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ABSTRACT
Concepts of new fluttering wind and water mills led to general solution of flutter by a foil
section free to pitch about an axis ahead of 1/4 chord. The pitch damping of the vorticity being
shed by lift change is negative singular via the imaginary part of the Theodorsen function.
So a 2D airfoil can slowly flutter in pure pitch at a very high inertia with radian frequency
and growth rate, reduced by windspeed/chord, resp. less than .087 and .01. At the frequency
of nil net pitch damping, the binary inertia/damping cross determinant vanishes on a line in
the imbalance vs inertia plane. The perturbed frequency contours just a bit above and below
this ‘beab’ line spectacularly split to asymptote to the pure pitch inertia vertical of implied
infinite heave stiffness. Higher frequency contours turn back towards the positive imbalance
axis and then the origin, changing from hyperbolic to elliptical at exactly the same .087 and
asymptoting to a line between the nexus and four times the nexus and a mode of effective
pitch about 3/4 chord. At .6 the pure pitch frequency the imaginary part dominates in the
quadratic inertia and imbalance coefficients to bend the neutral contours down and across the
quasi-steady line to even turn back to very large negative imbalance at small inertia, where
kinematics then imply high mass. Diagonally mirror hyperbolae exist for greater than the pure
pitch inertia with a different dynamic implication of very high foil mass.

Keywords: Unitary flutter, Growth rate, Binary flutter, Pitch damping, Mass ratio; Neutral
stability contours; Theodorsen function

NOMENCLATURE
subscripts: 3/4 evaluated at 3/4 chord point, 0 evaluated at p = 0, z at unitary pitch, c at
limit for unitary pitch
superscripts : ‘ time derivative of, “ second time derivative of

c chord of foil
ec trail of quarter chord behind pitch axis
g = G/k negative pitch damping rate of G

Received 5 December 2017; revised 8 January 2019; accepted 8 January 2019.

https://doi.org/10.1017/aer.2019.31 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.31
mailto:spfd@cantab.net
https://doi.org/10.1017/aer.2019.31


1054 THE AERONAUTICAL JOURNAL JULY 2019

h heave of pitch axis
h3/4 heave of the 3/4 chord point
i square root of -1
j pitch inertia/mc2

k = Ke-iφ reduced frequency based on chord ωc/V
kn reduced natural frequency ωnc/V
kc crtitical reduced natural frequency
m virtual mass of foil/unit length
p total mass/virtual
q distance of foil 3/4 chord from axis in chords
r non-d heave H to pitch amplitude ratio
t time
x pitch imbalance/ mc
y e + 1/4/F
A real effective non-dimensional inertia matrix about 1/4

chord, A1 complex, A0 about pitch axis
B non-dimensional aerodynamic damping matrix
C non-dimensional aerodynamic stiffness matrix
E non-dimensional elastic stiffness matrix
E1(u) Exponential Integral function E1(u) = ∫ ∞

1 dt e−ut/t
K magnitude of complex k
L circulatory lift
M pitch stiffness torque/radian
P minimum p+1 due to stiffness effect of net fluid heave

force
N nominal apparent wind at 3/4 chord point angle ϕ

O = M/mV 2 pitch stiffness non-d. wrt nominal aerotorque
Q = (h, γ) coordinate vector of heave and pitch displacements
R magnitude of T
S heave stiffness = heave spring force/h
T = F-iG = Re-iθ complex Theodorsen function of k
U upwash or normal component of the apparent wind N
V flowspeed
Z = M/Sc pitch vs heave stiffness
α effective non-dimensional pitch inertia
β effective non-dimensional aero pitch damping
χ effective non-dimensional aero pitch stiffness
ρ Fluid density
γ pitch angle
γ0 pitch angle amplitude
δ(k) discriminant of nil net aerodyanamic pitch damping
φ Polar angle of complex frequency k
� complex amplitude of pitch
γ0 amplitude of pitch (magnitude of �)
κ real (frequency) part of complex k
λ minus the imaginary (growth) part of complex k
θ the negative of the Phase angle of Theodorsen Function
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ϕ Nominal Angle-of-attack ignoring wake induction
ξ phase lead of pitch ahead of heave (phase of �/H)
ω circular frequency in radians of phase/unit time
ωn natural frequency in heave

√
S/

√
m

1.0 INTRODUCTION
Duncan(1) recognised in the study of early aircraft flutter accidents that flutter’s sponta-
neous phased oscillations of the two ‘binary’ degrees of freedom were being powered by
the airstream. He even built a heaving ‘engine’ that articulated a balanced foil to pitch and
heave (or plunge) 90◦ out of phase to pedantically show this (and nothing more). In fact
to safely tap the highly variable power of ambient flows requires exploiting the full two
amplitude freedom of binary flutter(2,3). The FlutterWing’d Pump (FWP) originated in 1978
after the 1976 BBC broadcast of Pocklington School Young Scientists’ fluttering models
promised better wind waterpumping than rotary multiblade windpumps, especially for devel-
oping countries. Prototypes have now pumped well and reliably for years but help is needed
with commercialisation or adoption in the Third World.

As in Fig. 1 the FWP has a wing free to pitch (360◦) on top of a semi-rotary roll pendulum.
In 1978 a model bore out our conjecture that its flutter could stop in a high wind to pro-
tect the FWP in storms. The non-linearities of large amplitude pitch and roll velocity greatly
exceeding windspeed proved favourable experimentally without unduly compromising this
high wind safety(4). Extraordinary full-scale smoke video(5) shows leading edge vortex shed-
ding at full ±90◦ pitch flip. The pump connection itself has to be non-linear to limit the roll
amplitude and absorb the variable windpower but not inhibit flutter starting. The Flutterwell
base in Fig. 1 uses the steel well-casing as a foundation pile, whilst the Flo-Pump base floats
around its pump cylinder and above its underwater outlet pipe to shore(5).

