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A Philosopher’s Guide to Empirical
Success

Malcolm R. Forster†‡

The simple question, what is empirical success? turns out to have a surprisingly com-
plicated answer. We need to distinguish between meritorious fit and ‘fudged fit’, which
is akin to the distinction between prediction and accommodation. The final proposal
is that empirical success emerges in a theory dependent way from the agreement of
independent measurements of theoretically postulated quantities. Implications for re-
alism and Bayesianism are discussed.

1. Introduction. It would be a miracle for our best scientific theories to
be empirically successful if none of their postulated entities existed or if
the theories were not approximately or partially true. This is commonly
known as the miracle argument, or the cosmic coincidence argument for
scientific realism—the view that science provides us with information
about the reality behind the observable phenomena. An equally well
known response claims that the truth of our best scientific theories is not
necessary to explain their empirical success; it is sufficient that our theories
be true in all their observational claims. Antirealists such as van Fraassen
(1980) claim that it is sufficient that everything a theory says about the
observed phenomena, past, present, and future is true (that is, the theory
is empirically adequate), for this weaker claim also implies that the theory
is empirically successful. The debate has naturally focused on the notion
of explanation; realists typically claim that empirical adequacy is not
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EMPIRICAL SUCCESS 589

sufficient for explanation in a full blooded sense, and tried to spell that
out.1

Realists and antirealists have not said much about how empirical suc-
cess should be defined. Both sides appear to agree that the degree to which
a theory ‘saves the phenomena’ is something like the degree to which a
theory fits the observed phenomena. In the ideal case, perfect fit requires
the truth of the observed consequences of a theory. In the less ideal case,
some account of observational error is made, in which case empirical
success might be defined in terms of a ‘least squares’ measure of fit, or
by some probabilistic measure of fit using likelihood or the log likelihood.2

But what is empirical success, exactly? The problem is surprisingly com-
plicated. For instance, empirical success cannot be goodness of fit with
the data, in any unqualified sense, because good fit can be ‘fudged’, for
instance, by introducing many adjustable parameters. ‘Fudged’ fit is not
good, or at least, not something that needs to explained in a realist way.
At the same time, it is standard practice in science to use some adjustable
parameters; so fit is ‘fudged’ to some extent in all cases, and therefore we
need to distinguish between meritorious fit and fudged fit when they occur
together. This will turn out to be related to another distinction—between
prediction and accommodation.

In Section 2, the problem is motivated by a simple question—Why are
Kepler’s laws empirically more successful than Copernicus’s theory of
planetary motion? Section 3 introduces a positive proposal, in terms of
cross-validated fit, while Section 4 explains why this improved answer is
still incomplete. It is argued, in terms of a very simple example, that
empirical success is intimately tied to the agreement of independent mea-
surements of quantities introduced by a theory. In this view, empirical
success is theory laden. Consequences for realism and Bayesians are ex-
amined in the final sections.

2. Why Are Kepler’s Laws Better than Copernicus’s Theory? Kepler’s first
law of planetary motion says that planets move on elliptical paths with
the sun at one focus, while the second law (the area law) says that the
line from the sun to the planet sweeps out equal areas in equal times.
Note that the particular ellipse or the rate of motions are not specified
by these laws; Kepler’s laws introduce a number of adjustable parameters,

1. See van Fraassen 1980, Chapter 2, for an introduction to the realist debate, and
the antirealist position mentioned here is, of course, van Fraassen’s Constructive
Empiricism.

2. ‘Likelihood’ is a technical term, which refers to the probability of the observations
given the hypothesis (not to be confused with the probability of the hypothesis given
the observations, which is a distinctly Bayesian concept).
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590 MALCOLM R. FORSTER

such as the size of the ellipse, its eccentricity, orientation, and the rate of
motion along its path. A predictive hypothesis (or hypothesis, if no con-
fusion will result) assigns a precise Keplerian trajectory to each planet.
It is ‘predictive’ in the sense that it makes exact predictions about the
position of any planet at any given time. Kepler’s laws define a family of
such hypotheses, which I shall call a model. Kepler’s model, in other
words, is a family of predictive hypotheses. Kepler’s third law, also known
as the harmonic law, says that ratios , measured independently for3 2R /T
each planet, are equal, where R is the mean radius of the planet’s motion
(the size of the ellipse) and T is the time it takes for the planet to complete
one revolution around the sun. The third law introduces no new param-
eters; it merely constrains the values of the parameters introduced in the
first two laws.

