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BOOK REVIEWS

Mark Steiner, The Applicability of Mathematics as a Philosophical Prob-
lem. Cambridge, MA and London: Harvard University Press (cloth 1998,
paper 2002), viii � 215 pp., $45.00 (cloth), 19.95 (paper).

This book is a comprehensive presentation of Mark Steiner’s views
on the philosophical problems of the applicability of mathematics, a
topic on which he has been extensively publishing for more than a de-
cade. The result is a study of singular importance to students of history
and philosophy of mathematics. The book is full of brilliant technical
details that make it interesting to historians and philosophers of physics,
too. Though the text is full of formulae, they are so profoundly and
elegantly explained that the book will surely attract students of theo-
retical physics as well.

Steiner’s book has two distinct objectives. The first is to analyze the
different ways in which mathematics is applicable to the physical sciences.
The second consists in exploring the implications of that applicability for
our view of the universe and the place in it of the human mind (2).

In realizing the first goal Mark Steiner distinguishes among the seman-
tic problems that arise from the use of mathematics in logical deduction;
the metaphysical problems that arise from the gap between the abstract
objects of mathematics and the real world; and the descriptive and epis-
temological problems that arise from the use of mathematics to describe
nature. The structure of the book clearly reflects this diversity of issues.

In the first chapter, “The Semantic Applicability of Mathematics:
Frege’s Achievements,” the author reveals how Frege completely solved
the semantic and metaphysical problems of applicability. The key question
confronting Frege was the following: how can the abstract entities of
mathematics be relevant to the empirical world? Frege’s answer was: they
aren’t. They are related, not to empirical objects, but to empirical concepts
of natural science. It is the empirical concepts that are used to describe
the real world. Abstract objects are only used to characterize those de-
scriptions.

And the second chapter, “The Descriptive Applicability of Mathemat-
ics,” deals with the appropriateness of specific mathematical concepts in
describing physical phenomena. The author’s main problem consists now
in the question: why are the specific concepts and even formalisms of
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mathematics useful in describing empirical reality? Steiner’s answer is: the
problem must be solved “piecemeal for each concept” (47). To eliminate
the mystery of a particular mathematical concept describing a particular
physical phenomenon, one should relate the concept to a nonmathemat-
ical property. For instance, linearity is applicable to the extent that the
Principle of Superposition holds; and the latter is applicable to the extent
that “nature operates in a smooth manner”(32). There is no mystery con-
cerning the applicability of linearity. This mathematical property can be
reduced to physical properties which nature may exhibit.

In the third chapter, “Mathematics, Analogies, and Discovery in Phys-
ics,” and in the fourth one bearing the title “Pythagorean Analogies in
Physics,” Mark Steiner’s aim is to disclose how extensively the famous
discoveries of contemporary physics exploited mathematical analogies. At
the end of the nineteenth century, physics was in crisis. Scientists were
attempting to describe the unseen world of the very small, obeying differ-
ent laws than those governing the macroscopic world. How, then, did
scientists arrive at the atomic laws of nature? Steiner’s answer is: by math-
ematical analogy. Of course, not only by mathematical analogy and not
only the atomic problem. Yet scientists looked for laws bearing a similar
mathematical form to the laws they were trying to replace. Often these
analogies were “Pythagorean,” by which Steiner means that the analogies
were inexpressible in any other language but that of mathematics. Math-
ematics itself thus provided the conceptual basis for making guesses about
the laws of the atomic and subatomic world.

In some remarkable cases, even mathematical notation (rather than
structures) provided the analogies used in physics. So, the analogies were
to the forms of equations, and not to their mathematical meaning. This is
a special case of Pythagorean analogies which Steiner calls “formalist”
ones. Thus in Chapters 3–4 Steiner’s aim is to demonstrate that the strat-
egy physicists pursued to guess at the laws of nature was a Pythagorean
one: they used the relations and even the notation of mathematics to frame
analogies and formulate guesses according to them. This does not mean
that every guess, or even a large number of them, was correct. “What
succeeded was the global strategy” (5).

The author specially points out that the book should not create an
impression that bold mathematical speculations, rather than scrupulous
empirical inquiry, was what formed twentieth century physics. No scientist
described in the book could have formulated valuable theories without
scrutinizing empirical data and prior modeling. Steiner’s point is that the
empirical information was brought to bear on new cases through the me-
dium of mathematical classification.

Thus, Steiner’s aims in the two chapters consist in analyzing the actual
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strategies employed by physicists to make those discoveries. He carefully
describes and exemplifies six kinds.