Underwater river or tidal current windmills have also been proposed but a counter-
oscillating scale model with ferrocement blades failed to flutter. Approximate strip-theory
flutter calculations were stable. A literature search could not find flutter in water. Ashley
et al(6) had presented experiments and computations showing an end to flutter as the mass
ratio of typical blade weight distributions was lowered. So a quest began for a flutter design
space in water and to understand flutter zones in a more general and analytical way for the
basic heaving wing (mill) of chord c, virtual mass m, that is free to pivot about an axis ec lead-
ing the center of pressure(3). The lack of pitch mechanical elasticity allowed (for the first time)
flutter to be algebraically solved so the entire neutrally stable flutter space could be graphed
and the influence of all parameters clearly understood. For instance, the reduced frequency k
is independent of the heave stiffness or heave mass(7) and only varies with net pitch inertia
mc2j and mass imbalance mcx, as

2ej + (y − 2eq)x − qy = 1/2k2( j − qx)( j − yx)/F . . . (1)

where the pivot is q = e + 1/2 chords ahead of 3/4 chord, y = e + 1/4/F, and F(k) is the real part
of the Theodorsen function (imaginary part -G ignored). The linear LHS and hyperbolic RHS
vanish at the nexus N = (q2,q) of any k and the end post at j/Y = x = 2Y = 2e + 1/2 of F =
1@k = 0. Thus the k=0 quasisteady “qs” line between the nexus and endpost extends down-
wards in x with j so aerodynamic overbalance e with inertia j reduces the tailheaviness x for
flutter, even to negative x noseheaviness.
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Figure 1. Schematic of the Flutterwell Pump, the well-mounted Flutter Wing Pump.

Numerically (1) was a soluble quadratic in x vs j along each contour value of k and F(k),
allowing the entire contour space to be generated without iteration(7). This opened up the final
step to exactness in this paper of adding the small imaginary part -iG to F, with due consider-
ation of the limiting behaviour of this poorly understood function G. Remarkably G only adds
extra terms to the RHS of (1) and only in terms of G, and Gk which persists at high k to close
the contours into ellipses that converge on the ray from the nexus N to 4N . One concern was
the effect of the G phase shift on P or the net stiffening of the fluid forces, undesirable with a
stiffening pump. A greater was the singularity in G/k or its effective negative pitch damping
at small k↓0, which indeed will drastically change the small k contours at high inertia j, even
allowing a pure pitch flutter.
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Figure 2. Section of Airfoil free in pitch and sprung in heave.

2.0 COMPLEX THEODORSEN FUNCTION AND PURE
PITCH FLUTTER

So as in Fig. 2, consider a unit length section of an infinite (vertical) symmetric airfoil of
chord c, whose 1/4 chord center of pressure point trails, by a distance ec, the pivot point of
foil pitch at any angle γ to the stream velocity V. This trail e ≥ 0 eliminates a divergence
complicating typical wing bending-torsion flutter. For the fluttermill of Fig. 1, small e ≈ .03
allows the bottom of the fabric-on-frame wing to pitch around an internal tubular steel spar
cantilevered above the pendulum.

Pitch elastic stiffness would prevent FWP omnidirectionality to wind gusts(8) and would
complicate bidirectionality in a tidal model. It is also absent in cantilevered ‘spade’ rudders
on boats, if not on all-moving aircraft rudders and tails. But all such pitch axes may heave elas-
tically cross-stream with coordinate h. For such thin airfoils, potential theory gives a virtual
‘added’ mass of m = 1/4πρc2 as in the circumscribing cylinder of fluid of density ρ centered
at midchord. Use this simple m to define non-dimensional total = virtual + real mass, as pm
for p>1, total pitch axis (dynamic) imbalance as mxc and total inertia as mjc2. The virtual
intrinsic pitch inertia about midchord is mc2/32, a factor of four less than a solid (i.e. ice)
cylinder’s mc2/8. So the virtual inertia about 1/4 chord center of pressure is 3mc2/32, half of
a solid cylinder’s 3mc2/16 and 3/8 of the nexal q2. Whilst the virtual imbalance is 1/2 of the
nexal q, indeed insufficient for flutter which needs similar real imbalance, or several fold real
inertia with e 	 0(7). Foil center of real structural mass is typically 35% c and certainly never
ahead of 1/4 chord and so increases x and j. The usual mass ratio is p-1. Kinematically from
real mass times real inertia ≥ real imbalance squared then

p − 1 > (x − e − 1/4)2/( j − (e + 1/4)2 − 1/32) . . . (2)
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Fig. 2 shows the nominal apparent wind N at the 3/4 chord point has angle-of-attack

ϕ = γ − h3/4
′
/V if h3/4 = h-cqγ ϕ = γ − h′V + cqγ‘/V . . . (3)

With L the lift, the pitch moment balance per unit span about the pitch axis is

m{γ"jc2 + γ‘Vcq − h"xc} = −ecL = −ecπρcV 2Tϕ . . . (4)

Note the inertial { } in (4) is Vqcϕ′ at the nexus N j = xq and x = q where feathering ϕ = 0
thus balances pitch. A virtual mass m at the 3/4 chord point has such j and x.

The unsteady lift L is based on the addition of wake-induced flow to N to form the true
apparent wind W at true angle-of-attack Tϕ for small amplitude oscillation of frequency ω.
So L = πρcV 2Tϕ = 4mVTU /c where U = Vϕ = Vγ − h′ + cqγ‘ is the nominal normal flow
at 3/4 chord and πcU is the nominal circulation. T(k) =F-iG graphed in Fig. 3 is the complex
Theodorsen wake function of reduced frequency k = ωc/V.

Where Kn are modified Bessel functions of the second kind

T(k)=F-iG=K1(1/2ik)/{K0(1/2ik) + K1(1/2ik)} = 1/(1 + K0(1/2ik)/K1(1/2ik)) . . . (5)

9.7.2(9) gives asymptotes as K0/K1 = 1 − 1/2/z + . . . = 1 + i/k + . . . so F = 1/2 (+1/4/

k2 + ··) and G = 1/4/k (−7/16k3 + ··). Note the slow decay of G as 1/k, slower than F↑ 1/2
as 1/k2, which will affect the character of the binary stability contours at large k.

The actual circulation πcVTϕ time change with complex extended implicit eiωt is shed
into the wake vortex sheet at linear density � = iωπcTϕe−iωx/v at x = zc behind the trailing
edge, back-inducing a midchord angle attack �dx/2πV (x + 1/2c). Integrating the influence
I = ∫ ∞

0 ik e−ikzdz/2(z + 1/2) ≈ (1 − T)/T so F − iG behaves as T ≈ 1/ 1 + I . Though the
exact T and the circulation distribution inside the foil micro-satisfy no net crossflow at any
point within the thin foil.

