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Abstract We show that if the geodesic flow of a compact analytic Riemannian manifold
of non-positive curvature is eith€r*-topologically stable or satisfies theC*-shadowing
property for somé& > 0 then the universal covering 8f is a Gromov hyperbolic space.
The same holds for compact surfaces without conjugate points.

0. Introduction

The fact that quasi-geodesics are traced or ‘shadowed’ by true geodesics is one of the most
characteristic properties of hyperbolic spaces. This feature noticed by Mdis@ the

late 1930s for metrics in the disk, induced by Riemannian metrics of compact surfaces of
genus greater than two, plays an outstanding role in the recent theory of Gromov hyperbolic
spaces and in geometric group theory. Recall that a complete geodesic metricspéce

is said to beGromov hyperbolidf there existss > 0 such that for every geodesic triangle

[ao, a1], a1, a2], [a2, ap) made by geodesic segmefds, a;+1],i € Z/3Z, in X we have

thatVp € [a;, a;+1]

d(p,lait1, aiv2] U laiy2, a;]) < 6.

In other words, every geodesic triangle in the spacé tkin. The name ‘shadowing’
referred to above is a way of recalling the property of quasi-geodesics of such spaces
which are contained in tubular neighborhoods of the geodesics of the space.

This feature is related to some well-known notions of stability of geodesic flows and
dynamical systems in general. One of them is estructural stability which is a
necessary and sufficient condition for the hyperbolicity of dynamical systems. However, it
is more natural to associate the pseudo-orbit tracing property to a weaker kind of stability.
For instance, expansive geodesic flows in compact manifolds without conjugate points
may not be Anosov flows, but they still have a local product structure which guarantees,
for instance, that these flows af&-topologically stable and satisfy theC1-shadowing
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property fL2]. Let (M, g) be aC* Riemannian manifold, and l&t. (M, g) be its unit
tangent bundle. We say that the geodesic fipw T1(M, g) — Ti(M, g) of (M, g) is
C* topologically stable if there exists @2 neighborhood/ of the metricg such that
Vg € V there is a continuous, surjective mgp: T1(M, g) — Ti(M, g) sending the
orbits of the geodesic flow; of (M, g) into orbits of¢,, i.e. for everyd € T1(M, g) there
exists a continuous surjective map R — R depending o with r(0) = 0 such that

Grey(f () = f(¥:(0))

for everyr € R. The flowg, satisfies the-C*-shadowing property for some> 0 if there
exists aC¥*2 neighborhood’ of g such that for everg < V there is a continuous map
f:T1(M,g) — Ti(M, g) such that for every € Ty1(M, g) there exists a continuous
surjective map : R — R with r(0) = 0 and

d(p:(f(0), ¥r()(0)) = €

for everyr € R. Moreover, compact manifolds without conjugate points and expansive
geodesic flows have Gromov hyperbolic universal coveriigls fvhich implies that every
quasi-geodesic in the universal covering is shadowed by a geodesic. We would like to
point out that it is not known whether a compact manifold without conjugate points whose
geodesic flow is expansive admits a metric whose geodesic flow is Anosov. Notice that
the mapf in the definition of thes-shadowing property is not required to be surjective.
Furthermore, the above notions are weaker in some sense than the shadowing of quasi-
geodesics in Gromov hyperbolic spaces, since they just involve quasi-geodesics which are,
at the same time, geodesics of perturbations of the metric.

Motivated by the previous ideas, we can set up a sort of ‘topological stability
conjecture’: Does the shadowing property (topological stability) of the geodesic flow of
a manifoldM without conjugate points imply that the universal coveringbfs Gromov
hyperbolic? The main results of this work are the following.

THEOREM 1. Let M be a compact, analytic Riemannian manifold of non-positive
curvature. If the geodesic flow af is C* topologically stable for somé > 0 then
the universal covering/ of M is a Gromov hyperbolic space.

THEOREM 2. Let M be a compact, analytic Riemannian manifold of non-positive
curvature. Then there exists > 0 such that if the geodesic flow af satisfies the
e-Ck-shadowing property for somie> 0 then the universal coveringf of M is Gromov
hyperbolic.

