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Abstract

In this paper we analyze a simple spectral method (EIG1) for the problem of matrix
alignment, consisting in aligning their leading eigenvectors: given two matrices A and
B, we compute two corresponding leading eigenvectors v1 and v′

1. The algorithm returns
the permutation π̂ such that the rank of coordinate π̂ (i) in v1 and that of coordinate i in
v′

1 (up to the sign of v′
1) are the same.

We consider a model of weighted graphs where the adjacency matrix A belongs to the
Gaussian orthogonal ensemble of size N × N, and B is a noisy version of A where
all nodes have been relabeled according to some planted permutation π ; that is, B =
�T (A + σH)�, where � is the permutation matrix associated with π and H is an inde-
pendent copy of A. We show the following zero–one law: with high probability, under
the condition σN7/6+ε → 0 for some ε > 0, EIG1 recovers all but a vanishing part of the
underlying permutation π , whereas if σN7/6−ε → ∞, this method cannot recover more
than o(N) correct matches.
This result gives an understanding of the simplest and fastest spectral method for matrix
alignment (or complete weighted graph alignment), and involves proof methods and
techniques which could be of independent interest.
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1. Introduction

The graph alignment problem
Graph alignment (or graph matching, or network alignment) consists in recovering the

underlying vertex correspondence between two correlated graphs, and hence can be viewed
as the noisy version of the isomorphism problem. Many questions can be phrased as graph
alignment problems. They are found in various fields, such as network privacy and data
de-anonymization [15, 16], biology and protein–protein interaction networks [20], natural
language processing [13], and pattern recognition in image processing [6].

For two graphs of size N with adjacency matrices A and B, the graph matching problem can
be formalized as an optimization problem:

arg max
P∈SN

〈A, PBPT〉, (1.1)
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where the maximum is taken over all N × N permutation matrices, and 〈·, ·〉 is the canoni-
cal matrix inner product. Note that for each P ∈ SN, PBPT is the matrix obtained from B by
relabeling the nodes according to P−1. This formulation is a special case of the well studied
quadratic assignment problem [19], which is known to be NP-hard in the worst case, as well
as some of its approximations [14]. A natural idea is then to study the average-case version of
this problem, when A and B are random instances. Following a recent line of work [7, 9, 11],
this paper focuses on the case where the signal lies in the weights of edges between all pairs of
nodes.

Related work
Some general spectral methods for random graph alignment are introduced in [11], based on

representation matrices and low-rank approximations. These methods are tested over synthetic
graphs and real data; however, no precise theoretical guarantee—e.g. an error control of the
inferred mapping depending on the signal-to-noise ratio—can be found for such techniques.

Most recently, a spectral method for matrix and graph alignment (GRAMPA) was proposed
in [9, 10], which computes a similarity matrix which takes into account all pairs of eigenvalues
(λi, μj) and eigenvectors (ui, vj) of matrices A and B. The authors study the regime in which
the method exactly recovers the underlying vertex correspondence, meeting the state-of-the-art
performances for alignment of Erdös–Ri graphs in polynomial time, and improving the perfor-
mances among spectral methods for matrix alignment. This method can tolerate a noise σ up
to O (1/ log N) to recover the entire underlying vertex correspondence. Since the computation
of all eigenvectors is required, the time complexity of GRAMPA is at least O(N3).

It is important to note that the signs of eigenvectors are ambiguous: in order to optimize
the cost function in practice, it is necessary to test over all possible signs of eigenvectors.
This additional complexity has no consequence when reducing A and B to rank-one matrices,
but becomes costly when the reduction made is of rank k 	 1. This combinatorial observa-
tion makes implementation and analysis of general rank-reduction methods (such as the ones
proposed in [11]) more difficult. We therefore focus on the analysis of the rank-one reduc-
tion (EIG1 hereafter) which is the simplest and most natural spectral alignment method, where
only the leading eigenvectors of A and B are computed, with time complexity O(N2), which is
significantly less than that of GRAMPA.

Gaussian weighted graph matching: model and method
As mentioned above, we focus on the case where the graphs are complete, weight-

correlated. Matrices A and B are thus symmetric, with correlated entries. A natural model
recently studied in [7, 9, 11] is as follows: A and H are two N × N independent normal-
ized matrices of the Gaussian orthogonal ensemble (GOE), i.e. such that for all 1 ≤ i ≤ j ≤ N,{
Ai,j
}

i<j are independent,

Ai,j = Aj,i ∼
⎧⎨⎩

1√
N
N (0, 1) if i 
= j,

√
2√
N
N (0, 1) if i = j,

(1.2)

and H is an independent copy of A. We define B = �T (A + σH) �, where � is the matrix of
some permutation π—e.g. random uniform—of {1, . . . , N} (i.e. such that �i,j = 1 if and only
if i = π (j)), and σ = σ (N) is the noise parameter.

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) whose coordinates are all distinct,
the permutation ρ which aligns x and y is the permutation such that for all 1 ≤ i ≤ n, the rank
(for the usual order) of xρ(i) in x is the rank of yi in y.
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Algorithm 1. EIG1 algorithm for matrix alignment

Compute v1, a normalized leading eigenvector of A
Compute v′

1, a normalized leading eigenvector of B
Compute �+, the permutation aligning v1 and v′

1
Compute �−, the permutation aligning v1 and −v′

1

if 〈A, �+B�T+〉 ≥ 〈A, �−B�T−〉
| return �+
else
| return �−
end

Remark 1.1. Note that in our model, all the probability distributions are absolutely continuous
with respect to Lebesgue measure; thus the eigenvectors of A and B all have almost surely
pairwise distinct coordinates.

We recall that the aim is to infer the underlying permutation � given the observation of
A and B. We now introduce our simple spectral algorithm EIG1, derived from [11], which
computes and aligns the leading eigenvectors v1 and v′

1 of A and B. This very natural method
can be thought of as the relaxation of the quadratic assignment problem formulation (1.1) when
reducing A and B to rank-one matrices λ1v1vT

1 and λ′
1v′

1v
′T
1 . Indeed, as soon as v1 and v′

1 have
pairwise distinct coordinates, it is easy to see that

arg max
P∈SN

〈
λ1v1vT

1 , Pλ′
1v′

1v
′T
1 PT

〉
= arg max

P∈SN

±vT
1 Pv′

1 = ρ,

where ρ is the aligning permutation of v1 and ±v′
1. Computing the two normalized leading

eigenvectors (i.e. those corresponding to the highest eigenvalues) v1 and v′
1 of A and B, the

EIG1 algorithm (Algorithm 1) returns the aligning permutation of v1 and ±v′
1. The method

then decides which permutation to output according to the scores.

The aim of this paper is to find the regime in which EIG1 achieves almost exact recovery,
i.e. recovers all but a vanishing fraction of nodes of the planted truth �.

2. Notation, main results, and proof scheme

In this section we introduce some notation that will be used throughout this paper; we also
mention the main results and the proof scheme.

2.1 Notation

• Recall that A and H are two N × N matrices drawn under the model (1.2). The matrix B
is defined as �T (A + σH) �, where � is a uniform N × N permutation matrix and σ is
the noise parameter, depending on N.

• In the following, (v1, v2, . . . , vN) (resp.
(
v′

1, v′
2, . . . , v′

N
)
) denotes an orthonormal basis

of eigenvectors of A (resp. of B) with respect to the (real) eigenvalues λ1 ≥ λ2 ≥ . . . ≥
λN of A (resp. λ′

1 ≥ λ′
2 ≥ . . . ≥ λ′

N of B). Throughout the paper, the sign of v′
1 is

fixed so that 〈�v1, v′
1〉 > 0.
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• Denote by ‖ · ‖ the Euclidean norm of R
N . Let 〈·, ·〉 denote the corresponding inner

product.

• For any estimator �̂ of �, define its overlap:

L(�̂, �) := 1

N

N∑
i=1

1
�̂(i)=�(i). (2.1)

This metric is used to quantify the quality of a given estimator of �.

• The equality
(d)= will refer to equality in distribution. An event AN is said to hold with

high probability (w.h.p.) if P(AN) converges to 1 when N → ∞.

• For two random variables u = u(N) and v = v(N), we will use the notation u = oP (v) if
u(N)
v(N)

P−→ 0 when N → ∞. We also use this notation when X = X(N) and Y = Y(N) are

N-dimensional random vectors: X = oP (Y) if ‖X(N)‖
‖Y(N)‖

P−→ 0 when N → ∞.

• Define

F :=
{

f : N→R+ | ∀t > 0, Ntf (N) → ∞,
f (N)

Nt
→ 0

}
.

For two random variables u = u(N) and v = v(N), u � v refers to equivalence w.h.p. up
to some sub-polynomial factor, meaning that there exists a function f ∈F such that

P

(
v(N)

f (N)
≤ u(N) ≤ f (N)v(N)

)
→ 1.

