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ABSTRACT

A critical problem in fi nancial and insurance risk analysis is the calculation of 
risk margins. When there are a number of risks, the total risk margin is often 
reduced to refl ect diversifi cation. How large should the “diversifi cation benefi t” 
be? And how should the benefi t be allocated to the individual risks? We pro-
pose a simple statistical solution. While providing a theoretical analysis, the 
fi nal expressions are readily implemented in practice.
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1. INTRODUCTION

Risk margins provide a buffer against worse than expected losses. Providing 
for risk margins costs money – the cost of tying up capital. Three important 
problems in risk margin calculations are:

• What is an appropriate method to calculate the risk margin for a single risk?
• How does the risk margin for a combined portfolio of risks differ from the 

sum of risk margins obtained separately for each risk?
• What portion of the overall risk margin in a portfolio of risks should be 

attributed back to each individual risk?

The fi rst problem relates to risk measurement and is dealt with in Heilman 
(1989); Wang (1996); McNeil et al. (2005); Furman and Zitikis (2008a) and 
Choo and De Jong (2009). The second problem relates to diversifi cation and is 
discussed in this article. The third problem is important in measuring management 
performance and cost of capital for separate risks, and has received considerable 
attention in recent literature (Tasche, 2004; Overbeck, 2004; Kalkbrener, 2005; 
Dhaene et al., 2009) in the context of capital allocation.
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This article suggests an unifi ed approach dealing with all three problems. 
For a portfolio of risks, simple formulas are provided for risk margins, the 
aggregate diversifi cation benefi t and the allocation of  the same to individual 
risks. The approach has been mentioned in the literature in various guises 
(Ruhm et al., 2003; Kreps, 2005; Furman and Zitikis, 2008a,b; Furman and 
Landsman, 2008). This article provides a single explicit framework, drawing 
out all relevant implications, generalizations and shortcomings.

Section 2 discusses single risk margins. This is generalized to the multiple 
risk setting in § 3. The relationship to CAPM or standard deviation principle 
pricing is discussed in § 4 whereas connections to other approaches are dis-
cussed in § 5. Section 6 discusses how the proposed formulas for risk margins 
and diversifi cation benefi ts can be applied in practice while § 7 gives an empir-
ical illustration. Section 8 provides conclusions.

2. RISK MARGINS AND PERCENTILE RISK AVERSION

Given a risk or loss yi  ≥  0, many practical risk measures can be written as 
(Heilmann, 1989; Furman and Zitikis, 2008a; Choo and De Jong, 2009).

 R( yi )  /  E{yi  f( ui )},  ui  /  Fi ( yi ),

with corresponding risk margin 

 mi  /  R( yi ) – mi = cov{yi, f( ui )},  mi  /  E( yi ). (1)

Here Fi is the distribution of yi, f  ≥  0 is a “percentile aversion function” with 
E{f( ui )}  =  1, and cov denotes covariance. Each choice of f implies a “risk 
measure” which, under specifi ed conditions on f, are coherent – for a detailed 
treatment see Choo and De Jong (2009).

The percentile aversion function f is subjectively specifi ed to indicate the 
relative aversion to various percentile outcomes of the risk or loss. The out-
comes are adjusted by relative aversion, and the risk measure is the expectation 
of the risk adjusted outcomes. The single dot on the margin mi indicates the 
margin is derived on a “stand-alone” basis without reference to other risks in 
the portfolio and hence possible diversifi cation benefi ts.

