
Ergod. Th. & Dynam. Sys.(1999),19, 143–154
Printed in the United Kingdom c© 1999 Cambridge University Press

Topological stability and Gromov hyperbolicity

RAFAEL OSWALDO RUGGIERO†
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Abstract. We show that if the geodesic flow of a compact analytic Riemannian manifoldM

of non-positive curvature is eitherCk-topologically stable or satisfies theε-Ck-shadowing
property for somek > 0 then the universal covering ofM is a Gromov hyperbolic space.
The same holds for compact surfaces without conjugate points.

0. Introduction
The fact that quasi-geodesics are traced or ‘shadowed’ by true geodesics is one of the most
characteristic properties of hyperbolic spaces. This feature noticed by Morse [11] in the
late 1930s for metrics in the disk, induced by Riemannian metrics of compact surfaces of
genus greater than two, plays an outstanding role in the recent theory of Gromov hyperbolic
spaces and in geometric group theory. Recall that a complete geodesic metric space(X, d)

is said to beGromov hyperbolicif there existsδ > 0 such that for every geodesic triangle
[a0, a1], [a1, a2], [a2, a0] made by geodesic segments[ai, ai+1], i ∈ Z/3Z, in X we have
that∀p ∈ [ai, ai+1]

d(p, [ai+1, ai+2] ∪ [ai+2, ai]) ≤ δ.

In other words, every geodesic triangle in the space isδ thin. The name ‘shadowing’
referred to above is a way of recalling the property of quasi-geodesics of such spaces
which are contained in tubular neighborhoods of the geodesics of the space.

This feature is related to some well-known notions of stability of geodesic flows and
dynamical systems in general. One of them is theC1-structural stability, which is a
necessary and sufficient condition for the hyperbolicity of dynamical systems. However, it
is more natural to associate the pseudo-orbit tracing property to a weaker kind of stability.
For instance, expansive geodesic flows in compact manifolds without conjugate points
may not be Anosov flows, but they still have a local product structure which guarantees,
for instance, that these flows areC1-topologically stable and satisfy theε-C1-shadowing
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property [12]. Let (M, g) be aC∞ Riemannian manifold, and letT1(M, g) be its unit
tangent bundle. We say that the geodesic flowφt : T1(M, g) −→ T1(M, g) of (M, g) is
Ck topologically stable if there exists aCk+2 neighborhoodV of the metricg such that
∀ḡ ∈ V there is a continuous, surjective mapf : T1(M, ḡ) −→ T1(M, g) sending the
orbits of the geodesic flowψt of (M, ḡ) into orbits ofφt , i.e. for everyθ ∈ T1(M, ḡ) there
exists a continuous surjective mapr : R −→ R depending onθ with r(0) = 0 such that

φr(t)(f (θ)) = f (ψt (θ))

for everyt ∈ R. The flowφt satisfies theε-Ck-shadowing property for someε > 0 if there
exists aCk+2 neighborhoodV of g such that for everȳg ∈ V there is a continuous map
f : T1(M, ḡ) −→ T1(M, g) such that for everyθ ∈ T1(M, ḡ) there exists a continuous
surjective mapr : R −→ R with r(0) = 0 and

d(φt (f (θ)), ψr(t)(θ)) ≤ ε

for everyt ∈ R. Moreover, compact manifolds without conjugate points and expansive
geodesic flows have Gromov hyperbolic universal coverings [13], which implies that every
quasi-geodesic in the universal covering is shadowed by a geodesic. We would like to
point out that it is not known whether a compact manifold without conjugate points whose
geodesic flow is expansive admits a metric whose geodesic flow is Anosov. Notice that
the mapf in the definition of theε-shadowing property is not required to be surjective.
Furthermore, the above notions are weaker in some sense than the shadowing of quasi-
geodesics in Gromov hyperbolic spaces, since they just involve quasi-geodesics which are,
at the same time, geodesics of perturbations of the metric.

Motivated by the previous ideas, we can set up a sort of ‘topological stability
conjecture’: Does the shadowing property (topological stability) of the geodesic flow of
a manifoldM without conjugate points imply that the universal covering ofM is Gromov
hyperbolic? The main results of this work are the following.

THEOREM 1. Let M be a compact, analytic Riemannian manifold of non-positive
curvature. If the geodesic flow ofM is Ck topologically stable for somek > 0 then
the universal coveringM̃ of M is a Gromov hyperbolic space.

THEOREM 2. Let M be a compact, analytic Riemannian manifold of non-positive
curvature. Then there existsε > 0 such that if the geodesic flow ofM satisfies the
ε-Ck-shadowing property for somek > 0 then the universal covering̃M of M is Gromov
hyperbolic.