G has a little-recognised singularity in its slope and negative implicit damping
g = G/k = dG/dk↑ − 1/2Ln(1/2k) as k ↓ 0 : T → 1 − K0(1/2ik)/K1(1/2ik) 9.6.8(9) gives
K0(1/2ik)↓ − Ln(1/2ik) and 9.6.9(9) K1(1/2ik) = 2/ik. So as k ↓ 0,

T → 1 + 1/2ik(Ln(1/2k) + 1/2iπ), F → 1 − 1/4πk and g = G/k↑ − 1/2Ln(1/2k) . . . (6)

Responsible for G’s negative pitch damping is the dominant vorticity shed out of phase at
the trailing edge, inducing negative apparent wind at the foil reducing the lift at the c.p.
for a positive pitch-increasing moment correction about the axis ec further ahead. The shed
strength is as k and its effective extent is many 1/2π/k chords, so (for an AR→ ∞ wing
with an even greater span) truncating I there gives k ↓ 0, G as −1/2ikLn(k). Midchord is
where Wagner’s 1/2 vortex shed at the t.e. counter-induces half of a sudden angle γ, so eval-
uate I = ∫ ∞

0 ike−ikzdz/ 2(z + 1/2) at midchord. If u = 2z + 1, I = 1/2ike1/2ik
∫ ∞

1 du e-1/2iku/u =
vevE1(v) if v = 1/2ik, as in Fig. 3. Integrating this revised I twice by parts gives I → 1 + O(i/k)
for the correct limit T ↓ 1/2 at large k. The maximum in G is due to the increase in shed vortex
strength as k being countered by the closing of previously oppositely shed in I .

Note that the T solution holds for a decaying far wake in unstable growth(10) i.e.
k = Ke−iφ = κ − iλ as contoured in Fig. 4. Wake attenuation drops the peak G and shifts it to
higher k. The F contours are near circles in .1 < K < 1/2, as at first the general wake attenu-
ation is offset by the greater dominance of the 1/2π/k peak over 3/2π/k reversal in I , etc. But
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Figure 3. F Real and G Negative Imaginary parts of T(k) and of its approximation.

Figure 4. Plot of complex Theodorsen function in 4th quadrant of complex plane.

for K > 1/2 the offset of the trailing edge shed point from the midchord induction point causes
the attenuation to dominate and increase F with λ. The real T for divergence κ = 0 decreases
with λ from one to asymptote to the Wagner 1/2.

Extend h/c to the complex domain as eiωtH and likewise γ = eiωt� where � = γ0eiξ where
γ0 is the amplitude of γ and ξ its phase lead over real H . L complex extends to

L = πρcV 2T{� − ikH + ikq�}eiωt . . . (7)

Dividing (4) by mV2 eiωt

�{−k2j + ikq(1 + 4eT) + 4eT} + H{k2x − 4ikeT} = 0 . . . (8)
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Figure 5. e and j contours of pure pitch flutter vs reduced frequency at different growth phase.

so with H = 0, K = Ke−ιφ T = Re−ιθ multiply by e2ιφ for K2j = ikeιφq(1 + 4eT) + 4eTe2ιφ

so the real part

K2j = −Kq(sin φ + 4eR sin(φ − θ)) + 4eR cos(2φ − θ) . . . (9)

isolates j, leaving the imaginary part: K(e + 1/2)(cos φ + 4eRcos(φ − θ)) +
4eRsin(2φ − θ) = 0 or the quadratic

4e2RKcos(φ − θ) + e{Kcosφ + 2KRcos(φ − θ) + 4Rsin(2φ − θ)} + 1/2Kcosφ = 0 . . . (10)

whose solution e and corresponding j is graphed in Fig. 5 versus K with φ as a parame-
ter. At φ = .008 (vs maximum φ = .095) the minimum j is 455 and the periods-to-double is
Ln2/ .0016π ≈ 14 not fast enough as a windmill to respond to wind changes. As the pitch
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amplitude γ0 increases, the foil would readily stall at this low k without any heave apparent
wind and significant swept area, so the power per foil area would remain poor.

Now consider neutral stability φ = 0 with its minimum j of 143 at kz(e) = .0798 at e =
.244. Shifting the gk’s in T = F − ikg for real coefficients, and with Fy = Fe + 1/4 and real
α = j − 4qge, β = 4qyF − 4eg, χ = 4eF reduces (8) to

�[−k2α + ikβ + χ ] + H[k2(x − 4eg) − 4ikeF] = 0 . . . (11)

Non zero pitch-only –k2α + ikβ + χ = 0 oscillation persists when β = 0 = qyF − eg requir-
ing simplified (10): 4e2F − (4g − 2F − 1)e + 1/2 = 0 (10b). Note the real roots merge and end
at the (first) zero of the discriminant δ = (4g − 2F − 1)2 − 8F or dividing by four,

1/4δ = (2g − F − 1/2)2 − 2F = 0 . . . (12)

solved by 2g = F + 1/2 + √
2F, with F ≈ 1, gc ≈ 3/4 + √

1/2 = 1.46. F ≈ .95 refines to gc =
1.41 at kc = .087. Now χ = k2α or 4eF = k2( j − 4qge) = k2( j − 4q2yF) ∼= k2j (9b), so small
e and small k combine to require a very large j. The unstable zone is between the e roots and
between their corresponding. j’s. Let the subscript z denote the more likely lower root. When
the roots are very different this smaller has gz = 3/4 + 1/8e. Elastic stiffness torque M = OmV 2

per radian would just add to j as �j = O/k2
z and distort φ = 0 upwards in the upper Fig. 5.

Now consider the heave forces due to pitch: m{γ′V + γ′′xc} + L or in complex extension
mV 2eiωt/c times ik� − k2�x + 4(F − iG){� + ikq�}. For no net heave force from pitch and
so no heave motion, the coefficient of � must vanish. Its imaginary quadrature part is 4ik(1/4 +
Fq − g) = 0. But β = Fqy − eg = 0 gives 1/4 + Fq − g = −1/8/e so −1/2ik�/e is the non-d.
heave force in quadrature behind pitch. So a binary mode of pure pitch and perfectly free but
quiescent heave cannot be balanced at any finite e. The above unitary mode implies heave
immobilised by infinite stiffness of the pitch axis in heave.

3.0 BINARY PITCH AND HEAVE FLUTTER
So now allow heave h by relaxing the spring restoring force to a finite S per unit heave.

