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Abstract.—Models of functional ecospace diversification within life-habit frameworks (functional-trait
spaces) are increasingly used across community ecology, functional ecology, and paleoecology. In
general, these models can be represented by four basic processes, three that have driven causes and one
that occurs through a passive process. The driven models include redundancy (caused by forms of
functional canalization), partitioning (specialization), and expansion (divergent novelty), but they also
share important dynamical similarities with the passive neutral model. In this second of two companion
articles, Monte Carlo simulations of these models are used to illustrate their basic statistical dynamics
across a range of data structures and implementations. Ecospace frameworks with greater numbers of
characters (functional traits) and ordered (multistate) character types provide more distinct dynamics
and greater ability to distinguish the models, but the general dynamics tend to be congruent across all
implementations. Classification-tree methods are proposed as a powerful means to select among
multiple candidate models when using multivariate data sets. Well-preserved Late Ordovician (type
Cincinnatian) samples from the Kope and Waynesville formations are used to illustrate how these
models can be inferred in empirical applications. Initial simulations overestimate the ecological disparity
of actual assemblages, confirming that actual life habits are highly constrained. Modifications
incorporating more realistic assumptions (such as weighting potential life habits according to actual
frequencies and adding a parameter controlling the strength of each model’s rules) provide better
correspondence to actual assemblages. Samples from both formations are best fit by partitioning (and to
lesser extent redundancy) models, consistent with a role for local processes. When aggregated as an
entire formation, the Kope Formation pool remains best fit by the partitioning model, whereas the entire
Waynesville pool is better fit by the redundancy model, implying greater beta diversity within this unit.
The ‘ecospace’ package is provided to implement the simulations and to calculate their dynamics using
the R statistical language.
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Introduction

Understanding the causes of ecological
diversification remains an important goal
in paleontology, ecology, and evolutionary
biology. Andrew Bush and I recently intro-
duced (2012) several models of diversification
in ecospace (functional-trait space) that are
useful for conceptually representing a broad
range of diversifications, whether at the scale of
ecological assembly of communities or whether
shaping entire biotas over evolutionary time-
scales. The models share many similarities with
hypotheses used by community and functional
ecologists (Villéger et al. 2010, 2011; Mouillot
et al. 2013; Vogt et al. 2013; Gerisch 2014)
and those used by paleontologists studying
morphological, and increasingly ecological
(functional), disparity (Dineen et al. 2014, 2015;

Miller et al. 2014; Mitchell andMakovicky 2014;
Dick and Maxwell 2015; Knope et al. 2015).
Most of these ideas invoke the processes of
ecological canalization, specialization, and/or
divergence during diversification. In a compa-
nion article (Novack-Gottshall 2016), I described
four of these models in more detail and
discussed their usefulness as general models of
ecological diversification. The redundancy
model occurs when successive species occupy
similar regions in ecospace as previously exist-
ing species, and can be considered a form of
ecological canalization. The partitioning model
occurs when successive species progressively
subdivide ecospace, such as occurs in niche
partitioning and specialization. The expansion
model occurs when successive species progres-
sively explore novel portions of ecospace, such
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as occurs during niche divergence. Despite their
mechanistic differences, these three models are
all driven (sensu McShea 1994) by particular
causes. In contrast, the fourth neutral model
occurs as a passive model, in which ecospace is
inhabited at random.

The ecospace that becomes structured during
each model’s implementation can be envisioned
as a landscape (or multivariate ordination)
defined by the life habits (functional-trait com-
binations) of constituent organisms (Fig. 1).
Because each model ecospace is associated with
distinct distributions of life habits (ecological
structure) that can be quantified using various
disparity statistics, the models also suggest
promise as the basis for quantitative tests if
implemented through computer simulations. In
the companion article (Novack-Gottshall 2016),
I summarized the expected dynamics for these
models, using a range of metrics from the
morphological disparity and functional diver-
sity literature. Sensitivity analyses (Ciampaglio
et al. 2001; Villier and Eble 2009; Mouchet et al.
2010) have demonstrated strengths and weak-
nesses inherent to each metric, and it remains to
be demonstrated how sensitive these dynamics
are to different implementations of the models
and to different data structures (ecospace frame-
works). More important, it remains unclear how
to select among alternative models when using
multiple, interdependent statistics (Burnham
and Anderson 2002; Johnson and Omland
2004; Grueber et al. 2011).

In this second of two companion articles,
I demonstrate how these models can be
implemented as stochastic simulations. Sensi-
tivity analyses are conducted to evaluate how
differences in number of characters (functional
traits), character types, and various implemen-
tations of the simulations affect resulting
statistical dynamics. Because the life habits
theoretically allowed by any ecospace frame-
work will always be greater than those that
exist in reality (either by logical, biological,
or other constraints), the simulation results
suggest several ways they can be made more
realistic, that is, they can better approximate
actual assemblages. The use of classification
trees (Breiman et al. 1993) trained on multi-
variate Monte Carlo data sets (simulations) is
proposed as a novel method for selecting

among multiple models. As a case study, these
methods are applied to well-preserved fossil
assemblages from the type Cincinnatian
(Upper Ordovician of Ohio, Indiana, and
Kentucky). Because the samples hierarchically
span multiple localities and stratigraphic
levels, they offer useful tests of the generality
of the models. In addition to their application
for fossil samples, the methods proposed here
have value to those studying functional diver-
sity in modern communities, where debate
continues regarding the best manner to test
important hypotheses on ecological structure.

Implementing theModels usingMonte Carlo
Simulations

Statistical dynamics for the four models can
be obtained using Monte Carlo simulations,
which are provided here for a range of
ecospace frameworks. The simulations were
programmed using R (R Development Core
Team 2015), and a package—ecospace: Simulat-
ing Community Assembly and Ecological
Diversification Using Ecospace Frameworks
(Novack-Gottshall 2015)—is provided to allow
others to implement them for their own pur-
poses. In the discussion that follows, single
quotation marks (‘ ’) refer to control parameters
or variables calledwithin the package functions.

Theoretical Ecospace Framework
Prior to each simulation, a theoretical eco-

space framework is defined (with the function
‘create_ecospace’) that specifies the realm of
possible life habits that all species can inhabit
during the simulation. This step is flexible,
allowing any number of characters and
character types used by functional ecologists
(e.g., Mouchet et al. 2010; Villéger et al. 2011),
paleoecologists (e.g., Bambach et al. 2007; Bush
et al. 2007; Novack-Gottshall 2007), and those
studying morphological disparity (e.g., Foote
1994; Ciampaglio et al. 2001). Examples
include factors (e.g., diet can be autotrophic,
carnivorous, herbivorous, or microbivorous),
ordered factors (factors with a specified order,
such as for mobility: habitual > intermittent >
facultative > passive > sedentary), ordered
numerics (discrete or continuous numeric
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values, such as body size), and binary/numeric
character types. Binary states can be treated
individually (present= 1/absent= 0) or can be
treated as multiple states within a single
character. For example, the character “repro-
duction” can be treated as including two states

[sexual, asexual] with exclusively sexual habits
coded as [0,1], exclusively asexual as [1,0], and
hermaphrodites as [1,1]. This coding strategy is
preferable over the use of discrete factors
(sexual, asexual, hermaphroditic) in allowing
flexibility for possible (and biologically

FIGURE 1. Typical examples of simulated 50-species assemblages produced by the four model rules. Assemblages are
plotted on a common, nonmetric, multidimensional-scaling ordination space of functional traits to allow comparative
evaluation of model behavior. Five gray diamonds represent common “seed” species whose life habits were assigned
stochastically using an 18-character (functional-trait space) ecospace framework (modified from Novack-Gottshall
2007), imposing a realistic constraint that each life habit could have at most two character states within a given
character. Numbers illustrate the addition of five species to each assemblage (after seed species), with the remaining 40
species as hollow circles. All model rules, except redundancy, were enacted at 100% rule following for each simulation;
redundancy rules were weakened such that all successive species have habits 95% similar to preexisting ones; at 100%
enactment, later life habits are limited to the “seed” species. In the neutral model, functional traits of all species are
chosen independently at random, and the entire ecospace becomes inhabited through passive processes. In the
redundancy model, new species have life habits similar to preexisting ones, producing an ecospace with distinct
clusters. In the partitioning model, new species inhabit life habits intermediate to preexisting ones. This model can be
enacted in a strict form (larger image), in which new species are restricted to gradients between preexisting species
(typically leaving the center empty), and a relaxed form (inset), in which new species progressively fill in empty regions
of the space originally defined by the seed species. In the expansion model, new species progressively inhabit novel life
habits, producing an ecospace that expands its breadth over the simulation, while leaving the original region
uninhabited. Figure 2B shows the average dynamics of eight structural statistics when such simulations were repeated
1000 times.
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frequently occurring) state combinations, while
maintaining logical functional distances (in a
Euclidean or other metric sense), such that
hermaphrodites would be closer to sexual and
asexual habits than either exclusive mode is to
the other. (This example is trivial, as it could
easily be coded as an ordered factor, but such
binary coding schemes can be extended to
additional character states in which such
factorial options are no longer practical.) See
Novack-Gottshall (2007) and Supplementary
Appendix 1 for additional discussion and
examples of the value of multiple binary states
within a single character (functional category).
When such multiple binary characters are
included, subsequent simulations (and the
ecospace framework that controls them) specify
that “all-absences” are impossible (i.e., an
organism cannot be neither sexual nor asexual,
[0,0]). This behavior can be controlled with a
‘constraint’ parameter, which can allow any
combination (e.g., [1,1,1]) or specify amaximum
number of “multipresences” (e.g., setting
‘constraint= 2’ allows [1,0,0], [0,1,0], [0,0,1],
[1,1,0], [1,0,1], and [0,1,1] as state combinations,
but excludes [1,1,1]; setting ‘constraint= 1’ only
allows the first three of these combinations).