In the case of surfaces we show that, ifM is a compact surface without conjugate points
whose geodesic flow is eitherCk-topologically stable or satisfies theε-Ck-shadowing
property for somek > 0, then the genus ofM has to be greater than two. Theorems 1 and
2 also hold for compact, nonpositively curved manifolds of dimension three regardless of
the analyticity of the metric. Although classical examples of topologically stable systems
have the shadowing property andvice versa, we do not know whether these two properties
are equivalent or not. One of the consequences of Theorems 1 and 2 is that they are
equivalent for geodesic flows in both compact surfaces with no conjugate points and
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compact analytic manifolds with nonpositive curvature. This is because, on the one hand,
Gromov hyperbolicity ofM̃ implies the shadowing property for quasi-geodesics ofM̃ in
the sense of Morse, Eberlein and Gromov, and from this fact it is not hard to deduce that
there is a surjective correspondence between geodesics of metrics close to the metric ofM

and geodesics ofM. On the other hand, Theorems 1 and 2 grant that both these properties
imply Gromov hyperbolicity ofM̃.

The proofs of Theorems 1 and 2 are actually extensions of the proofs in the two-
dimensional case. The main point in both proofs is the creation ofCk perturbations of the
Euclidean metric in the torus having a ‘waist’ in a certain non-trivial homotopy class, which
automatically implies the existence of homoclinic geodesics in the geodesic flow of the
perturbation. This well-known result due to Morse [11] and Hedlund [7] allows us to create
dynamical behaviours of geodesics that have no counterpart in the Euclidean geodesic flow.
The existence of connecting orbits in Hamiltonian dynamics is an interesting example of
the application of variational methods in the study of dynamical systems [10]. This paper
has three sections: in the first section we state a result about conformal perturbations
of immersed tori having only one waist in a certain homotopy class and we prove the
main theorems in the two-dimensional case; then in §2 we use a closing lemma of flat
submanifolds due to Schroeder [14] and Bangert–Schroeder [2] to reduce the proof for
n-dimensional manifolds to the two-dimensional case, and in §3 we prove the perturbation
result used in §1.

1. Homoclinic orbits ofCk perturbations of the flat metric onT 2

Let us start by fixing some notation. All geodesics will be parametrized by arc length. The
unit tangent bundle of a Riemannian manifoldM is denoted byT1M. There is a canonical
coordinate system forT1M given byθ = (p, v) ∈ T1M, wherep is a point inM andv is
a unit vector tangent toM at p. Let π : T1M −→ M be the projectionπ(p, v) = p and
let φt : T1M −→ T1M be the geodesic flow ofM. The purpose of this section is to prove
the main theorems in the case of surfaces. The following result will be proved in §3.

PROPOSITION1.1. Let (M, g) be a Riemannian manifold and let(T 2, g) be a flat, totally
geodesic, immersed torus inM. Letγ (t) be a closed geodesic inT 2. For everyk ∈ N and
δ > 0 there exists a metricgδ conformal tog such that:
(1) gδ is δ-Ck close to the metricg.
(2) Whenlg(α), lgδ (α) are the lengths of a closed curveα with respect tog, gδ, then

lg(α) ≥ lgδ (α) for every closed curveα, and the lengths are equal if and only if
α = γ .

(3) (T 2, gδ) is totally geodesic in(M, gδ).

We start by proving Proposition 1.1 forM = T 2.

LEMMA 1.2. Let (T 2, g) be a Riemannian structure in the torus. Letγ be a closed
geodesic andσ : T 2 −→ R be aC∞ non-negative function such thatσ(p) = 0 if and
only if p ∈ γ . Let ḡp = e2σ(p)gp. Thenlḡ(α) ≥ lg(α) for every closed curveα in T 2 and
the lengths coincide if and only ifα = γ . Moreover, ifγ minimizeslg in its (non-trivial)
homotopy class, thenγ is still a geodesic in(T 2, ḡ) which minimizes strictly the lengthlḡ
in its homotopy class.
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Proof. It is easy to see that the length of curves in the new metricḡ are greater than or
equal to the length in the metricg, sinceeσ ≥ 1. Moreover, the only curve having the
same length in both metrics is the geodesicγ (t), becauseeσ(p) = 1 if and only ifp ∈ γ 0,
otherwise it is strictly greater than 1. On the other hand, ifγ is a minimizing loop forg in
its homotopy class, then it continues to be minimizing forḡ: by variational arguments we
get thatγ is a geodesic in(T 2, ḡ), but now it is also strictly minimizing in its homotopy
class. 2

Next, recall the following result by Morse [11] and Hedlund [7].