In the case of surfaces we show thatVifis a compact surface without conjugate points
whose geodesic flow is either*-topologically stable or satisfies theC*-shadowing
property for somé& > 0, then the genus dff has to be greater than two. Theorems 1 and
2 also hold for compact, nonpositively curved manifolds of dimension three regardless of
the analyticity of the metric. Although classical examples of topologically stable systems
have the shadowing property avide versawe do not know whether these two properties
are equivalent or not. One of the consequences of Theorems 1 and 2 is that they are
equivalent for geodesic flows in both compact surfaces with no conjugate points and
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compact analytic manifolds with nonpositive curvature. This is because, on the one hand,
Gromov hyperbolicity of¥ implies the shadowing property for quasi-geodesicafoin

the sense of Morse, Eberlein and Gromov, and from this fact it is not hard to deduce that
there is a surjective correspondence between geodesics of metrics close to the netric of
and geodesics aff. On the other hand, Theorems 1 and 2 grant that both these properties
imply Gromov hyperbolicity of\/.

The proofs of Theorems 1 and 2 are actually extensions of the proofs in the two-
dimensional case. The main point in both proofs is the creati@ gferturbations of the
Euclidean metric in the torus having a ‘waist’ in a certain non-trivial homotopy class, which
automatically implies the existence of homoclinic geodesics in the geodesic flow of the
perturbation. This well-known result due to Mordd]and Hedlund 7] allows us to create
dynamical behaviours of geodesics that have no counterpartin the Euclidean geodesic flow.
The existence of connecting orbits in Hamiltonian dynamics is an interesting example of
the application of variational methods in the study of dynamical syst&6isThis paper
has three sections: in the first section we state a result about conformal perturbations
of immersed tori having only one waist in a certain homotopy class and we prove the
main theorems in the two-dimensional case; then in 82 we use a closing lemma of flat
submanifolds due to Schroeddr] and Bangert—Schroede?][to reduce the proof for
n-dimensional manifolds to the two-dimensional case, and in 83 we prove the perturbation
result used in §1.

1. Homoclinic orbits ofC* perturbations of the flat metric ofi

Let us start by fixing some notation. All geodesics will be parametrized by arc length. The
unit tangent bundle of a Riemannian maniféiis denoted byi; M. There is a canonical
coordinate system fdFy M given byd = (p, v) € TiM, wherep is a pointinM andv is

a unit vector tangent tdf at p. Letn : ThM —> M be the projectiom (p, v) = p and

let¢, : 1M — T1M be the geodesic flow a¥/. The purpose of this section is to prove
the main theorems in the case of surfaces. The following result will be proved in §3.

PROPOSITIONL.1. Let(M, g) be a Riemannian manifold and &2, g) be a flat, totally

geodesic, immersed torus M. Lety (1) be a closed geodesic if?. For everyk € N and

8 > Othere exists a metrigs conformal tog such that:

(1) gs is8-C* close to the metrig.

(2) Whenil,(a), ly5(cr) are the lengths of a closed cureewith respect tog, gs, then
lg(a) > lgs(r) for every closed curve, and the lengths are equal if and only if
oa=y.

() (T2, gs) is totally geodesic iniM, gs).

We start by proving Proposition 1.1 fof = 72,

LEMMA 1.2. Let (T2, g) be a Riemannian structure in the torus. Letbe a closed
geodesic and : T2 —> R be aC> non-negative function such thaip) = 0 if and

onlyif p € y. Letg, = ¢2?Pg,. Thenlz(a) > I, () for every closed curve in T2 and

the lengths coincide if and onlydf = y. Moreover, ify minimized, in its (non-trivial)

homotopy class, thep is still a geodesic in7?2, g) which minimizes strictly the length

in its homotopy class.
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Proof. It is easy to see that the length of curves in the new mégtrace greater than or
equal to the length in the metrig sincee® > 1. Moreover, the only curve having the
same length in both metrics is the geodesic), because®” = 1 if and only if p € 9,
otherwise it is strictly greater than 1. On the other hang,ig a minimizing loop forg in
its homotopy class, then it continues to be minimizinggoby variational arguments we
get thaty is a geodesic if72, g), but now it is also strictly minimizing in its homotopy
class. m]

Next, recall the following result by Morsd 1] and Hedlund7].