A more general version of (1) is cov{yi, w( x )} where x is a random variable 
not necessarily equal to yi and E{w( x )}  =  1. This form of the risk margin is 
extensively studied in Furman and Zitikis (2008a,b) who call 

 E{yi  w( x )}  =  mi  +  cov{yi, w( x )},
 
the “weighted allocation” of yi on x, or the “weighted premium” of yi if  x  =  yi. 
Our focus and specialization has four aspects. First, assume w  =  f  � Fx where 
Fx is the distribution of x. This form of w encompasses most interesting and 
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practical cases as illustrated below. Second, our focus is on the risk margin – 
that is the excess over the mean, not the risk measure nor allocation. This 
trivial change of focus has important benefi ts in terms of decomposing diver-
sifi cation benefi ts as seen in § 3. Third, in our development, x is either yi, as in 
(1), or x  =  i yi ,/  the total risk of a portfolio of risks. Finally, all risks yi are 
assumed to have densities.

Table 1 displays three choices of f and the associated risk measure R. Also 
displayed is the standard deviation kf of  f( u ) given u is uniform. The fi rst 
column in the body of Table 1 is the well known Value-at-Risk ( VaR ) picking 
out the appropriate percentile of the distribution. The notations ( u  >  q ) and 
( u  =  q ) indicate the step function and the Dirac-delta function (Lighthill, 
1958) centered on q with unit mass, respectively. For ( u  =  q ), E{yi  f( ui )} "  Fi

– ( q ), 
the VaR at q and in turn cov{yi,  f( ui )} "  Fi

– ( q )  –  mi. This last result also fol-
lows directly from (1):

 mi   =   cov{Fi
–( ui ),  f( ui )}   =   E{Fi

–( ui ) f( ui )}  –  mi. (2)

The fi rst expression on the right is called the “spectral measure” of  risk 
(Acerbi, 2002) decomposing a risk measure as a weighted average of VaRs.

TABLE 1

RISK MEASURES AND CORRESPONDING PERCENTILE RISK AVERSION

Value-at-Risk
at 0  ≤  q  ≤  1

E( max )
r  ≥  1 ind. copies

CTE
at 0  ≤  q  ≤  1

f( u ) ( u  =  q ) rur  –  1 ( >
q

u q
1-

)
 

kf –
r2 1-

r 1-

q
q

1-

The second column in Table 1 is the expected maximum of r independent cop-
ies of the same risk. The fi nal column is the conditional tail expectation, also 
known as the Tail Value-at-Risk or expected shortfall. An extensive discussion 
of different risk measures is in McNeil et al. (2005) while further examples of 
risk measures in terms of f are given in Choo and De Jong (2009). Generally 
f( u ) has a nonnegative derivative indicating aversion is monotonic in u although 
this is not the case for VaR. The choice of f in (1) is equivalent to choosing 
a risk measure in the sense of McNeil et al. (2005). Any monotonic choice of 
f in (1) yields a coherent risk measure (Choo and De Jong, 2009, § 6).

The approach where risky outcomes are weighed according to some function 
f of  the tail probability has been proposed in Quiggin (1982) and extensively 
studied in Yaari (1987). In the insurance literature it is often associated with 
calculating the expected value after distorting the distribution function (Wang, 
1996).
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Generally it is assumed in this article that distribution functions are dif-
ferentiable and hence have densities. Although this may be technically restric-
tive, it is easy to organize an approximating density in any practical setting. 
If  a density exists then so does the inverse distribution function and through-
out this paper it is generally assumed that inverse distribution functions F  –  are 
well defi ned on ( 0, 1 ). This will be the case if  F is strictly monotonic.

The risk margin mi defi ned in (1) can be rewritten as 

 mi   =   kf si  ri ,  ri   /   cor{yi,  f( ui )}, (3)

where kf and si are the standard deviation of f( ui ) and yi, respectively, and cor 
denotes correlation. Here si  ri is called the “corrected” standard deviation of yi 
where the correction factor is the correlation ri. Assuming each yi has continuous 
distribution, the factor kf is independent of the risk i, depending only on the 
aversion function f. Note kf is interpreted as a measure of conservatism (Choo 
and De Jong, 2009) since f adjusts the severity or likelihood of different losses 
based on aversion, magnifying large losses while diminishing small losses. A large 
value of kf indicates a high degree of adjustment and hence conservatism.