Throughout the paper, all limits are taken as N → ∞, and the dependency on N will most
of the time be elided, as an abuse of notation.

2.2 Main results, proof scheme

The result shown can be stated as follows: there exists a condition—a threshold—on σ

and N under which the EIG1 method enables us to recover � almost exactly, in terms of the
overlap L defined in (2.1). Above this threshold, we show that EIG1 cannot recover more than
a vanishing part of �.

Theorem 2.1. (Zero–one law for the method.) For all N, let �N denote an arbitrary permuta-
tion of size N, and let �̂N be the estimator obtained with the algorithm EIG1, for A and B of
the model (1.2), with permutation �N and noise parameter σ . We have the following zero–one
law:

(i) If there exists ε > 0 such that σ = o(N−7/6−ε), then

L(�̂N, �N)
L1−→ 1.

(ii) If there exists ε > 0 such that σ = ω(N−7/6+ε), then

L(�̂N, �N)
L1−→ 0.
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FIGURE 1. Estimated overlap L(�̂, �) reached by EIG1 in the model (1.2), for varying N and σ . (With
95% confidence intervals.)

The results of Theorem 2.1 are illustrated in Figure 1, which shows the zero–one law at
σ � N−7/6. Note that the convergence to the step function appears to be slow.

Remark 2.1. We now underline that without loss of generality, we can assume that � = Id, the
identity mapping. Indeed, one can return to the general case by applying the transformations
A → �A�T and H → �H�T . From now on we will assume that � = Id.

In order to prove this theorem, it is necessary to establish two intermediate results along
the way, which may also be of independent interest. First, we study the behavior of v′

1 with
respect to v1, showing that under some conditions on σ and N, the difference v1 − v′

1 can be
approximated by a renormalized Gaussian standard vector, multiplied by a variance term S,
where S is a random variable whose behavior is well understood in terms of N and σ when
N → ∞. For this we work under the following assumption:

∃ α > 0, σ = o
(

N−1/2−α
)

. (2.2)

Proposition 2.1. Under the assumption (2.2), there exist a standard Gaussian vector Z ∼
N (0, IN), independent of v1, and a random variable S � σN1/6 such that

v′
1 = (1 + oP(1))

(
v1 + S

Z

‖Z‖
)

.

Remark 2.2. The assumption (2.2) (or a tighter formulation) arises when studying the diffu-
sion trajectories of eigenvalues and eigenvectors in random matrices, and corresponds to the
microscopic regime in [2]. This assumption ensures that all eigenvalues of B are close enough
to the eigenvalues of A. The comparison term is justified from random matrix theory: N−1/2
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is the typical amplitude of the spectral gaps
√

N(λi − λi+1) in the bulk—i.e. for i of order ηn
with η ∈ (0, 1)—which are the smaller ones.

Eigenvector diffusions in similar models (diffusion processes drawn with the scaling
σ = √

t) are studied in [2], where the main tool is the Dyson Brownian motion (see e.g. [3]) and
its formulation for eigenvector trajectories, giving stochastic differential equations for the evo-
lutions of v′

j(t) with respect to vectors vi = v′
i(0). These equations lead to a system of stochastic

differential equations for the overlaps 〈vi, v′
j(t)〉, which is quite difficult to analyze rigorously.

In this work we use a more elementary method to get an expansion of v′
1 around v1, for which

this very condition (2.2) also appears.
Note that here, spectral gaps at the edge—i.e. for i = O(1)—are of order N−1/6, so the

assumption (2.2) may not optimal for our study, and we expect Proposition 2.1 to hold up to
σ = o

(
N−1/6−α

)
. However, since the positive result of Theorem 2.1 holds in a much more

restrictive regime (see the condition (i)), the condition (2.2) is enough for our purposes and
allows a short and simple proof.

Proposition 2.1 suggests the study of v′
1 as a Gaussian perturbation of v1. The main question

is now formulated as follows: what is the probability that the perturbation on v1 has an impact
on the overlap of the estimator �̂ from the EIG1 method? To answer this question, we introduce
a correlated Gaussian vectors model (referred to hereafter as the toy model) of parameters N
and s > 0. In this model, we draw a standard Gaussian vector X of size N and Y = X + sZ
where Z is an independent copy of X. We will use the notation (X, Y) ∼J (N, s).

Define r1 as the function that associates to any vector T = (t1, . . . , tp) the rank of t1 in T
(for the usual decreasing order). For (X, Y) ∼J (N, s) we evaluate

p(N, s) := P (r1(X) = r1(Y)) .

Our second result shows that there is a zero–one law for the property of rank preservation in
the toy model J (N, s).

Proposition 2.2. (Zero–one law for p(N,s).) In the correlated Gaussian vectors model we have
the following:

(i) If s = o(1/N) then

p(N, s) −→
N→∞ 1.

(ii) If s = ω(1/N) then

p(N, s) −→
N→∞ 0.

These results are illustrated in Figure 2, which shows the zero–one law at s � N−1.

Organization of paper.
The Gaussian approximation of v1 − v′

1 is established in Section 3 with the proof of
Proposition 2.1. The toy model defined above is studied in Section 4, where Proposition 2.2
is established. Finally, we gather results of Propositions 2.1 and 2.2 in Section 5 to prove
Theorem 2.1. Some additional proofs are deferred to Appendices A and B.

3. Behavior of the leading eigenvectors of correlated matrices

The main idea of this section is to find a first-order expansion of v′
1 around v1. Recall that

we use the notation (v1, v2, . . . , vN) for normalized eigenvectors of A, corresponding to the
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FIGURE 2. Estimated p(N, s) in the toy model J (N, s). (With 95% confidence intervals.)

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN . Similarly,
(
v′

1, v′
2, . . . , v′

N
)

and λ′
1 ≥ λ′

2 ≥ . . . ≥ λ′
N

will refer to eigenvectors and eigenvalues of B = A + σH. Since A and B are symmetric, all
these eigenvalues are real and the vectors {vi}i (resp.

{
v′

i
}

i) are pairwise orthogonal. We also
recall that v′

1 is taken such that 〈v1, v′
1〉 > 0.

3.1 Computation of a leading eigenvector of B

Recall now that we are working under the assumption (2.2):

∃ α > 0, σ = o
(

N−1/2−α
)

.

Let w′ be a (non-normalized) eigenvector of B for the eigenvalue λ′
1 of the form

w′ :=
N∑

i=1

θivi,

where we assume that θ1 = 1. Such an assumption can be made almost surely since any
hyperplane of RN has a null Lebesgue measure in R

N (see Remark 1.1).
The defining eigenvector equations projected on vectors vi give⎧⎪⎪⎨⎪⎪⎩

θ1 = 1,

∀i > 1, θi = σ

λ′
1 − λi

∑N
j=1 θj〈Hvj, vi〉,

λ′
1 − λ1 = σ

∑N
j=1 θj〈Hvj, v1〉.

(3.1)

The strategy is then to approximately solve (3.1) with an iterative scheme, leading to the
following expansion.
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Proposition 3.1. Under the assumption (2.2) one has the following:

w′ = v1 + σ

N∑
i=2

〈Hvi, v1〉
λ1 − λi

vi + oP

(
σ

N∑
i=2

〈Hvi, v1〉
λ1 − λi

vi

)
. (3.2)

We refer to Appendix A.1 for the details regarding the definition of the mentioned iterative
scheme, as well as a proof of Proposition 3.1. The proof uses the assumption (2.2) and builds
upon some standard results on the distribution of eigenvalues in the GOE.

Remark 3.1. The above proposition could easily be extended to all eigenvectors of B, under
the assumption (2.2). Based on the studies of the trajectories of the eigenvalues and eigenvec-
tors in the Gaussian unitary ensemble (GUE) [2] and the GOE [1], since we are only interested
here in the leading eigenvectors, we expect the conclusion of Proposition 3.1 to hold under
the weaker assumption σN1/6+α → 0, for N−1/6 is the typical spectral gap

√
N(λ1 − λ2) at

the edge. However, as explained before (see Remark 2.2), our analysis does not require this
less restrictive assumption. We also know that the expansion (3.2) fails to hold as soon as
σ = ω(N−1/6). A result proved by Chatterjee [5, Theorem 3.8] shows that the eigenvectors
corresponding to the highest eigenvalues v1 of A and v′

1 of B = A + σH, when A and H are two
independent matrices from the GUE, are delocalized (in the sense that 〈v1, v′

1〉 converges in
probability to 0 as N → ∞), when σ = ω(N−1/6).

3.2 Gaussian representation of v′
1 − v1

We continue to work under the assumption (2.2). After renormalization, we have v′
1 = w′

‖w′‖ .

We are now able to study the behavior of the overlap 〈v′
1, v1〉:

〈v′
1, v1〉 =

(
1 + σ 2(1 + oP(1))

N∑
i=2

〈Hvi, v1〉2

(λ1 − λi)
2

)−1/2

.