LEMMA 1.3. Let (T2, ¢’) be a Riemannian structure on the tord®. Assume that
a € m1T? is anon-trivial homotopy class such that there exists a unique minimizingdoop
inthe class, i.ely (o) > I,/(y) for every closed curve with homotopy clasg and there is
equality if and only iftx = y. Then, given a parametrizatign: [0, /] —> T2 by arclength
there exists at least two different geodegigss, having the following properties.
(1) Any liftings B1(r) of B1(¢), B2(r) of Ba(r), are contained in a strip bounded by two
consecutive liftings of.
(2) Supposen(t), y2(t) are two consecutive liftings af(r) with d(y1(2), 72(t)) < D
V¢ € R bounding a strip which containg (r) and 82(). Then (up to an interchange
of indices),

lim d(B1(1),71) =0, lim d(B1(t),72) =0
t—>+00 t——00
and
lim d(Ba(1), 72) =0,  lim d(Ba(1), 1) = 0.
t—+400 t——00
Now, we are able to prove Theorem 1 in the case of surfaces.

PROPOSITION1.4. The geodesic flow of any flat metric on the to(d¥, g) is not C*
topologically stable for any k.

Proof. We argue by contradiction. Suppose that the geodesic floof (72, g) is C*
topologically stable for somie Let V be aC**+2 neighborhood of where every geodesic
flow is semi-equivalent t@,. Since the arguments are purely topological we can assume
without loss of generality thatT'2, g) is the toruskR?/(e1, e2) wheree; = (1,0) and

e2 = (0,1). Giveng € V the semi-equivalence map: 1M — T1M induces a linear
map f, in m1T? = Z x Z = Hy(T?, Z). Since in every non-trivial homotopy class there
exists at least one closed geodesic, and the semi-equivalence is surjective, the induced map
f« is also surjective. Therefore, it is also injective and a linear isomorphism. NowHet

the closed geodesic 672, g) tangent to(0, 1) with y(0) = (0, 0). Let gs be a conformal

C* perturbation ofg obtained from Lemma 1.2 by choosing a factor functog*-close

to zero which is zero along. Theny is a strict minimum for the,-length in(T?, gs)

and thus there exist homoclinic geodesic$#R, gs), B1, B2, according to Lemma 1.3.

CLAIM . There exists a homotopically non-trivial closed orbit/gfwhose image undef.
is null-homotopic.
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Clearly, this will contradict the fact thaf, is an isomorphism. Le#(z) be a homoclinic
orbit, lim, 1 d(B(@),y()) = 0and lim_ _ d(B(), y()) = 0. Since the may is
continuous, this implies that(8) = f(y). The liftings ofy in the universal covering?
are vertical linegi, 1), fori € Z. Let B be the lifting of 8 in R? remaining between the
vertical linesyp(r) = (0,7) andyy = (1,1). Assume, for instance, th#tis backward
asymptotic toyg and forward asymptotic tp;. Now, fork € N big enough, let us consider
the curveCy in R? formed by the horizontal straight segmépg(—k), pi] lying between
yo(—k) and g, the horizontal segmeriis (k), gx] lying betweeny,(k) and g, and the
subcurve of8 bounded bypy, gx. This curve projects by the covering map into a closed
curveCy in T2 whose homology class ide1 + e for somek’ = k’(k) that goes ter-oco as
k — +oo. On the other hand, by the continuity ¢fthe homology clas$.[Ci] must be
K fi([y]) = k' fi(e1) and hence

fe(k'er + e2) = k' fi(e1) + file2) = k' fi(en),
which implies thatf, (e2) = 0, thus proving the claim and the Proposition. o

Now, we proceed to the study of tkeshadowing property in the case of the flat metric
of a straight torus. Observe that the definitiorceshadowing gives us a correspondence
from the space of orbits of perturbations of the flat geodesic flow into the Euclidean
geodesics off2. However, this map is nota' priori’ surjective. Given a compact
Riemannian manifold let us definecg = ¢g(M) to be the supremum of the numbers
€ > 0 such that every two closed curvesp in M satisfyingd («(t), B(f(¢))) < € for
somee < ¢g are homotopic, wherg (¢) is a continuous surjective function &. This
numbereg depends on the injectivity radius of the manifold. ket= (1, 0), e2 = (0, 1).

