mixing sequence
wheres,, > |#,|. Moreover, by passing to a subsequence if necessary and for convenience
of notation renaming it, we may assumg< s, < h,+1 for all positive integera, and the
ratiosk, /cn, €n/cn, qn/ hn @andr,/ h, all converge aga — oo. Choose integers,, £,,, g,
andr, so that

Sn = kohy +q, and t, = L,h, + 1y

where 1<k, < ¢, 0<¢g, < hy, 0 < |€y] < c,and 0< |r,| < hy,. Let A and B be
measurable sets which appear as a union of levets,iior sufficiently largen. We fix
such arm and consider the gridr,,. First assumé,, andr, are non-negative. Partition
G+1 into four subsetsD™, EY”, ES”, andES”. Whent, > 0 define

TV = {(@,b)  hus1 — s <@ < hyy1,0 < b < hys1 — 1)

Iy ={(@.5):0<a < hyt1 — S hut1 — ta < b < hyy1)

TS = {(@,b) : hyg1 — s < @ < hpg1, a1 — tn < b < hyy1)

AW ={((@,b):0<a <hy41—5,,0<b < hpp1— ).

Let
E"= |J Gunf@b)
(a,byer™
and
D= |J Gulab).
(a,b)e A

Mixing on the four subsets can be shown separately. The argument fcﬂigétﬁg”,

andEé") are similar and follows from the method used in Lemma 2.1. Thus, we only give

the complete argument for the déi”). The proof of mixing onD™ is more intricate and
requires techniques similar to those utilized A2].

Case 1: Mixing onEé”). Let A(3") = AN Eé”). Note thatA(3")[i,j;n + 1] =
AP N G, and Bli, j;n+1] = BN G/l but defineAS i, jin + 1] =
T(Sn—hwl”n—hnﬂ)Ag’)[i, jin + 1]. Our cumulative spacer function was defined so that
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fori and; satisfying 0< i, j < ¢,+1 We have,
T(S"’I")Agl)[i, jin+1] = T(Sn*hn+1,tn*hn+1)T(hn+1shn+1)Ag1)[i’ jin+1]
= T hniatn=hus ) T=01aGD AL 4 1, j 4 Ln+ 1]
=T 9EDAG 41, j + L+ 1.
Now we give a computation similar to that shown in Lemma 2.1
w(TE A% N B)

Cn+1Cn+1 Cn+1Cn+1
= H(T(S"’t")( U U Al jin+ 1]) N ( U U Bli.jin+ 1]))

i=0 j=0 i=0 j=0
cnt1—1enp1—1
> ( U U T(S”Z”A(")[ljn—i—l]ﬂB[l—i—l]—i—ln—i—l])

cnt1—1 Cn+1_1

= S (@ WAL, jin+ 110 Bli + 1, j + Ln+ 1))

i=0 j=0
Cnt1—1cnt

= Z (TN AP 41+ Ln+ 1N BL+1,j + 10+ 1])

i=0 j=0
Cntl— 1Cn 1— ' .
2SS e gy - EE3Y]
i=0 j=0 (cn+1+1) Tt
1 cpr1—1cpy1—1 N b1
[72 D> w(@ DAL o B)} _ Xnt1t L
(cn+1+1) par i) hoe

SinceT is finite measure preserving lim o (cn/ 1) = 0. By Lemma 2.3{¢1,1(i, j) :
i, j € Z}is a translation of the two-dimensional subgroup generate@hl) and(1, 2)
and by Proposition 2.2 acts ergodically. We apply the mean ergodic theorem to the Falner
sequence, 11 = {—¢1.1(, j) : 0 <i < cpt1,0 < j < cp41} for the subgroup action to
obtain
1

e X MTEPAT 0B — g ) - 0.
n+

(G, ))€F+1

Case 2: Mixing onD™. Define the following sets:
AP =G ) iy —gn < i <hy, 0= j < hy —r4)
A =G, )1 0<i<hy—quhn—1n <j<hy)
A =G, j) i hy = Gn < i < huhy =1 < j < hy)
Ay =G, ) 0<i <hy—qn0<j <hy—ra}
andforp =1,...,4let

D = < U G, (i, j)) N D™,

NG
(i.))eny
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LetA(”) = ANDW andA(”) = AnDY for p = 1,...,4. This produces a partition
of A(”) Below we show mixing om(” and a similar argument works for seﬁ%’” A(")
andA(") Note thatAE{’A)l[z jin] = AE{’Z N GY andBli, jin] = B N GYY) but define
A’(")[z jin] = T ’")A(”)[z j;n]. Use the general formula of the cumulative spacer
function to obtain the foIIowmg
T(S"””)Affi[i,j; n] = T(qn,r,»T(knhn,znthEf‘)l[i,j;n]
— T(qnarn)T_¢kn.ln(isj)AXlz)1[l' +kn, j 4 Ln; 0l
= TPt CD AV 4 Ky, j + L .
Once again we use the idea from Lemma 2.1 which was also used to prove mixing on

E(”) However, in this case we will need the condition thatnlu;rgo(c /hy) = 0. For the
foIIowmg expressionleR, = ¢, — (k, + 1) andS,, = ¢, — (£, + 1).