Hence

〈v′
1, v1〉 = 1 − σ 2

2

N∑
i=2

〈Hvi, v1〉2

(λ1 − λi)
2

+ oP

(
σ 2

N∑
i=2

〈Hvi, v1〉2

(λ1 − λi)
2

)
. (3.3)

Let us give the heuristic to evaluate the first sum in the right-hand side of (3.3): since the
GOE distribution is invariant by rotation (see e.g. [3]), the random variables 〈Hvi, v1〉 are zero-
mean Gaussian, with variance 1/N. Moreover, it is well known [3] that the eigenvalue gaps
λ1 − λi are of order N−1/6 when i is small, and N−1/2 in the bulk (when i is typically of order
N). These considerations lead to the following.

Lemma 3.1. We have the following concentration:

N∑
i=2

〈Hvi, v1〉2

(λ1 − λi)
2

� N1/3. (3.4)

We refer to Appendix A.2 for a rigorous proof of this result. With this lemma, we are now
able to give the first-order expansion of 〈v′

1, v1〉 with respect to σ :

〈v′
1, v1〉 = 1 − σ 2

2
N1/3 + oP

(
σ 2N1/3

)
.
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Remark 3.2. The comparison between σ and N1/6 made in [5] naturally reappears here, as
σ 2N1/3 is the typical shift of v′

1 with respect to v1.

The intuition is that the scalar product 〈v′
1, v1〉 is sufficient to derive a Gaussian representa-

tion of v′
1 with respect to v1. We formalize this in the following lemma.

Lemma 3.2. Given v1, when writing the decomposition w′ = v1 + w, with

w :=
N∑

i=2

θivi,

the distribution of w is invariant by rotation in the orthogonal complement of v1. This implies
in particular that given v1, ‖w‖ and w

‖w‖ are independent, and that w
‖w‖ is uniformly distributed

on S
N−2, the unit sphere of v⊥

1 .

Proof of Lemma 3.2. We work conditionally on v1. Let O be an orthogonal transformation of
the hyperplane v⊥

1 (such that Ov1 = v1). Since the GOE distribution is invariant by rotation and
A and H are independent, B̃ := OTAO + σOTHO has the same distribution as B = A + σH.

Note that Ow′ = v1 + Ow is an eigenvector of B̃ for the eigenvalue λ1. Since the distribu-
tion of the matrix of eigenvectors (v2, . . . , vn) is the Haar measure on the orthogonal group
On−1

(
v⊥

1

)
, denoted by dH, the distribution of w is also invariant by rotation in the orthogonal

complement of v1. Furthermore, for any bounded continuous functions f , g and O ∈On−1
(
v⊥

1

)
,

E

[
f (‖w‖)g

(
w

‖w‖
)]

=E

[
f (‖w‖)g

(
Ow

‖Ow‖
)]

=E

[
f (‖w‖)

∫
On−1

(
v⊥

1

) dH(O)g

(
Ow

‖Ow‖
)]

=E

[
f (‖w‖)

∫
Sn−2

g(u)du

Vol
(
Sn−2

)]=E
[
f (‖w‖)

]
E

[
g

(
w

‖w‖
)]

.

This completes the proof of Lemma 3.2. �

We can now prove the main result of this section, Proposition 2.1.

Proof of Proposition 2.1. Recall the decomposition w′ = v1 + w with w =∑N
i=2 θivi.

According to Lemma 3.2, conditioned to v1, w
‖w‖ is uniformly distributed on S

N−2, the unit

sphere of v⊥
1 . We now state a classical result about sampling uniform vectors on a sphere.

Lemma 3.3. Let E be p-dimensional Euclidean space, endowed with an orthogonal basis B =
(e1, . . . , ep). Let u be a random vector uniformly distributed on the unit sphere S

p−1 of E.
Then, in the basis B, u has the same distribution as⎛⎝ ξ1√∑p

i=1 ξ2
i

, . . . ,
ξp√∑p
i=1 ξ2

i

⎞⎠ ,

where ξ1, . . . , ξp are independent and identically distributed standard normal random vari-
ables.
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We refer e.g. to [18, Lemma 10.1] for the proof of this result. In our context, this proves that
the joint distribution of the coordinates w2, . . . , wn of w along v2, . . . , vn is always that of a
normalized standard Gaussian vector (on R

N−1). This joint probability does not depend on v1.
Hence, there exist standard Gaussian independent variables Z2, . . . , ZN , independent from v1
(and from ‖w‖ by Lemma 3.2), such that

w′ = v1 + ‖w‖(∑N
i=2 Z2

i

)1/2

N∑
i=2

Zivi.

Let Z1 be another standard Gaussian variable, independent from everything else. Then

w′ =
⎛⎜⎝1 − ‖w‖Z1(∑N

i=2 Z2
i

)1/2

⎞⎟⎠ v1 + ‖w‖(∑N
i=2 Z2

i

)1/2

N∑
i=1

Zivi.

Let Z =∑N
i=1 Zivi, which is a standard Gaussian vector. Since the distribution of Z is invariant

by permutation of the (Zi)1≤i≤N , Z and v1 are independent. We have

v′
1 = w′

‖w′‖ = w′√
1 + ‖w‖2

= 1√
1 + ‖w‖2

⎛⎜⎝1 − ‖w‖Z1(∑N
i=2 Z2

i

)1/2

⎞⎟⎠ v1 + ‖w‖‖Z‖√
1 + ‖w‖2

(∑N
i=2 Z2

i

)1/2

Z

‖Z‖ .

Taking

S = ‖w‖‖Z‖(∑N
i=2 Z2

i

)1/2 − ‖w‖Z1

,

we get

v′
1 = 1√

1 + ‖w‖2

⎛⎜⎝1 − ‖w‖Z1(∑N
i=2 Z2

i

)1/2

⎞⎟⎠(v1 + S
Z

‖Z‖
)

. (3.5)

Proposition 3.1 together with Lemma 3.1 yields

‖w‖2 = ‖w′ − v1‖2 = (1 + oP(1)) · σ 2
N∑

i=2

〈Hvi, v1〉2

(λ1 − λi)
2

� σ 2N1/3,

the last quantity being o(1) under the assumption (2.2). With the previous computation,
Equation (3.5) becomes

v′
1 = (1 + oP(1))

(
v1 + S

Z

‖Z‖
)

,

with S = (1 + oP(1))‖w‖ � σN1/6. �
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4. Definition and analysis of a toy model

Now that we have established an expansion of v′
1 with respect to v1, our main question boils

down to the study of the effect of a random Gaussian perturbation of a Gaussian vector in terms
of the ranks of its coordinates: if these ranks are preserved, the permutation that aligns these
two vectors will be �̂ = � = Id. Otherwise we want to understand the error between �̂ and
� = Id.

4.1 Definitions and notation

We refer to Section 2.1 for the definition of the toy model J (N, s). Recall that we want to
compute, when (X, Y) ∼J (N, s), the probability

p(N, s) := P (r1(X) = r1(Y)) .

In this section, we denote by E the probability density function of a standard Gaussian variable,
and by F its cumulative distribution function. Namely,

E(u) := 1√
2π

e−u2/2 and F(u) := 1√
2π

∫ u

−∞
e−z2/2dz.

We hereafter elaborate on the link between this toy model and our first matrix model (1.2)
in Section 3. Since v1 is uniformly distributed on the unit sphere, we have the equality in
distribution v1 = X

‖X‖ , where X is a standard Gaussian vector of size N, independent of Z by
Proposition 2.1. We write

v1 = X

‖X‖ ,

v′
1 = (1 + oP(1))

(
X

‖X‖ + S
Z

‖Z‖
)

.

Note that for all λ > 0, r1(λT) = r1(T); hence

r1(v1) = r1(X), r1(v′
1) = r1 (X + sZ) , (4.1)

where

s = S‖X‖
‖Z‖ � σN1/6;

here we use the law of large numbers (‖X‖/‖Z‖ → 1 almost surely) as well as Proposition
2.1 in the last expansion. Equation (4.1) shows that this toy model is relevant for our initial
problem, up to the fact that the noise term s is random in the matrix model (though we know
its order of magnitude to be � σN1/6).

Remark 4.1. The intuition for the zero–one law for p(N, s) is as follows. If we sort the N
coordinates of X on the real axis, all coordinates being typically perturbed by a factor s, it
seems natural to compare s with the typical gap between two coordinates of order 1/N to
decide whether the rank of the first coordinate of X is preserved in Y .
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FIGURE 3. Areas corresponding to N+(x, y) and N−(x, y).

Let us show that this intuition is rigorously justified. For every pair (x, y) of real numbers,
define

N+
N,s(x, y) := 
 {1 ≤ i ≤ N, Xi > x, Yi < y} ,

N−
N,s(x, y) := 
 {1 ≤ i ≤ N, Xi < x, Yi > y} .