Sh + m(p − 1)h′′ = m{−h′′ + γ′V + γ′′xc} + L = Pmh′′ . . . (13)

The virtual/cross inertia {} bracket is Vϕ′ at the nexal x = q, so there (with ω2 = S/m( p − 1)
the no-fluid natural frequency), ϕ = L = 0 solves (4) and (13) at any T and V and so for all
k = ωc/V . Thus flutter contours of all complex k including all growth contours go through
the nexus N . Also a sinusoidal solution h of ω need not change when the heave mass p and
stiffness S are changed in harmony as �S = mω2�p. So a solution at one p solves at any
other with only S changed. That means solving H/� and k will not depend upon p, so it can
be made at p = 0 for great convenience and simplicity. Exactly the same intuition applies to
the free-in-pitch 3D semi-rotary windmill that the roll inertia and stiffness will not enter the
k equation. But this separation �S = mω2�p (and likewise �j = Ok−2) fails for growth i.e.
complex ω2 and K2. Eqn. (13) calls Pmh′′ the net sinusoidal real mass inertia less the spring
force equal to the middle net fluid & imbalance heave force. In G = 0 flutter(7) P < 0 at k = 0
beyond the nexus but grows positive with k as ϕ ≈ γ − h′/V drives h′ so ϕ′ ≈ γ′ − h′′/V
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phases with +h′′ for net virtual mass and middle term stiffening. If ωn is the natural frequency
of just the virtual mass under S, and its reduced real kn = ωnc/V , then

S = mω2
n = (p − P − 1)mω2 so k2

n = (p − P − 1)k2 needs p > P + 1 . . . (14)

From (13) mω2
nh = m{−ph′′ + γ′V + γ′′xc} + L so complex extending and dividing by

mV 2eiωt/c,

�{k2x − ik(1 + 4Tq) − 4T} + H{k2
n − pk2 + 4ikT} = 0 . . . (15)

Let Q be the vector of coordinates (�, H). A ‘derivative’ matrix form of the small amplitude
equations of neutral stability oscillation (8) and (15) is (–k2A0 + ikB0 + C0 + k2

nE0)Q = 0

A0 =
(

j −x
−x p

)
B0 =

(
q+4qTe −4eT
−1−4Tq 4T

)
C0 =

(
4eT 0
−4T 0

)
E0 =

(
0 0
0 1

)
. . . (16)

Expanding T = F − igk will allow shifting the gk terms leftwards to the next matrix to make
them all real to get. (−k2A + ikB + C + kn

2E) Q = MQ = 0.
The cross determinant notation [J,K] = J11K22 + J22K11 − J12K21 − J21K12 expands the nil

determinant of this real matrix |M| = 0 for neutral oscillatory stability in powers of k as

k4|A| − ik3[A, B] − k2
(|B| + [A, C] + [A, E]k2

n

) + ik
(
[B,C] + [B, E]k2

n

)
+ (

|C| + [C, E]k2
n + |E|k4

n

) = 0 . . . (17)

where the three crossed-out terms will vanish here. Then Re and Im of (17)

|A|k4 − (|B| + [A, C] + αk2
n

)
k2 + χk2

n = 0 . . . (18)

[A, B]k2 = βk2
n . . . (19)

As the one E0 stiffness gives (after the gk shift to real matrices) pitch-only values from above

[A, E] = α = j − 4qge, [B, E] = β = 4qyF − 4eg, [C, E] = χ = 4eF . . . (20)

To obtain the non-E binary real determinants, first form the moment equation about the c.p
without the complex T by adding to (8) ec times the heave equation (15) (second row to the
first in (15)) to get sparser B1 and C1

A1 =
(

j−ex ep−x
−x p

)
B1 =

(
1
2 0

−1−4Tq 4T

)
C1 =

(
0 0

−4T 0

)
E1 =

(
0 e
0 1

)
. . . (21)

The new pitch moments about 1/4 chord first row shows that at j = ex pitch leads roll by
phase 1/2π. Now only 3 g terms need be shifted left from T = F − ikg as in (8-9) and their ik
factored out for final real matrices

A =
(

j − ex ep − x
−x + 4qg p − 4g

)
B =

(
1
2 0

−1 − 4qF + 4g 4F

)
C =

(
0 0

−4F 0

)
E =

(
0 e
0 1

)
. . . (23)
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|B| = 2F, [A, C] = 4F(ep-x), |B| + [A, C] = 2F(1 + 2ep − 2x) . . . (24)

|A| = pj − x2 − 4g{ j − (e+q)x + epq} = pα − x2 − 4g{ j-(e+q)x} . . . (25)

[A, B]p = 4F{ j − (q + y)x + pqy} − 2g(1 + 2ep − 2x) = 4F{ j − (q + y)x} − 2g(1 − 2x)+pβ . . . (26)

The imaginary part Equation (19) is k2[A, B] = βk2
n or k2

n/k2 = p + [A, B]0/β, so where
1/4[A, B]0 = F{j − (q + y)x} + g(x − 1/2), (14):

p > P + 1 = −[A, B]0/β . . . (27)

Then at k = kz, β = 0 : kn
2 = ∞ unless [A, B]0 = 0 so Fz{ j − (q + y)x} = gz(1/2 − x), the

“beab” ([B, E] = [A, B] = 0) line in the j, x plane. As je + {qy − e(q + y)}x = 1/2qy, since
Fzqy = ge. Substituting for the first q the beab k = kz line is

2ej + {y − 2eq}x = qy. . . . (28)

The beab mode is given by (8) at β = 0 : kz
2(jz − j)� = H{kz

2(4eg − x) + 4ikzeF}. Since
kz is small, at low j heave H dominates pitch � but lags by almost π/2 (‘standard’ flut-
ter); until as jz is approached at large negative x to the ‘node’ jz, xz; heave goes to zero
vs. pitch almost in phase. Instead of jumping to insensible −∞, kn

2 can stay at this
heave-immobilising +∞ by a split/turn upwards or downwards along the pure pitch verti-
cal j = jz Then k = kz in two directions and so closely around the node. Near k ≥ kz, β ≥ 0
by (18) so 1/4[A, B]0 = Fj + x(g − Fq − Fy)1/2g ≈ j + (g − q − y)x ≥ 0 because j increases
and g decreases at constant negative x above and to the right of the beab. Likewise k ≤ kz

β ≤ 0, [A, B]0 ≤ 0.
On the beab divider the real part, Equation (18), divided by kz

2 gives kn
2(jz − j) =

|B| + [A, C] − kz
2|A|>0 at p = 0. So at j > jz, the P from (14) �p, required to zero the

negative k2
n at p = 0 is dynamically P ≈ (x2 − 4Fx/k2

z)/(j-jz). The first term exceeds the
kinematic (2), approx p>x2/j and the second term is even bigger. At j goes beyond jz this
P will decrease from ∞ and then increase again. The minimum P on the far beab is at
x2 − 2Fxxz + 4Fxz/k2 = 0 or x/Fxz = 1 + √

1 − 4/k2Fxz or x = −676 and j = 487 for the
minimum P of 4800 (vs x2/j = 938) (with e = .15 and xz = −275, kz = .054)

For k �= kz multiply (18) by β �= 0 (so [A, B]0 �= 0) to eliminate k2
n (by 19) from even power

real terms.