Hence the margin mi is a standard deviation type risk margin calculated as 
a multiple kf of  the corrected standard deviation si  ri. Thus while si captures 
all aspects of the variability of yi, ri represents the proportion of relevance to 
the risk manager and hence the corrected standard deviation si  ri is the appro-
priate measure of loss variability.

The correlation ri can be written as 

 ri   =   cor{Fi
–( ui ),   f( ui )},

where Fi
–  is the inverse of the distribution function Fi of  yi. Hence ri measures 

the linearity of  Fi
–( ui ) when plotted against f( ui ), that is, the similarity in 

shape between Fi
–  and f after accounting for location and scale.

To explain the role and importance of the correction factor ri consider two 
losses with the same standard deviation but different distributions. Then the 
difference in risk margins is due to the correction factor ri. Next, consider two 
different aversion functions f with the same kf applied to a single loss distri-
bution. Again the correction factor accounts for the difference in risk margins. 
In both of these cases, ri “corrects” for the shape of the risk distribution and 
aversion. Lastly, the correction factor ri is invariant to location and scale 
transformations of the loss.

If  ri  =  1 then mi  =  kf  si and the risk margin is a multiple of the standard 
deviation, the standard deviation principle of risk margin setting. However the 
condition ri  =  1 holds if  and only if  f( ui )  =  a  +  bFi

–( ui ) implying f and kf 
depend on Fi and hence on the risk i. This dependence can be viewed as a 
shortcoming of the standard deviation principle. Indeed if  f  =  a  +  bFi

– then 
the standard deviation of  f( ui ) is kf  =  bsi and the condition E{f( ui )}  =  1 
implies a  +  bmi  =  1 and hence 
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 f( ui )  =  1  +  b{Fi
–( ui )  –  mi }  =  1  +  kf 

i (F u
i

i i
s

m-)
,

-

which can be negative. Further with kf  =  b si the risk margin is proportional 
to the variance yielding the variance principle of risk margin setting. Hence 
the assumption that ri  =  1 leads to inconsistencies implying the standard devi-
ation and variance principle of risk margin setting cannot be reconciled with 
the percentile aversion framework. The standard deviation principle is further 
discussed in § 4.

3. ALLOCATED RISK MARGINS AND DIVERSIFICATION BENEFITS

Applying the § 2 risk margin calculation to the total risk x  /  i yi/  yields the 
total risk margin 

  { i, (x x, ( , ( )m m mcov cov y u F xx x
i

x i
i

x/ / /= = +u uf }) )f ,& 0/ /  (4)

where 

 i{ { .f
i, ( , , (mm cov y ycori i x i i
i

x
ix i x/ /k s r

r
r= =u ur} }x) )f f  (5)

The double dot notation indicates the risk margins mi are based on a “stand-
together” or overall basis. The risk margin mi is called the allocated margin for 
risk i and is a multiple kf of  the corrected standard deviation si  rix. Note the 
measure of  conservatism kf is the same but the correction to the standard 
deviation si is the correlation of  the risk with the aversion adjusted total 
f( ux ).

Comparing the total of the stand-alone risk margins im mi/+ /  to the 
total allocated risk margin im mi/+ /  shows that the diversifi cation benefi t 
is 

 - if i+ +m mm mi i
i i

i xk s r r= - = - ._ `i j/ /  (6)

Expression (6) can also be written as 

 i
r
r

.m m
m

1
i i

xi -+
+
e o/  (7)

Hence the diversifi cation benefi t is the total stand-alone margin m+ times 
a weighted average of  the proportionate individual diversifi cation benefi ts 
1  –  rix  / ri where the weights are mi  /  m+, the proportions of the total stand-alone 
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risk margin attributable to risk i. Risks yi with a relatively large stand-alone 
risk margin are weighted heavily. Note the above decomposition of the diver-
sifi cation benefi t applies to all risk measures induced by f.