Another feature when defining the ecospace
framework is the ability to weight character
states, such that certain states occur more often
than others. This constraint can be imposed
using customized weights or calculated auto-
matically using empirical samples (such as a
regional species pool) to assign weights based
on their frequency of occurrence. A weight of 0
excludes that character state from inclusion in
the ecospace framework, and thus from simu-
lations based on it. Although not explored
here, these weights could be used, with some
care, in linking covariation among states across
different characters and offer potential to
extend these simulations to studies of morpho-
logical disparity, in which nonapplicable char-
acter states—for example, glabella shape for a
mollusk—are frequently encountered.

Simulations and Implementation as
Algorithms

All simulations are implemented as Monte
Carlo processes in which species are added

iteratively to assemblages, with all added species
having their character states specified by the
model rules below (Fig. 1). Aside from these
model rules (and whatever inherent constraints
are imposed by the ecospace framework), there
are no deterministic components to the stochastic
simulations. Simulations begin with the seeding
of a specified number of species, chosen at
random (with replacement) from either the
species pool (if provided) or following the
neutral-rule algorithm (if not). Once seeded,
the simulations proceed iteratively (character by
character, species by species) by following the
appropriate algorithm until terminated at a
prespecified species-richness value (sample size).
A ‘strength’ parameter can be used to specify the
probability that a simulation follows each rule,
with possible values ranging from 1.0, in which
the model rule is always followed, to 0.0, in
which the model rule is never followed (and
during which the simulation switches to the
default neutral model rule). Although not
explored here, it might be profitable in future
analyses to modify the model-selection analyses
into an optimization routine so that the ‘strength’
parameter is treated as a free parameter to be
estimated by the data rather than chosen as an
arbitrary value.

Neutral Rule.—Here we iteratively add
species independently, assigning characters
character by character as random multinomial
draws (with probabilities assigned by
character-state weights, if assigned) from the
theoretical ecospace framework. If weighting
was assigned to the ecospace framework,
character states are assigned in proportion to
those weights, on average.

This “rule” is not technically a rule, but the
absence of other rules: all further simulations
default to this neutral algorithm when, for
example, a simulation is implemented with a
strength parameter of 0, and converge on this
model when implemented at strengths <1. It is
important to note that the neutral rule is not a
simple permutation (randomization) test
(Kowalewski and Novack-Gottshall 2010),
drawing at random from the species pool
(except for the seed species, if a species pool is
provided). Most tests in the functional ecology
literature use such simple permutation tests,
and such a test can be enacted in the neutral
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model by setting the number of seed species to
a sufficiently large value, such as the size of the
species pool. The life habit of each new species
is built character by character from the realm of
theoretically possible states allowed by the
ecospace framework. Thus, new species can
occupy combinations of character states that
did not occur in the species pool (if provided).
This is an important feature of the simulations,
allowing the entire theoretical ecospace to be
explored by the neutral model if given suffi-
cient numbers of species. If it turns out that the
actual species pool is structurally different
from a similarly parameterized neutral model,
it can be concluded that there is an important
mechanism controlling how the actual sample
was composed.
Redundancy Rule.—In this instance, we pick

one existing species at random and create a
new species using that species’ characters as
a template. A character is modified (using a
randommultinomial draw from the theoretical
ecospace, as in the neutral rule) according to
the strength parameter. When the strength
parameter is set to 1, all species will be
functionally identical to the original seed
species; when set to 0, the simulation is
identical to the neutral rule. Because new
character states can be any allowed by the
ecospace framework, there is the possibility of
obtaining redundancy greater than that
specified by strength parameters <1.0 (if, e.g.,
the new randomly chosen character states are
identical to those of the template species).
Partitioning Rule.—Here we calculate

distances between all pairs of species, using
Euclidean distance if all characters are numeric/
binary or ordered numeric types and using
Gower distance if any character type is an
ordered or unordered factor. There are two
algorithms to choose from for the next step, a
‘strict’ (and default) partitioning implementation
and a ‘relaxed’ implementation. In the strict (or
“minimum distant-neighbor”) implementation,
identify the maximum distances between all
pairs of species (the “most-distant neighbors”);
the new species will have character states
based on the pair of species that represents
the minimum of these distances. This
implementation progressively fills in the largest
parts of the ecospace that are least occupied

between neighboring species and on average
partitions the ecospace in straight-line gradients
between seed species. In the ‘relaxed’ (or
“maximum nearest-neighbor”) implementation,
identify nearest-neighbor distances between all
pairs of species; the new species will have
character states based on the pair that
represents the maximum of these distances.
This implementation places new species in the
most unoccupied portion of the ecospace that is
within the cluster of preexisting species, often the
centroid. (See Fig. 1 for a visual portrayal of these
alternate implementations.) In both cases, the life
habit for each new species is built as a resampled
combination of the character states of the chosen
neighbor pair, with probabilities controlled by
the ‘strength parameter.’ Ordered, multistate
character partitioning (whether factor or
numeric) can include any state equal to or
between the observed states of existing species.
Each newly assigned character is compared with
the ecospace framework to confirm that it is an
allowed state combination before proceeding to
the next character; if the newly built character
is disallowed from the ecospace framework
(i.e., because it has “dual absences” [0,0], has
been excluded based on the species pool, or is not
allowed by the ecospace ‘constraint’ parameter),
then the character-selection algorithm is repeated
until an allowable character is selected. When
simulations proceed to very large sample sizes
(>100), this confirmatory process can require
long computational times and produce “new”

intermediate species that are functionally
identical to preexisting species. This can occur,
for example, when no life habits, or perhaps
only one, exist that form an allowable
intermediate between the selected neighbors.
This behavior mimics the “pathologically” tight
packing of species that has been demonstrated
in large sample–size simulations of niche
partitioning (Kinzig et al. 1999). This behavior
also causes dynamics at such sample sizes to
share important similarities with weakened
implementations of the redundancy model (see
“Simulations, Constraints, and Model Selection”
below).

Expansion Rule.—In this instance, we
calculate distances between all pairs of
species, as done in the partitioning algorithm,
and identify the species pair that is maximally
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distant. The newly added species has character
states chosen at random that are equal to or
more extreme (if ordered or numeric character
types, or that are the same or different for
unordered factors) than those in this species
pair, with the strength parameter controlling
the probability of following this rule. As with
the partitioning rule, each newly assigned
character is confirmed to be an allowed
character-state combination before proceeding
with remaining characters and species. Like the
partitioning rule, this algorithm can take long
computational times to run to completion for
large sample sizes and shares the similar
property that functionally identical life habits
may occur by virtue of saturation of ecospace-
allowable life habits.

Other SimulationAssumptions and Limitations.—
The simulations explicitly assume that dispersal
is guaranteed to all species, provided that new
species have appropriate character states as
proscribed by the ecospace framework and the
model rules. This is an important distinction
from Hubbell’s neutral model (2001) and many
other spatially structured models in community
ecology but consistent with how many species
pools are defined in ecological studies (Cornell
and Harrison 2014). Extinction, speciation, and
emigration are not allowed during the course of
a simulation (although they can play important
roles in the definition of the original species
pool). All species that immigrate to the
assemblage remain there, with their character
states retained, throughout the course of the
simulation. Such ecological and evolutionary
processes (character displacement, competitive
exclusion, habitat filtering, etc.) are only present
as implemented by the model rules governing
addition of new species to the assemblage.

