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Abstract

This article extends previous numerical studies of the stability properties of intense nonneutral charged particle beams
with large temperature anisotropy~T4b .. T5b! to allow for nonaxisymmetric perturbations with]0]u Þ 0. The most
unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined.
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1. INTRODUCTION

It is well known that in neutral plasmas with strongly aniso-
tropic distributions~T5b0T4b ,, 1! a Harris-like collective
instability may develop if there is sufficient coupling be-
tween the transverse and longitudinal degrees of freedom
~Harris, 1959!. Such anisotropies develop naturally in ac-
celerators, where the longitudinal temperature of the accel-
erated beam of charged particles with chargeq accelerated
by a voltageV is reduced according toT5bf 5 T5bi

2 02qV ~for a
nonrelativistic beam!. In addition, the transverse tempera-
ture may increase due to nonlinearities in the applied and
self-field forces, nonstationary beam profiles, and beam
mismatch.

Previous studies of this anisotropy-driven instability in
intense beams~Wang & Smith, 1982; Friedmanet al., 1990,
1992; Haberet al., 1999; Startsevet al., 2002! have shown
that moderately intense beams with normalized beam inten-
sity sb 5 vpb

2 02gb
2vf

2 * 0.5 are linearly unstable to short-
wavelength, axisymmetric~]0]u 5 0! perturbations with
kz

2rb
2 * 1, provided the ratio of longitudinal to transverse

temperatures is smaller than some threshold value. Here,
vpb

2 5 4p [nbeb
20gbmb is the relativistic plasma frequency-

squared, andvf 5 const. is the smooth-focusing frequency
associated with the applied field. In this article, we extend
our previous simulation studies of this instability~Startsev
et al., 2002! to the case with]0]u Þ 0.

In many practical applications, the transverse distribution
function may be close to thermal equilibrium with temper-

atureT4b, and the longitudinal distribution can be described
by a drifting Maxwellian distribution with temperature
T5b ,, T4b. This distribution is stable with respect to trans-
verse perturbations~Davidson, 1998!. For an arbitrary equi-
librium distribution function, the stability problem cannot
be solved analytically, and numerical simulation techniques
must be employed. To investigate stability properties nu-
merically, we use the nonlineardf method~Parker & Lee,
1993! described below, as implemented in the Beam Equi-
librium, Stability, and Transport~BEST! code~Qin et al.,
2000; Startsevet al., 2002!.

2. DESCRIPTION OF THE NONLINEAR df
SIMULATION CODE

In the smooth-focusing approximation, the transverse focus-
ing force is modeled byFfoc 5 2gbmbvf

2x4 , wherevf 5
const. , mb is the particle rest mass,gb 5 ~12 bb

2!2102 is the
relativistic mass factor,Vb5 bbc5 const. is the axial veloc-
ity, andc is the speed of light. The solutions to the nonlinear
Vlasov–Maxwell equations are expressed asfb 5 fb

0 1 dfb,
f 5 f0 1 df andAz 5 Az

0 1 dAz, where~ fb
0,f0, Az

0! are
known equilibrium solutions~]0]t 5 0!. The perturbed po-
tentials satisfy the equations~Qinet al., 2000; Startsevet al.,
2002!

¹2df 5 24pebEd3pdfb, ~1!

¹2dAz 5 2
4p

c
ebE d3pvzdfb, ~2!
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whereeb is the particle charge, anddfb~x,p, t! is given by the
weighted Klimontovich representation,

dfb 5
Nb

Nsb
(
i51

Nsb

wbi d~x 2 xbi !d~p 2 pbi !. ~3!

Here,Nsb is total number of beam simulation particles,Nb is
total number of actual beam particles, and the weight func-
tion is defined byvb [ dfb0fb.

The nonlinear particle simulations are carried out by ad-
vancing the particle motion according to~Qin et al., 2000;
Startsevet al., 2002!

dxbi

dt
5 ~gbmb!21pbi , ~4!

dpbi

dt
5 2gbmbvf

2x4bi 2 ebS¹f 2
vzbi

c
¹4AzD, ~5!

dwbi

dt
5 2~12 vbi !

1

fb0

]fb0

]p
{dSdpbi

dt
D, ~6!

dSdpbi

dt
D 5 2ebS¹df 2

vzbi

c
¹4dAzD, ~7!

and updating the fields by solving the perturbed Maxwell’s
equations with appropriate boundary conditions at the cy-
lindrical, perfectly conducting wall at radiusrw.

Thedf approach is fully equivalent to the original nonlin-
ear Vlasov–Maxwell equations, but the noise associated with
representation of the background distributionfb

0 in conven-
tional particle-in-cell~PIC! simulations is removed. The
typical gain in accuracy indf simulations compared to PIC
simulations with the same number of particles isedf 0epic 5
Uwbi ~Parker & Lee, 1993; Qinet al., 2000!. This allows much

more accurate simulations of the nonlinear dynamics and
instability thresholds when6 Uwbi 6 ,, 1. When the perturba-
tion dfb becomes comparable in magnitude with the back-
ground distribution functionfb0, then thedf method becomes
less accurate than a full PIC simulation. In the present
article, a hybrid combination of thedf and PIC simulation
methods is used~Startsevet al., 2002!, where the number
density is calculated according todnb 5 @12 u~ Uwbi !#dndf 1

u~ Uwbi !~npic2 n0!, whereu~w! is a monotonic function of its
argument such thatu~wr 0! r 0 andu~wr 1! r 1. Here,
dndf 5 *d3pdfb andnpic 5 *d3pfb.