The weighted sum of all the weighted individual proportional diversifi ca-
tion benefi ts – that is the sum in (7) – is the proportion of the total stand-alone 
risk margin m+ that has been “diversifi ed away.” With comonotonic losses 
yi  =  gi ( y1 ) where gi is increasing. Hence f( ui )  =  f( u1 )  =  f( ux ) implying ri  =  rix 
for all i and (7) is zero.

As an example suppose f corresponds to CTE as displayed in Table 1. 
Then straightforward calculations show 

 mi   =  E( yi | ui  >  q )  –  mi,   mi  =  E( yi | ux  >  q )  –  mi,

implying 

 
u
u

>
>i

i

i

y q
y q

E
E

i

x

i

x

i

i

;

;
r
r

m
m

=
-

-
,

_

_

i

i

which appears in for example Furman and Zitikis (2008b). Note the simplicity 
of above derivation compared to say Tasche (2001) as set out in McNeil et al. 
(2005). Similarly for VaR, the above expressions hold with the conditioning 
greater than q replaced by equal to q.

4. CAPM AND THE STANDARD DEVIATION PRINCIPLE

The percentile risk aversion framework discussed above is related to the stand-
ard deviation principle used with the CAPM model in fi nance (Luenberger, 
1998). A recent treatment with reference to weighted allocation is contained 
in Furman and Zitikis (2009). Viewing the CAPM model from the percentile 
aversion framework leads to interesting insights as discussed below.

With CAPM the standalone risk margin for a risk yi is a fi xed multiple k 
of  the standard deviation si, ie ksi. Noting the correspondence between k and 
kf, the CAPM risk margin comes under percentile aversion if  ri  =  1, ie f is 
linear in the inverse distribution Fi

– of the risk. The overall risk margin for the 
total risk x  =  i yi/  is ksx where sx is the standard deviation of x.

Under CAPM the overall risk margin is allocated to individual risks in 
proportion to their covariances with the total risk x:

 
x

i
i

(
(

,
, .

cov y x
y xcorx is

k k=2
)

)s s  (8)

These margins add up to the total margin ksx since x (i , .cov yis = )x2 /  There-
fore allocated risk margins obtained using CAPM are similar to those in (5), 
except that dependence is measured as the correlation between individual risks 
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and the total risk rather than the correlation to the aversion adjusted total. 
Equality is achieved if  cor( yi, x )  =  rix, which requires f to be linear in Fx

–, the 
inverse distribution of x.

With the CAPM risk margins (8), the total diversifi cation benefi t is 

 (cori i(cor{ , } ,y x y xi
i

x i
i

i

i
k k k s k- = - = -+

+
s s

s
},s s1 ) {1 )/ / /  (9)

where ii ./ s+s /  The fi nal expression is analogous to (7), with 1  –  cor( yi, x ) 
representing the proportional reduction in the risk margin for risk i on account 
of diversifi cation. Indeed (7) reduces to (9) if  again ri  =  1 and rix  =  cor( yi, x ) 
or equivalently f is linear in both Fi

– and Fx
–. This highlights a shortcoming 

of  CAPM risk margins: in the CAPM framework the aversion function f 
depends on the risk. This does not seem to be cogent. For example it seems 
nonintuitive to use say CTE at q  =  0.05 for one risk and CTE at q  =  0.2 or 
E( max ) at r  =  10 for another.

5. CONNECTION TO EULER AND OTHER ALLOCATION RULES

It is useful to compare the allocations mi developed in § 3 to those derived from 
the Euler capital allocation principle (McNeil et al., 2005). Euler allocation 
can be rationalized in terms of economic justifi cations  (Tasche, 2004) and is 
often invoked in the context of positive homogeneous risk measures of which 
the current measures, based on percentile rank aversion, are an example since 
for scalar a  >  0,

 max  /  cov{ax, ( f  �  Fax ) ( ax )}  =  acov{x,  f( ux )}  =  amx .