LEMMA 1.3. Let (T 2, g′) be a Riemannian structure on the torusT 2. Assume that
a ∈ π1T

2 is a non-trivial homotopy class such that there exists a unique minimizing loopγ

in the class, i.e.lg′(α) ≥ lg′(γ ) for every closed curveα with homotopy classa and there is
equality if and only ifα = γ . Then, given a parametrizationγ : [0, l] −→ T 2 by arclength
there exists at least two different geodesicsβ1, β2 having the following properties.
(1) Any liftingsβ̃1(t) of β1(t), β̃2(t) of β2(t), are contained in a strip bounded by two

consecutive liftings ofγ .
(2) Supposẽγ1(t), γ̃2(t) are two consecutive liftings ofγ (t) with d(γ̃1(t), γ̃2(t)) ≤ D

∀t ∈ R bounding a strip which contains̃β1(t) andβ̃2(t). Then (up to an interchange
of indices),

lim
t→+∞ d(β̃1(t), γ̃1) = 0, lim

t→−∞ d(β̃1(t), γ̃2) = 0

and

lim
t→+∞ d(β̃2(t), γ̃2) = 0, lim

t→−∞ d(β̃2(t), γ̃1) = 0.

Now, we are able to prove Theorem 1 in the case of surfaces.

PROPOSITION1.4. The geodesic flow of any flat metric on the torus(T 2, g) is not Ck

topologically stable for any k.

Proof. We argue by contradiction. Suppose that the geodesic flowφt of (T 2, g) is Ck

topologically stable for somek. Let V be aCk+2 neighborhood ofg where every geodesic
flow is semi-equivalent toφt . Since the arguments are purely topological we can assume
without loss of generality that(T 2, g) is the torusR2/〈e1, e2〉 wheree1 = (1, 0) and
e2 = (0, 1). Givenḡ ∈ V the semi-equivalence mapf : T1M −→ T1M induces a linear
mapf∗ in π1T

2 = Z × Z = H1(T
2, Z). Since in every non-trivial homotopy class there

exists at least one closed geodesic, and the semi-equivalence is surjective, the induced map
f∗ is also surjective. Therefore, it is also injective and a linear isomorphism. Now, letγ be
the closed geodesic of(T 2, g) tangent to(0, 1) with γ (0) = (0, 0). Let gδ be a conformal
Ck perturbation ofg obtained from Lemma 1.2 by choosing a factor functionσ Ck-close
to zero which is zero alongγ . Thenγ is a strict minimum for thelgδ -length in(T 2, gδ)

and thus there exist homoclinic geodesics in(T 2, gδ), β1, β2, according to Lemma 1.3.

CLAIM . There exists a homotopically non-trivial closed orbit ofψt whose image underf∗
is null-homotopic.
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Clearly, this will contradict the fact thatf∗ is an isomorphism. Letβ(t) be a homoclinic
orbit, limt→+∞ d(β(t), γ (t)) = 0 and limt→−∞ d(β(t), γ (t)) = 0. Since the mapf is
continuous, this implies thatf (β) = f (γ ). The liftings ofγ in the universal coveringR2

are vertical lines(i, t), for i ∈ Z. Let β̄ be the lifting ofβ in R2 remaining between the
vertical linesγ0(t) = (0, t) andγ1 = (1, t). Assume, for instance, that̄β is backward
asymptotic toγ0 and forward asymptotic toγ1. Now, fork ∈ N big enough, let us consider
the curveC̄k in R2 formed by the horizontal straight segment[γ0(−k), pk] lying between
γ0(−k) and β̄, the horizontal segment[γ1(k), qk] lying betweenγ1(k) and β̄, and the
subcurve ofβ̄ bounded bypk, qk. This curve projects by the covering map into a closed
curveCk in T 2 whose homology class isk′e1+ e2 for somek′ = k′(k) that goes to+∞ as
k → +∞. On the other hand, by the continuity off the homology classf∗[Ck] must be
k′f∗([γ ]) = k′f∗(e1) and hence

f∗(k′e1+ e2) = k′f∗(e1)+ f∗(e2) = k′f∗(e1),

which implies thatf∗(e2) = 0, thus proving the claim and the Proposition. 2

Now, we proceed to the study of theε-shadowing property in the case of the flat metric
of a straight torus. Observe that the definition ofε-shadowing gives us a correspondence
from the space of orbits of perturbations of the flat geodesic flow into the Euclidean
geodesics ofT 2. However, this map is not ‘a priori’ surjective. Given a compact
Riemannian manifoldM let us defineε0 = ε0(M) to be the supremum of the numbers
ε > 0 such that every two closed curvesα, β in M satisfyingd(α(t), β(f (t))) ≤ ε for
someε ≤ ε0 are homotopic, wheref (t) is a continuous surjective function ofR. This
numberε0 depends on the injectivity radius of the manifold. Lete1 = (1, 0), e2 = (0, 1).