M(T(S;latn)A(n) N B)

[
< T (mtn) <UUA£“)11 Js n]) (UUB[! js n))
i=0j= i=0j=
Rn Sﬂ
> u( U 78 AL jin) 0Bl + k. j + € n])
i=0j=0
Rn Sﬂ
=Y > (@ AL, jin] OBl + k. j + €a: n)
i=0 j=0
R}‘l Sn L.
=D > @ DA+ K, j + a3 010 Bl + K, j o+ €3 )
i=0 j=0
Rn Sﬂ 2
1 - 10c
2303 e o a2
l=0 ]:0 RnSn hl‘l
1 Rn Sn 1&.2
[R S ZZM(T P J)A/(")HB)} T
n i= 0] n

Now we will work out the combinatorics on the Sei, ¢, (i, j) : i, j € Z}. Note that
{¢r,.c,(i, j) : i, j € Z} is a translation of the subgroup generated(by+ ¢,, ¢,) and
(kn, kn + £,). In particular, Lemma 2.3 impliegy, ¢, (i, j) = i(kn + €0, £) + j (kn, kn +

£y) + ¢,.¢,(0,0). Choose positive integers, so thath,,_1 < k, + £, < hp,. If
kn/cn — lasn — oo thenu(A/(")) — 0 asn — oco. Otherwise Lemma 2.5 implies

lim (cn —kn — D(ky + £,) — lim (Cn —ky — 1) (k) (ky 4 £5)
2kn hp,

2
. cn—kn—1 hpn—l
> lim = 00.
n—00 2k, hpn

n—00 hpn n—00
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Let p, = inf{p € N : p(k, + £,) > hp,}. Hence lim_.(R,/p,) = oo. If we let
un = (kn+4€,, £,), then by Lemma 2.4, for allandB, lim, oo (T BNB) = j1(B)?.
Therefore by Lemma 3.2

| (TCm ™ AT N B) — p(AD(B)] = (T AL N B) — (A H(B)| — O,

This completes the proof wherg > 0. Whent,, < 0 the argument may be handled in
the same manner. The positions of the SEﬂQ and Df") change but the basic ideas are
the same. In fact, in this case we define

F:(Ln) ={@a,b):hyy1—5p <a <hy41,0<b < —t,}

I = {(a,b) :0<a < hyp1 — 52,0 < b < —1,)

TS = {(@,b) : hys1 —5n < @ < hyst, —ty < b < hp1)

A" ={(a.b):0<a <hpy1—Sp.—tn <b < hpy1}.
Then let

E" = | Guula.b)
(a,byer”

and

D" =) Guula.b)
(a,b)eA™

and finally define the selzsfp’” in the following way to obtain the corresponding th,%‘).

AP =G ) iy —qn < i <0< j < =)
AY = (G )): 0 i < hy—qu,—ra < j <)
A = (G, J) sy = gn S0 < hn. =1 < j < ha)
Agln):{(l'7j):0§i<hn_q;1’05j<_r”}' -

5. 7Z? Staircase actions
In this section we extend our construction to the casé&®ofctions. Given a positive
integerc, a grid H is a staircase c-cubf grid G of lengthg if G ¢ H and for each

(a1,...,aq) €1{0,...,c}¥, H contains a copy of; located ai(by, . .., by) where
d
b = (aig + [ai(a;i — D /2] + Z%‘)
J#

and the length of{ is
c(c—1)

h=(+1g+ +(d — 1)c>

For the cumulative spacer function, thth coordinate ot,, (a1, ..., aq) isa; if j #i
ande:1 a; if j =i. We give the general formula below in Lemma 5.1.
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LeEmMA 5.1. For the cumulative spacer functions, the set of vectors

V =Bty k) @1, - Gd) — Gty k)0, .., 0): (an, ..., ag) € 29}

is generated by vectors, ..., vy where thejth component ob; is k; for j # i and
Sk for j =i.
Since foreachy, F, = {¢;(a) : a = (a1, ..., aq) € {0, ..., cp}¥Yis aFglner sequence,

applying the mean ergodic theorem as in Lemma 2.1 gives that each direction is weak
mixing. Hence, the mean ergodic theorem holds or/alimensional subgroups &.

This allows one to use an averaging argument similar to that in Theorem 4.1 to show that
the action is mixing.

THEOREMS.2. Let T be a finite measure preserving stairca&é action with cuts{c,}
and lengthgx,,} such thalim,,_, - ¢, = oo. If

2
. C
lim 2 =0,

n—o0 h,

thenT is mixing.
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