The framework and simulation algorithms
currently do not incorporate relative abun-
dance (cf. Bush et al. 2007; Deline 2009;
Deline et al. 2012), life-history characteristics,
population demographics, dispersal and local
extinction, spatial structure, speciation and
evolution, or other constraints on the regional
pool. The incorporation of relative abundance
could be especially worthwhile for ecological
studies, as it would allow the simulations to
better mimic the assembly of ecological com-
munities. For example, abundance plays an

important role in immigration from regional
species pools (Hubbell 2001; Patzkowsky and
Holland 2007; Cornell and Harrison 2014), and
abundant taxa can have larger influences on
the composition of functional traits within
communities and a greater impact on the
functional identity of taxa that settle later
(Fargione et al. 2003; Guillemot et al. 2011).
Functional diversity studies increasingly
incorporate relative abundance (Villéger et al.
2008; Laliberté and Legendre 2010; Fontana
et al. 2015), but the models used here are lim-
ited to presence/absence data, which some
functional ecology studies (e.g., Ackerly and
Cornwell 2007) have demonstrated produce
results similar to those studies that incorporate
abundance data.

The simulations also currently do not incor-
porate phylogenetic structure in an explicit
sense. The three driven models are Markovian
in that preexisting taxa affect which functional
traits can enter at later stages of the simulation,
but there is no explicit assumption of heritability
or phylogenetic relatedness among simulated
species. In contrast, the neutral model is non-
Markovian in that all taxa are added indepen-
dently of one another, without regard to their
functional traits. The lack of such phylogenetic
structure perhaps hinders the application of
these models to diversification within indivi-
dual, evolving lineages, but the models are
intended as reasonable approximations of large-
scale evolutionary diversifications involving
many disparate lineages, and the focus is on the
ecospace structure of the overall biota. The
existing simulations could be modified to
include such features, which would prove
worthwhile for future studies.

Calculating Functional Diversity and
Ecological Disparity Statistics

As each simulation proceeds, the theoretical
ecospace (functional-trait space) becomes pro-
gressively filled with new species having
combinations of character states (life habits)
selected by the model rules (Fig. 1). Because the
mechanisms controlling community assembly
vary among models, it is expected that the
statistical dynamics will likewise vary. These
model-specific dynamics can be calculated as a
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function of species richness. Here, eight widely
used statistics are calculated, drawn from the
morphological disparity and functional diver-
sity literature (Ciampaglio et al. 2001; Wills
2001; Villéger et al. 2008; Mouchet et al. 2010).
The four morphological (here ecological)

disparity measures include the following
(Foote 1993; Ciampaglio et al. 2001; Wills
2001). Unique trait-combination (life-habit)
richness (H) measures the number of unique
life habits within each sample. Mean distance
(D) and maximum range (M) measure the
mean and maximal distance, respectively, in
functional-trait space among species, using
Euclidean distance if all characters are
numeric/binary or ordered numeric types, or
using Gower distance (1971) if any character
type is an ordered or unordered factor. Total
variance (V) measures the sum of variances for
each character state across species (Van Valen
1974); when using factor character types, this
statistic cannot be measured and is excluded.
The four functional diversity measures

include the following (Mason et al. 2005;
Anderson et al. 2006; Villéger et al. 2008;
Laliberté and Legendre 2010; Mouchet et al.
2010; Mouillot et al. 2013). Functional richness
(FRic) measures the minimal convex-hull
volume in multidimensional principal coordi-
nates analysis (PCoA) ordination trait space.
Functional evenness (FEve) measures the even-
ness of minimum-spanning tree lengths
between species in PCoA trait space. Func-
tional divergence (FDiv) measures the mean
distance of species from the PCoA trait-space
centroid. Functional dispersion (FDis) mea-
sures the total deviance of taxa from the circle
with radius equal to mean distance from PCoA
trait-space centroid. FRic and FDiv use a subset
(here set to 3 by default) of the PCoA axes for
their calculation (because their convex hull–
volume calculation requires more species than
functional traits), whereas the other two use
the entire PCoA space.
These statistics are calculated with the func-

tion ‘calc_metrics’ wrapping around function
‘dbFD’ in the ‘FD’ package (Laliberté and
Shipley 2014) to calculate functional diversity
statistics. The four functional diversity statis-
tics are not calculated for samples having less
than four unique life habits, for the same

reason just explained. The calculation of FRic
can be computationally demanding and has
proven truculent to many users when dealing
with idiosyncratic data structures (see Help file
in Laliberté and Shipley 2014). Some of these
issues are resolved in the implementation here.
Specifically, the package defaults to three
PCoA axes (‘m= 3’) as a generally useful and
computationally tractable number of axes;
defaults to Lingoes correction (Legendre and
Anderson 1999) when non-Euclidean PCoA
axes are calculated; has corrected (starting with
‘FD’ Version 1.0–12) a previously unnoticed
rounding error in the calculation of PCoA
scores that caused computation problems with
highly redundant data sets; and has been
optimized to prevent overwriting errors
(of temporarily stored vertices files) when used
in a parallel-processing computer environ-
ment. Although including more PCoA axes
allows greater statistical power (cf. Villéger
et al. 2011; Maire et al. 2015), the use of 3 here
provides satisfactory resolution for the often
functionally redundant data sets in these
simulations. This choice is also warranted
because such statistics are calculated directly
frommultivariate PCoA trait spaces (instead of
dendograms) and because the ecospace frame-
works used here have few factor-character
types (which are especially sensitive to few
axes). Three PCoA axes also provide the largest
computationally tractable number to allow
calculation of these statistics across all sample
sizes and models considered.

Sensitivity analyses of these statistics
(Ciampaglio et al. 2001; Mouchet et al. 2010;
Novack-Gottshall 2010; Maire et al. 2015) have
concluded that, despite much correlation
among them, each statistic has its strengths
for particular uses and contexts. H, M, V, FRic,
and FDis are all useful measures of disparity
(or dispersion of species within functional-trait
space).D and FDiv are useful for characterizing
internal structure (i.e., clumping or inhomo-
geneities within the trait space). FEve is useful
for characterizing the extent of spacing among
species within the trait space. Such sensitivity
studies consistently recommend that all are
useful for particular purposes, with selection
left to the researcher, a solution that is
decidedly indecisive. Below, I demonstrate
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that classification trees (trained on all statistics
from simulated data sets) offer a productive
solution to this subjectivity.

Model Selection
A difficulty in implementing model selection

with these simulations is that every simulation
iteration (i.e., each addition of a species) yields
eight statistics. This lack of statistical indepen-
dence is typically addressed through model-
fitting procedures (such as likelihood-ratio
tests or the Akaike information criterion
[AIC]; Anderson et al. 2000; Burnham and
Anderson 2002; Johnson and Omland 2004;
Grueber et al. 2011) that incorporate depen-
dency relationships explicitly (such as for a
multivariate normal model). However, these
methods become prohibitively complicated
when the statistics involved are not approxi-
mately normally distributed. In this case,H is a
discrete binomial distribution. Depending on
the model, several statistics are highly skewed,
with D best fit by gamma distributions and
M and V best fit by Weibull distributions (con-
firmed using maximum-likelihood goodness-
of-fit tests); in contrast, the four functional
diversity statistics are all reasonably well fit by
normal distributions. Most functional ecology
studies thus use one (or a few) of these statistics
for a particular test, subjecting them to a simple
permutation test to reject a particular null
hypothesis. Because all functional diversity/
disparity metrics contribute potentially useful
information on functional (ecospace) structure
(Ciampaglio et al. 2001; Villier and Eble 2009;
Mouchet et al. 2010), there is value in retaining
all suitable metrics when possible. The obstacle
is doing so while simultaneously considering
multiple-candidate models (Johnson and
Omland 2004; Grueber et al. 2011).