Hence risk margins based on percentile rank aversion are homogenous of 
degree 1. By Euler’s theorem, for a scale vector l and risk vector y, if  ml�y is 
the risk margin for l�y  =  i i il y/  then ml�y  =  l�ml�y where ml�y is the vector of 
derivatives of ml�y with respect to each component of l. The ( per unit ) Euler 
allocations associated with mx where x  =  1�y are then defi ned as mx, the vector 
ml�y evaluated at l  =  1.

The allocations mi defi ned in (5) are Euler allocations1 – that is mx has 
components mi. To show this denote the distribution function of l�y by Fl and 
assume Fl is continuous for all l. Then from the spectral risk measure repre-
sentation (2) and Tasche (2001), ( see also McNeil et al. (2005, p. 258) )

 l
l(

(
v

v
u), (

)
( )m cov F

F
uEy

2
2

;l= = =l� ,u ,-
-

) yf$ .

1 We are indebted to an anonymous referee for pointing out this holds generally.
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where u  =  Fl ( l�y ). Hence if  differentiation can be moved inside the covari-
ance,

 ml�y = cov{E( y | u ),  f( u )}   =   cov{y,  f( u )}. (10)

The fi nal equality follows using iterated covariance using E{f( u )| u}  =  f( u ) 
and cov{y, f( u )| u}  =  0. Setting l  =  1 then l�y  =  x and u  =  ux implying com-
ponent i of  mx equals mi. Technical conditions permitting the interchange of 
differentiation and expectation are discussed in Overbeck (2004, p. 310) and 
Kalkbrener (2005).

Dhaene et al. (2009) considers capital allocation based on the optimization 

 1� �) ( ) 1 ,min m c m m msubject to
m

- =
-

+(c - /  (11)

where c has components ci  =  mi  +  cov( yi, ci ) and the ci are positive random 
variables with E( ci )  =  1. Further, S is a symmetric positive defi nite matrix and 
m is interpreted as a vector of capital allocations. By subtracting mi from both 
ci and mi shows (11) can be interpreted as fi nding risk margins mi which are 
closest to ci  =  cov( yi, ci ) and subject to a constraint on the total risk margin. 
This contrasts with the development in § 7 where the total risk margin and the 
risk margin allocations are jointly determined.

A straightforward calculation shows the solution to (11) is m  =  c  +  kS1 
where k is a scalar enforcing the constraint in (11). If  in ci  =  f( ux ) for all i 
then ci  =  mi and hence mi  =  mi if  and only if  k  =  0 implying 

 { , ( .m m covm m xi
i i

xi /= = =+ + u )f }/ /

In other words the risk margins mi are the solution to (11) if  m+  =  cov( x, c ) 
and ci  /  c  /  c( x )  =  f( ux ) with E{f( ux )}  =  1. This choice for the ci implies 
the allocation is driven by the total risk x rather than the individual risks yi.

The special case ci  =  1 implies cov( yi, ci)  =  0 and hence mi  =  0. Together 
with the assumption S diagonal then (11) reduces to a minimization considered 
by Zaks et al. (2006) with solution mi  =  vi  k where vi is diagonal entry i of S.

Tsanakas and Barnett (2003) derive allocations similar and in some cases 
identical to mi using game theoretic Aumann-Shapley allocation. Aumann-
Shapley values are allocation schemes satisfying economically motivated axioms. 
(Billera and Heath, 1982; Mirman and Tauman, 1982).

6. PRACTICAL RISK MARGIN SETTING

The following restates the standalone and allocated risk margin for an indi-
vidual risk yi and the overall diversifi cation benefi t:
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 i-i i i xrf f f
i

( ) .m mm mi i ix ii k s k s k s= = =++r r, , -r/  (12)

Obtaining risk margins and the diversifi cation benefi t using (12) is straightfor-
ward if  the joint risk distribution of the risks is known. However diffi culties 
arise with imperfect knowledge of the joint distribution and the dependence 
structure between individual risks. Any choice of f is also arguable and sub-
jective. The following shows that the formulas in (12) are relatively easily applied 
in practice by separately obtaining kf and si,  ri and rix for the risks yi.