PROPOSITION1.5. Let L be a lattice inR2 generated by two independent translations
Tv1, Tv2, wherev1 = λ1e1 and v2 = λ2e2, |λ2| ≤ |λ1|. Let T 2 = R2/L and consider
ε0 = ε0(T

2). Then, the geodesic flow ofT 2 does not satisfy theε-Ck-shadowing property
in the set of geodesic flows for anyε ≤ min{ε0,

1
5|v2|} and anyk ∈ N .

Proof. We will show that the only way for a flat geodesic flow on the torus to satisfy the
ε-shadowing property is the trivial way, i.e. the torus must be small. By Lemmas 1.2 and
1.3 applied toT 2, there is an arbitrarily smallCk perturbationḡ of the Euclidean metricg
such that the geodesicγ (t) = (0, t), 0 ≤ t ≤ λ2, is strictly lḡ-minimizing in its homotopy
class, and thus there exists a homoclinic geodesicβ whoseα andω limits are precisely the
points ofγ . Let 5 : R2 −→ T 2 be the covering map. We claim that each two consecutive
liftings of γ (t) by 5 are parallel straight lines at distance at most 2ε. Indeed, since by
hypotheses the flat geodesic flow onT 2 satisfies theε-Ck-shadowing property we have
that the following statement holds: for the geodesicβ(t) there exists a geodesicβ0(t) in
the flat metric onT 2 and a reparametrizationf : R −→ R of β0(t) such that

d(β(t), β0(f (t))) ≤ ε

for everyt ∈ R. Note thatβ0(t) is the projection of a straight line of the plane by5, so
the set of liftings ofβ0(t) by 5 is a countable collection of parallel straight lines inR2. By
the choice ofε the liftings ofβ(t) are curves in the plane which are at a distance at most
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ε from some lifting ofβ0(t). So letβ̄ be a lifting ofβ, and letβ̄0 be the lifting ofβ0 such
that

d(β̄(t), β̄0(f (t))) ≤ ε

for everyt . Recall that by Lemma 1.3 we have that there exist two consecutive liftingsγ̄1

andγ̄2 of γ (t) such that

lim
t→+∞ d(β̄(t), γ̄1) = 0, lim

t→−∞ d(β̄(t), γ̄2) = 0.

Moreover, we have that the distance betweenγ̄1 and γ̄2 is exactlyλ1, because two
consecutive liftings ofγ differ precisely by an iterate of the translationTv1. This implies
that β̄0 has to be parallel to the liftings ofγ . From the above equations we deduce that
d(γ̄1, β̄0) ≤ ε andd(γ̄2, β̄0) ≤ ε. Thus,

λ1 = d(γ̄1, γ̄2) ≤ d(γ̄1, β̄0)+ d(γ̄2, β̄0) ≤ 2ε,

which proves the claim.
But now, the above claim leads to a contradiction, since by hypotheses

λ2 ≤ λ1 ≤ 2ε < 1
2λ2. 2

The proof of Proposition 1.5 can be generalized to any Euclidean metric in the torus.
Recall the following canonical property of lattices in the plane.

LEMMA 1.6. Let L be a lattice in the plane generated by two linearly independent vectors
v1 andv2, where|v1| = min{|v|, v ∈ L}. Then there exists̄v2 in L such that:
(1) v1 andv̄2 generate L;
(2) 1

3π ≤ 6 (v1, v̄2) ≤ 2
3π .

COROLLARY 1.7. The geodesic flow of any flat metric onT 2 does not satisfy theε-Ck-
shadowing property forε defined in Proposition 1.5 for anyk > 0.

Proof. Let T 2 = R2/L be a Euclidean structure on the torus, whereL is a lattice in the
plane, and assume that its geodesic flow satisfies theε-Ck-shadowing property for some
k > 0 andε is as in Proposition 1.5. Letv1, v2 = v̄2 be a pair of generating vectors of
the latticeL satisfying the statement of Lemma 1.6. Letγ (t) be a closed geodesic tangent
to v1. The distance between two consecutive liftingsγ̄1(t), γ̄2(t) of γ (t) is at least12|v2|,
since the angle betweenv1 andv2 is at least13π . On the other hand, by Proposition 1.1 and
Lemmas 1.2 and 1.3, there are smallCk perturbations of this Riemannian structure onT 2

having homoclinic geodesicβ(t) whoseα andω limits are preciselyγ (t). So, by the same
reasoning as in the proof of Proposition 1.5 we deduce that the distance betweenγ̄1(t) and
γ̄2(t) is at most 2ε. Thus1

2|v2| ≤ d(γ̄1, γ̄2) ≤ 2ε ≤ 2
5|v2|, leading to a contradiction. 2

Recall that a systole of(M, g) is the shortest closed geodesic of(M, g). Theorem 1.8
follows from the fact that the only metrics without conjugate points in the two-dimensional
torus are the flat metrics [8].

