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Abstract

This article extends previous numerical studies of the stability properties of intense nonneutral charged particle beams
with large temperature anisotrogy,, > T,,) to allow for nonaxisymmetric perturbations wiéfio6 # 0. The most
unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined.
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1. INTRODUCTION atureT,;,, and the longitudinal distribution can be described
by a drifting Maxwellian distribution with temperature

Itis well known that in neutral plasmas with strongly aniso- T,,, < T,,. This distribution is stable with respect to trans-
tropic distributions(T,,/T,, < 1) a Harris-like collective verse perturbation®avidson, 1998 For an arbitrary equi-
instability may develop if there is sufficient coupling be- librium distribution function, the stability problem cannot
tween the transverse and longitudinal degrees of freedorbe solved analytically, and numerical simulation techniques
(Harris, 1959. Such anisotropies develop naturally in ac- must be employed. To investigate stability properties nu-
celerators, where the longitudinal temperature of the accelnerically, we use the nonlineaf method(Parker & Lee,
erated beam of charged particles with chaggeecelerated 1993 described below, as implemented in the Beam Equi-
by a voltageV is reduced according Gy = T,2:,/2qV (fora  librium, Stability, and TransportBEST) code(Qin et al.,
nonrelativistic beam In addition, the transverse tempera- 2000; Startseet al.,, 2002.
ture may increase due to nonlinearities in the applied and
self-field forces, nonstationary beam profiles, and beam
mismatch. 2. DESCRIPTION OF THE NONLINEAR &f

Previous studies of this anisotropy-driven instability in ~ SIMULATION CODE
intense beam@Vang & Smith, 1982; Friedmaet al., 1990,
1992; Habeet al,, 1999; Startseet al., 2002 have shown Inthe smooth-focusing approximation, the transverse focus-
that moderately intense beams with normalized beam intering force is modeled b¥,c = —y,Myw?X,, Wherew; =
sity s, = w2,/2yEwf = 0.5 are linearly unstable to short- const, m, is the particle rest mass, = (1— 85) %2 is the
wavelength, axisymmetri¢d/06 = 0) perturbations with relativistic mass factol/, = 8,c = const is the axial veloc-
k2r2 = 1, provided the ratio of longitudinal to transverse ity, andc s the speed of light. The solutions to the nonlinear
temperatures is smaller than some threshold value. Her&/lasov—Maxwell equations are expressedas f° + of,,
wpy = 4mhy €2 /y,my is the relativistic plasma frequency- ¢ = ¢° + 8¢ andA, = A] + 8A,, where( fL, ¢ A?) are
squared, and; = const is the smooth-focusing frequency known equilibrium solution$d/dot = 0). The perturbed po-
associated with the applied field. In this article, we extendtentials satisfy the equatiof®inet al., 2000; Startseet al.,
our previous simulation studies of this instabil{ytartsev 2002
et al, 2002 to the case witld/060 # 0.

In many practical applications, the transverse distribution
function may be close to thermal equilibrium with temper- V2op = _47Teofd3p5fb1 (1)
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whereg, is the particle charge, add,(x, p, t) is given by the
weighted Klimontovich representation,

N Nsp
Bty = < 2 Wi 8 Xer) 3(P = Pu). ®

sbi=1

Here,Ngpis total number of beam simulation particl®g,is
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6 (Wi ) (Npic — No), whered (w) is a monotonic function of its
argument such th&t(w — 0) — 0 andf(w — 1) — 1. Here,
dns = [d3psfy, andny = [ d3pf,.

In addition, thesf method can be used to study linear
stability properties, provided all nonlinear terms in the dy-
namical equationg5)—(7) are neglectedParker & Lee,
1993; Qinet al,, 2000. This corresponds to replacing the

total number of actual beam particles, and the weight functerm 1— W with 1 in Eq.(6) for the weights, and moving

tion is defined byw, = &f, /fy,.

particles along the trajectories calculated in the unperturbed

The nonlinear particle simulations are carried out by adpotentials(¢® A).

vancing the particle motion according ¢@in et al., 2000;
Startsewet al,, 2002

dXy,

o (Y6 Mp) ™" Py 4)

% = —YoMyf X pi — eb<V¢ - % VJ_AZ>1 (5

%:_(1_%0&%'6(%)' (6)
5(%) - —e0<v5¢—%‘“vl5Az>, @

The 6f method has been implemented in the three-
dimensional PIC codeBEST) in cylindrical geometry with
a perfectly conducting wall at radiug. Maxwell’s Eqs.(1)
and(2) are solved using fast Fourier transform techniques
(FFT) in the longitudinal and azimuthal directions. The
particle positions and weights are advanced using a second-
order predictor—corrector algorithm. The code is parallel-
ized using Message Passing Interfd&P1) with domain
decomposition in the direction of beam propagati@in
et al,, 2000; Startseet al.,, 2002.

3. SIMULATION RESULTS

In this section, we present the simulation results for a con-
tinuous, anisotropic beam in a constant focusing field. The

and updating the fields by solving the perturbed Maxwell'sself.consistent equilibrium distribution functig/at = 0)
equations with appropriate boundary conditions at the cyis taken to be

lindrical, perfectly conducting wall at radiug,.