PROPOSITIONL.5. Let L be a lattice inR? generated by two independent translations
Ty, Toy, Wherevy = Ager andvy = Agez, |A2| < |r1]. LetT? = R?/L and consider
€0 = €o(T?). Then, the geodesic flow 8f does not satisfy the-C*-shadowing property
in the set of geodesic flows for aay< min{eg, %|v2|} and anyk € N.

Proof. We will show that the only way for a flat geodesic flow on the torus to satisfy the
e-shadowing property is the trivial way, i.e. the torus must be small. By Lemmas 1.2 and
1.3 applied tdar'?, there is an arbitrarily smal’* perturbatiorg of the Euclidean metrig

such that the geodesjar) = (0,1), 0 <t < A, is strictly/;-minimizing in its homotopy
class, and thus there exists a homoclinic geodésihosex andw limits are precisely the
points ofy. LetII : R2 — T2 be the covering map. We claim that each two consecutive
liftings of y(¢) by IT are parallel straight lines at distance at mast thdeed, since by
hypotheses the flat geodesic flow R satisfies the:-C*-shadowing property we have
that the following statement holds: for the geodesic) there exists a geodesfip(¢) in

the flat metric ori"2 and a reparametrizatigh: R — R of Bo(r) such that

d(B(t), Bo(f (1)) < €

for everyt € R. Note thatBp(z) is the projection of a straight line of the plane By so
the set of liftings of8o(¢) by IT is a countable collection of parallel straight linesif. By
the choice ok the liftings of 8(¢) are curves in the plane which are at a distance at most
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e from some lifting ofBo(¢). So letB be a lifting of 8, and letfg be the lifting of 8o such
that

d(B(1), Bo(f (1)) < €
for every:. Recall that by Lemma 1.3 we have that there exist two consecutive lifiings
andy» of y(¢) such that

Nim d(B@), 7)) =0, lim d(B(),72) =0.

Moreover, we have that the distance betwegrand y» is exactly i1, because two
consecutive liftings oy differ precisely by an iterate of the translati@p,. This implies
that Ao has to be parallel to the liftings of. From the above equations we deduce that
d(71, Bo) < € andd (72, Bo) < €. Thus,

A =d(n, 72) < d (71, Bo) +d(772, Bo) < 2e,

which proves the claim.
But now, the above claim leads to a contradiction, since by hypotheses

A2 <A1 < 2€ < 3ho. O

The proof of Proposition 1.5 can be generalized to any Euclidean metric in the torus.
Recall the following canonical property of lattices in the plane.

LEMMA 1.6. Let L be alattice in the plane generated by two linearly independent vectors
v1 andvo, wherejvy| = min{|v|, v € L}. Then there exists in L such that:

(1) wv1anduvy generate L;

(2 37 < /L(v1,¥2) <57,

COROLLARY 1.7. The geodesic flow of any flat metric 8% does not satisfy the-C-
shadowing property fo¢ defined in Proposition 1.5 for ary> 0.

Proof. Let T2 = R?/L be a Euclidean structure on the torus, wheris a lattice in the
plane, and assume that its geodesic flow satisfiesi&-shadowing property for some
k > 0 ande is as in Proposition 1.5. Lat;, v = v be a pair of generating vectors of
the latticeL satisfying the statement of Lemma 1.6. Let) be a closed geodesic tangent
to v1. The distance between two consecutive lifting&), y2(¢) of y (¢) is at Ieast%|v2|,
since the angle between andv is at Ieas%n. On the other hand, by Proposition 1.1 and
Lemmas 1.2 and 1.3, there are snéfl perturbations of this Riemannian structure®h
having homoclinic geodesjg(r) whosex andw limits are precisely (¢). So, by the same
reasoning as in the proof of Proposition 1.5 we deduce that the distance beaygeand
72(1) is at most 2. Thus3|vz| < d(71, 72) < 2€ < Z|v2|, leading to a contradiction. O

Recall that a systole afM, g) is the shortest closed geodesic(af, ¢g). Theorem 1.8
follows from the fact that the only metrics without conjugate points in the two-dimensional
torus are the flat metricS].