Here I propose a novel and simple method to
conduct model fitting in such cases. Classifica-
tion trees are a powerful and flexible tool for
classifying complex data sets with nonlinear,
localized, and other complicated relationships
among variables (Breiman et al. 1984; Cutler
et al. 2007), and they are being increasingly
used by ecologists (De’ath and Fabricius 2000;
De’ath 2002; Sullivan et al. 2006; Cutler et al.
2007; Boyer 2010; Durst and Roth 2012) and

paleontologists (Finnegan et al. 2012, 2015). The
basic algorithm is to recursively subdivide
heterogeneous data sets (e.g., composed of
different classes/models) into subsets that are
as homogeneous as possible, using whatever
values of variable(s) are most powerful to do so.
The result, often portrayed visually as a decision
tree, is a statistical model in which values of
predictor variables are used to classify the
original class/model identities. Studies demon-
strate that the method (and its continuous-
variable counterpart regression trees) performs
as well as nonlinear (generalized additive and
linear model) regressions and constrained ordi-
nation and is exceptionally well suited to
scenarios involving complex (heterogeneous)
classifications (Prasad et al. 2006; Cutler et al.
2007). Performance can be improved using
“random-forest” variants, in which replicate
trees are made, each time leaving out random
subsets of variables and data, until a stable
model solution is achieved (Prasad et al. 2006;
Cutler et al. 2007). This variant also prevents
overfitting of the model and allows ranking of
predictor variables by their overall importance.
(Use of alternate tree-building algorithms below
confirmed that random forests performed best
for the current analyses.) When applied to new
data sets (either a validation/test set to test the
tree’s classification performance or empirical
samples), each resulting tree in the forest casts a
vote for the class (here, model) into which each
sample should be classified. The proportion of
votes for particular models, which scale from 0
to 1, can be used as a measure of support for
particular candidate models, analogous to how
Akaike weighting allows candidate models to
be compared by their relative support (Anderson
et al. 2000; Johnson and Omland 2004; Grueber
et al. 2011).

The typical workflow to implement classifi-
cation trees as a form of model fitting includes
the following steps. See Supplementary
Appendix 2 for technical details on how these
steps were implemented in analyses below.

1. Simulate training data sets: Run many
simulations of the candidate models (here,
the four ecological diversification models)
to be considered, calculating relevant sum-
mary statistics (here, the eight disparity and
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functional diversity statistics) for each itera-
tion. This large Monte Carlo data set
serves as a training data set to train the
classification tree.

2. Build a classification tree: Use random-
forest classification to identify which com-
bination of variables and their statistics are
most predictive of each original model:
model ~ S + H + D + M + V + FRic +
FEve + FDiv + FDis

3. Test the tree with a validation data set: Test
the tree’s performance using validation data
sets, additional simulation data sets of
knownmodels that were not included when
training the tree. A general (nonoverfit)
classification tree should perform approxi-
mately as well on a validation data set as it
did on its training data set.

4. Classify empirical samples using the
random-forest tree: Submit empirical sam-
ples (with calculated disparity/diversity
statistics but unknown model identity) to
the tree for classification, treating the propor-
tion of votes cast for each model as a relative
measure of model support.

Methodological analyses (Supplementary
Fig. 9) demonstrate that classification trees
perform well as model-fitting methods. When
conducted across a variety of ecospace frame-
works (spanning different numbers of charac-
ters, seed species, and character types and
incorporating weighting by empirical species
pools), trees were able to classify 75–97% of
their training data sets correctly (Supplemen-
tary Appendix 2); validation tests showed
similar performance, with ~2% fewer samples
being classified correctly. When applied to
more complex cases, such as the ability to
distinguish nine models of subtly distinct
dynamics (neutral model, four [including both
strict and relaxed partitioning versions]
process-driven models with 100% rule follow-
ing, and the four process-driven models with
50% rule following), the training trees still
classified 90% of training data correctly (84% of
validation data), even when the dynamics of
the models were quite similar. This perfor-
mance extends across all sample sizes, with the
classification tree still sufficiently powerful to
distinguish these models >33% of the time

correctly at sample sizes as small as six (the
minimum sample size when the models could
be classified, as five species were seeded
without any assembly rules). In nearly all
cases, the correct model also received the
largest proportion of classification votes.

The trees were also successful in identifying
samples produced from simulations quite
foreign from those used to train the sample
(Supplementary Fig. 9). When trained on the
nine 50% and 100% rule-following models, the
resulting tree generally classified validation
data sets produced at 95% and 90% rule
following as members of the 100% models,
with some votes for the alternate 50% rules.
Validation samples produced at 75% generally
were classified with mixed support for both
the 100% and 50% models. (This generality
declines at sample sizes >30–40, as dynamics
reach stable asymptotic values; at larger
sample sizes, it is worthwhile to consult more
complex classification trees to identify the
strength of these models.)

These results demonstrate that classification-
tree votes can provide a measure of model-
selection support, and this support can be
extended, at least in this case, beyond the
particular training models. Whether trained on
nine training sets (as in Supplementary Fig. 9)
or on larger numbers (13- or 21-model training
sets, if adding 75%- or if adding 75%-, 90%-,
and 95%-strength models), the correct model
consistently achieves support levels >0.20,
from which it is possible to recommend this
support value as a benchmark of “substantial”
support for the correct model, and values
above 0.40 tend to be associated with “unam-
biguously strong” support for the correct
model. (In other words, support values of 0.2
and 0.4 here can serve analogous roles as the
0.1 and 0.9 Akaike-weight benchmarks used in
AIC-based model selection.) Although 0.4 may
seem low comparedwith 0.9, the difference can
be explained by the large number of candidate
models [9, 13, or 21] being considered here, and
the fact that the correct model in these tests
often achieves support values much greater
than 0.4, whereas poorly supported models
tend to receive far fewer votes. It is recom-
mended that future analyses using different
model implementations run sensitivity
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analyses to validate the generality of these
benchmarks, as they likely depend on the
number and dynamical similarity of models
being considered.

The classification-tree approach to model
selection shares several similarities with the
methods recently termed approximate
Bayesian computation (ABC) in that model
selection can proceed without a known like-
lihood function or an understanding of the
dependence between variables (Beaumont
2010; Slater et al. 2012). However, ABC
is primarily used when estimating one or a
few parameters and often within structurally
similar or hierarchically nested models; it is
not well suited for choosing among models
with distinct parameters (such as is the case
here). ABC also performs poorly when con-
sidering many summary statistics simulta-
neously, the “curse of dimensionality”
(Beaumont 2010) (and also the case here, where
eight interdependent statistics are used). In
contrast, classification trees are powerful and
flexible methods that were developed to
classify such heterogeneous data sets using
many predictive variables (Breiman et al.
1993). Although they have not been used
before for multivariate model selection, they
perform remarkably well and appear to be well
suited to this goal.

Simulation Dynamics and Sensitivity to
Different Ecospace Frameworks

The four models can be distinguished by
examining the dynamics of the functional
diversity/disparity statistics as a function of
species richness. These dynamics are examined
here across a range of ecospace-framework
simulations in order to understand their gen-
eral dynamics, their sensitivity to different
ways of creating ecospace frameworks, and
their statistical power in model inference when
models are known to operate in simulations.

Popular Ecospace Frameworks
Figure 2 illustrates the dynamics for two

influential ecospace frameworks, that of Bush
and Bambach (Bambach et al. 2007; Bush et al.
2007, 2011; Bush and Bambach 2011) and

Novack-Gottshall (2007), which have been
adapted for a variety of studies (e.g., Xiao and
Laflamme 2009; Bush and Novack-Gottshall
2012; Ros et al. 2012; Bush and Pruss 2013;
Laflamme et al. 2013; Dineen et al. 2014, 2015;
Aberhan and Kiessling 2015; Dick and
Maxwell 2015; Mondal and Harries 2015;
O’Brien and Caron 2015). Bambach’s original
ecospace framework (1983, 1985) consisted
of 3 factor characters (diet, activity/motility,
and tiering, with the last ordered) and
11 character states, allowing 48 possible unique
life habits. The Bush and Bambach ecospace
framework retained these 3 characters, but
added additional character states (totaling 19)
and reformulated motility as an ordered factor.
With the addition of osmotrophy as a diet
category (Laflamme et al. 2009; Bush and
Bambach 2011; Bush et al. 2011), this yields
252 possible unique life habits. The Novack-
Gottshall framework more finely subdivides
life-habit dimensions according to substrate
relationships, microhabitat, motility, diet, and
foraging habits and is modified here to include
18 characters (6 ordered numeric and 12
multistate binary) and 37 character states,
yielding nearly 3.6 trillion possible life habits
(see Supplementary Appendix 1 for list of
characters and states). In all three frameworks,
many of these theoretically possible life
habits are unlikely to ever be realized given
logical or functional constraints (cf. Bambach
et al. 2007).