In the following, we omit all dependencies on N and s, using the notation N+ and
N−. The corresponding regions are shown in Figure 3. We will also need the following
probabilities:

S+(x, y) := P (X1 > x, Y1 < y) , and

S−(x, y) := P (X1 < x, Y1 > y) = S+( − x, −y).

In terms of distribution, the random vector(N+(x, y),N−(x, y), N − 1 −N+(x, y) −N+(x, y)
)

follows a multinomial distribution of parameters(
N − 1, S+(x, y), S−(x, y), 1 − S+(x, y) − S−(x, y)

)
.
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In order to have r1(X) = r1(Y), there must be the same number of points in the two domains
in Figure 3, for x = X1 and y = Y1. We then have the following expression for p(N, s):

p(N, s) =E
[
P
(N+(X1, Y1) =N−(X1, Y1)

)]
=
∫
R

∫
R

P(dx, dy)P(N+(x, y) =N−(x, y))

=
∫
R

∫
R

E(x)E(z)φx,z(N, s) dx dz,

with

φx,z(N, s) :=
�(N−1)/2�∑

k=0

(
N − 1

k

)(
N − 1 − k

k

) (
S+

x,z

)k (
S−

x,z

)k (
1 − S+

x,z − S−
x,z

)N−1−2k
, (4.2)

using the notation S+
x,z = S+(x, x + sz) and S−

x,z = S−(x, x + sz). A simple computation shows
that

S+(x, x + sz) =
∫ +∞

x

1√
2π

e−u2/2

(∫ z+ x−u
s

−∞
1√
2π

e−v2/2 dv

)
du

=
∫ +∞

x
E(u) F

(
z − u − x

s

)
du, (4.3)

= s
∫ +∞

0
E(x + vs) F (z − v) dv. (4.4)

We have the classical integration result∫ z

−∞
F(u)du = zF(z) + E(z). (4.5)

From (4.3), (4.4), and (4.5) we derive the following easy lemma.

Lemma 4.1. For all x and z,

S+(x, x + sz) =
s→0

s [E(x) (zF(z) + E(z))] + o(s),

S+(x, x + sz) −→
s→∞ F(z) (1 − F(x)) ,

S−(x, x + sz) =
s→0

s [E(x) (−z + zF(z) + E(z))] + o(s),

S−(x, x + sz) −→
s→∞ F(x) (1 − F(z)) .

Moreover, both s �→ S+(x, x + sz) and s �→ S−(x, x + sz) are increasing.

4.2. Zero-one law for p(N, s)

In this section we give a proof of Proposition 2.2.

Proof of Proposition 2.2. In the first case (i), if s = o(1/N), we have the following inequal-
ity:

p(N, s) ≥
∫
R

∫
R

dxdzE(x)E(z)P
(N+(x, x + sz) =N−(x, x + sz) = 0

)
. (4.6)
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According to Lemma 4.1, for all x, z ∈R

P
(N+(x, x + sz) =N−(x, x + sz) = 0

)= (1 − S+(x, x + sz) − S−(x, x + sz)
)N−1

∼ exp (−NsE(x) [z(2F(z) − 1) + 2E(z)])

−→
N→∞ 1.

By applying the dominated convergence theorem in (4.6), we conclude that p(N, s) → 1.

In the second case (ii), if sN → ∞, recall that

p(N, s) =
∫
R

∫
R

dxdzE(x)E(z)φx,z(N, s), (4.7)

with φx,z defined in Equation (4.2). In the rest of the proof, we fix two real numbers x and z.
Let

b(N, s, k) :=
(

N − 1

k

) (
S+

x,z

)k (
1 − S+

x,z

)N−1−k

and
M(N, s) := max

0≤k≤N−1
b(N, s, k).

Note that by Lemma 4.1, there exists C = C(x, z) < 1 such that for N large enough, S+
x,z < C <

1. Moreover, combining this lemma with the assumption (ii) gives that NS+
x,z → ∞. It is also

known that M(N, s) = b(N, s, �NS+
x,z�), and a classical computation shows that in this case (see

e.g. [4, Formula 1.5]),

M(N, s) =
(

N − 1

�NS+
x,z�
) (

S+
x,z

)�NS+
x,z� (1 − S+

x,z

)N−1−�NS+
x,z�

∼ 1√
2πNt(1 − t)

t−(N−1)t(1 − t)−(N−1)(1−t) (S+
x,z

)(N−1)t (
1 − S+

x,z

)(N−1)(1−t)

= (NS+
x,z

)−1/2
(1 + O(1)) → 0,

where

t := �NS+
x,z�

N − 1
∼ S+

x,z.

Working with Equation (4.2), we obtain the following control:

φx,z(N, s) ≤ M(N, s) ×
�(N−1)/2�∑

k=0

(
N − 1 − k

k

) (
S−

x,z

)k (1 − S+
x,z − S−

x,z

)N−1−2k(
1 − S+

x,z
)N−1−k

(a)= M(N, s) ×
(1 − S+

x,z)

(
1 −

( −S+
x,z

1−S−
x,z

)N
)

1 + S−
x,z − S+

x,z

(b)= M(N, s) × O(1) −→
N→∞ 0.
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We used in (b) the facts that S+
x,z + S−

x,z is increasing in s, and that given x and z, for all s > 0,
by Lemma 4.1,

S+
x,z + S−

x,z < F(x) (1 − F(z)) + F(z) (1 − F(x)) < 1.

We used in (a) the following combinatorial result.

Lemma 4.2. For all α > 0,

�(N−1)/2�∑
k=0

(
N − 1 − k

k

)
αk = 1√

1 + 4α

⎡⎣(1 + √
1 + 4α

2

)N

−
(

1 − √
1 + 4α

2

)N
⎤⎦ . (4.8)

We refer to Appendix B.1 for a proof of this result. To obtain (a) from Lemma 4.2, we apply
(4.8) to

α = S−
x,z

(
1 − S+

x,z

)(
1 − S+

x,z − S−
x,z
)2 ,

with

√
1 + 4α = 1 − S+

x,z + S−
x,z

1 − S+
x,z − S−

x,z
.

Some straightforward simplifications then give the claimed result. The dominated convergence
theorem in (4.7) shows that p(N, s) → 0 and ends the proof. �
Remark 4.2. The above computations also imply the existence of a non-degenerate limit of
p(N, s) in the critical case where sN → c > 0: in this case, previous discussions as well as
Lemma 4.1 show that the joint distribution of (N+(x, x + sz),N−(x, x + sz)) is asymptotically

Poi(c [E(x) (zF(z) + E(z))] ) ⊗ Poi(c [E(x) (−z + zF(z) + E(z))] ).

Therefore, p(N, s) has a non-degenerate limit given by∫
R

∫
R

E(x)E(z) · G (c [E(x) (zF(z) + E(z))] , c [E(x) (−z + zF(z) + E(z))]) dx dz, (4.9)

where

G(a, b) := P(Poi(a) = Poi(b)) = e−(a+b)
∑
k≥0

akbk

(k!)2
. (4.10)

Note that G(a, b) → 1 when a, b → 0, and G(a, b) → 0 when a, b → +∞.

5. Analysis of the EIG1 method for matrix alignment

We now come back to our initial problem, which is the analysis of the EIG1 method. Recall
that for any estimator �̂ of �, its overlap is defined as follows:

L(�̂, �) := 1

N

N∑
i=1

1
�̂(i)=�(i).
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The aim of this section is to show how Propositions 2.1 and 2.2 can be assembled to prove the
main result of our study, namely Theorem 2.1.

Proof of Theorem 2.1. In the first case (i), assuming σ = o(N−7/6−ε) for some ε > 0, we
have in particular that the condition (2.2) holds. Proposition 2.1 and Equation (4.1) in Section
4 enable us to identify v1 and v′

1 with the following vectors:

v1 ∼ X, v′
1 ∼ X + sZ, (5.1)

where X and Z are two independent Gaussian vectors from the toy model, and where s � σN1/6

w.h.p. Recall that we work under the assumptions � = Id and 〈v1, v′
1〉 > 0. In this case, we

expect �+ to be very close to Id.
We will use the notation of Section 4 hereafter. Let us take f ∈F such that w.h.p.,

σN1/6f (N)−1 ≤ s ≤ σN1/6f (N). For all 1 ≤ i ≤ N, we have

P (�+(i) = �(i)) = P (�+(1) = �(1))

=E

[∫∫
dxdzE(x)E(z)φx,z (N, s) 1σN1/6f (N)−1≤s≤σN1/6f (N)

]
+ o(1)

=
∫∫

dxdzE(x)E(z)E
[
φx,z (N, s) 1σN1/6f (N)−1≤s≤σN1/6f (N)

]+ o(1).