Now consider a set of observations that state the relative positions of
the planets and the sun at particular times. How should we define the
empirical success of Kepler’s model relative to this set of observations?
Most of the hypotheses in the model will fit the data very badly. So how
do we define the fit of a family of hypotheses? A charitable definition is
that model fit is the best fit achieved by any hypothesis in the model. But
can empirical success be defined as model fit? The answer is no! The
argument for this conclusion doesn’t depend on how fit is defined; so let’s
assume that it is the sum of the squared residues, where the residue is the
spatial distance between the observed position of a planet and the position
specified by a trajectory at the appropriate time.

A Copernican model uses a circle on circle construction (see the caption
of Figure 1 for details). Each model introduces the radius of each circle,
its period of revolution, and the initial position of each circle as adjustable
parameters. The core postulates of Copernicus’s theory imply nothing
about the number of circles that should assigned to each planet, so there
are many models compatible with the theory. Now consider a specific
model. If its empirical success were defined by how well the best fitting
hypothesis in the model fits the data, then would be untrue that Kepler’s
model is empirically more successful than every Copernican model. Con-
sider an arbitrary Copernican model, C, and compare it to another Co-
pernican model, C�, which adds one or more circles to C. Then C is
nested in C� in the precise sense that all the predictive hypotheses in C
are also in C� (Proof: Consider the special case in which the added circles
have zero radius). The nested property is sufficient to prove that the more
complex model can only improve the model fit, for the best fitting hy-
pothesis in C is also in C�. Any degree of fit that C can achieve, the
more complex model can also achieve. It cannot do worse, and C� will
in general do even better. The argument rests solely on the nesting rela-
tionship between models—not on how fit is defined.
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Figure 1. A two-circle Copernican model for the planet Mars. The motion of Mars
relative to the sun is modeled as the sum of two vector motions; one represented by
the arrow from the sun to the circumference of the main circle, called the deferent,
and one from that point to Mars. Each vector has a fixed length and rotates with
uniform motion. (The sun could be placed a short distance from the center of the
deferent circle, although this would be mathematically equivalent to adding another
epicycle.)

Moreover, there is a theorem in mathematics, called the Fourier the-
orem, that implies that one can, in principle, approximate any planetary
trajectory to an arbitrary degree of precision if it uses a sufficient number
of circles. This proves that there exists a Copernican model that can
approximate any finite set of points sampled from the true planetary
trajectories with an arbitrary degree of fit. On the other hand, Kepler’s
model fits the phenomena only approximately (as we know from Newton’s
theory). Therefore, there exists a Copernican model that exceeds the best
fit achieved by Kepler’s laws.

So, we can’t define empirical success in terms of model fit if we want
to maintain the view that Kepler’s model is empirically more successful
than every Copernican model. Intuitively, empirical success must some-
how take account of the fact that complex Copernican models ‘fudge’
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Figure 2. Empirical success in a simple curve fitting example based on a least squares
criterion.

their fit by using a large number of circles. It is not so easy to capture
this idea precisely.

3. Cross-Validated Fit as a Measure of Empirical Success. Let me begin
with a description of the least squares measure of fit to see how it might
be modified. Consider a generic curve fitting example in which the model
is , where x and y are observable quantities, and b is an adjustabley p bx
parameter. The predictive hypotheses in the model are represented by
straight line “curves” passing through the point . Now look at the(0, 0)
two data points in Figure 2.

The ‘distance’ of an arbitrary curve in the model, say C, from the data
may be measured by the sum of squared residues (SSR), where the residues
are defined as the y-distances between the curve and the data points. The
residues are the lengths of the vertical lines in Figure 2. If the vertical
line is below the curve, then the residue is negative; otherwise it is positive.
Squaring the residues ensures that the SSR score is always greater than
or equal to zero, and equal to zero if and only if the curve passes through
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all the data points exactly. So, the SSR score is an intuitively good measure
of the distance (discrepancy) between a curve and the data.