Model dynamics for both ecospace frame-
works are congruent, despite their rather
different structures. In both cases, life-habit
richness (H) increases as a function of species
richness (S) for all models except redundancy,
with the values for strict partitioning (and for
Bush and Bambach, also relaxed partitioning)
reduced compared with the other models. The
neutral and expansion model slope for Bush
and Bambach is also reduced slightly com-
pared with that of Novack-Gottshall, as the
smaller realized ecospace becomes saturated
more quickly. Trends for mean distance (D) are
also similar, with neutral remaining stable,
expansion increasing slightly (more so for
Novack-Gottshall), and the others declining
asymptotically to varying extents. Total var-
iance (V) is highly correlated with D for
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Novack-Gottshall, although the presence of
factor character types in Bush and Bambach
precludes its measurement. Maximum range
(M) is quite distinct across frameworks, with
all Bush and Bambach simulations quickly
filling the available ecospace. The Novack-
Gottshall framework, in contrast, does not
reach asymptotic limits within 50 species, with
the rank order of model dynamics generally
paralleling that for the other disparity metrics
(D and V): expansion has the greatest range
values; followed closely by neutral, signifi-
cantly greater than both partitioning models;
and with redundancy remaining constant at
low range. Functional richness (FRic) increases
for all models, except redundancy for Novack-
Gottshall, which decreases, with the greatest
values for expansion and neutral models,
intermediate for strict partitioning, and least
for redundancy. For Bush and Bambach,
relaxed partitioning produces the largest FRic
values of all models, whereas it remains
intermediate for Novack-Gottshall. Functional
evenness (FEve) remains nearly constant for
neutral and expansion and declines asympto-
tically for the other models, and the rank order
is similar in both cases: expansion and neutral
at the top, followed by both partitioning
models, and redundancy at the bottom. Func-
tional divergence (FDiv) has generally non-
linear dynamics. Its dynamics increase in both
frameworks for redundancy, whereas they
decrease for other models, with relaxed parti-
tioning generally decreasing at the fastest rate
(although eventually crossing neutral and
expansion models into an intermediate value
at high sample sizes for Novack-Gottshall).
Functional dispersion (FDis) has similar
dynamics to D (and V), although the dynamics
for the expansion and neutral models increase
asymptotically instead of remaining constant.
That these two quite different frameworks

share generally similar dynamics is good news
for those seeking to apply these statistics for
model inference. The most important differ-
ences include nearly continuous overlap
between the neutral and expansion models in
the Bush and Bambach framework, whereas
the expansion model generally has greater
values and more distinct dynamics for
Novack-Gottshall. This is an important

consideration if the goal (cf. Bush et al. 2007)
is to distinguish an active process (expansion)
from a passive process (neutral). Trend
dynamics generally also have smaller error
margins for the Novack-Gottshall framework,
which enables more powerful model selection.

This statistical power can be evaluated using
classification-tree methods, by training a
random-forest tree on the simulation statistics
and counting the proportion of an indepen-
dently simulated (validation) data set that is
classified correctly. The Bush and Bambach
framework was able to correctly identify 73%
of validation samples correctly. (See Supple-
mentary Appendix 2 for details and classifica-
tion rates.) Greatest variable importance (in
order from most to moderate importance) was
awarded to H, FEve, FDis, D, and FRic. This
ranking is consistent with Figure 2A, where
these dynamics generally overlap least with
those of other models. Confusion matrices,
which illustrate both the frequency at which
the correct model was selected and which
models were misclassified, reiterate that the
tree had difficulty distinguishing the expan-
sion from neutral dynamics in the Bush and
Bambach framework, with ~50% of expansion
samples misclassified as neutral (and vice
versa). In contrast, the two partitioning models
were correctly classified more than 80% of the
time (and usually confused with the alternate
partitioning parametrization), and the redun-
dancy model was nearly always properly
classified.

The Novack-Gottshall framework provided
greater power to distinguish the models, with
89% classified correctly using a validation
data set. Variable importance rankings rated
FEve the most important, followed in order by
D, H, FDiv, and FDis, four out of the five of
which were also considered most important in
the Bush and Bambach tree. The confusion
matrix also demonstrates some difficulty
distinguishing the expansion and neutral
models, but to a much lesser extent: ~75% of
expansionmodels were correctly distinguished
from the neutral models (and vice versa), with
98% of partitioning and exactly 100% of
redundancy models correctly classified. Thus,
the more multidimensional Novack-Gottshall
framework, albeit more complicated and less
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intuitively appealing for general summary
applications, provides greater statistical power
for inferring important ecological and evolu-
tionary models.

These results can be generalized by examining
other ecospace frameworks to identify what
forms of ecospace framework choices are most
likely to provide informative results for future
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analyses. The most important differences
between these two ecospace frameworks con-
cern differences in number of characters and
character types; thus it is worth examining the
effect of these variables. In addition, analyses
also examine the effect that number of seed
species has on dynamics and the ability to
distinguish resulting models.

Number of Ecospace Characters
Ecospace frameworks with more characters

and states ought to have greater opportunities
for the models to be distinguished, and thus be
more powerful frameworks. Simulations—
implemented using ecospace frameworks with
5, 15, and 25 characters of mixed character
types—bear this out, but only to a modest extent
(Supplementary Fig. 6). The dynamics across
simulations are generally similar, in much the
same way as for the frameworks discussed
above (Fig. 2). In particular, the smaller
5-character simulation (Supplementary Fig. 6A)
strongly resembles the dynamics of the Bush and
Bambach framework (Fig. 2A), whereas the
larger 15-character simulation strongly resem-
bles the dynamics of the Novack-Gottshall
framework (Fig. 2B), attesting that many of the
differences result from differences in the num-
bers of characters in each framework. However,
the classification rates improve only modestly as
additional characters are added (83%, 85%, and
86% of models, respectively), suggesting that
number of characters is not the primary driver of

performance between the two frameworks. This
conclusion reiterates one made in prior sensitiv-
ity analyses of functional diversity (Maire et al.
2015), which likewise found that number of
characters accounted for limited improvement in
performance. Examination of confusion matrices
(Supplementary Appendix 2) demonstrates that
most of the improvement in the larger simula-
tions was the result of improved performance at
distinguishing the partitioning models, both
from each other and from the other models,
made possible because the larger number of
characters allows for greater opportunities for
intermediate life habits.

Character Types
Another important difference between the

two frameworks considered above is their
character types, with the Bush and Bambach
framework using ordered and unordered fac-
tors and the Novack-Gottshall framework using
ordered and unordered numeric (binary) char-
acters. Maire et al. (2015), using sensitivity
analyses involving simulated data sets,
concluded that character type carried the
second-most importance in the performance of
functional-trait spaces (ecospace frameworks),
subordinate only to whether statistics were
calculated via a multidimensional ordination
versus a functional dendogram, a comparison
not considered in the current study (where all
functional diversity metrics are calculated using
the more powerful ordination method). They

FIGURE 2. Model dynamics for eight functional diversity statistics for the ecospace frameworks of (A) Bush and
Bambach (Bambach et al. 2007; Bush et al. 2007, 2011; Bush and Bambach 2011) and (B) Novack-Gottshall (2007). In
both cases, all models are enacted at 100% rule following with five seed species. The second case (B) also stipulates that
each life habit can have at most two character states within a given life-habit character (see text for explanation of
‘constraint’ parameter). Dynamics are reported as a function of increasing species richness, up to 50 species (i.e., there is
a common abscissa in all graphs); the ordinate has been truncated to focus on the trend lines for each statistic. Statistics
include life-habit richness (H), mean distance (D), maximum range (M), total variance (V), functional richness (FRic),
evenness (FEve), divergence (FDiv), and dispersion (FDis); see text for description of each statistic. Trend lines are the
average of 1000 simulations. Vertical bars near the top right of each graph illustrate the average standard deviation
around each set of trends; the standard deviation for mean distance in the Bush and Bambach framework equals 0.0117
and extends beyond the borders of the graph. Part-S and Part-R represent the strict and relaxed versions of the
partitioning model; redund in caption is an abbreviation for the redundancy model. The variance trend in (A) is
omitted because the characters in the Bush and Bambach framework are all factorial, preventing its calculation. The
uppermost H trend line in (B) is an overlap between the neutral, relaxed partitioning, and expansion trend lines.
Despite their rather different structures, the model dynamics for each ecospace framework are quite similar. Notable
differences include total overlap between neutral and expansion models in the Bush and Bambach framework and
generally smaller error margins for the Novack-Gottshall framework, which allows more powerful model selection
using classification-tree methods (89% of validation models classified correctly vs. 73% with the Bush and Bambach
framework).
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demonstrated that continuous and ordinal
(ordered numeric) character types performed
best, and discrete categorical (unordered factor)
types performed worst. This conclusion is
partially borne out here (Supplementary Fig. 7)
using simulated ecospace frameworks built
from 15 characters of varying types: factors,
ordered factors, ordered numeric, and binaries
(unordered numeric). Again, dynamics are
generally similar across simulations, with the
greatest difference occurring with ordered
factors (Supplementary Fig. 7B), which have
rather distinct dynamics from the other frame-
works for D, M, FDiv, and FDis, and to a lesser
extent for FRic. The dynamics for factors and
ordered and unordered numeric (binaries) are
all quite similar. Thus, there is negligible
difference caused by the distance metric used,
with Gower distance used for both factor types
and Euclidean distance for both numeric types.
Classification rates on ordered factors were also
substantially improved (94% of trained models
classified correctly) compared with the other
character types (78% for unordered factors, 79%
for ordered numerics, and 81% for binaries),
with most of the difference due to improved
ability of the ordered-factor tree to distinguish
the neutral and expansion models. (See Supple-
mentary Appendix 2 for additional details,
including confusion matrices.) Overall, ordered
character types, and especially ordered factors,
perform better than the other character types,
although the improvement is modest.