Consider fi rst kf  ≥  0, a scale factor, controlling the overall level of  risk 
margins for all risks and the diversifi cation benefi t. The parameter kf refl ects 
the conservatism of the risk manager. To set kf, risk managers choose a non-
negative value refl ecting his ( or the regulator’s ) desired level of conservatism. 
There is no need to explicitly specify f. Knowledge of f, however, provides 
guidance on an appropriate value of  kf. For example, given the results in
Table 1, with CTE, q set at 0.8, 0.9 and 0.94 imply kf values of 2, 3 and 4, 
respectively. These same kf values are attained with E(max ) with r set to 10, 
20, and 34, respectively. This suggests kf values in the range of 2 to 3, not 
unlike the range of z-scores often used in statistical studies. Note that these 
results can be reversed, in that, for example, kf  =  3 suggest an aversion func-
tion 10( u  >  0.9 ) or 20u19. An aversion function, and hence kf, can also be 
elicited using the method outlined in Choo and De Jong (2009).

Second, consider si, the standard deviation of yi. Information on si is often 
available from past outcomes, which may be adjusted for views of the future. 
Standard deviation or volatility is commonly used by risk managers and hence 
arriving at appropriate values is likely to present relatively little diffi culty, com-
pared to say the quantile of a risk. Note the standard deviation of the aggregate 
risk is not needed.

Third, consider 

 ri   =   cor{Fi
–(ui ),  f(ui )}   =   cor{yi,  ( f  �  Fi  ) ( yi )},

then ri measures the similarity in shape between Fi
– and f, or equivalently the 

linearity of f  �  Fi. Note ri  ≥  0 since both f and Fi are non-decreasing func-
tions. To obtain ri, the risk manager subjectively chooses a value between zero 
and one to indicate the extent to which the loss and loss aversion behave 
similarly as the percentile of the loss varies. A correlation of 1 indicates loss 
and aversion to the loss move in linear unison and hence f  =  a  +  bFi

–.
Analogously, the correlation rix measures the similarity between Fi

–(ui ) and 
f( ux ), but is diminished to the extent that the individual risk is not perfectly 
dependent on the aggregate risk. Negative values are possible if the dependence 
is negative.

Hence the methods proposed in this paper to obtain risk margins and 
diversifi cation benefi ts can be robustly applied in situations where risk distri-
bu tions are uncertain. The choice of risk measure, f, is a source of subjectivity 
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(Choo and De Jong, 2009, § 11). Hence in practical settings, the efforts expended 
on applying technically sophisticated methods to say determine the joint dis-
tribution may be misplaced. The more subjective approach discussed here 
appears practically relevant and further research on plausible values for kf, ri 
and rix will be valuable for creating “rules of thumb” in setting risk margins 
and diversifi cation benefi ts. Such rules of thumb appear more cogent than say 
the present rules where correlations are subjectively specifi ed between different 
risks and from these and standard deviations, the variability of the total risk 
and risk margins are derived.

7. CORRECTION FACTORS FOR ACTUAL RISK DISTRIBUTION

This section displays correction factors ri and rix under a hypothetical joint 
risk distribution and percentile aversion function. Suppose there are three
risks y1, y2 and y3 with the exponential, Pareto, and lognormal distributions, 
respectively:

 F1( y1 )  =  1  –  e –y1,   F2( y2 )  =  1  –  ( 1  +  y2 ) – 10,   F3( y3 )  =  F( log y3 ),

where F is the standard normal distribution. Simplistic distributions are cho-
sen intentionally for illustration purposes. Assume the percentile aversion 
function is f( u )  =  20u19 implying the standalone risk measure is the expected 
maximal loss in 20 independent realizations.