When conditioning on the event A where σN1/6f (N)−1 ≤ s ≤ σN1/6f (N), we know that sN →
0 by the condition (i), and for all x, z, we have E

[
φx,z (N, s) |A]→ 1 as shown in Section 4.

Since A occurs w.h.p. we have

E
[
φx,z (N, s) 1A

]−→1,

which implies, together with the dominated convergence theorem, that

E
[L(�+, �)

] −→
N→∞ 1 (5.2)

and thus

L(�+, �)
L1→ 1.

We now check that w.h.p., �+ is preferred to �− in the EIG1 method.

Lemma 5.1. In the case (i), if 〈v1, v′
1〉 > 0, we have w.h.p.

〈A, �+B�T+〉 > 〈A, �−B�T−〉;
in other words, the algorithm EIG1 returns w.h.p. �̂ = �+.

This lemma is proved in Appendix B.3 and implies, together with (5.2), that

E

[
L(�̂, �)

]
≥E

[
L(�̂, �)1

�̂=�+

]
=E

[
L(�+, �)1

�̂=�+

]
=E

[L(�+, �)
]−E

[
L(�+, �)1

�̂=�−

]
= 1 − o(1),

and thus

L(�̂, �)
L1−→

N→∞ 1. (5.3)
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In the second case (ii), if the condition (2.2) is verified, then the identification (5.1) still
holds and the proof of the case (i) adapts well. However, if (2.2) is not verified, we can still
make a link to the toy model studied in Section 4. We use a simple coupling argument: if
σ = ω(N−1/2−α) for some α ≥ 0, let us take σ1, σ2 > 0 such that

σ 2 = σ 2
1 + σ 2

2

and

N−7/6+ε � σ1 � N−1/2−α,

fixing for instance σ1 = N−1. We will use the notation ṽ1, now viewed as the leading
eigenvector of the matrix

B̃ = A + σ1H + σ2H̃,

where H̃ is an independent copy of H. This has no consequence in terms of distribution: (A, B̃)
is still drawn under the model (1.2). Let us denote by v′

1 the leading eigenvector of B1 =
A + σ1H, chosen so that 〈v1, v′

1〉 > 0. It is clear that the condition (2.2) holds for σ1. We have
the following result, based on the invariance by rotation of the GOE distribution.

Lemma 5.2. We still have the following equality in distribution:

(r1(v1), r1(̃v1))
(d)= (r1(X), r1(X + sZ)) ,

where X, Z are two standard Gaussian vectors from the toy model, with w.h.p.

s ≥ s1 � σ1N1/6.

We refer to Appendix B.2 for a proof. Since w.h.p. s ≥ s1 and s1N � σ1N7/6 → ∞, for all
1 ≤ i ≤ N we have

P (�+(i) = �(i)) = P (�+(1) = �(1))

=E

[∫∫
dxdzE(x)E(z)φx,z(N, s)1sN→∞

]
+ o(1)

=
∫∫

dxdzE(x)E(z)E
[
φx,z(N, s)1sN→∞

]+ o(1).

With the same arguments as in the case (i), we show that φx,z(N, s)1sN→∞
L1−→ 0, which

implies
E
[L(�+, �)

] −→
N→∞ 0,

and hence L(�+, �)
L1−→

N→∞ 0. The last step is to verify that the overlap achieved by �− does

not outperform that of �+. We prove the following lemma in Appendix B.4.

Lemma 5.3. In the case (ii), if 〈v1, v′
1〉 > 0, we also have

L(�−, �)
L1−→

N→∞ 0.

Lemma 5.3 then gives

E

[
L(�̂, �)

]
≤E

[L(�+, �)
]+E

[L(�−, �)
] −→

N→∞ 0,
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and thus

L(�̂, �)
L1−→

N→∞ 0. (5.4)

Of course, the convergences in (5.3) and (5.4) also hold in probability, by Markov’s
inequality. �
Remark 5.1. We conclude this work with a remark about the critical case in Theorem 2.1. In
the light of Remark 4.2, if σ � N7/6, we expect L(�̂, �) to have a non-degenerate limit L∞
in probability, whose behavior is random in [0,1]. Since our estimates are always made up to a
sub-polynomial factor, it is nontrivial to establish such a result for Theorem 2.1 in the critical
case without substantial additional work. However, we can make a guess about the expected
result when σN7/6 → c > 0: in this case we conjecture that the expected value of L∞ is given
by ∫

R

∫
R

E(x)E(z) · G (c [E(x) (zF(z) + E(z))] , c [E(x) (−z + zF(z) + E(z))]) dx dz, (5.5)

where G is defined in (4.10) in Remark 4.2.

Appendix A. Additional proofs for Section 3

Throughout the proofs, all variables denoted by Ci with i = 1, 2, . . . are unspecified,
independent, positive constants.

A.1 Proof of Proposition 3.1

Proof of Proposition 3.1. Let us establish a first inequality: since the GOE distribution is
invariant by rotation (see e.g. [3]), the random variables 〈Hvj, vi〉 are zero-mean Gaussian,
with variance 1/N if i 
= j and 2/N if i = j. Hence, w.h.p.

sup
1≤i,j≤N

∣∣〈Hvj, vi〉
∣∣≤ C1

√
log N

N
. (A.1)

We will use the following shorthand notation for 1 ≤ i, j ≤ N:

mi,j := 〈Hvj, vi〉.
The defining eigenvector equations projected on vectors vi are written as follows:⎧⎨⎩ θi = σ

λ′
1 − λi

∑N
j=1 θjmi,j,

λ′
1 − λ1= σ

∑N
j=1 θjm1,j.

(A.2)

In order to approximate the θi variables, we define the following iterative scheme:⎧⎨⎩ θk
i = σ

λk−1
1 − λi

∑N
j=1 θk−1

j mi,j,

λk
1 − λ1 = σ

∑N
j=1 θk−1

j m1,j,

(A.3)

with initial conditions
(
θ0

i

)
2≤i≤N = 0 and λ0

1 = λ1, and setting θk
1 = 1 for all k. For k ≥ 1, define

�k :=
∑
i≥2

∣∣∣θk
i − θk−1

i

∣∣∣ ,
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and for k ≥ 0,
Sk :=

∑
i≥1

∣∣∣θk
i

∣∣∣ .
Recall that under the assumption (2.2), there exists α > 0 such that σ = o

(
N−1/2−α

)
. We define

ε as follows:
ε = ε(N) =

√
σN1/2+α .

The idea is to show that the sequence {�k}k≥1 decreases geometrically with k at rate ε. More
specifically, we show the following result.

Lemma A.1. With the same notation and under the assumption (2.2) of Proposition 3.1, one
has w.h.p.

(i) ∀k ≥ 1, �k ≤ �1ε
k−1;

(ii) ∀k ≥ 0, ∀ 2 ≤ i ≤ N,
∣∣λk

1 − λi
∣∣≥ 1

2 |λ1 − λi|
(
1 − ε − . . . − εk−1

)
;

(iii) ∀k ≥ 0, Sk ≤ 1 + (1 + . . . + εk−1)�1;

(iv)
∑N

i=2

∣∣θi − θ1
i

∣∣2 = o
(∑N

i=2

∣∣θ1
i

∣∣2).

This lemma is proved in the next section. Equation (iv) of Lemma A.1 yields

w′ = v1 +
N∑

i=2

θ1
i vi +

N∑
i=2

(
θi − θ1

i

)
vi

= v1 + σ

N∑
i=2

〈Hvi, v1〉
λ1 − λi

vi + oP

(
σ

N∑
i=2

〈Hvi, v1〉
λ1 − λi

vi

)
.

�

Proof of Lemma A.1

Proof of Lemma A.1. In this proof we will use the same notation as defined in the proof
of Proposition 3.1, and we make the assumption (2.2). We now state three technical lemmas
controlling some statistics of eigenvalues in the GOE which will be useful hereafter.

Lemma A.2. W.h.p., for all δ > 0,

N∑
j=2

1

λ1 − λj
≤ O

(
N1+δ

)
. (A.4)

Lemma A.3. We have
N∑

j=2

1(
λ1 − λj

)2 � N4/3. (A.5)

Lemma A.4. For any C > 0, w.h.p.

λ1 − λ2 ≥ N−2/3 (log N)−C log log N . (A.6)

Proofs of these three lemmas can be found in the next sections. We will work under the event
(that occurs w.h.p.) on which the equations (A.4), (A.5), (A.6), (3.4), and (A.1) are satisfied.
We show the following inequalities:
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(i) ∀k ≥ 1, �k ≤ �1ε
k−1;

(ii) ∀k ≥ 0, ∀ 2 ≤ i ≤ N,
∣∣λk

1 − λi
∣∣≥ 1

2 |λ1 − λi|
(
1 − ε − . . . − εk−1

)
;

(iii) ∀k ≥ 0, Sk ≤ 1 + (1 + . . . + εk−1)�1.