Now define the curve that best fits the data as the curve that has the
least SSR. Recall that any assignment of numbers to the adjustable pa-
rameters determines a unique curve, and vice versa. So, in particular, the
best fitting curve automatically assigns numerical values to all the ad-
justable parameters. These values are the least squares estimates the pa-
rameters, and this method of parameter estimation is called the method
of least squares.

By fitting a model to the data, we obtain a unique best fitting curve.3

The values of the parameters determined by this curve are often denoted
by a hat. Thus, the best fitting hypothesis in the model is denoted by

. The hypotheses represented by the curves and are also inˆy p bx C C1 2

the model, but they have a higher SSR score with respect to the data,
even though each fits one of the data points perfectly.

More exactly, model fit is calculated in the following way:

Step 1: Find the hypothesis that best fits the data. Denote this hy-
pothesis by .Ci

Step 2: Consider a single datum. Square the residue of this datum
determined by .Ci

Step 3: Go back to Step 2 and repeat this procedure for all n data.

Step 4: Sum the SR scores and divide by n.

This number actually measures the badness of fit of the model, so model
fit is defined as minus this score. The reason that we take the average
SSR in Step 4 is that we want to use the goodness of fit score to estimate
how well the model will predict a ‘typical’ data point. The goal is the
same as in simple enumerative induction—to judge how well the ‘induced’
hypothesis predicts a ‘next instance’; we are assuming that all seen in-
stances are representative of the parent population.

Let us remark that the SSR is determined by the seen data, whereas
the predictive accuracy of a model is, by definition (see Forster and Sober
1994), a measure of how well the model fitted to an arbitrary data set of
a particular size will fit new data sampled from the same population (that
is, using the same experimental procedure and conditions that produced
the seen data). Predictive accuracy is like truth; it is not something that
models wear on their sleeves. It is an achievable goal of scientific modeling
(Forster 2002); but like truth, it can only be estimated in terms of the

3. There are exceptions to this, for example when the model contains more adjustable
parameters than data.
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seen data. The question is whether the SSR score is the best available
means of estimating the predictive accuracy of a model.

If the goal is to estimate the predictive accuracy of the model, then it
is easy to understand why the SSR estimate is biased. For each datum
has been used twice: once in the construction of the ‘induced’ hypothesis
(Step 1), and again to calculate how well the ‘constructed’ hypothesis
predicts a typical data point (Step 2). The problem is not that the seen
data are unrepresentative of the parent population. The problem is that
the best fitting hypothesis, which is used to make the predictions, has
been selected, in part, to minimize the ‘predictive’ error in the seen data.
But the goal is to estimate the error in predicting unseen data. That is
why, for example, the SSR score is badly biased when a model has many
adjustable parameters; SSR is measuring the ability of the model to ac-
commodate data.4 The problem has nothing to do with the psychological
bias of the scientists; it is a logical problem. And it has a logical solution.

One way of removing this bias is to define empirical success in terms
of its leave-one-out cross-validation score (CV score), which turns out to
be surprisingly similar to the SSR score.

Step 1: Choose a data point i, called the test datum, and find the
hypothesis that best fits the remaining data points. Denote thisn � 1
hypothesis by .Ci

Step 2: Square the residue of the test datum with respect to .Ci

Step 3: Go to Step 1, and repeat this procedure for all n data (in all
experiments).

Step 4: Sum the scores and divide by n.

The key difference is the test datum i is no longer used twice because
is not used to “construct” the hypothesis in Step 1. It is therefore anCi

unbiased estimate of the ability of the model to predict new data. The
use of CV scores places simple and complex models on an even playing
field; there is no need to factor in nonempirical virtues such as simplicity
or unification. Moreover, the CV score provides a measure of empirical
success that is acceptable to realists and antirealists alike.

3.1. Remark 1. In Section 2, we proved that if model A is nested in
model B, then A can never fit the seen data better than B no matter how
fit is defined. But A can have better cross-validated fit than B, so why isn’t
there a contradiction here? The reason is that model fit was previously

4. This does not undermine the least squares method of parameter estimation. There
is no bone to pick with statisticians here.
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defined by the fit of its best fitting member, while cross-validated fit is not
defined in that way. It does not measure the ability of the model to fit
the total data, but rather its ability to predict some of the data from the
rest of the data. In a sense, it is not a measure of fit at all. Fit with the
total data is a measure of accommodation. Good models achieve good
fit (as do some bad models), so good models are good accommodators.
Accommodation is not something bad. It is mere accommodation that is
bad.