(χ − αk2)[A, B] = (|B| + [A, C] − |A|k2)β . . . (30)

with a k2 factored out. Look for other k �= kz solutions on jz with α ≈ jz so (k2
z-k2)jz[A, B] =

{B|+[A, C]-|A|k2}(k-kz)dβ/dk or (kz+k)jz[A, B] ∼= e{|B|+[A, C]-|A|k2}(πq + 4dg/dk) via
(6). Using again p = 0, |B|+[A, C]- k2

z |A| > 0 > 4dg/dk which dominates πq at negative xz,
then such intersections only exist for negative [A, B]. So as k increases from kz, the contours
increasingly above the beab line are simply nested inside the k+

z contour which must asymp-
tote to j = jz Diagonal mirror hyperbolae roughly about the node will also be viable in nodal
quadrant 4 “Q4” at sufficient p > P + 1 to overcome negative [A, B]0 to get the same+ sign
as such β (though may (Fig. 6) slightly intersect j = jz).
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Figure 6. Low k contours in the macro inertia imbalance plane for e= .15 kz = .054.

So at p = 0 and below the node kz[A, B]0=4�{Fjz + (g-Fq+Fy)x} − 1/2g} ≈
4�{(g-Fq+Fy)x} and |B|+[A, C]-|A|k2 ≈ −4Fx+k2x2 again which combined give a
quadratic eqn in x

k2x2 − 4Fx = 4(kz + k)jz�{(g − Fq + Fy)x}/(πq + 4dg/dk) . . . (31)

For e = .15 kz = .054 gz = 1.697 F = .951 jz = 198 nodal xz = −275 there is no real root
at k = k−

z as per a downwards asymptote but an intersection at k = .95kz at x = −740; and
by k = .9kz g = 1.762 F = .956 give k2x2 + 4.96x + 2234 = 0 for x = −654 and -1444. This
agrees roughly with evaluation in Fig. 6 of the exact solution (29) below which shows the
k = .05 contour intercepts at about −700 and on a bigger scale then bends back. The smaller
roots move upwards as k is further reduced to crowd the intercept of qs line. So the 0 < k < kz

contours are not nested but all cross each other and the qs line between the nexus and jz to
invert their order! Note their nodal quadrant 1 (eg k = .05) mirror hyperbolae like the beab
line and quadrant 4 hyperbolae have label gaps to indicate severe conditionality on (27):

p ≥ P + 1≥ − [A, B]0/β = −{j + x(g/F-q-y) − 1/2g/F}/(qy-eg/F).

The general exact (Routh) neutral stability criterion is from (29)

k2 = χ [A, B]−(|B|+[A, C])β / α[A, B] − |A|β . . . (32)

Fortunately the numerator in (32) has only a term in g in each product, for easy calculation
by hand which shows the two (singular at k = 0) g terms cancel exactly as do the p terms so
as before (1) the numerator is the linear

χ [A, B]−β(|B| + [A, C]) = 8F2{2ej + (y − 2eq)x − qy} . . . (33)
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Note {} = 0 is the β = [α, β] = 0 beab line (28) at k = kz and generally the small k lines

ej + (1/8/F − e2)x = qy/2 . . . (34)

through the nexus, with k = 0 F = 1 the qs. line. Also for {} = 0 P + 1= − [A, B]0/β =
−(|B|+[A, C])/χ = (x-1/2)/e still unaffected by small k, let alone G. Or eP=x-q. The denomi-
nator in (32) needs p = 0 to avoid working lengthy p terms which eventually cancel anyways.
So lightening the algebra gives

α[A, B] − β|A| = 4F(j − qx)(j − yx) − 4g{(4g − 1)e(j − ex) − (j − e − 1/4)x + e(x2 − 2gq)} . . . (35)

A vital check is that its new g and g2 terms do vanish at the nexus N j=q2 x=q since e = q −
1/2, so again whatever the T both numerator and denominator vanish there, so all k contours
pass through it(7). 4g > 1 for k < .6 but generally the two eg2 terms will prove of little impact,
the first being linear in j and x and the second constant. For small k they do lead on the RHS
at eO(Lnk)2 followed by the non-linear jx and x2O(Lnk) g terms. Substituting (33) and (35)
in (32) and dividing though by 4F,

2F{2ej + (y − 2eq)x − qy} = k2(j − qx)(j − yx) − {(4G − k)e(j − ex)

− k(j − e − 1/4)x + e(−2Gq + kx2)}G/F . . . (36)

where the k2 multiplying the denominator has shifted the singular g and g2 terms back to
finite G and G2 terms. So correct to first order in k, the contours do radiate linearly from the
nexus as the LHS{} =0 or as (34).

At a given k (36) is a conic section in the variables x and j. The discriminant σ = squared
coefficient of xj - 4 coefficient of j2 by coefficient of x2 in (36), which all come from the
denominator (35) as

1/4/F of j[A, B]0 + βx2 as 1/F of Fj2 + (g − F(q + y))jx + (Fqy − eg)x2 − 1/2k2jg/F . . . (37)

So F2σ/k4 = (g − Fq − Fy)2 − 4F(Fqy − ge) = g2 + (Fq − Fy)2 + 2gF(2e − q − y)
= g2 − 2g(1/2F + 1/4) + (1/2F − 1/4)2 with all e dependence having cancelled.