COROLLARY 1.8. Let M be a compact surface without conjugate points. dggif) be

as before and let; = length of a systole in M. If the geodesic flpywof M satisfies either
the e-C*-shadowing property foe = min{eo, %61} and some € N, or is topologically
stable in the set of geodesic flows, then the genus of M is greater than two.
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2. The proof in the general case
We start by stating some theorems concerning the geometry of non-positively curved
manifolds.

THEOREM2.1. (Eberlein}]) Let M be a compact Riemannian manifold of non-positive
curvature. If the universal coveringf of M has no isometric immersion of an Euclidean
plane then is a visibility manifold.

THEOREM2.2. (Bangert and Schroed&] Let M be a compact analytic manifold with
non-positive curvature. I/ contains an isometric immersion &f for somek > 2 then
M contains ag-dimensional immersed flat torus for some- 2.

The idea now is to extend the arguments in 81 to totally geodesic immersed tori
in compact Riemannian manifold3/, g). Proposition 1.1 is already a generalization
of Lemma 1.2, so givenT?, g) totally geodesic in(M, g) we are able to produce
perturbationg; of g such thatT?2, gs) is still totally geodesic and has a waist, i.e. a closed
loop of minimal length in(7'2, gs). Now we would like to apply Hedlund’s result to deduce
the existence of homoclinic geodesicg 7, gs5). This is possible because there exists an
embedding/'? of the torus coveringT'?, gs) that is locally isometric td@'2. Indeed, since
T2 is totally geodesic inM, gs), there is a collection of totally geodesic submanifolds
diffeomorphic toR? in M coveringT2. Let P C M be one of these planes anddets €
1(M) be two generators of the representatiomof7’?) in 71(M). The mapsr andg act
as isometries M, gs), the subgrouge, 8) acts properly discontinuously af and the
quotient manifold’'? = P/(a, B) is a finite covering of 72, gs) having a waist in a certain
homotopy class. Thus, Hedlund’s result applie§foand, since it is locally isometric to
(T2, gs), the homoclinic geodesics df2 project onto homoclinic geodesics 6f2, gs)
which are also geodesics (M, gs). Therefore, we can apply Lemma 1.3 without loss of
generality to immersed totally geodesic tori.

Now, we are ready to extend Proposition 1.4tdimensional manifolds.

Proof of Theorem 1Suppose that the geodesic flow Mf is C* topologically stable for
somek € N. By Theorems 2.1 and 2.2 it is enough to show thatoes not contain an
immersed flat torus. Assume by contradiction thatontains a torug™. Then it contains
aflat, immersed, two-dimensional torfi8 covered by flat planes iff. Lety be a systole
in T2. From Proposition 1.1 and Hedlund’s theorem (Lemma 1.3 applied to immersions)
we getC* perturbationgs of g for anyk € N such that:
° y is still a geodesic ofM, gs);
° there are at least two homoclinic geodesics connecting any two consecutive parallel
liftings of y in the universal covering of 2.

Since T2 is totally geodesic, it is incompressible i¥—i.e. its fundamental group
injects in w1(M)—so H1(T2, Z) is a two-dimensional submodule diy(M, Z). If
f : ThM — T1M is any semi-conjugation between the geodesic flo@f gs) and the
geodesic flow of M, g), then the induced mag, in homology must be an isomorphism.
On the other hand, the argument in Proposition 1.4 shows the existence of a nonzero
homology class irH1(T'2, Z) in the kernel off,.. This concludes the proof of Theorem 1.
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Proof of Theorem 2Again, the argument reduces essentially to the two-dimensional case,
although the:-shadowing hypotheses does not imply in general the existence of a surjective
correspondence between orbits. Suppose by contradiction(Mha¢) contains a flat
immersed torug'2. Let P C M be a flat plane covering?, sox1(T?) C m1(M) leaves

P invariant and generates a lattifesuch thatf'2 = P/L. Letvs, v» be two generators of

L satisfying the conditions of Lemma 1.6, andjebe a closed geodesic in the homotopy
classv1. From Proposition 1.1 and Lemma 1.3 we haeperturbationgs of g such that

(T2, gs) is totally geodesicy is a strictly minimizing geodesic in the class, and there
exists a homoclinic geodesitin (72, g5) whosex andw limits are the points of. Let

¢:, ¢, be the geodesic flows ¢, g) and(M, gs), respectively. Lefl : Th'M — M be

the canonical projection, and I[Bt(¢; () = B(t).