3.2. Remark 2. Not only does the CV score more perspicuously esti-
mate the predictive ability of a model, but it also gives finer grained
information about these abilities. To show this, let C be the curve that
best fits the total data, and the curve that best fits the data with datumCi

i left out. If is the squared residue of datum i relative to C, andSRi

is the squared predictive error of datum 1 relative to , then, byPE Ci i

definition, and . Trivially,CV p 1/n� PE SSR p 1/n� SR CV pi i

. So CV is equal to the SRR plus a term thatSSR � 1/n� (PE � SR )i i

corrects the model fit for ‘fudging’. What is not so trivial is that (PE �i

is greater than or equal to zero for each datum.5 What this meansSR )i
is that the degree of fudging is estimated for each datum, so that the
comparison between CV and SR scores is heuristically valuable. Cross-
validated fit can point to the particular data that are not predicted well
by the model and pose specific questions about the reliability of those
data or how the model might be modified to improve those particular
predictions.

3.3. Remark 3. The leave-one-out CV score approximates the AIC
score (Stone 1977) when the conditions of Akaike’s theorem hold (see
Akaike 1973; Forster and Sober 1994; Hitchcock and Sober 2004). So,
the CV score can do everything that AIC can do, and more because the
CV score does not depend on the assumptions of Akaike’s theorem. Sup-
pose, for example, that the conditions of Akaike’s theorem do not hold
in the planetary astronomy example (Kieseppä 1997) and that AIC is a
biased estimate of predictive accuracy. The CV score still avoids the double
use problem, and is an intuitively plausible estimate of predictive accuracy.

5. Proof: Let F be the SSR of the remaining data relative to C, while is the SSRF1

of the remaining data relative to . Both F and are the sum of squaredC F n � 11 1

residues. By definition, C fits the total data at least as well as . Moreover, the SSRC1

for C relative to the total data is just while the SSR of relative to the totalSR � F C1 1

data is . Therefore, . On the other hand, fits the n � 1PE � F PE � F ≥ SR � F C1 1 1 1 1 1

data at least as well as C, again by definition of “best fitting.” This implies that F ≥
. Putting the two inequalities together: implies thatF PE � F ≥ SR � F ≥ SR � F1 1 1 1 1 1

, which is what we set out to prove.PE ≥ SR1 1
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While leave-one-out CV provides a better definition of empirical success
than AIC, leave-one-out CV is not the whole story, as the following
examples are designed to show.

4. The Special Case of Perfect Fit. The previous section considered the
general case in which fit might not be perfect. In this section we pay closer
attention to the ideal case in which the fit with the seen data is perfect.
More concretely, suppose that there are three data points , , and(1, 1) (2, 2)

, and consider the empirical success of the rival models:(3, 3)

ONE : y p bx,

TWO : y p a � bx,

where x and y are observable quantities, while b, a, and b are adjustable
parameters. Both models have zero SSR scores, which means that they
accommodate the data perfectly. But note that both have perfect leave-
one-out CV scores as well, because they are successful in predicting any
datum from the other two. Yet, intuitively, we want to say that ONE is
empirically more successful than TWO. In this example, we need to con-
sider something like leave-two-out cross-validated fit in order to distin-
guish ONE from TWO. ONE has the virtue of only requiring a single
data point to uniquely determine a predictive hypothesis, which then fits
the other two data points perfectly. TWO does not achieve this kind of
empirical success because it requires two data points to determine a unique
predictive hypothesis.

It is interesting to see that the empirical success of ONE over TWO is
exhibited very naturally in terms of a logical concept of prediction (in
which a prediction is any observable consequence deduced from the
model). In particular, TWO makes the following prediction:

if y p x and y p x , then y p x ,1 1 2 2 3 3

plus two similar conditionals obtained by permuting the indices. On the
other hand, ONE also predicts that,

if y p x , then y p x and y p x ,1 1 2 2 3 3

and two others obtained by permuting the indices. Therefore ONE is
predictively stronger and therefore empirically more successful, and this
fact should be included in any complete measure of empirical success.
The leave-one-out CV score is therefore an incomplete measure of em-
pirical success.