Thesf approach is fully equivalent to the original nonlin-
ear Vlasov—Maxwell equations, but the noise associated witHs =

representation of the background distributfgrin conven-

tional particle-in-cell(PIC) simulations is removed. The
typical gain in accuracy iaf simulations compared to PIC

simulations with the same number of particlesj§/eyic =

Wy (Parker & Lee, 1993; Qirt al,, 2000. This allows much

No p{(pz_)’bmbﬁbc)z}

Cmyemy) ¥ 2y, T T ? 2ySmp T

P?/2yp My + Yo My@f %/ 2 + e,(0o — BoAs) }

X exp] —
p{ T

®)

more accurate simulations of the nonlinear dynamics and

instability thresholds whetiw,;| < 1. When the perturba- wheren, is the beam density at= 0, andT,, andT,, are the
tion 6f, becomes comparable in magnitude with the back{ransverse and longitudinal temperatures. The equilibrium
ground distribution functiofl?, then theSf method becomes  self-field potentials(¢g, A,o) are determined numerically
less accurate than a full PIC simulation. In the presenfrom Maxwell's equationgQin et al., 2000. It is also as-

article, a hybrid combination of théf and PIC simulation
methods is usedStartsewet al, 2002, where the number

density is calculated accordingdo, = [1 — 6 (W;)]6ngss +

(Rew) ws

Kz M'w

sumed that the beam is located inside a grounded, perfectly
conducting cylindrical wall at radius, = 3r,, wherer, =
[(r?)]¥2 is the rms beam radius. Random initial perturba-

(b) | | / 1

KzTw

Fig. 1. Plots of normalizeda) real frequencyRew)/ws and(b) growth rate(Imw)/ws versusk,r, for s, = 0.95.
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Fig. 2. Plots of normalizeda) real frequencyReaw)max/ws and(b) growth rate(Imw)max/ws at maximum growth versus normalized
beam intensitys,.

tions are introduced to the particle weights, and the beam is Figures 4 and 5 show typical simulation results using the
propagated frorh= 0 tot = 500w; *. The initial temperature nonlinearversion of the three-dimensional BEST code for
ratio is taken to bd,,/T,, = 0.01, and the simulations are the case of normalized beam intensity= 0.8. In Figure 4,
performed inthe beam frame with = 0 andy,=1. Typical  the initial perturbation has a dominant initial excitation with
numerical results are illustrated in Figures 1-5, where then = 1 andk,r,, = 9, and the time history of the perturbed
simulations have been carried out over a wide range oflensitysn, = [d3psf, is plotted versusost at fixed axial
normalized beam intensitiess = wj,/2y{ w? ranging from  positionzand radius = 0.3r,,. After the initial linear growth

S, = 0.1tos, = 0.95. phase, note from Figure 4 that the instability saturates at a
Using thelinearized version of the three-dimensional moderately large level withSn,./fy| = 0.1.
BEST code, Figures 1-3 show results of #fiesimulations Finally, shown in Figure 5 is a plot of the average longi-

for perturbations with a spatial dependence proportional taudinal momentum distributiorr,(p,,t) = [fd?p, d3xf,
exp(ik,z + im@), wherek, is the axial wave number, amd  versusp, for a dominant initial excitation withm = 1 and

is the azimuthal mode number. Figure 1 shows plots of the,r,, = 9 (the case shown in Fig)4in Figure 5 the average
real and imaginary parts of the complex oscillation fre-distribution F,(p,,t) at timet = 200w; * (thick curve is
guencyw versus normalized axial wave number,,, for compared with the initial distributiotthin curve. The for-

S, = 0.95 and azimuthal mode numbers= 0,1,2,3. Note mation of tails in axial momentum space in Figure 5 and the
that the instability has a finite bandwidth with maximum consequent saturation of the instability are attributed to quasi-
growth rate ak,r,, = 9. The dependence of the maximum linear stabilization.

growth rate(Imw)may/@s and the normalized real frequency

(R&w)max/ws at maximum growth on beam intensigy is

shown in Figure 2. The maximum growth ratenw)nay/ws 4. CONCLUSIONS

is an increasing function of beam intens#ty The dipole

modem = 1 has the largest growth rate. All modes are foundThe BEST cod€Qin et al,, 2000, which implements the

to be stable in the regiog = 0.4. The radial dependence of nonlinearsf scheme, has been used to investigate the stabil-
the eigenfunctions for the perturbed electrostatic potentiaity properties of intense charged particle beams with large
using the linearized BEST code is illustrated in Figure 3 fortemperature anisotrofgy,,/T,» < 1) for perturbations with
k,rw =9 ands, = 0.95. d/00 # 0. The simulation results clearly show that intense
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Fig. 3. Radial mode structure of the unstalfe= 0,1,2,3 eigenfunctions  Fig. 4. Time history of normalized density perturbatién,../n, for s, =
for k,ry, = 9 ands, = 0.95. 0.8 at fixedz andr = 0.3ry,.
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