COROLLARY 1.8. Let M be a compact surface without conjugate points. Letε0(M) be
as before and letε1 = length of a systole in M. If the geodesic flowφt of M satisfies either
theε-Ck-shadowing property forε = min{ε0,

1
5ε1} and somek ∈ N , or is topologically

stable in the set of geodesic flows, then the genus of M is greater than two.
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2. The proof in the general case

We start by stating some theorems concerning the geometry of non-positively curved
manifolds.

THEOREM 2.1. (Eberlein [5]) Let M be a compact Riemannian manifold of non-positive
curvature. If the universal coverinḡM of M has no isometric immersion of an Euclidean
plane thenM̄ is a visibility manifold.

THEOREM 2.2. (Bangert and Schroeder [2]) Let M be a compact analytic manifold with
non-positive curvature. IfM̄ contains an isometric immersion ofRk for somek ≥ 2 then
M contains aq-dimensional immersed flat torus for someq ≥ 2.

The idea now is to extend the arguments in §1 to totally geodesic immersed tori
in compact Riemannian manifolds(M, g). Proposition 1.1 is already a generalization
of Lemma 1.2, so given(T 2, g) totally geodesic in(M, g) we are able to produce
perturbationsgδ of g such that(T 2, gδ) is still totally geodesic and has a waist, i.e. a closed
loop of minimal length in(T 2, gδ). Now we would like to apply Hedlund’s result to deduce
the existence of homoclinic geodesics in(T 2, gδ). This is possible because there exists an
embeddingT̄ 2 of the torus covering(T 2, gδ) that is locally isometric toT 2. Indeed, since
T 2 is totally geodesic in(M, gδ), there is a collection of totally geodesic submanifolds
diffeomorphic toR2 in M̃ coveringT 2. Let P ⊂ M̃ be one of these planes and letα, β ∈
π1(M) be two generators of the representation ofπ1(T

2) in π1(M). The mapsα andβ act
as isometries in(M̃, gδ), the subgroup〈α, β〉 acts properly discontinuously onP and the
quotient manifoldT̄ 2 = P/〈α, β〉 is a finite covering of(T 2, gδ) having a waist in a certain
homotopy class. Thus, Hedlund’s result applies toT̄ 2 and, since it is locally isometric to
(T 2, gδ), the homoclinic geodesics of̄T 2 project onto homoclinic geodesics of(T 2, gδ)

which are also geodesics in(M, gδ). Therefore, we can apply Lemma 1.3 without loss of
generality to immersed totally geodesic tori.

Now, we are ready to extend Proposition 1.4 ton-dimensional manifolds.

Proof of Theorem 1.Suppose that the geodesic flow ofM is Ck topologically stable for
somek ∈ N . By Theorems 2.1 and 2.2 it is enough to show thatM does not contain an
immersed flat torus. Assume by contradiction thatM contains a torusT m. Then it contains
a flat, immersed, two-dimensional torusT 2 covered by flat planes iñM. Letγ be a systole
in T 2. From Proposition 1.1 and Hedlund’s theorem (Lemma 1.3 applied to immersions)
we getCk perturbationsgδ of g for anyk ∈ N such that:

• γ is still a geodesic of(M, gδ);
• there are at least two homoclinic geodesics connecting any two consecutive parallel

liftings of γ in the universal covering ofT 2.

SinceT 2 is totally geodesic, it is incompressible inM—i.e. its fundamental group
injects in π1(M)—so H1(T

2, Z) is a two-dimensional submodule ofH1(M,Z). If
f : T1M −→ T1M is any semi-conjugation between the geodesic flow of(M, gδ) and the
geodesic flow of(M, g), then the induced mapf∗ in homology must be an isomorphism.
On the other hand, the argument in Proposition 1.4 shows the existence of a nonzero
homology class inH1(T

2, Z) in the kernel off∗. This concludes the proof of Theorem 1.
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Proof of Theorem 2.Again, the argument reduces essentially to the two-dimensional case,
although theε-shadowing hypotheses does not imply in general the existence of a surjective
correspondence between orbits. Suppose by contradiction that(M, g) contains a flat
immersed torusT 2. Let P ⊂ M̃ be a flat plane coveringT 2, soπ1(T

2) ⊂ π1(M) leaves
P invariant and generates a latticeL such thatT 2 = P/L. Let v1, v2 be two generators of
L satisfying the conditions of Lemma 1.6, and letγ be a closed geodesic in the homotopy
classv1. From Proposition 1.1 and Lemma 1.3 we haveCk perturbationsgδ of g such that
(T 2, gδ) is totally geodesic,γ is a strictly minimizing geodesic in the classv1, and there
exists a homoclinic geodesicβ in (T 2, gδ) whoseα andω limits are the points ofγ . Let
φt , φ̄t be the geodesic flows of(M, g) and(M, gδ), respectively. Let5 : T1M −→ M be
the canonical projection, and let5(φ̄t (ψ)) = β(t).