CLAaiM 1. Given two consecutive liftingg (7), y2(¢t) of y(¢) in P, there exists a lifting

B(t) of Bin P such that
JNim dB@®,y) =0, lim d(B(®),y2) =0.

According to the hypotheses of Theorem 2 the @ifiity) has a ‘shadowi; (f(v)), that
satisfiesd(q?h(,)(w), ¢:(f(¥))) < e for every realt and for some reparametrizationr)
of g (V).

CLAIM 2. LetP, y1, y» be asin Claim 1. Then there exists a liftingn M of IT1(¢; (f (¥)))
such thatd(y1,n) < € andd(y2,n) < e where the distance above means Hausdorff
distance.

By the choice ofe we have that any lifting)(r) in M of [1(¢,(f(¥))) must be at a
distance at most from a lifting 8 in M of the homoclinic orbi{(r). Sinceg is contained
in a strip of a certain plang coveringZ? and distances from geodesics to totally geodesic
submanifolds are convex functions in spaces of nonpositive curvature, the distance from
the geodesig(¢) to the planeP is constant. Moreover, the distanaé®;(z), y1(t)) and
d(n(1), y2(¢)) must be constant by the same reason, for suitable parametrizations of these
geodesics. On the other hand, we have

Nim d(a0),n0) < lim d(y(@), B(®) +d(B1),n(t)) <e

and hencel (n(t), y1(t)) < € Vt € R. Analogously, we ged (n(¢), y2(t)) < € Vt € R.
Claims 1 and 2 imply thad (y1, y2) < 2¢ so any two consecutive liftings it of the
generating geodesie(¢) in the homotopy class; have Hausdorff distance less than 2
Now, by Lemma 1.6 and the proof of Corollary 1.7 we get again ¥ei| < Ze, leading

to a contradiction. This ends the proof of Theorem 2. m]

3. Conformal metric changes of the flat torus

The goal of this section is to show Proposition 1.1. We start with some basic definitions. A
metric g is conformal to a metrig defined in a manifold/ of dimensiom if there exists

a positiveC* function f : M — M such thatzg(p) = f(p)g(p) Vp € M. Writing

2(p) = €2 (P g(p) we get the usual formula of the Levi—Civita connectidnf g in terms
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of the Levi—Civita connectio¥ of g:

(VxY), = (VxY), + g(p)(grad, (o), X)Y (p) + g(p)(grad, (o), Y) X (p)
—g(p)(X,Y)grad, (o)

where grag(o) is the gradient vector field of at p andX, Y are two differentiable vector
fields.

LEMMA 3.1. Let N be a totally geodesic, embedded submanifoldMf g). Let f :
M — R be a positiveC™ function such thagrad, (f) is tangent toV at everyp € N.
ThenN is totally geodesic intM, g), whereg, = f(p)g,.

Proof. Let X (M), X(N) be the set of differentiable vector fields M, N, respectively.

To show thatN is totally geodesic inNM, g) it is enough to show that the connection
V:X(M)x X(M) — X (M) sendsX(N) x X(N) into X(N). So letX,Y € X(M)

be two differentiable vector fields such théiy € X(N), Y|y € X(N). We will show
that the vector field&Vx Y is always tangent t&/. This vector field has four components,
according to the conformal connection formula. The first on¥4& which is tangent

to N sinceN is totally geodesic inM, g). The second and third components are scalar
multiples of the vector field¥X andY which are assumed to be tangentNo Finally,

the last term in the formula is a multiple of gra@), whereo (p) = %Iog f(p). Since
grad,(f) € T, N for everyp € N the same happens to grad). |

Lemma 3.1 gives us a very simple method to construct conformal perturbations that
preserve totally geodesic immersed submanifolds: it is enough to consider factor functions
which are critical at the points of the submanifold. We will first consider two simple cases
of immersed submanifolds. The general construction will be derived from these cases.