An equivalent statement is that the total data provide three independent
and agreeing measurements of the parameter b (Harper 2002, 2007; Myr-
vold and Harper 2002), or equivalently, the parameters of ONE are more
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Figure 3. The beam balance experiment.

strongly overdetermined by the total data (Forster 1988; Norton 2000a,
2000b).

Here is another example. Suppose a beam is supported at the center
on a fulcrum (Figure 3). Two objects will balance each other when hung
on the beam on opposite sides of the fulcrum if and only the distance
from the fulcrum times the downward force on each object is equal. Let
one object be a kilogram mass, while the mass of the other object, denoted
by v, is unknown except for the assumption that is it greater than zero.
If x denotes the distance of the one kilogram mass from the fulcrum, and
d is the distance that the other mass is hung on the other side, then
Newton’s theory of motion implies that if the objects balance, then

(given unstated auxiliary assumptions). We can simplify this fur-x p vd
ther by supposing that the object with the unknown mass v is always
hung exactly one unit distance from the fulcrum, while the kilogram mass
is moved back and forth until the beam balances. Then the equation
simplifies to , where x is an observable quantity, and v is an ad-x p v

justable parameter.
Now consider a set of experiments with three objects, labeled a, b, and

c, hung on the beam balance by themselves, and in pairs. There are six
experiments in total, one with a, one with b, one with c, one with ,a*b
one with , and one with , where refers to the composite objectb*c a*c a*b
consisting of a placed with b, and so on. In each experiment, suppose we
make a single measurement and the results are, respectively, ,x p 31

, , , , and . Treat the masses of all sixx p 4 x p 5 x p 7 x p 9 x p 82 3 4 5 6

objects as unknown. Then the model, which we call the primitive model
(PRIM) produces six unknown quantities in six equations: ,x p m(a)1

, , , , and .x p m(b) x p m(c) x p m(a*b) x p m(b*c) x p m(a*c)2 3 4 5 6

PRIM is not able to make any predictions of any part of the data from
any other part of the data, and therefore has no empirical success. On
the other hand, the usual Newtonian model (NEWT) is supplemented by
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the Law of Composition of Masses (LCM), which states that mass of
composite objects are equal to the sum of the masses of the component
parts. It implies, for example, that . NEWT has sixm(a*b) p m(a) � m(b)
equations in three unknowns, so each parameter has two independent
measurements, which agree. NEWT’s parameters are overdetermined by
the data.

In terms of the distinction between prediction and accommodation, the
empirical success of NEWT is exhibited by the truth of the predictions

, , and . PRIM makes no such pre-x p x � x x p x � x x p x � x4 1 2 5 2 3 6 1 3

dictions, even though it accommodates the data perfectly well.

5. Lessons for Realism. The agreement of independent measurements is
now directly linked to the overdetermination of parameters. The miracle
argument exploits this fact as follows. Surely, it would be a miracle if
such measurements agreed if there was no quantity being measured or no
single quantity being measured. Why should independent measurements
agree unless they are measurements of something? Hence, the realist’s
explanation of the empirical success of NEWT, for example, naturally
supposes that there exists an additive property objects have, namely mass.
Of course, it is logically possible that the agreement is a cosmic coinci-
dence, or a brute fact; so antirealism is still a logically consistent position.

Put another way, if empirical success were ‘fit with data’ then a realist
would be claiming to explain fudged fit as well as meritorious fit. But
fudged fit should not be explained in a realist way. The explanation of
meritorious fit, on the other hand, appeals to specific parts of the theory
in a way that is directly relevant to realist intuitions.

6. Problems for Bayesianism? If fit is defined in terms of the probability
of the data given then hypothesis (the likelihood of the hypothesis relative
to the data), then it is a measure of mere accommodation. Does this
present problems for probabilistic approaches to confirmation such as
Bayesianism? Consider the example of Section 4 again. Which model,
NEWT or PRIM, has the highest probability given the data?