(1) Strategies which presume that all the solutions of the equation E
are akin. This is not by itself a Pythagorean strategy, because often an
equation expresses a physical trait which all its solutions exhibit. However,
there are cases—Maxwell (77–79) and Schrödinger (79–82)—in which
there is evidence that the solutions of a common equation are not analo-
gous. A physicist who ignores this evidence, and relies instead on the com-
mon equation, pursues a Pythagorean strategy. For instance, Maxwell had
a mathematical structure which described many different phenomena of
electricity and magnetism. The mathematical structure itself defined the
analogy between the different phenomena and the analogy suggested the
existence of electromagnetic radiation as an experimental phenomenon.

Schrödinger’s discovery of wave mechanics also illustrates this strategy.
He began with a vector of fixed frequency, based on an analogy to an
optical wave, where the frequency is given by the fixed energy. In writing
down the wave equation by taking derivatives, Schrödinger completely
abstracted away from this intuition, ending with an equation having no
parallel in classical optics.

(2) One looks for solutions in nature even where there is reason to doubt
their very possibility. One of the most vivid examples: Dirac’s equation in
relativistic quantum mechanics. The other one: Schwarzchild solution for
the equations of General Relativity.

(3) Suppose we have successfully classified a family of objects by a
mathematical structure S. Then we project that this structure, or some
related mathematical structure T, should classify other families of objects,
even if, given present knowledge, S is not reducible to a physical property.
This reasoning has been rampant in elementary particle physics, where
symmetries have led to some remarkable discoveries (the history of spin).

(4) One formulates equations by analogy to the mathematical form of
other equations, even if little or no physical motivation exists for the anal-
ogy. One case is Einstein’s derivation of the field equations of General
Relativity with extensive use of Poisson’s equation. Another example of
this type of induction (the derivation of an equation from another one,
using a Pythagorean mathematical analogy) is the procedure Heisenberg
(with Born and Jordan) used to derive matrix mechanics. Another equa-
tion produced by this kind of strategy is the Klein-Gordon equation.

(5) A refuted law is used to test new laws: the “old” law is stipulated
to be a special or limiting case of any “new” law.

(6) A refuted law—false by definition—is nevertheless used to arrive at
new laws.

In the fifth chapter, “Formalisms and Formalist Reasoning in Quantum
Mechanics,” the author presents the extension of the quantum mechanical
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formalism to configuration spaces with “deviant” topologies. In quantum
mechanics, formalist analogies often take the form of pseudodeductions:
formalist reasoning shows that the extension of the formalism to new sit-
uations is constrained by the formalism itself. Here Steiner’s examples are
of the most nontrivial kind, revealing his skill in explaining the most ob-
scure notions of modern physics.

And in the last chapter, “Formalist Reasoning: The Mystery of Quan-
tization,” the author describes the attempts by physicists to “guess” the
laws of quantum systems using a strategy known as “quantization.” The
strategy begins by assuming that the system obeys the classical laws—a
false assumption, of course. Then the classical description is converted (by
syntactic transformation) into what is hoped is a true quantum description
of the same system. The examples given include Dirac’s quantization of
the electromagnetic field and his relativistic equation for the electron,
which led to the discovery of the positron. And finally Steiner refers to
the program in physics known as “gauge field theories,” inaugurated by
Yang and Mills.

Efforts to realize the first goal help the author to realize the second one
and to consider epistemological and ontological problems of mathematics
in more detail. Indeed, the stories of quantization support the main thesis
of the book. The founders of quantum mechanics spoke of a “correspon-
dence principle” relating classical and quantum mechanics. Yet many of
the examples given by the author show that the correspondence principle
was deeply anthropocentric due to formalist reasoning. “Hence, the true
‘correspondence’ was between the human brain and the physical world as
a whole. The world, in other words, looks ‘user friendly’” (176).

The author not only gathers piles of facts from history of physics to
establish his thesis but provides an excellent theoretical explanation as
well. Given the nature of contemporary mathematics, a Pythagorean strat-
egy cannot avoid being an “anthropocentric strategy.” This is because the
concept of mathematics itself is “species-specific.” There is no objective
criterion for a structure to be mathematics. Today mathematicians have
adopted internal criteria to decide whether to study a structure as math-
ematical. Two of these are “beauty” and “convenience.” Yet what we call
beautiful is species-specific. The same is true for the second criterion, too.
Thus, relying on mathematics in guessing the laws of nature is relying on
human standards of beauty and convenience.

All this, enthusiastically concludes Mark Steiner, enables mathematics
to become a modern panacea in science; it could provide a bridge between
the “two cultures,” mitigate the “science wars,” and do lots and lots of
other good things. May it be so.

RINAT NUGAYEV, KAZAN STATE UNIVERSITY
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