Completing the square F2σ/k4=g2-2g(1/2F+1/4)+(1/2F+1/4)2-1/2F=(g-1/2F-1/4)2-1/2F, the
same as 1/4 of δ = ((2g-F-1/2)2-2F in (11) so

k4δ = 4F2σ . . . (38)

and the crossover k of zero discriminant and parabolic contour is thus the same kc = .087
δ = 0 maximum k for unitary flutter. Thus the computed Q4 mirror hyperbolae stop before
this kc in all plots. It is superficially stunning that the discriminant δ of the quadratic eqn
β = 0 in e (and no x or j) is proportional to the discriminant σ of the quadratic in j and x for
binary flutter originating from the [A, B]α-β|A| in (35). kc ≥ kz is the upper limit of kz for
big enough g to neutralise the real pitch damping to allow unitary flutter, whilst binarily it is
the k at which the contours in x,j space lose the hyperbolic influence of unitary flutter at kz

and become elliptic.
With (5) F ≈ 1/2+1/4k−2, and no g, σ ↓ 1/64 as k ↑ ∞ hyperbolic approaching parabolic

about the pure 3/4 pitch infinite k ray or by (12) δ = 0 when F = 1/2 if g is ignored. If not,
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as k ↑ ∞, F2σ/k4 ≈ -2g(1/2F+1/4) ≈ g so with Gk ↑ 1/4, σ/k2 ↓ −Gk/F2 ↓ −1. G damps
3/4 pitch to close the real F high k hyperbolic contours into ellipses. In all eg has completely
changed the topology of the contours as even the remaining k ≤ kc hyperbolic contours have
shifted their conic center from negative x and j to the pure-pitch node. Now for generating the
contours collect the powers of x in (33) to form its quadratic

1/4x2β/F − x[1/2 − 4e2F + jk2(q + y) − {e2(4G − k) + (j − e − 1/4)k}G/F]

+ j2k2 − 4ejF + 2Fqy + e{2qG + j(k − 4G)}G/F = 0 . . . (39)

Then steps in j and k and thus F(k) and G(k) and y(F) give the stability contours of k at a
given e in j,x space. So the entire flutter onset frequency k and its modes can be calculated
exactly without iterative solution or interpolating for contours. The upper and lower x root
contours join vertically where their curvature is then d2j/dx2 proportional to β again implying
the k → kz and β → 0 are flat asymptotes to the vertical line j ↑ jz.

4.0 APPROXIMATIONS AND CALCULATIONS OF THE
FULL BINARY SOLUTION

At aerodynamic balance e ∼= 0, q = 1/2, Fy=1/4, β =Fqy = 1/8 the only coefficient with a G term
is in the middle ‘b’ term of the quadratic (39)

x2k2/32F − x[1/2 + jk2(q + y) − (j − 1/4)kG/F] + j2k2 + 1/4 ∼= 0 . . . (40)

j − 1/4 is here the j distance to the nexal j = 1/4. So G times it decreases of the magnitude of the
x coefficient b, which increases the lower root ∼=c/b and decreases the upper root ∼=b/a bring-
ing the roots closer together. Both tie in with the upper and lower contours being joined by
G. Now at small k, (6) F → 1 − 1/4πk, G ↑ -1/2k Ln(1/2k) so x = 1/2 − 1/2(j − 1/4) k2 Ln(1/2k)
+O(k2) so G leads in the spacing of the (first) contours.

Now e > 0 introduces ej in the qs. line equation (34) so it slopes downward and offshoots
from the nexus new lines with slopes reducing linearly with small k such as the beab line at
kz emerging significantly from the q.s. at about with e = .02 (Fig. 5). To study the bending of
such lines as they move to larger j, consider just the bi-quadratic conic terms in x and j from
the right hand side of (33) as (37) k2 j[A, B]0+βk2x2.

This approximation from k = 0 to say 2kz correctly predicts the forever straight contours
at k = 0 and k = kz. Now it can be used to predict the bend in contours around them. As k
increases beyond kz above the beab line, [A, B]0 and β go positive so the RHS is more and
more positive so the contours climb away and separate. As k decreases below kz below the
beab line, both these factors go more negative so the intermediate contours curve downwards
more and more with g increasing, but then less due to k2 dominating towards k = 0 qs. For
instance β k2 ∝ k2(g-gz) ≈ k2Ln (kz /k) has a maximum of .093kz

2 at k = kzExp(-1/2) = .61
kz. At large j and -x such contours near the two lines are from (33) & (35) /4F & (37) roughly,
where

D= g/F − q − y, then 2F{2ej + (y − 2eq)x − qy} ≈ k2j(j + xD) + 1/4x2k2β/F. . . . (41)
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Figure 7. Low k contours in the macro imbalance vs inertia plane for e =.245 of jz, =143 kz=.08 gz=1.45.

At k = kz, FeD = 1/8 − Fe2>0 for e2 < 1/8 or e < .35 or D ≈ − dj/dx of the beab from (34), so
j+xD again explains the divergence either side of the beab line. Below the qs x can be much
more sizeable than j so the k2j2 term is secondary

4Fej + x(1/2 − 4Fe2) ∼= jxk2D+ 1/4x2k2β/F. . . . (42)

The ultimate lower j = 0 intercept (Fig. 7) is β k2x ≈ 2F-16F2e2.
Fig. 7 shows low k contours, computed from the full (37) for the most unitary unstable e =
.244 near leading edge pitch axis around its minimum jz = 143 and kz = .078 gz = 1.45. Close
examination shows the first contour to cross the qs.line of slope dx/dj ≈ −4 is 1/2kz at about
j = 14 followed by the higher and lower k. This is before .61kz = .048 due to the advantage
of closer initial slope at the nexus. As j increases they strongly bend downwards, kiss the
jz = 143 vertical at k = .02, and then loop right back to the x axis with implied p ↑ ∞, i.e. very
large concentrated mass just in front of the pitch axis for small j ↓ 5/32 but x << 0. At k =
.048 = .61kz, g = 1.77 gives D = .59 1/4β/F= − .077 and Equation (42) j + .29x ≈ .0014jx −
.00018x2 which does roughly give its j = 60 x = −500 as the peak j and its axis intercept
of x = −1600, due to the x2 repelling it below and away from the q,s line. There from (8)
�/H = 3.4 or effective rotation about an axis about .04c behind the 1/4 chord. At higher
k the contours start bending later and more sharply but through less angle, until at k = kz

they morph into the nodal joint of the beab. line and the lower jz vertical e.g. the k = .0799
contour is a line above the qs, line until j = 143 and then abruptly turns downwards Whereas
the.08 contour just above abruptly turns upward along jz. Then at k > kz contours spread away
from the node x = −475 and at k = 2k at .15 the stronger quadratic k2j2 has to overcome the
negative k2D jx to reach vertical at about the same j = 50 but then its j2 and x2 quadratics are
entirely positive to only need x = 200 on its return it back virtually to the origin. By k = 5kz

the entirely j > 0 contour loops close at the nexus. At x ≈ 0 but large inertia j, k2 ≈ 4eF/j
or just the then slow pitch-only aerodynamic reduced frequency on both sides of jz if with a
p > P > 0 condition beyond due to the reversal of β to negative.
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Figure 8. Low k contours in the macro inertia imbalance plane for e= 1/8.