Using simulation, the correction factors ri for the three risks, given the 
specifi ed risk distributions and aversion function are 

 r1  =  0.85,   r2  =  0.88,   r3  =  0.90.

These values suggest the shape of  the lognormal is closest to that of  the 
 aversion function, followed by the Pareto and exponential. This is confi rmed 
in Figure 1 which displays the inverse distributions and aversion function. The 
lognormal is less skewed, which is the case for the aversion function, compared 
to the heavier tailed Pareto and exponential.

In order to compute rix  =  cor{yi,  f( ux )}, the dependence structure of the 
risks is required. Assume a Clayton copula of the form ( u1

– q  +  u2
– q  +  u3

– q  –  2 ) – 1/q 
where ui  =  Fi ( yi ) and the q parameter controls the degree of  dependence 
between the risks. Using simulation, if  q  =  2 then 

 r1x  =  0.48,   r2x  =  0.30,   r3x  =  0.84.

Thus for the exponential and Pareto there are substantial diversifi cation benefi ts 
with the risk margins reducing by 1  –  0.48/0.85   =   44% and 1  –  0.30/0.88   =   66%, 
respectively. For the lognormal the percentage diversifi cation benefi t is 7%.
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If the dependence parameter q in the copula is increased to 10 then equiva-
lent calculations yield 

 r1x  =  0.69,   r2x  =  0.60,   r3x  =  0.87.

and risk margin reductions for the exponential, Pareto and lognormal of 19%, 
32% and 3%, respectively implying higher risk margins than for q  =  2. In this 
case diversifi cation diminishes as risks become more closely dependent, a phe-
nomenon commonly seen in practice.

Under the CAPM risk margins of  § 4 there is no aversion adjustment. 
 Corresponding to correction factors arising under percentile risk aversion are 
correlations as follows. For standalone risk margins, correlations are implicitly 
one. If  q  =  2 then correlations cor( yi, x ) are 0.66, 0.46 and 0.93, for the expo-
nential, Pareto and lognormal, respectively. Percentage diversifi cation benefi ts 
are 1  –  0.66  =  34%, 1  –  0.46  =  54% and 1  –  0.93  =  7%. For q  =  10 correlations 
are 0.84, 0.75 and 0.96, and diversifi cation benefi ts are 16%, 25% and 4%. 
Note the diversifi cation benefi ts follow a similar pattern as those obtained 
under percentile risk aversion, however actual magnitudes differ.

FIGURE 1: Comparison of inverse distributions and aversion function.
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8. CONCLUSIONS

This article has discussed the determination and allocation of risk margins for 
a portfolio of risks. The overall risk margin is set using an aversion function 
which weighs different outcomes of the total based on their percentile rank. 
The total risk margin is then decomposed or allocated to the individual risks 
making up the total. The resulting margins depend on the risk measure, and 
hence the amount of conservatism, and the correlation of the individual risks 
with the aversion adjusted percentile rank of the total.

The allocation method of this paper can be viewed as either “top-down” 
or “bottom-up”. Further, the method can be implemented either formally or 
subjectively. A formal bottom-up approach specifi es the marginals and copula 
of  the risks, the consequent derivation of the distribution of the sum, and 
imposes an analytically specifi ed aversion function from which allocations are 
derived. A subjective top-down approach is where correlations of the aggregate 
risk to the percentile aversion function are specifi ed subjectively with similar 
subjective specifi cations at the individual risk level. These correlations are then 
subjectively reconciled and combined with the standard deviations of the risks 
and a conservatism factor to arrive at the allocation.

It is intriguing to note that in the formulas, both standard deviation and 
correlation are critical. This occurs despite the fact that there is no assumption 
related to normality, skewness or linearity. Hence the current formulas temper 
the critical treatment accorded to both standard deviation and correlation in 
the recent literature. The development of this paper suggests that both standard 
deviation and correlation are cogent risk assessment inputs provided input 
scales are properly formulated.
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