Number of Seed Species in Simulations
Actual ecological communities do not nor-

mally start with prespecified numbers of initial
colonizing “seed” species; thus, selecting how
many to choose in a simulation should reflect
knowledge of the ecological and evolutionary
scenarios one seeks to mimic. It is worthwhile
to evaluate the effect that this arbitrary choice
might have on resulting simulations. Supple-
mentary Figure 8 demonstrates that the effect
can be substantial for some models, although
the dynamics for the neutral and expansion
models are essentially invariant across imple-
mentations tested here. The greatest difference
occurs for FDiv, with the partitioning
dynamics dramatically changing behavior

across the three scenarios: with three seed
species, the dynamics are relatively constant at
low values; with five seed species, the strict
version decreases and the relaxed version
remains constant after an initial decrease; and
with 10 seed species, both trends decrease at
different rates. In all cases, however, the strict
version has values greater than the relaxed one.
The statistic M and to a lesser extent FRic also
vary with number of seed species, with the
redundancy and partitioning values substan-
tially suppressed when seeded with three (and
to a lesser extent five) species and substantially
increased when seeded with 10 species.
Although some dynamics vary dramatically
due to differences in seed species, the classifica-
tion rates are less variable. The simulation seeded
with three species classified 85% of training data
correctly (or 82% when excluding the redun-
dancy model, in which many statistics were
absent, because the functional diversity statistics
require a minimum of five unique life habits),
85% for the simulation seeded with five species,
and 75% for the simulation seeded with 10
species (see Supplementary Appendix 2 for
details, including confusionmatrices). Confusion
matrices demonstrate that the neutral and
expansion models are most difficult to distin-
guish in all three simulations, with the 10 seed
species simulation also showing greater diffi-
culty distinguishing the other models. Thus, it is
worthwhile—assuming the ecological and evo-
lutionary context justifies it—to use moderately
few numbers of species to seed the simulations,
because using larger numbers impedes the
simulations from following the model rules.
Although not entirely justified by the overall
classification-tree results, the dynamics suggest
that using too few species to seed the simulations
can suppress the dynamics of the partitioning
and redundancy models, which are explicitly
constrained to exploring the part of the ecospace
seeded by the initially occurring species.

Which Statistics Are Most Valuable?
Another benefit of using random-forest

classification trees as a form of model selection
is that they provide an explicit mechanism to
evaluate which statistics are most valuable in
classifying the models. As discussed earlier,
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this is accomplished by excluding some vari-
ables at random from the tree-training algo-
rithm (somewhat analogous to bootstrap
support in cladistics), which prevents over-
fitting of the model and aids in evaluating the
relative variable contribution to the final tree
model (Prasad et al. 2006; Cutler et al. 2007;
Strobl et al. 2007). Variable importance rank-
ings for the classification trees used with these
simulations considered FEve the most valuable
statistic, on average, for distinguishing the
models, followed by D, H, and FDis. In models
in which V could be included, it was consid-
ered the fourth most important variable. FDiv
and FRic consistently had intermediate (but
worthwhile) value, and M and S consistently
had low value. The poor ranking of S is
reassuring, as it is the independent variable in
all models and only useful in combination with
other statistics. This ranking is intuitive, as the
high-value statistics tended to have the least
overlap among models in the simulations
presented above (Fig. 2, Supplementary Figs.
6–8). Although functional ecologists focus
almost exclusively on their newly invented
statistics, those traditionally used in morpho-
logical disparity are often just as powerful (or
more so) and also computationally more
straightforward to measure. Thus, they ought
to be considered more frequently in functional
diversity studies. However, a benefit of using
classification trees as a basis for model selec-
tion is that one ultimately does not have to
choose which statistics to include (cf. Mouchet
et al. 2010). The tree algorithm is sufficiently
powerful and flexible to “learn” which vari-
ables to rely on in each circumstance: it always
sees the forest through their trees.

Model Inference of Late Ordovician Samples
and Effect of Geographic and Temporal Scale

Empirical Samples
These methods are applied to a case study

of well-preserved fossil biotas from the type
Cincinnatian (Late Ordovician) Kope and
Waynesville formations of southwest Ohio,
northern Kentucky, and southeast Indiana.
Lithologically, these units are composed of shales
interbedded with thin limestone tempestites,

representing offshore, soft-substrate conditions
below storm-wave base in the Cincinnati Arch
epeiric sea (Holland 1993). Taphonomic condi-
tions are excellent, with preservation by obrution
deposits, and most assemblages include evi-
dence of fossils preserved in life position,
articulated specimens, and autochthonous and
parautochthonous communities (Frey 1987a,b;
Schumacher and Shrake 1997; Hughes and
Cooper 1999; Aucoin et al. 2015). The shelly and
trace-fossil biotas are also extensively well
studied, with much attention given to their life
habits (Pojeta 1971; Richards 1972; Frey 1987a,b;
1989; Brandt et al. 1995; Lescinsky 1995; Brandt
1996; Feldmann 1996; Sandy 1996; Schumacher
and Shrake 1997; Leighton 1998; Gaines et al.
1999; Meyer et al. 2002; Morris and Felton 2003;
Novack-Gottshall and Miller 2003; English and
Babcock 2007; Freeman et al. 2013). These two
formations were selected for analysis as a case
study because they represent exemplary preser-
vation within a single depositional environment,
but the results are likely to apply to other type
Cincinnatian units.

A total of 218 collections from the Kope and
Waynesville formations (totaling 2322 occur-
rences; min= 2, mean= 8.2, median= 8, max=
23 taxa) were downloaded from the Paleobio-
logy Database (www.paleobiodb.org), only
including those that included the entire biota.
Source references include Dalvé (1948),
Browne (1964), Frey (1987a, 1988, 1989),
Novack-Gottshall and Miller (2003), and
Holland and Patzkowsky (2007). The size of
each collection was confirmed to represent a
typical field sample (i.e., a hand sample, slab,
or small bedding plane). All stratigraphic
members were included, as they are defined
more by biofacies than by major differences in
depositional environment (Holland et al. 2001;
Holland and Patzkowsky 2007).

A set of 92 Kope samples were collected from
eight stratigraphic sections (roughly equivalent
to outcrops) spanning the Fulton, Economy,
Southgate, and McMicken members; the 126
Waynesville samples represented 15 sections
spanning the Fort Ancient, Clarksville, and
Blanchester members and their informal
“trilobite shale” and “Treptoceras duseri shale”
facies. Analyses were conducted at multiple
scales: individual samples (representing
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autochthonous local communities), strati-
graphic sections, members, and each formation
in aggregate. Because the analyses hierarchi-
cally span multiple localities and stratigraphic
levels, they offer useful tests of the generality of
the models. If the ecological models presented
above provide good fits for the functional
structure within individual samples, then we
might expect different structures (and models)
to be recorded at the spatially and temporally
mixed scales of the larger aggregate levels
where regional and evolutionary processes are
more likely to play out.

Ecospace Framework and Ecological Disparity
Life habits (functional traits) of 237 unique

Kope and Waynesville taxa were coded into a
modified ecospace framework from Novack-
Gottshall (2007) that included 18 characters
(6 ordered numeric and 12 multistate binary)
and 37 character states. Given the sensitivity
analyses noted above, the large number of
characters and the presence of these character
types ought to be sufficient for distinguishing
the relevant models. Life habits were coded
according to inferences of functional morpho-
logy, body size, ichnology, in situ preservation,
biotic associations recording direct interactions,
and interpretation of geographic and deposi-
tional environment patterns, in consultation
with 67 peer-reviewed, published references,
many studying this fauna directly. Body-size
measurements were made using the methods
of Novack-Gottshall (2008b), primarily from
Feldmann (1996), supplementedwith theUnited
States Geological Survey Professional Paper
volume 1066 series and the Treatise on Inverte-
brate Paleontology. Ordered numeric states (e.g.,
body volume, mobility, and distance from
seafloor) were rescaled as five discrete,
equidistant bins (seven for body volume) so
that they ranged from 0 to 1. See Supplementary
Appendix 1 for list of characters and states and
an example of how life-habit (functional-trait)
inferences were coded using the Ohio state
fossil, the trilobite Isotelus maximus.