Previously(7) F-only contours were calculated at small j and e = 1/8 where unitary flutter
now appears with g at about kz = .042 gz = 1.85 jz = 272 as in Fig. 8. As j goes beyond 50, the
new contours between k = 0 and kz develop downwards curve. With the closer initial slope
the first contours to cross the qs. line very obliquely are again for k about 1/2kz. But the higher
k contour cross at more of an angle later and then cross the lowest k ones and so on, until they
intersect the unitary line in inverted order, if close to the node (272, −300). For k > kz the
contours above the no-damping line retreat monotonically to the contours to be studied next
near the origin that eventually close loop at j, x > 0 for k ≈ 1. The kz < kc = .087 contours
are amply (if always conditionally) mirrored in Q4 and even a bit of Q3, as their center shifts
to the left of the node.

Now compare the contours close to the origin Fig. 9, vs those for G = 0 in the previous
paper(7), starting with the simplest case of e = 0 aerodynamic balance. From the same k = 0
boundary the k contours are compressed towards the j = qx ray from the nexus to 4 times
where they are now closed. The upper contours are likewise shifted towards the ray. So at a
given x and j near the ray the neutral k is lowered (more stability). The gate of k = 0 to ∞ of
contour micro dip below x = 1/2 now extends to j less than the e = 0 post j = 1/8.

As k grows, the discriminant σ tends down to −k2 so including G closes the real T high
k parabolic contours. Hence the upper contours in Figs 6–9 actually turn back towards the x
axis and close, at large k in positive j space. To investigate approximate (36) for high k

k2(j − qx)(j − yx) ≈ {−e(j − ex) − (j − e − 1/4)x + ex2 + O(k−2)}kG/F + 4eF(j − ex)

+ 1/2x − 2Fqy or 2k2(j − qx)(j − yx) ≈ 3e(j − ex) − (j − e)x + ex2 + 5x/4 − 2q2 . . . (43)

with (5) F = 1/2 + 1/4/k2+. The hyperbolic LHS is proportional to k2 times the distance nor-
mal to the nexus ray j = qx by the distance normal to the higher midpost(7) ray j = yx, which
approaches the nexus ray as y = q-1/4k−2. Thus where the RHS is positive, the contour lies out-
side these rays, for instance as the G = 0 parabolas(7) above the qs line 4eF(j - ex) + 1/2x = 2Fqy
through the nexus and the post. Conversely those parabolas crossed the rays at these points to

https://doi.org/10.1017/aer.2019.31 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.31


FARTHING EXACT PITCH AND HEAVE FLUTTER... 1069

Figure 9. Full k range contours for Aerodynamic Balance e= 0 around the k= ∞ ray in the micro inertia
inertia imbalance plane for small j and x.

lie inside the rays for negative LHS & RHS below the qs during their short bend back. Now
in the limit of high k with G on, the RHS switches sign on j = qx as

3e(qx − ex) − (qx − e)x + ex2 + 5x/4 − 2q2 ≈ 5ex/2 − (q − e)x2 + 5x/4 − 2q2

≈ 5x(e+1/2)/2 − 1/2x2 − 2q2 ≈ −1/2(x2 − 5xq+4q2) ≈ 1/2(x − q)(4q − x) . . . (44)

Thus for any e the contours tend to ellipses circumscribing the rays between the nexus x
and four times the nexus x and crossing them there, as in Figs 9 and 10. As k → ∞ q ≤
x ≤ 4q j = qx is the exact k = ∞ line segment contour, and Equation (8) gives the mode as
the inertial in-phase H/� = j/x = q which binarily effects pure pitch non-divergently about
the 3/4 chord/point. As k is decreased the elliptical contour breadth increases as k−1. Then not
accounting for the same order G2 terms, the j = yx and 4yx cross points move to further spread
by �x = 1/4jk−2 and rotate the ellipse up by 1/4k−2/(1 + q2)) as in Fig. 10.

Computing the k contours at non-zero e = 1/8 in Fig. 10, now the second perfectly straight
beab line of kz = .042 very obliquely crosses the k = 0 quasi-steady line at the nexus.
Generally at small k the net G effect is to shift the contours down slightly for less stabil-
ity until k exceeds .35 (where G peaks) and then less upward stabilizing than at e = 0. So now
the high k contours are slower to close, but still about the bigger 4N = 4(jn, xn). Just to the
left of the nexus the contour envelop sinks faster below the qs with G mainly due to a CCW
rotated k = .8 (lower) contour. So as x is increased instability first begins at k ≈ .8 and then
spreads down to the k = 0 line and up to higher k.

The pitch equation (10) gives �/H with ξ = Arg(�/H) vs j and x allowing numerical
interpolation to generate ξ contours in j, x space where k is single valued i.e. its contours do
not cross. (The interpolation-free completely robust alternative would be to coplot �/H along
the k contours, for instance as less accurate little vectors.) G is found to also compress and
close these new numerical contours of phase lead ξ around j = qx in Fig. 11. In the biggest
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Figure 10. Exact k contours for small j for e=1/8.

Figure 11. Contours of Pitch Phase Lead ξ of Heave in radians for Aerodynamic Balance e=0.

change the new righthand 1 radian phase contour lies where the old .8 contour lay, at this new
k = .32 where phase of T peaks at .24 or 14◦. As anticipated, the pitch phase lead is advanced
to partly compensate for G’s lag towards maintaining the same phasing of lift and heave. As e
is increased to 1/8 in Fig. 12 and the qs line lowered, the high phase low k contours are spread
dramatically and then the lower phase high k ones compressed to meet the lowered nexus ray.
There is also a marked increase in phase in the upper high x (and k) and small j zone. Versus
G = 0 the biggest phase increase is on the right from .6 to .77 with actually a decrease on the
left upper at phase greater than six.
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Figure 12. Contours of Pitch Phase lead ξ of Heave in radians for Aero Imbalance e= 1/8.

Figure 13. Contours of r Heave/chord ratio to pitch for Aerodynamic Balance e=0.

Back at e = 0, the amplitude ratio r = |H/�| Fig. 13 is increased by G on both sides of the
nexus j = qx ray where r = 1/2 for pure 3/4 chord pitch. Particularly noticeable as k ↓ 0 where
the new three contour coincides with the old 2.5 and the new 4 with old 3.2 ; this moves theory
closer to FWP observation of very high r. The upper left minima are shifted to smaller j than
the G = 0 axis of symmetry range shown(7).