In addition, thedf method can be used to study linear
stability properties, provided all nonlinear terms in the dy-
namical equations~5!–~7! are neglected~Parker & Lee,
1993; Qinet al., 2000!. This corresponds to replacing the
term 12 wbi with 1 in Eq.~6! for the weights, and moving
particles along the trajectories calculated in the unperturbed
potentials~f0, Az

0!.
The df method has been implemented in the three-

dimensional PIC code~BEST! in cylindrical geometry with
a perfectly conducting wall at radiusrw. Maxwell’s Eqs.~1!
and~2! are solved using fast Fourier transform techniques
~FFT! in the longitudinal and azimuthal directions. The
particle positions and weights are advanced using a second-
order predictor–corrector algorithm. The code is parallel-
ized using Message Passing Interface~MPI! with domain
decomposition in the direction of beam propagation~Qin
et al., 2000; Startsevet al., 2002!.

3. SIMULATION RESULTS

In this section, we present the simulation results for a con-
tinuous, anisotropic beam in a constant focusing field. The
self-consistent equilibrium distribution function~]0]t 5 0!
is taken to be

fb
0 5

[nb

~2pgbmb!302gbT4bT5b
102 expH2

~ pz 2 gbmb bbc!2

2gb
3mbT5b

J
3 expH2

p4
202gbmb 1 gbmbvf

2r 202 1 eb~w0 2 bb Az0!

T4b
J ,

~8!

where [nb is the beam density atr 5 0, andT4b andT5b are the
transverse and longitudinal temperatures. The equilibrium
self-field potentials~w0, Az0! are determined numerically
from Maxwell’s equations~Qin et al., 2000!. It is also as-
sumed that the beam is located inside a grounded, perfectly
conducting cylindrical wall at radiusrw 5 3rb, whererb 5
@^r 2&#102 is the rms beam radius. Random initial perturba-

Fig. 1. Plots of normalized~a! real frequency~Rev!0vf and~b! growth rate~Imv!0vf versuskzrw for sb 5 0.95.
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tions are introduced to the particle weights, and the beam is
propagated fromt50 tot5500vf

21. The initial temperature
ratio is taken to beT5b0T4b 5 0.01, and the simulations are
performed in the beam frame withbb50 andgb51. Typical
numerical results are illustrated in Figures 1–5, where the
simulations have been carried out over a wide range of
normalized beam intensitiessb 5 vpb

2 02gb
2vf

2 ranging from
sb 5 0.1 tosb 5 0.95.

Using the linearized version of the three-dimensional
BEST code, Figures 1–3 show results of thedf simulations
for perturbations with a spatial dependence proportional to
exp~ikzz1 imu!, wherekz is the axial wave number, andm
is the azimuthal mode number. Figure 1 shows plots of the
real and imaginary parts of the complex oscillation fre-
quencyv versus normalized axial wave numberkzrw, for
sb 5 0.95 and azimuthal mode numbersm 5 0,1,2,3. Note
that the instability has a finite bandwidth with maximum
growth rate atkzrw . 9. The dependence of the maximum
growth rate~Imv!max0vf and the normalized real frequency
~Rev!max0vf at maximum growth on beam intensitysb is
shown in Figure 2. The maximum growth rate~Imv!max0vf

is an increasing function of beam intensitysb. The dipole
modem51 has the largest growth rate. All modes are found
to be stable in the regionsb # 0.4. The radial dependence of
the eigenfunctions for the perturbed electrostatic potential
using the linearized BEST code is illustrated in Figure 3 for
kzrw 5 9 andsb 5 0.95.

Figures 4 and 5 show typical simulation results using the
nonlinearversion of the three-dimensional BEST code for
the case of normalized beam intensitysb 5 0.8. In Figure 4,
the initial perturbation has a dominant initial excitation with
m 5 1 andkzrw 5 9, and the time history of the perturbed
densitydnb 5 *d3pdfb is plotted versusvf t at fixed axial
positionzand radiusr 50.3rb.After the initial linear growth
phase, note from Figure 4 that the instability saturates at a
moderately large level with6dnmax0 [nb6 . 0.1.

Finally, shown in Figure 5 is a plot of the average longi-
tudinal momentum distributionFb~ pz, t ! 5 *d2p4d3xfb
versuspz for a dominant initial excitation withm 5 1 and
kzrw 5 9 ~the case shown in Fig. 4!. In Figure 5 the average
distribution Fb~ pz, t ! at time t 5 200vf

21 ~thick curve! is
compared with the initial distribution~thin curve!. The for-
mation of tails in axial momentum space in Figure 5 and the
consequent saturation of the instability are attributed to quasi-
linear stabilization.

4. CONCLUSIONS

The BEST code~Qin et al., 2000!, which implements the
nonlineardf scheme, has been used to investigate the stabil-
ity properties of intense charged particle beams with large
temperature anisotropy~T5b0T4b ,, 1! for perturbations with
]0]u Þ 0. The simulation results clearly show that intense

Fig. 2. Plots of normalized~a! real frequency~Rev!max0vf and~b! growth rate~Imv!max0vf at maximum growth versus normalized
beam intensitysb.

Fig. 3. Radial mode structure of the unstablem5 0,1,2,3 eigenfunctions
for kzrw 5 9 andsb 5 0.95.

Fig. 4. Time history of normalized density perturbationdnmax0 [nb for sb 5
0.8 at fixedz andr 5 0.3rb.
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beams withsb$ 0.4 are linearly unstable to short-wavelength
perturbations withkzrw $ 3, provided the ratio of longi-
tudinal and transverse temperatures is sufficiently small. In
the nonlinear saturation stage, the total distribution function
is still far from equipartitioned, and free energy is available
to drive an instability of the hydrodynamic type.
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Fig. 5. Plot of average longitudinal momentum distributionFb~ pz! at time
t 5 0 ~thin line! andt 5 200vf

21 ~thick line!, for normalized beam intensity
sb 5 0.8.
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