Of the 237 taxa in the species pool (Supple-
mentary Appendix 3), 101 were identified to
(and coded at) species level and 136 were coded
at genus level, with just 7 of these taxa having

uncoded (unreliably inferred) states. The relative
completeness of this coding is important, as
sensitivity analyses have demonstrated that
missing data (traits or species) can lead to
inaccurate functional diversity measurements
(Pakeman 2014); this impact is also mitigated
here by having replicate samples and the use of a
model-selection routine that explicitly incorpo-
rates variation among simulation trials. Indeter-
minate taxa (e.g., trepostome bryozoan indet. or
Platystrophia sp.) that occurred within individual
samples (but were excluded from the aggregate
237-taxon species pool unless their occurrence
was the sole member of that taxon, see below)
were coded for a particular state only when all
other members of that taxon within the Kope-
Waynesville species pool unanimously shared
that common state; otherwise, the state was
listed as NA (missing). Although there are
differences in taxa and functional traits between
the Kope Formation andWaynesville Formation
species pools (especially resulting from
the Richmondian Invasion; Holland and
Patzkowsky 2007, 2009), a single aggregate pool
is used here for simplicity. Use of formation-
specific species-pool models does not alter the
current results.

Eight ecological disparity and functional
diversity statistics were calculated for the 218
Kope and Waynesville samples and for sec-
tion-, member-, and formation-level aggre-
gates of these samples. The routine used to
produce temporal and geographical aggre-
gates only retained indeterminate taxa if no
other members of the same taxon were found
in the aggregate; this logic also applied to
genus-level occurrences, excluding them when
a named species of the genus was present. This
left 135 unique taxa (representing 83 unique life
habits) in the Kope Formation aggregate
and 174 unique taxa (93 unique life habits) in
the Waynesville Formation aggregate. Eight
samples were excluded from model-fitting
protocols because they had fewer than four life
habits, the minimum needed to calculate the
functional diversity statistics.

Simulations, Constraints, and Model Selection
Two criteria must be met when considering

candidate models for these samples (Burnham
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and Anderson 2002; Johnson and Omland
2004). The first concerns adequacy: Do the
models predict values of similar magnitude to
those found in the samples? The second
concerns model selection: Among adequate
alternative candidates, which model best
represents the empirical samples? “Best” in
this context can be defined in multiple ways,
such as model simplicity, maximum likeli-
hood, or chi-squared or Kolmogorov-Smirnoff
statistics (Burnham and Anderson 2002), but
classification trees trained (and validated) on
simulated data sets are used here because of
the nonindependent, multidimensional nature
of the model statistics.
Five seed species were used in the simula-

tions, as this approximated (the 12th percentile)
the sample size of the smallest samples, and this
value allows calculation of all functional diver-
sity statistics and provides powerful model
discrimination using classification trees. Ade-
quate models were obtained by implementing
simulations iteratively and altering constraints
of the ecospace framework to produce models
with statistics similar to those found in empiri-
cal samples and aggregates (Fig. 3). Note that
simulations proceeded in identical manner in
each simulation; only constraints delimiting the
nature of the theoretically possible ecospace
were modified. As discussed below, the altera-
tions needed to achieve realistic statistics are
themselves informative as to the types of
constraints that may exist in defining the
realized Kope/Waynesville ecospace.
The simulations used when building the

models in Figure 2B used an ecospace frame-
work that allowed at most “two presences” for
each binary character (‘constraint= 2’; see
“Theoretical Ecospace Framework” section).
These models all fail the first test of adequacy.
Except for H, FEve, and FDiv, the model
simulations predict disparity and functional
diversity statistics much larger than the values
found in the actual Kope and Waynesville
samples (compare with points in Fig. 3A). It is
unwise to select the best model out of a group
in which all perform poorly. The inadequacy is
attributable to the relatively unconstrained
framework, which allows for 930 billion
unique life habits to occur in simulations,
many of which are unlikely or impossible to

occur in nature (such as animals that feed using
any two foraging combinations among ambi-
ent, filter, attachment, mass, and raptorial
habits). The highly multidimensional nature
of this framework provides so many opportu-
nities for unrealistic life habits that empirical
samples are bound to be depauperate by
comparison.

Simulations in Figure 3A further constrain
the framework so that life habits can inhabit
only a single binary character state (‘con-
straint= 1’; e.g., only infaunal or epifaunal are
allowed but not semi-infaunal). This additional
constraint diminishes all statistics by a negli-
gible amount, but the overall dynamics are
largely unchanged, with the largest differences
occurring in the partitioning simulations.
Empirical samples continue to have statistics
substantially below those predicted by these
models, implying that even this more con-
strained framework—allowing only 1.13 bil-
lion unique life habits—is too permissive to
represent life habits that actually occur in
nature. For example, it “permits” animals the
size of humans to crawl between grains of
sediment, a logically impossible life habit.
However, many of the life habits created by
this framework are biologically possible, even
if they require some creativity to envision an
organism inhabiting such a life habit. As an
example, the framework could happen upon a
“buried” microscopic, fluid-feeding carnivore
that feeds facultatively attached to its prey on
hard substrates while living far above the
seafloor. Although seemingly implausible, this
is a typical life habit for a number of parasites
(cf. Huntley and Scarponi 2012). The exposure
of such unlikely (or at least rarely fossilized)
life habits (see Novack-Gottshall 2007 for
others) is not a flaw or bias in the simulations
or analyses and can reveal important con-
straints that structure actual biotas (Raup 1966;
Seilacher 1970; Thomas and Reif 1993).

The generally unchanged dynamics in
Figures 3A and 2B, despite their ability to
represent orders-of-magnitude different num-
bers of life habits, also demonstrate that the
inclusion of large numbers of potentially illogical
or biologically unreasonable life habits has little
effect on resulting dynamics. The imposed
“single-presence” constraint is also biologically
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unrealistic, as 52% of the Kope/Waynesville taxa
are coded using “two-presence” characters (e.g.,
corals reproduce both sexually and asexually;

semi-infaunal bivalves are common; and many
crinoids, brachiopods, and bryozoans are known
to attach to lithic and biotic substrates). Different
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kinds of constraints must be imposed to allow
the models to approximate actual Ordovician
samples.
The next simulations relax the “one-

presence” constraint to allow for “two-presence”
characters but use the Kope/Waynesville
aggregate pool to weight the inhabitation of
character states. For example, because 87% of
the pool taxa are coded as epifaunal, 9% as
infaunal, and 4% as semi-infaunal, simulated
life habits within the neutral model (and seed
species for all models) will mimic these
proportions, on average. Similarly, because no
taxa are coded as simultaneously autotrophic
and carnivorous, that combination is removed
as a possible character state across all simula-
tions, as are other such nonoccurring ones.
Imposing such empirical weighting still allows
for 57 billion unique life habits and allows the
ecospace framework to mimic important fea-
tures of the empirical species pool, albeit
indirectly. For example, although the simula-
tion rules do not specify actual predator:prey
or producer:consumer trophic-group ratios
(Van Valkenburgh 1988; Dunne et al. 2008;
Mitchell et al. 2012; Hatton et al. 2015), size-diet
relationships (Van Valkenburgh and Molnar
2002; Codron et al. 2013), or other regulating
factors, the weighting allows the simulation to
indirectly mirror these empirical ecological
rules. As a result of this weighting, most of
the simulated life habits also correspond to
biologically reasonable life habits commonly

inhabited by animals, living or extinct. Neutral
simulations yield life habits differing by
approximately four states (out of 37 in the
framework) from ones actually occurring in the
Late Ordovician species pool (after allowing
the simulation to proceed through completion
at 50 species per sample). The dynamically
restricted models produce life habits differing
by <1 state from actual Ordovician life habits
for redundancy (with 95% rule following) and
strict partitioning simulations and ~2 states
for the relaxed partitioning simulations. The
expansion model, as intended, explores the
most disparate (and slightly unreasonable)
life habits, but still produces life habits that
differ by ~10 states from actual Ordovician
life habits. Thus, the life habits produced by
the simulations, when weighted by empirical
species pools, are biologically quite reasonable
approximations of reality. (It should be empha-
sized, however, that the model-selection
method only considers the disparity structure
of each assemblage and not the identity of
simulated life habits.) Further analysis of the
nature of these constraints is beyond the scope
of this study, but it seems reasonable that the
implementation of empirical weighting is a
practical solution to restrict the theoretical
ecospace to those approximate regions locally
allowed by whatever combination of historical,
biological (adaptational), and structural con-
straints shaped the species pool (Raup 1966;
Seilacher 1970; Thomas and Reif 1993).