CLAIM 1. Given two consecutive liftingsγ1(t), γ2(t) of γ (t) in P , there exists a lifting
β̄(t) of β in P such that

lim
t→+∞ d(β̄(t), γ1) = 0, lim

t→−∞ d(β̄(t), γ2) = 0.

According to the hypotheses of Theorem 2 the orbitφ̄t (ψ) has a ‘shadow’φt (f (ψ)), that
satisfiesd(φ̄h(t)(ψ), φt (f (ψ))) ≤ ε for every realt and for some reparametrizationh(t)

of φ̄t (ψ).

CLAIM 2. LetP , γ1, γ2 be as in Claim 1. Then there exists a liftingη in M̃ of5(φt(f (ψ)))

such thatd(γ1, η) ≤ ε and d(γ2, η) ≤ ε where the distance above means Hausdorff
distance.

By the choice ofε we have that any liftingη(t) in M̃ of 5(φt(f (ψ))) must be at a
distance at mostε from a lifting β̄ in M̃ of the homoclinic orbitβ(t). Sinceβ is contained
in a strip of a certain planeP coveringT 2 and distances from geodesics to totally geodesic
submanifolds are convex functions in spaces of nonpositive curvature, the distance from
the geodesicη(t) to the planeP is constant. Moreover, the distancesd(η(t), γ1(t)) and
d(η(t), γ2(t)) must be constant by the same reason, for suitable parametrizations of these
geodesics. On the other hand, we have

lim
t→+∞ d(γ1(t), η(t)) ≤ lim

t→+∞ d(γ1(t), β̄(t))+ d(β̄(t), η(t)) ≤ ε

and henced(η(t), γ1(t)) ≤ ε ∀t ∈ R. Analogously, we getd(η(t), γ2(t)) ≤ ε ∀t ∈ R.
Claims 1 and 2 imply thatd(γ1, γ2) ≤ 2ε so any two consecutive liftings iñM of the

generating geodesicγ (t) in the homotopy classv1 have Hausdorff distance less than 2ε.
Now, by Lemma 1.6 and the proof of Corollary 1.7 we get again that1

2|v2| ≤ 2
5ε, leading

to a contradiction. This ends the proof of Theorem 2. 2

3. Conformal metric changes of the flat torus
The goal of this section is to show Proposition 1.1. We start with some basic definitions. A
metricḡ is conformal to a metricg defined in a manifoldM of dimensionn if there exists
a positiveC∞ functionf : M −→ M such thatḡ(p) = f (p)g(p) ∀p ∈ M. Writing
ḡ(p) = e2σ(p)g(p) we get the usual formula of the Levi–Civita connection∇̄ of ḡ in terms

https://doi.org/10.1017/S0143385799120959 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385799120959


Topological stability and Gromov hyperbolicity 151

of the Levi–Civita connection∇ of g:

(∇̄XY )p = (∇XY )p + g(p)(gradp(σ ),X)Y (p) + g(p)(gradp(σ ), Y )X(p)

− g(p)(X, Y ) gradp(σ )

where gradp(σ ) is the gradient vector field ofσ atp andX,Y are two differentiable vector
fields.

LEMMA 3.1. Let N be a totally geodesic, embedded submanifold of(M, g). Let f :
M −→ R be a positiveC∞ function such thatgradp(f ) is tangent toN at everyp ∈ N .
ThenN is totally geodesic in(M, ḡ), whereḡp = f (p)gp .

Proof. Let X(M), X(N) be the set of differentiable vector fields inM, N , respectively.
To show thatN is totally geodesic in(M, ḡ) it is enough to show that the connection
∇̄ : X(M) × X(M) −→ X(M) sendsX(N) × X(N) into X(N). So letX,Y ∈ X(M)

be two differentiable vector fields such thatX|N ∈ X(N), Y |N ∈ X(N). We will show
that the vector field̄∇XY is always tangent toN . This vector field has four components,
according to the conformal connection formula. The first one is∇XY which is tangent
to N sinceN is totally geodesic in(M, g). The second and third components are scalar
multiples of the vector fieldsX andY which are assumed to be tangent toN . Finally,
the last term in the formula is a multiple of gradp(σ ), whereσ(p) = 1

2 logf (p). Since
gradp(f ) ∈ TpN for everyp ∈ N the same happens to gradp(σ ). 2

Lemma 3.1 gives us a very simple method to construct conformal perturbations that
preserve totally geodesic immersed submanifolds: it is enough to consider factor functions
which are critical at the points of the submanifold. We will first consider two simple cases
of immersed submanifolds. The general construction will be derived from these cases.