Case 1.Consider an embedded submanifid Let S(N) = U,en S, N be the normal
subbundle ofN, S, N the normal subspace at and let ex;j : S(N) — M be the

exponential map restricted §YN) at p € N. We assume thaV is totally geodesic, has
compact closure, is diffeomorphic to an open sekfrfor somek € N, and there exists a
numbers > 0 such that the set

Vs(N) = {q = expy(v), p € N,v e S(N),d(q,N) < 8}

is an embedded submanifold &f. Decreasing if necessary (for instance, to makg(N)
a subset of a union of normal neighborhoods of the pointé)pfve can define a coordinate
system

@ : Vs(N) — U x U"F, @(q) = (x1(9), x2(q), - - -, Xn(q))

whereU' is the open subsétx1, x2, ..., x;), |x;| < 1} such thatb(N) = U* x {0} and
D®|s,y = {0} x R"* foreveryp e N.

Now, take aC® bump functionf : R¥ — R with support inU¥, such that
f(x1,...,xx) = 1 for every point inU* with |x;| < % and O< f(z) < 1 elsewhere
in U*. Take another bump functioh : R"* — R with support inU"¥, with
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h(x1, ..., x,—x) = 1 for every point inU* with |x;| < 1 and 0< h(z) < 1 elsewhere in
U"*. Forr > 0 defineF, : Vs(N) — R:

Fr(q) =rf(x1(q@), x2(q), ..., xxk (@) h(xk41(q), - . ., Xn(q)).

It is clear that the points oW are critical for F, restricted to the normal directions of,
sinceF, restricted to a normal fibréc1(q), . . ., xk(g)) = (c1, ..., cx) is just a multiple of
the functioni(z) which is critical atz = 0 € R"*. Notice that givere > 0 andk € N
there exists = r(e, k, 8) such thatF, is aC* perturbation of the zero function.

Case 2.Ramified submanifolds. Here we consider an immersed totally geodesic flat
submanifoldV of M satisfying the following conditions.
(1) N istheunion of afinite collectioivy, . . ., N; of totally geodesic submanifolds each
of which is diffeomorphic to a two-dimensional disk.
(2) The submanifoldsy; intersect along an embedded geodesic segment:
(-L,L) — M, soN is diffeomorphic to a union of two-dimensional planes with
a line in common.
(3) N has compact closure.

Assume thatVs(y) is embeddedys(y) is diffeomorphic to a cylinder fos small
enough. We will construct a factor function with supportig(y) with the required
properties by taking cylindrical coordinates aroupdand constructing a real-valued
function whose level sets are cylinders havings an axis. Lefe; (1)}, t € (—L, L),

i = 1,2,...,n, be an orthonormal parallel frame defined algngvith e1(t) = y'(¢).
Consider the Fermi coordinate syst@n: Vs(y) —> (—L, L) x Bs associated to this
frame, whereB; is the open ball of radiu&in R"~1. Then for every poing € Vs(y) we
have that

D(g) = (1(9). (€XP () (@)
wheret (q) is given byg € exp)}(,(q)). Note that the submanifold€; have coordinates
®(Ni) = (L, L) x (=38, 8)v;

wherev; = v;(r) € R"1is a parallel vector field perpendicular 6(r) = e1(¢). Let
f : R —> R be aC* bump function with supportif—1, 1] such thatf (x) = 1V|x| < %
and O< f(x) < 1foreveryx € (—1,1). Forr > 0 defineG, : Vs(y) — M by

.
Gy =rr (N2) 7 (4222).

Notice thatG, is constant along the — 2 sphereqdd(q, y) = ¢} N {t(q) = to} which
are perpendicular to the plands. So the gradient of;, has no nonzero components in
the normal directions of th&/; and therefore theV;'s are totally geodesic for the metric
g = G,g. Again, it is possible to chose= r (3, k, €) arbitrarily small in order to makg
ane-Ck perturbation of.