At e = 1/8 with the rotated nexus ray and line of symmetry, the amplitude ratio Fig. 14 is
increased versus G = 0 at most of about .25 around x and j about .6 but on the j = 0 decreased
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Figure 14. Contours of r Heave/chord ratio to pitch for aerodynamic Imbalance e= 1/8.

about .06 a bit more than a contour spacing reducing the effective tilt from vertical of the
symmetry line.

Again pitch elastic stiffness M = OmV 2 (say using a target never-exceed V ) per radian
would add to j as �j = Ok−2. So each k contour is shifted to the right. Iteration in �j
could match the M = mω2c2�j of a specific real-life foil. Where this would converge too
slowly at small k near the qs. let Z = O/k2

n = M/Sc to solve [A, B]χ= (|B|+[A, C])[B, E],
[B, E]=β+4FZ to get

2ej + {1/4/F − 2e2 + 2Z}x = Z(1 + 2ep) + qy . . . (45)

From no Z effect at x = 1/2 + ep, Z reduces the negative x slope with j so the x = 0 j
intercepts of the small k lines increase by Z(1/2 + ep)/e. These low k lines still intersect at a
nexus on x = q and again P + 1 = (x − 1/2)/e. Z lowers the k solving [B,E] = 0 below kz. (45)
is exact for the beab [B, E] = [A, C]=0 and qs k = 0, F = 1 lines. There is no Z > 0 that allows
virtual mass p = 1 x = y, j = y2 + 1/32 qs flutter. Flutter needs real pitch inertia not opposing
pitch stiffness. The Z2 terms from the extra |E|kn

4 in (17) complicate the full equations.
In general, G re-emphasises that large e is very predisposed to flutter at large j or now just

pathological large negative x. Nearer the origin, the practical implications previously worked
through(7) are modestly affected by the refinement to exactness of this paper. Sufficient j in
lieu of difficult x > 1/2 for flutter is very hard to practically achieve in water without gearing
pitch up to a flywheel. But water flutter was model-demonstrated in the more practical semiro-
trary roll exploiting the dominant gravity cross-coupling there(9). And a full-scale fluttering
windpump prototype has pumped reliably for many years now and self-feathered through
many windstorms.

5.0 SUMMARY
Conceptual design of a new fluttering wind and perhaps water mill motivated exact and gen-
eral solution of flutter when the pitch axis is ahead of 1/4 chord to avoid divergence. With
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a pitch inertia at least 143 times the virtual mass times the chord squared, a 2D airfoil can
flutter in pure unsprung pitch about the leading edge, due to the negative singular damping of
the vorticity shed as the lift changes, via the imaginary part of the Theodorsen wake function.
The radian frequency reduced by windspeed and chord can never exceed .087 in such unitary
flutter which takes at least 12 periods to double, too slow for a windmill at far too high a j to
be practical. It always has a net heave reaction force 90◦ behind pitch.

The reduced frequency contours of binary neutral stability do not depend explicitly on
heave mass or stiffness and all pass through a nexus in the inertia and imbalance plane as
if just the virtual mass were at the 3/4 chord aerodynamic center. Pitch inertia (and forward
pitch axis) reduce the imbalance for flutter on the quasi-steady long line. The imaginary part
cancels in the initial line contours out of the nexus evenly rotated with small reduced fre-
quency. But it makes the pitch damping and the inertia/damping cross determinant vanish on
a slightly rotated unitary frequency line. Where this long beab line intersects with the unitary
inertia line at very large negative imbalance, the frequency contours just a bit above/below
split to asymptote on the upper/ lower unitary inertia verticals of pure pitch with implied infi-
nite heave stiffness restraining the heave. Below the dividing beab line the imaginary part
dominates in the quadratic inertia/imbalance terms to bend the contours down and across
the quasi-steady line and each other to pass beyond the unitary inertia. As e and kz increase
beyond e = .15 some k around .6 kz bend back so strongly as to not intercept the unitary
before their return to small j at very noseheavy negative x (and kinematically implied high
foil mass p). The k > kz contours above the beab and at j < jz are all nested. All these k < .087
hyperbolae have diagonal mirror branches beyond the node, which like the extended beab line
dynamically imply large p to ensure positive flutter windspeed. G drops the k > 0 contours
further below the qs line at sub-nexal inertia j ≤ q2. eG > 0 makes the qs very unsafe at very
large negative imbalance x. Numerical iteration for flutter onset k may be upset by k contour
intersections in such zones representing double k solutions with instability in between, not
below both.

For k = .087 the upper j < jz contours persist as single ellipses eventually collapsing about
the ray from nexus to four times whose mode effects pure undamped pitch about the 3/4 chord.
Also as expected, G′s phase lag advances the modal phase leads at intermediate k to partly
maintain the phasing of the lift with heave velocity, with a slight inertial net shift of the lift.
Apart from closure at high k, the imaginary part only moderately perturbs the contours at
the smaller inertia and positive imbalance of typical wings. A followup paper(12) corrects T
non-trivially for aspect ratio to see the effect on the flutter contours (39).

Moderate k binary flutter at small 1 < j < 3 has been exploited to large amplitude in the
Fluttering Windpump and with roll replacing heave can cease in high winds for its built-in
storm protection. Practical hydrofoils in much denser water have even smaller j and x even
nearer the origin and inadequate for flutter.

Thanks to Gifford and Partners of Southampton, the Hamilton Foundation of Ontario, and
the Science Council of BC for financial support.

6.0 CONCLUSIONS
� With G, kz <.087 2D flutter at low growth rates for pure pitch about leading edge at

very large pitch inertia jz
� Neutral binary 2D flutter solved when pitch axis e chords ahead of 1/4 chord (q = e + 1/2

ahead of 3/4 chord), heaves elastically
� Binary low k contours radiate linearly at first from the nexus of imbalance x = q
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� k = 0 & k = kz stay straight, even with pitch spring.
� Binary k contours (elliptic in inertia j and imbalance x for k>.087) asymptote k → ∞

to ray from nexus′ j = q2 x = q to four times nexus.
� Double flutter modes and k’s mainly below the k = 0 line when j ≤ nexal q2 or due to

G and e when j >> q2,
� Quasi-Steady k = 0 is not a safe flutter boundary for low inertia j ≤ q2 and due to 2D

G, very unsafe for nose-heavy x << 0 at e ≈ 1/4
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