Case 1.Consider an embedded submanifoldN . Let S(N) = ∪p∈NSpN be the normal
subbundle ofN , SpN the normal subspace atp, and let exp⊥p : S(N) −→ M be the
exponential map restricted toS(N) at p ∈ N . We assume thatN is totally geodesic, has
compact closure, is diffeomorphic to an open set inRk for somek ∈ N , and there exists a
numberδ > 0 such that the set

Vδ(N) = {q = exp⊥p (v), p ∈ N, v ∈ S(N), d(q,N) < δ}
is an embedded submanifold ofM. Decreasingδ if necessary (for instance, to makeVδ(N)

a subset of a union of normal neighborhoods of the points ofN), we can define a coordinate
system

8 : Vδ(N) −→ Uk × Un−k, 8(q) = (x1(q), x2(q), . . . , xn(q))

whereUi is the open subset{(x1, x2, . . . , xi), |xi | < 1} such that8(N) = Uk × {0} and
D8|SpN = {0} × Rn−k for everyp ∈ N .

Now, take aC∞ bump functionf : Rk −→ R with support inUk, such that
f (x1, . . . , xk) = 1 for every point inUk with |xi | ≤ 1

2, and 0< f (z) ≤ 1 elsewhere
in Uk. Take another bump functionh : Rn−k −→ R with support inUn−k, with
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h(x1, . . . , xn−k) = 1 for every point inUk with |xi | ≤ 1
2, and 0< h(z) ≤ 1 elsewhere in

Un−k. Forr > 0 defineFr : Vδ(N) −→ R:

Fr(q) = rf (x1(q), x2(q), . . . , xk(q))h(xk+1(q), . . . , xn(q)).

It is clear that the points ofN are critical forFr restricted to the normal directions ofN ,
sinceFr restricted to a normal fibre(x1(q), . . . , xk(q)) = (c1, . . . , ck) is just a multiple of
the functionh(z) which is critical atz = 0 ∈ Rn−k . Notice that givenε > 0 andk ∈ N

there existsr = r(ε, k, δ) such thatFr is aCk perturbation of the zero function.

Case 2.Ramified submanifolds. Here we consider an immersed totally geodesic flat
submanifoldN of M satisfying the following conditions.
(1) N is the union of a finite collectionN1, . . . , Nl of totally geodesic submanifolds each

of which is diffeomorphic to a two-dimensional disk.
(2) The submanifoldsNi intersect along an embedded geodesic segmentγ :

(−L,L) −→ M, soN is diffeomorphic to a union of two-dimensional planes with
a line in common.

(3) N has compact closure.

Assume thatVδ(γ ) is embedded,Vδ(γ ) is diffeomorphic to a cylinder forδ small
enough. We will construct a factor function with support inVδ(γ ) with the required
properties by taking cylindrical coordinates aroundγ and constructing a real-valued
function whose level sets are cylinders havingγ as an axis. Let{ei(t)}, t ∈ (−L,L),
i = 1, 2, . . . , n, be an orthonormal parallel frame defined alongγ with e1(t) = γ ′(t).
Consider the Fermi coordinate system8 : Vδ(γ ) −→ (−L,L) × Bδ associated to this
frame, whereBδ is the open ball of radiusδ in Rn−1. Then for every pointq ∈ Vδ(γ ) we
have that

8(q) = (t (q), (exp⊥γ (t (q)))
−1(q))

wheret (q) is given byq ∈ exp⊥γ (t (q)). Note that the submanifoldsNi have coordinates

8(Ni) = (L,L)× (−δ, δ)vi

wherevi = vi(t) ∈ Rn−1 is a parallel vector field perpendicular toγ ′(t) = e1(t). Let
f : R −→ R be aC∞ bump function with support in[−1, 1] such thatf (x) = 1∀|x| ≤ 1

2
and 0< f (x) ≤ 1 for everyx ∈ (−1, 1). Forr > 0 defineGr : Vδ(γ ) −→ M by

Gr(q) = rf

(
t (q)

L

)
f

(
d(q, γ )

δ

)
.

Notice thatGr is constant along then − 2 spheres{d(q, γ ) = c} ∩ {t (q) = t0} which
are perpendicular to the planesNi . So the gradient ofGr has no nonzero components in
the normal directions of theNi and therefore theNi ’s are totally geodesic for the metric
ḡ = Grg. Again, it is possible to choser = r(δ, k, ε) arbitrarily small in order to makēg
anε-Ck perturbation ofg.