Recall that ε is given by

ε = ε(N) =
√

σN1/2+α .

We will denote by fi(N), with i an integer, functions as defined in Lemma A.3. All of the
following inequalities will be valid for N large enough (uniformly in i and in k).

Step 1: Propagation of the first equation. Let k ≥ 3. We work by induction, assuming that
(i), (ii), and (iii) are verified up to k − 1. We have the following:

∣∣∣θk
i − θk−1

i

∣∣∣≤
∣∣∣∣∣∣ σ

λk−1
1 − λi

N∑
j=2

(
θk−1

j − θk−2
j

)
mi,j

∣∣∣∣∣∣+
∣∣∣∣∣∣

σ
(
λk−2

1 − λk−1
1

)
(
λk−1

1 − λi

) (
λk−2

1 − λi

) N∑
j=1

θk−2
j mi,j

∣∣∣∣∣∣
≤ σ∣∣∣λk−1

1 − λi

∣∣∣C1

√
log N

N
�k−1 + σC1

√
log N

N
Sk−2

∣∣∣λk−2
1 − λk−1

1

∣∣∣∣∣∣λk−1
1 − λi

∣∣∣ ∣∣∣λk−2
1 − λi

∣∣∣
(a)≤ σ

3

|λ1 − λi|C1

√
log N

N
�k−1 + σC1

√
log N

N
Sk−2

9
∣∣∣λk−2

1 − λk−1
1

∣∣∣
|λ1 − λi|2

(b)≤ σ
3

|λ1 − λi|C1

√
log N

N
�k−1 + σC1

√
log N

N
2

9
∣∣∣λk−2

1 − λk−1
1

∣∣∣
|λ1 − λi|2

,

where we applied (ii) to k − 1, k − 2 in (a) and (iii) to k − 2 in (b). Note that

∣∣∣λk−2
1 − λk−1

1

∣∣∣=
∣∣∣∣∣∣σ

N∑
j=1

(
θk−2

j − θk−3
j

)
mi,j

∣∣∣∣∣∣≤ σC1

√
log N

N
�k−2,

which yields the inequality∣∣∣θk
i − θk−1

i

∣∣∣≤ σ

|λ1 − λi| f1(N)N−1/2�k−1 + σ 2

|λ1 − λi|2
f2(N)N−1�k−2.

We choose δ such that 0 < δ < α (where α is fixed by (2.2)), and we sum from i = 2 to N:

�k ≤ σ f1(N)N1/2+δ�k−1 + σ 2f3(N)N1/3�k−2

(a)≤ o(ε)εk−2�1 + o(ε2)εk−3�1

≤ εk−1�1.

Here we used σ f1(N)N1/2+δ = o(ε), σ 2f3(N)N1/3 = o(ε2), and we applied (i) to k − 1 and k − 2
in (a).
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Step 2: Propagation of the second equation. Let k ≥ 2, and 0 < δ < α. We work by
induction, assuming that (i), (ii), and (iii) are verified up to k − 1. We have the following:∣∣∣λk

1 − λk−1
1

∣∣∣≤ σ f1(N)N−1/2�k−1

(a)≤ σ f1(N)N−1/2εk−2�1

≤ N−2/3( log N)−C log log Nεk−2�1

≤ λ1 − λ2

2
εk−2�1

≤ λ1 − λi

2
εk−2�1.

We applied (i) to k − 1 in (a). Note that

�1 =
N∑

j=2

σ

λ1 − λi

∣∣mi,1
∣∣≤ σ f1(N)N1/2+δ ≤ o(ε).

Applying (ii) to k − 1, we get∣∣∣λk
1 − λi

∣∣∣≥ ∣∣∣λ1 − λk−1
1

∣∣∣− ∣∣∣λk
1 − λk−1

1

∣∣∣
≥ λ1 − λi

2

(
1 − ε − . . . − εk−2

)
− λ1 − λi

2
εk−1

≥ λ1 − λi

2

(
1 − ε − . . . − εk−1

)
.

Step 3: Propagation of the third equation. Let k ≥ 1. Here again, we work by induction,
assuming that (i), (ii), and (iii) are verified up to k − 1. We have the following:

Sk = 1 +
N∑

j=2

∣∣∣θk
j

∣∣∣
≤ 1 + �k + Sk−1 − 1
(a)≤ εk−1�1 + 1 +

(
1 + . . . + εk−2

)
�1

≤ 1 +
(

1 + ε + . . . + εk−1
)

�1.

We applied (i) to k and (iii) to k − 1 in (a).

Step 4: Proof of (i) for k = 1, 2, (ii) for k = 0, 1, and (iii) for k = 0, 1. The equation (i) for
k = 1 is obvious. For k = 2, we have∣∣∣θ2

i − θ1
i

∣∣∣≤
∣∣∣∣∣∣ σ

λ1
1 − λi

N∑
j=2

(
θ1

j − θ0
j

)
mi,j

∣∣∣∣∣∣+
∣∣∣∣∣∣ σ

(
λ0

1 − λ1
1

)(
λ1

1 − λi
) (

λ0
1 − λi

) N∑
j=1

θ0
j mi,j

∣∣∣∣∣∣ .
We have ∣∣∣λ1

1 − λi

∣∣∣≥ |λ1 − λi| −
∣∣∣λ1 − λ1

1

∣∣∣≥ |λ1 − λi| − σ
∣∣m1,1

∣∣
≥ |λ1 − λi| − 1

2
|λ1 − λ2| ≥ 1

2
|λ1 − λi| ,
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which shows (ii) for k = 0, 1. Thus, for 0 < δ < α,∣∣∣θ2
i − θ1

i

∣∣∣≤ 2σ

λ1 − λi
C1

√
log N

N
�1 + 4σ

(λ1 − λi)
2
σ
∣∣m1,1

∣∣ ∣∣mi,1
∣∣ ,

and

�2 ≤ σ f1(N)N1/2+δ�1 + 4σ
∣∣m1,1

∣∣ N∑
i=2

σ
∣∣mi,1

∣∣
(λ1 − λi)

2

≤ σ f1(N)N1/2+δ�1 + 4σ f4(N)N−1/2N2/3
N∑

i=2

σ
∣∣mi,1

∣∣
(λ1 − λi)

≤ σ f1(N)N1/2+δ�1 + 4σ f4(N)N1/6�1

≤ ε�1.

The proof of (iii) for k = 0, 1 is obvious.

Step 5: Proof of Equation (iv). Let k ≥ 2 and 2 ≤ i ≤ N. In the same way as in Step 1, we
have ∣∣∣θk

i − θk−1
i

∣∣∣≤ 2σC1

λ1 − λi

√
log N

N
εk−2�1 + 8σ 2C2

1

(λ1 − λi)
2

log N

N
ε(k−3)+�1.

In the right-hand term, the ratio of the second term to the first one is smaller than

4σC1

λ1 − λi

√
log N

N
ε−1 ≤ σN1/6f (N)ε−1 ≤ ε → 0,

using Lemma A.4, with f ∈F . It follows that for N big enough (uniformly in k and i) one has∣∣∣θk
i − θk−1

i

∣∣∣≤ σ f (N)

λ1 − λi
N−1/2εk−2�1. (A.7)

Equation (A.7) shows that the scheme (A.3) converges, and that the limits are indeed the solu-
tions θ1 = 1, θ2, . . . , θN of the fixed-point equations. By a simple summation of (A.7) over
k ≥ 2, applying Lemma A.2 and the inequality (A.1), we have∣∣∣θi − θ1

i

∣∣∣≤ 2σ f (N)

λ1 − λi
N−1/2�1 ≤ 2σ 2f (N)

λ1 − λi
Nδ,

where δ > 0 is a positive quantity as in Lemma A.2, to be specified later. Using Lemma A.3
one has the following control:

N∑
i=2

∣∣∣θi − θ1
i

∣∣∣2 ≤ 4σ 4N2δf (N)N4/3.

Moreover, Lemma 3.1 shows that

N∑
i=2

∣∣∣θ1
i

∣∣∣2 � σ 2N1/3 ≥ g(N)−1σ 2N1/3,
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where g is another function in F . This yields

N∑
i=2

∣∣∣θi − θ1
i

∣∣∣2 ≤
N∑

i=2

∣∣∣θ1
i

∣∣∣2 4σ 2N2δ+1f (N)g(N).

The proof is completed by taking δ = α/2 and applying (2.2). �

Proof of Lemma A.4

Proof of Lemma A.4. This lemma provides a control of the spectral gap λ1 − λ2. Given
a good rescaling (in N2/3), the asymptotic joint law of the eigenvalues in the edge has been
investigated in a great deal of research, for Gaussian ensembles and for more general Wigner
matrices. The GOE case has mainly been studied by Tracy, Widom, and Forrester, among many
others; in [12, 21], the convergence of the joint distribution of the first k eigenvalues towards a
density distribution is established, as stated in the following proposition.