Proof of Proposition 1.1Let (M, g) be a compact Riemannian manifold and (&2, g)
be a flat, totally geodesic immersed torus. Let us chose a closed gepg@sic2. The
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self-intersections of"? take place along closed geodesiasys, ..., y,, and at points
pi, ..., Pa- The geodesigg may belong to the collection of’s for i > 1. If this is the
case, we just reorder the geodesic$o includeyg so 0< i < m. Notice that
T% - U YiUpj
i,j

is a disjoint union of embedded, open submanifdidsk = 1, 2, .. ., s, all with compact
closures. Add to the collectiofp;} the finite set of points of crossings of the geodesics
vi. Then the set);y; — U;p; is a collection of embedded geodesic arcs. If there are
some closed geodesics in this subset, add some extra points to the collpgtiomorder

to breakU;y; — U; p; into disjoint, embedded geodesic segments. B;ebe a (disjoint)
collection of open balls i of radiusz—l1 inf;2;{d(pi, p;)} centered at the points; such
that 72 N B; is diffeomorphic to a finite set of planes with a common point. Such a
collection B; exists by the compactness @f. By the choice of theB;’s there is no
closed geodesic a¥f contained inJ?_; B;. The setU’ ,y; — U{_; B; is a disjoint union

of embedded geodesicargs k = 1, 2, ..., b. If yg belongs to the collectiofy;} we can
assume, without loss of generality, thiat k = 1, 2, ..., bo corresponds to the geodesic
subsegments afp in the collection of thes;’s. Let§ > 0 be such that the collection
of tubular neighborhoodg; of radiusé of the segmentg;, k = 1,2,...,b, is also a
disjoint collection of embedded subsets with the property that every connected component
S; meetingV; containsgy. Thus

v =ul B Ui Vi

is a thin tubular neighborhood of the collectiomgk satisfying:
(1) each subsét; is a tubular neighborhood of a geodesidifsuch thatr'? N V; is an
immersed surface of the type considered in Case 2 above;

(2) the complemerit?—V is a disjoint collection of embedded closed surfages .
Therefore, we can apply the conformal changes constructed in Cases 1 and 2 above.

First, take a triangulation in each in order to decompose it into a finite union of ceflg.

Consider a normal neighborhodt,; of radiuss/2 of P; in M and letFy i : M — R

be aC function of the type considered in Case 1, supporteWjn with the property

that F,.;(p) = r Vp € P andF, 4 (p) = 0¥p € Wi; N Si. Adding up over the’s we

obtain a factor function

ZFr,kiz kM — R

1

supported in a normal neighborho®g of S, suchthat < F, ;(p) < 2r foreveryp € §;.

Next, for each connected geodesic segmgnhot in yo consider a functiorG,; :
M — R of the type observed in Case 2 with supportinand such thaG, ;(p) = r
for everyp in a tubular neighborhood ¢ N V; of radiuss/2, andG, ;(p) > O for every
p € Vi. If B; is a subset ofyp, then consider the functioH, ; : M — R supported inV;
and given by

Hi(p) = d(p, b)) Gri(p)
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whered(p, ;)" is the distance fromp to ; (which is a well defined function in the normal
neighborhood/;) raised to an even poweéto eliminate the singularities of(p, 8;) at the
pointsp € B;. Finally, defines,, : M — R by

or(p) =Y _(Fri(p) + Grj(p) + Hri(p))
i,j,k
and observe that:
(1) the support o6, is a thin tubular neighborhood 612, g) ando, > 0;
(2) we have that, (y0(¢)) = O for everyr;
(3) the zeros of, notinyp are contained in the ballB; .

Item (3) implies that given any geodesic: (—oo, +00) — T2 different fromyg
there exists such that, («x(¢)) # 0. In fact, a geodesie # yp is either one of thes,
i > O—and thenG,; is nonzero at some points éin—or it must hit one of the region$,
since there is no geodesic completely contained;i;. In the latter case, the function
Zi,j,k(F,,,» + G, j + H; ) is positive ina N S;. Consider the metric

201 (p)

g(p)=e g(p).

Then(M, g,) is conformalto(M, g), the torugT?, g,) is totally geodesic by the properties
of o, and givere > 0,k € N there exists > 0 such thag, is ane-C* perturbation of.
This concludes the proof of Proposition 1.1.
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