Proof of Proposition 1.1.Let (M, g) be a compact Riemannian manifold and let(T 2, g)

be a flat, totally geodesic immersed torus. Let us chose a closed geodesicγ0 in T 2. The
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self-intersections ofT 2 take place along closed geodesicsγ1, γ2, . . . , γm and at points
p1, . . . , pa . The geodesicγ0 may belong to the collection ofγi ’s for i ≥ 1. If this is the
case, we just reorder the geodesicsγi to includeγ0 so 0≤ i ≤ m. Notice that

T 2−
⋃
i,j

γi ∪ pj

is a disjoint union of embedded, open submanifoldsSk , k = 1, 2, . . . , s, all with compact
closures. Add to the collection{pj } the finite set of points of crossings of the geodesics
γi . Then the set∪iγi − ∪j pj is a collection of embedded geodesic arcs. If there are
some closed geodesics in this subset, add some extra points to the collection{pj } in order
to break∪iγi − ∪jpj into disjoint, embedded geodesic segments. LetBi be a (disjoint)
collection of open balls inM of radius1

4 infi 6=j {d(pi, pj )} centered at the pointspi such
that T 2 ∩ Bi is diffeomorphic to a finite set of planes with a common point. Such a
collection Bi exists by the compactness ofT 2. By the choice of theBi ’s there is no
closed geodesic ofM contained in∪a

i=1Bi . The set∪m
i=0γi − ∪a

i=1Bi is a disjoint union
of embedded geodesic arcsβk, k = 1, 2, . . . , b. If γ0 belongs to the collection{γi} we can
assume, without loss of generality, thatβk, k = 1, 2, . . . , b0 corresponds to the geodesic
subsegments ofγ0 in the collection of theβi ’s. Let δ > 0 be such that the collection
of tubular neighborhoodsVk of radiusδ of the segmentsβk, k = 1, 2, . . . , b, is also a
disjoint collection of embedded subsets with the property that every connected component
Sj meetingVk containsβk. Thus

V = ∪a
i=1Bi

⋃
∪b

k=1Vk

is a thin tubular neighborhood of the collection ofγi ’s satisfying:
(1) each subsetVk is a tubular neighborhood of a geodesic inT 2 such thatT 2∩ Vk is an

immersed surface of the type considered in Case 2 above;
(2) the complementT 2−V is a disjoint collection of embedded closed surfacesS̄k ⊂ Sk .

Therefore, we can apply the conformal changes constructed in Cases 1 and 2 above.
First, take a triangulation in each̄Sk in order to decompose it into a finite union of cellsP̄ki .
Consider a normal neighborhoodWki of radiusδ/2 of P̄ki in M and letFr,ki : M −→ R

be aC∞ function of the type considered in Case 1, supported inWki , with the property
thatFr,ki(p) = r ∀p ∈ P̄ki andFr,ki(p) ≥ 0 ∀p ∈ Wki ∩ Sk. Adding up over thei’s we
obtain a factor function ∑

i

Fr,ki = Fr,k :M −→ R

supported in a normal neighborhoodWk of S̄k such thatr ≤ Fr,k(p) ≤ 2r for everyp ∈ S̄k .
Next, for each connected geodesic segmentβi not in γ0 consider a functionGr,i :

M −→ R of the type observed in Case 2 with support inVi and such thatGr,i(p) = r

for everyp in a tubular neighborhood ofβi ∩ Vi of radiusδ/2, andGr,i(p) ≥ 0 for every
p ∈ Vi . If βi is a subset ofγ0, then consider the functionHr,i : M −→ R supported inVi

and given by

Hr,i(p) = d(p, βi)
lGr,i(p)
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whered(p, βi)
l is the distance fromp to βi (which is a well defined function in the normal

neighborhoodVi) raised to an even powerl to eliminate the singularities ofd(p, βi) at the
pointsp ∈ βi . Finally, defineσr : M −→ R by

σr(p) =
∑
i,j,k

(Fr,i (p)+Gr,j (p)+Hr,k(p))

and observe that:
(1) the support ofσr is a thin tubular neighborhood of(T 2, g) andσr ≥ 0;
(2) we have thatσr (γ0(t)) = 0 for everyt ;
(3) the zeros ofσr not inγ0 are contained in the ballsBj .

Item (3) implies that given any geodesicα : (−∞,+∞) −→ T 2 different fromγ0

there existst such thatσr(α(t)) 6= 0. In fact, a geodesicα 6= γ0 is either one of theγi ,
i > 0—and thenGr,i is nonzero at some points inα—or it must hit one of the regionsSk

since there is no geodesic completely contained in∪iBi . In the latter case, the function∑
i,j,k (Fr,i +Gr,j +Hr,k) is positive inα ∩ Sk. Consider the metric

gr(p) = e2σr(p)g(p).

Then(M, gr) is conformal to(M, g), the torus(T 2, gr ) is totally geodesic by the properties
of σr , and givenε > 0, k ∈ N there existsr > 0 such thatgr is anε-Ck perturbation ofg.
This concludes the proof of Proposition 1.1.
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