Proposition A.1. ([12, 21].) For a given k ≥ 1, and all s1, . . . , sk real numbers,

P

(
N2/3 (λ1 − 2) ≤ s1, . . . , N2/3 (λk − 2) ≤ sk

)
−→

N→∞ F1,k(s1, . . . , sk), (A.8)

where the F1,k are continuous and can be expressed as solutions of nonlinear partial differential
equations. Thus the rescaled spectral gap N2/3 (λ1 − λ2) has a limit probability density law
supported by R+, which implies that

P

(
N2/3 (λ1 − λ2) ≥ (log N)−C log log N

)
−→

N→∞ 1.

Of course, the choice of the function N �→ (log N)−C log log N here is arbitrary, and the result is
also true for any function tending to 0. �

Proof of Lemma A.3

Proof of Lemma A.3. This result needs an understanding of the behavior of the spectral gaps
of the matrix A, in the bulk and in the edges (left and right). The eigenvalues in the edges
correspond to indices i such that i = o(N) (left) or i = N − o(N) (right). The eigenvalues in the
bulk are the remaining eigenvalues. For this, we use a result on rigidity of eigenvalues, due
to L. Erdös et al. [8], which consists in a control of the probability of the gap between the
eigenvalues of A and the typical eigenvalues γj of the semicircle law, defined as follows:

∀i ∈ {1, . . . , n} ,
1

2π

∫ γj

−2

√
4 − x2dx = 1 − j

N
. (A.9)

Proposition A.2. ([8].) For some positive constants C5 > 0 and C6 > 0, for N large enough,

P

(
∃j ∈ {1, . . . , n} | ∣∣λj − γj

∣∣≥ (log N)C5 log log N (min (j, N + 1 − j))−1/3 N−2/3
)

(A.10)

≤ C5 exp
(
− (log N)C6 log log N

)
.

Remark A.1. Another similar result that goes in the same direction for the GOE is already
known: it has been shown by O’Rourke in [17] that the variables λi − γi behave as Gaussian
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variables when N → ∞. However, the rigidity result in (A.10) obtained in [8] can be applied
in more general models. This quantitative probabilistic statement was not previously known
even for the GOE case.

Remark A.2. Let us note that one of the assumptions made in [8] is that variances of each
column sum to 1, which is not directly the case in our model (1.2). Nevertheless, one may use

(A.10) for the rescaled matrix Ã := A
(

1 + 1
N

)−1/2
, then easily check that there is a possible

step back to A:

|λj − γj| ≤
∣∣∣∣∣λj

(
1 + 1

N

)−1/2

− γj

∣∣∣∣∣+ N−1 + o(N−1),

and N−1 + o(N−1) ≤ 2 (min (j, N + 1 − j))−1/3 N−2/3 for N big enough. Tolerating a slight
increase of the constant C5, the result (A.10) is thus valid in the GOE.

Let us now compute an asymptotic expansion of γj in the right edge, which is for j = o(N).
Define

G(x) := 1

2π

∫ x

−2

√
4 − t2dt = x

√
4 − x2 + 4 arcsin (x/2)

4π
+ 1

2
, (A.11)

for all x ∈ [ − 2, 2]. We have γj = G−1(1 − j/N) = −G−1(j/N), observing that the integrand in
(A.11) is an even function. We get the following expansion when x → −2:

G(x) =
x→−2

2(x + 2)3/2

3π
+ o

(
(x + 2)3/2

)
,

which implies that

G−1(y) =
y→0

−2 +
(

3πy

2

)2/3

+ o
(

y2/3
)

,

and hence

γj =
j/N→0

2 −
(

3π j

2N

)2/3

+ o
(

(j/N)2/3
)

. (A.12)

Remark A.3. One can observe the coherence of this result that arises naturally in [17] as the
expectation of the eigenvalues in the edge.

Let ε > 0, to be specified later. To establish our result we will split the variables j into three
sets:

A1 :=
{

2 ≤ j ≤ (log N)(C5+1) log log N
}

(a small part of the right edge),

A2 :=
{
(log N)(C5+1) log log N < j ≤ N1−ε

}
(a larger part of the right edge),

A3 :=
{

N1−ε < j ≤ N
}

(everything else).

We show that the sum over A1 is the major contribution in (A.5). The split in the right edge
between A1 and A2 is driven by the error term of (A.10): this term is small compared to γj if
and only if (log N)C5 log log N = o(j).
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Step 1: Estimation of the sum over A1. According to (A.10) and Lemma (A.4), w.h.p.

N−4/3 (log N)−C6 log log N ≤ (λ1 − λ2)
2 ≤ C7N−4/3 (log N)C6 log log N ,

where C6, C7 are positive constants. Hence, w.h.p.

N4/3

C7 (log N)C6 log log N
≤
∑
j∈A1

1(
λ1 − λj

)2
≤
∑
j∈A1

1

(λ1 − λ2)
2

≤ N4/3 (log N)(C5+C6+1) log log N .

Step 2: Estimation of the sum over A2. Let us show that the sum over A2 is asymptotically
small compared to the sum over A1: using (A.10) and (A.13), we know that there exists C8 > 0
such that for all j ∈ A2, w.h.p.

λj = 2 − C8

(
j

N

)2/3

+ o
(

(j/N)2/3
)

,

and we know furthermore (se e.g. [3]) that w.h.p.

λ1 = 2 + o
(

(j/N)2/3
)

∀j ∈ A2; (A.13)

hence w.h.p. ∑
j∈A2

1(
λ1 − λj

)2 = N4/3
∑
j∈A2

1

C9j4/3(1 + o(1))

= N4/3(1 + o(1))
∑
j∈A2

1

C9j4/3
= o

(
N4/3

)
,

using in the last line the fact that the Riemann series
∑

j−4/3 converges.

Step 3: Estimation of the sum under A3. From the previous results (A.10), (A.13), and
(A.14), assuming that ε < 1, we get w.h.p.

λ1 − λN1−ε = C8N−2ε/3 + O
(

N−2ε/3
)

,

which gives w.h.p. the following control:∑
j∈A3

1(
λ1 − λj

)2 ≤
(

N − N1−ε
) 1(

λ1 − λN1−ε

)2
=
(

N − N1−ε
) N4ε/3

C9(1 + o(1))
= O

(
N1+4ε/3

)
= o

(
N4/3

)
,

as long as ε < 1/4. Taking such an ε, these three controls complete the proof. �
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Proof of Lemma A.2

Proof of Lemma A.2. We follow the same steps as in the proof of Lemma A.3. Let us take
δ > 0. We split the j variables into three sets:

A1 :=
{

2 ≤ j ≤ N1/3
}

,

A2 :=
{

N1/3 < j ≤ N1−δ
}

,

A3 :=
{

N1−δ < j ≤ N
}

.

We use Lemma A.4 to obtain the following control: w.h.p.∑
j∈A1

1

λ1 − λj
≤ N1/3N2/3 (log N)C5 log log N = O(N1+δ).

Similarly, for A2,∑
j∈A2

1

λ1 − λj
≤
∑
j∈A2

1

o(N−2/3) + C8(j/N)2/3 + O
(
(log N)C5 log log N N−2/3j−1/3

)
= N2/3

∑
j∈A2

1

o(1) + C8j2/3
≤ C10N2/3N(1−δ)/3 ≤ O

(
N1+δ

)
.

Finally, using the Cauchy–Schwarz inequality,

∑
j∈A3

1

λ1 − λj
≤ √

N

⎛⎝∑
j∈A3

1(
λ1 − λj

)2
⎞⎠1/2

≤ √
NO
(
N1/2+2δ/3)= O

(
N1+δ

)
.

�

A.2 Proof of Lemma 3.1

Proof of Lemma 3.1. We show that w.h.p.

N∑
i=2

〈Hvi, v1〉2

(λ1 − λi)
2

− 1

N

N∑
i=2

1

(λ1 − λi)
2

= o

(
1

N

N∑
i=2

1

(λ1 − λi)
2

)
. (A.14)

Let us recall that H is drawn according to the GOE; hence its law is invariant by rotation.
This implies that the 〈Hvi, v1〉 are independent variables with variance 1/N, independent of
λ1, . . . , λN . Define

MN :=
N∑

i=2

〈Hvi, v1〉2 − 1/N

(λ1 − λi)
2

.

Computing the second moment of MN , we get

E

[
M2

N

∣∣∣λ1, . . . , λN

]
= Var(MN |λ1, . . . , λN) = 1

N4

N∑
i=2

2

(λ1 − λi)
4

.
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Adapting the proof of Lemma A.3, following the same steps, one can also show that w.h.p.