To examine this question, consider a very specific chance setup. Suppose
that someone randomly chooses with probability 1/2 whether to generate
the data using NEWT or PRIM.

If NEWT is chosen, then the masses of a, b, and c are assigned values
from 1 to 81, such that all possible assignments are equally probable.
That is, the probability of any assignment is . These mass3 61/81 p 1/9
values determine the corresponding values of without error, asx , x , x1 2 3

well as the values of since the composite masses are determinedx , x , x4 5 6

by LCM. The likelihood of NEWT is therefore .61/9
If PRIM is chosen as the data generating process, then the masses of
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a, b, and c, and the composite masses , , and are independentlya*b b*c a*c
assigned a value from 1 to 9, such that all possible data sets compatible
with this hypothesis have probability .61/9

Note that the two models are logically independent; neither entails the
other. The data in Section 4 could have been generated by either model.
So, the likelihood relative to both hypotheses is exactly the same, namely

. Since the prior probabilities are equal, and the likelihoods are the61/9
same, it follows from Bayes theorem that the posterior probabilities are
the same. This result is unexpected because it appears that the data pro-
vides evidence for the truth of LCM and therefore some evidence in favor
of NEWT over PRIM. But there is no contradiction.

To analyze the situation further, divide the data into two parts:
anddata1 p {x p 3, x p 4, x p 5} data2 p {x p 7, x p 9, x p1 2 3 4 5 6

. Then8}

P (Data) p P (data1)P (data2Fdata1)NEWT NEWT NEWT

P (Data) p P (data1)P (data2Fdata1),PRIM PRIM PRIM

where Data is the total data. The instructive point is that the predictive
probability is very high for NEWT, whereas the cor-P (data2Fdata1)NEWT

responding probability for PRIM is low. Nevertheless, the likelihoods with
respect to the total evidence are the same because the probability of data1
is higher for PRIM than for NEWT. In this example, the result is correct
because the probabilities of data1 are given by the models, and are there-
fore predictive probabilities. But is this true in all examples?

The problem is that models in physics do not postulate any stochastic
mechanism for generating the values of parameters such as mass. The
probabilities of data1 are therefore imposed from the outside by Bayesian
statisticians. The problem is that the likelihood (relative to the total evi-
dence) is then an inadequate measure of empirical success (see Forster
2006 for other examples). Likelihoods are, in general, measures of ac-
commodation, and the distinction between prediction and accommoda-
tion is washed away. Popper (1959) got it right a long time ago: science
aims not at truth, or high probability of truth, but at informative truth.
Tautologies have high probabilities; they accommodate everything, and
make no predictions at all!

REFERENCES

Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood
Principle”, in B. N. Petrov and F. Csaki (eds.), Second International Symposium on
Information Theory. Budapest: Akademiai Kiado, 267–281.

Forster, Malcolm R. (1988), “Unification, Explanation, and the Composition of Causes in
Newtonian Mechanics”, Studies in the History and Philosophy of Science 19: 55–101.

https://doi.org/10.1086/525606 Published online by Cambridge University Press

https://doi.org/10.1086/525606


600 MALCOLM R. FORSTER

——— (2002), “Predictive Accuracy as an Achievable Goal of Science,” Philosophy of
Science 69: S124–S134.

——— (2006), “Counterexamples to a Likelihood Theory of Evidence,” Mind and Machines
16: 319–338.

Forster, Malcolm R., and Elliott Sober (1994), “How to Tell When Simpler, More Unified,
or Less Ad Hoc Theories Will Provide More Accurate Predictions”, British Journal for
the Philosophy of Science 45: 1–35.

Harper, William L. (2002), “Howard Stein on Isaac Newton: Beyond Hypotheses”, in David
B. Malament (ed.), Reading Natural Philosophy: Essays in the History and Philosophy
of Science and Mathematics. La Salle, IL: Open Court, 71–112.

——— (2007), “Newton’s Methodology and Mercury’s Perihelion Before and After Ein-
stein.” Philosophy of Science, in this issue.

Hitchcock, Christopher R., and Elliott Sober (2004), “Prediction versus Accommodation
and the Risk of Overfitting”, British Journal for the Philosophy of Science 55: 1–34.
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