N∑
i=2

1

(λ1 − λi)
4

� N8/3. (A.15)

Let ε = ε(N) > 0 to be specified later. By Markov’s inequality

P

(
|MN | ≥ ε

N

N∑
i=2

1

(λ1 − λi)
2

∣∣∣∣∣ λ1, . . . , λN

)
≤ N2

ε2

E
[
M2

N |λ1, . . . , λN
](∑N

i=2
1

(λ1−λi)
2

)2

� 1

ε2N2
,

by Lemma A.3 and Equation (A.16). Taking e.g. ε(N) = N−1/2 concludes the proof.
�

Appendix B. Additional proofs for Sections 4 and 5

B.1 Proof of Lemma 4.2

Proof of Lemma 4.2. We fix α > 0, and we want to prove

�(N−1)/2�∑
k=0

(
N − 1 − k

k

)
αk = 1√

1 + 4α

⎡⎣(1 + √
1 + 4α

2

)N

−
(

1 − √
1 + 4α

2

)N
⎤⎦ . (B.1)

In the following, we define

φ+ := 1 + √
1 + 4α

2
, φ− := 1 − √

1 + 4α

2
,

and for all N ≥ 1,

uN = uN(α) :=
�(N−1)/2�∑

k=0

(
N − 1 − k

k

)
αk.

We clearly have uN(α) ≤ (1 + α)N . For all t > 0 small enough (e.g. t < 1/(1 + α)), define

f (t) :=
∞∑

N=1

uNtN .

On the one hand,

t

1 − t − αt2
= t

∞∑
m=0

(
t + αt2

)m =
∞∑

m=0

m∑
l=0

(
m

l

)
αltl+m+1

=
∞∑

N=1

⎛⎜⎜⎝ ∑
0≤l≤m

l+m=N−1

(
m

l

)
αl

⎞⎟⎟⎠ tN =
∞∑

N=1

uNtN = f (t).
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FIGURE 4. Orthogonal projection of ṽ1 on P := span(v′
1, v1).

On the other hand,

t

1 − t − αt2
= t

(1 − φ−t) (1 − φ+t)
= 1

φ+ − φ−

(
1

1 − φ+t
− 1

1 − φ−t

)
= 1√

1 + 4α

∞∑
N=1

(
φN+ − φN−

)
tN .

This proves (B.1). �

B.2 Proof of Lemma 5.2

Proof of Lemma 5.2. Let us represent the situation in the plane spanned by v1 and v′
1, as

shown in Figure 4.
Since ṽ1 is taken such that 〈v1, ṽ1〉 > 0 and σ1 satisfies (2.2), we have 〈̃v1, v′

1〉 > 0 for N large
enough by Proposition (2.1). Let p := 〈̃v1, v′

1〉2 and w̃ := ṽ1 − √
pv′

1 ∈ (v′
1
)⊥. By invariance by

rotation we obtain that

w̃

‖w̃‖ = w̃√
1 − p

is uniformly distributed on the unit sphere S
N−2 of

(
v′

1
)⊥, and independent of p, v1, and v′

1.
Hence

〈b, ṽ1〉 = 〈b, w̃〉 (d)= √1 − p · Z̃1√∑N−1
i=1

(̃
Zi
)2 ,

where the Z̃i are independent Gaussian standard variables, independent from everything else.
From Section 3 we know that 1 − 〈v1, v′

1〉 � σ 2
1 N1/3 and thus 〈v1, b〉 � σ1N1/6. This yields, for
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N large enough, w.h.p.

0 < 〈̃v1, v1〉 ≤ √
p〈v1, v′

1〉 +
√

1 − p

N
Z̃1σ1N1/6f (N)

≤ √
p〈v1, v′

1〉 +√1 − pN−4/3g(N)

≤ max
(√

p,
√

1 − p
)

〈v1, v′
1〉

≤ 〈v1, v′
1〉,

where f and g are two functions as defined in Lemma A.3. From this point one can still make
the link to the toy model, as done at the beginning of Section 4. By invariance by rotation,
letting t := ṽ1 − 〈̃v1, v1〉v1, we know that ‖t‖ and t

‖t‖ are independent, and that t
‖t‖ is uniformly

distributed on the unit sphere in v⊥
1 . We have the following equality in distribution:

(r1(v1), r1(̃v1))
(d)= (r1(X), r1(X + sZ)) ,

with w.h.p.

s ≥ s1 = ‖w‖‖X‖(∑N
i=2 Z2

i

)1/2
(

1 − ‖w‖Z1(∑N
i=2 Z2

i

)1/2

) � σ1N1/6,

where the Xi, Zi, and w are defined in Section 4, for σ = σ1. �

B.3 Proof of Lemma 5.1

Proof of Lemma 5.1. Recall that we work in the case (i) (σ = o(N−7/6−ε) for some ε > 0),
with 〈v1, v′

1〉 > 0 and � = Id. We want to show that w.h.p.

〈A, �+B�T+〉 > 〈A, �−B�T−〉. (B.2)

Define
G := {i, �+(i) = �(i) = i}

and
A :=

{
σN1/6f (N)−1 ≤ s ≤ σN1/6f (N)

}
,

with f ∈F such that P (A) → 1. For N large enough, on the event A, we have 0 ≤ sN ≤
N−ε f (N). Hence, repeating the proof of Proposition 2.2, we have

φx,z (N, s) ≥ P
(N+(x, x + sz) =N−(x, x + sz) = 0

)
∼ exp (−sNE(x) [z(2F(z) − 1) + 2E(z)]) = 1 − O(N−ε f (N)).

Thus, with dominated convergence, for N large enough,

P (�+(i) = �(i)|A) =
∫∫

dxdzE(x)E(z)E
[
φx,z (N, s) |A]≥ 1 − O(N−ε f (N)). (B.3)

We use Markov’s inequality with (B.3) to show that P
(

G ≤ N − N1−ε/2 |A)≤

O
(
N−ε/2f (N)

)
, and hence w.h.p.


G ≥ N − N1−ε/2. (B.4)
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Splitting the sum

〈A, �+B�T+〉 =
∑
i,j

Ai,jB�+(i),�+(j) =
∑

(i,j)∈G2

Ai,jBi,j +
∑

(i,j)/∈G2

Ai,jB�+(i),�+(j),

one has, w.h.p.,

〈A, �+B�T+〉 =
∑

(i,j)∈G2

A2
i,j +

∑
(i,j)/∈G2

(�+(i),�+(j))
=(j,i)

Ai,jA�+(i),�+(j)

+
∑

(i,j)/∈G2

(�+(i),�+(j))=(j,i)

A2
i,j + σ

∑
1≤i,j≤N

Ai,jH�+(i),�+(j)

≥ C1
(
G)2

N
− C2

(
N2 − (
G)2

) log N

N
− C2σN2 log N

N
.

Here we applied the law of large numbers for the first sum, lower-bounded the third sum by
zero, and used the classical inequality

max
i,j

{
Ai,j, Hi,j

}≤ C2
log N

N

(which holds w.h.p.) for the two others.
The inequality (B.4) and the condition (i) lead to, w.h.p.,

〈A, �+B�T+〉 ≥ C1N − 2C1N1−ε/2 − 2C2N1−ε/2 log N − C2N−1/6−ε log N ≥ C3N.

On the other hand, since by definition �−(i) = �+(N + 1 − i), w.h.p.,

〈A, �−B�T−〉 =
∑

(i,j)∈G2

Ai,jBN+1−i,N+1−j +
∑

(i,j)/∈G2

Ai,jB�−(i),�−(j)

≤ O( log N) + (
G)2

N
o(1) + C2

(
N2 − (
G)2

) log N

N
.

For the first sum, we used the law of large numbers: the variables Ai,j and BN+1−i,N+1−j are
independent in all cases but at most N + 1, and this part of the sum is bounded by O( log N).
We used the same control on Gaussian variables as above.

This gives (〈A, �−B�T−〉)+ = oP(N),

where (x)+ := max (0, x), which proves (B.2). �

B.4 Proof of Lemma 5.3

Proof of Lemma 5.3. Recall that we work in the case (ii) (σ = ω(N−7/6+ε) for some ε > 0),
with 〈v1, v′

1〉 > 0 and � = Id. We want to show that the aligning permutation between v1 and
−v′

1 has a very bad overlap. Taking the pair (X, −Y) where (X, Y) ∼J (N, s), one can adapt
the proof of Proposition 2.2, with the new definitions

S̃+(x, y) := P (X1 > x, −Y1 < −y) and

S̃−(x, y) := P (X1 < x, −Y1 > −y) .
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The analysis is even easier since for all x, z, there exist two constants c, C such that

0 < c ≤ S̃+(x, x + sz), S̃−(x, x + sz) ≤ C < 1.

It is then easy to check that the proof of Proposition 2.2, case (ii), adapts well. �
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