FIGURE 3. Comparison of Late Ordovician samples to dynamics of different simulation implementations: A, 100% rule-
following implementation with one-state constraint; B, 100% rule-following implementation with two-state constraint
and empirical weighting of states; C, 100%, 90%, and 50% rule-following implementation with two-state constraint and
empirical weighting. The legend and graphical interpretation is the same as Figure 2, and variability around the mean
trend lines are of similar magnitude. Statistics for Late Ordovician (type Cincinnatian) Kope Formation and
Waynesville Formation samples are represented by circles and triangles, respectively. A, Simulations were enacted at
100% rule following, and each life habit was constrained to have just one character state within a given life-habit
character; for example, a taxon could be either sexual or asexual, but not both (hermaphroditic). The dynamics are
similar to those for the two-state implementation in Figure 2B, although values are slightly diminished, especially for
the partitioning models. In all cases, the empirical sample statistics lay well below the mean trend lines, implying a
poor fit between these simulations and reality. B, The simulations included the two-state constraint, but were modified
so that the combined Kope and Waynesville species pool was used to weight how seed species were chosen (i.e., they
were chosen at random from the species pool) and the inhabitation of character states of all successive species were
weighted by their frequency of occurrence in the species pool. The fit between the empirical samples and the model
dynamics is much improved (that is, there is substantially more overlap). C, Eight additional “weaker” simulations are
added, in which the model rules are followed on average 90% and 50% of the time. The average trend lines for these
weaker simulations are slightly thinner (but with the same shadings and line types) than the 100% implementations to
make it easier to distinguish them (although the 90% expansion model trend mostly overlies the 100% implementation).
A 0% simulation is always present, the neutral model, in which no model rules are followed. The empirical samples
frequently overlie weaker versions of the models, and all models coalesce toward the neutral model as they become
weaker and weaker.
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Implementing these weightings also result in
simulations (Fig. 3B) that reflect adequately the
statistics of empirical samples across all eight
statistics, with dynamics substantially dimin-
ished compared with the unweighted simula-
tions. Statistical dynamics are also quite altered,
although the rank order of models remains
generally unchanged: expansion (also the least
altered, with asymptotic values negligibly
diminished from prior unweighted implemen-
tations) has the largest disparity/diversity
values, followed by neutral (now dynamically
distinct from expansion) and the two partition-
ing implementations, with redundancy at the
lowest values. The distinctmodel dynamics also
result in improved performance for the classifi-
cation tree, with 96% of the training data sets
classified correctly (compared with 91% for the
one- and two-constraint simulations), primarily
resulting from improved ability to distinguish
the expansion and neutral models (see Supple-
mentary Appendix 2 for details).

Although the empirical samples adequately
overlie model dynamics, they follow the mean
trends only rarely, occurring more frequently
in the region between the passive neutral
model and the other active models. This could
indicate that the best models to represent the
samples are not 100% implementations of
the models but instead weakened versions of
the models. This is illustrated in Figure 3C,
where eight additional “weaker” simulations
are added, in which the model rules are
followed on average 90% and 50% of the time.
In other words, for the 50%-strength imple-
mentation, a computational “coin flip” was
used in the assignment for each taxon’s
character states, whether to assign it at random
(weighted by the species pool) or whether to
use the model rules to assign it (but still only
allowing states present in the species pool). The
neutral model represents a 0% simulation, in
which no active model rules are followed, and
model dynamics coalesce toward the neutral
model as they become weaker and weaker.
Most empirical samples overlie the weakened
model dynamics. Although many of the nine
models share similar dynamics (more so, given
the often overlapping variation around each
mean trend line), the classification tree displays
a remarkable ability to distinguish them, with

90% of training data sets classified correctly,
and 73% correct when tested against indepen-
dently created validation data sets.

The classification tree used below in model
selection of samples is simpler, using just the
100% and 50% rule-following models in
Figure 2C as training data sets; it classified 92%
of training data sets and 78% of validation data
sets correctly (Supplementary Appendix 2).
Although the training data sets here represent
just two strength levels (50% and 100%), valida-
tion samples produced at different strengths
(75%, 90%, and 95%) indicate the simple “two-
strength” classification tree is able to provide
generalizable approximations for other model-
strength implementations (Supplementary
Appendix 2, Supplementary Fig. 9). Performance
remains strong at sample sizes as low as six, the
minimum sample sizewhen themodels could be
classified (i.e., because five were seeded without
any assembly rules). (It is reassuring that if the
simulated assemblages with five or less species
are submitted to model selection, they are over-
whelmingly, and correctly, classified as repre-
senting neutral models.) More complicated trees
(i.e., those trained on 75%-, 90%-, and 95%-
strengthmodels) are used to confirm the strength
of models, especially for larger samples, where
these more complex trees are better suited for
distinguishing their less dissimilar dynamics.

The majority of Kope and Waynesville
samples are classified (Fig. 4, Supplementary
Appendix 4) as representing partitioning models
(73% and 74%, respectively), withmost classified
as 100%-strength versions of themodel (51% and
43%, respectively). Some samples are classified
as weak (50%-strength) redundancy models
(14% and 16%, respectively), and negligible
numbers are classified as neutral or expansion
models. A chi-squared test confirms that the
model classifications are statistically indistin-
guishable between formations (χ2=48, df=36,
p-value=0.087). Average model support (mea-
sured in terms of proportion of tree-classification
votes cast) for the “best”model is 0.50, above the
threshold of 0.20 at which support can be
considered substantial and 0.40 at which it can
be considered unambiguously strong (see
Supplementary Fig. 9). Only one sample had
winning support below this threshold, a small
seven-taxonWaynesville sample deemedneutral
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with support of 0.18. The relatively low numbers
of samples classified as weakened partitioning
models (<5% of samples) also suggests that most
Kope and Waynesville samples are best repre-
sented by strong (>75%, and likely >90%)
partitioning models, based on sensitivity ana-
lyses in Supplementary Figure 9. This is con-
firmed using more complicated classification
trees: when additional strength simulations are
included (i.e., when adding 90% as in Fig. 3C or
adding 75%, 90%, and 95% to the training data
sets), most samples remain classified as strong
(90%, 95%, and 100%) versions of strict partition-
ing, 100%-strength relaxed partitioning, and
75%- and 90%-weakened redundancy models
(SupplementaryAppendix 4). Classification trees
and simulations that used separate species pools
for each formation (i.e., creating a Kope tree
trained only on Kope species pool simulations)
also produced similar model classifications, as
expected given that 42%of genera and 69%of life
habits are identical in each separate pool.
Representative samples classified by the four

driven models are illustrated in Figure 5 on
two-dimensional nonmetric multidimensional
scaling plots. As expected, samples classified
as partitioning models demonstrate continu-
ous gradations, either in a linear fashion for the
strict partitioning version of the model or in a
central cluster in the relaxed version. Samples
classified as weakened redundancy demon-
strate discrete clusters of life habits, often with
multiple taxa sharing similar or identical life
habits. At large sample sizes, both the parti-
tioning and redundancy models yield many
instances of taxa with nearly overlapping life
habits, although those produced by partition-
ing tend to have more continuous gradients
between these clusters (compare Figs. 1 and 5).
Samples classified as expansion tend toward
relatively large distances between life habits,
often have the centroid empty, and encompass
a broad range of the ecospace, even at small
sample sizes.
If the model classifications indicate evidence

for ecological structure within these gen-
erally autochthonous samples, then one might
expect different models to emerge at larger
temporal and spatial scales, where samples are
aggregated into individual outcrops (sections)
and stratigraphic members and formations

(Patzkowsky and Holland 2003; Holland 2010;
Tomašových and Kidwell 2010; Hautmann
2014). For example, if beta diversity is substan-
tial, one might expect a preponderance of
redundancy models, as samples with similar
structure duplicate one another in aggregation.
Alternatively, one might expect greater fre-
quency of neutral models, as patterns at the
larger scales increasingly reflect the regional
species pool.

Such a transition is partially borne out here.
The Kope and Waynesville stratigraphic sec-
tions have model classifications similar to
those of their individual samples (Fig. 4),
dominated by 100%-strength partitioning
(albeit only the strict implementation) and the
remainder largely weak redundancy. The sole
section deemed neutral has the smallest sample
size and lowest (but still substantial) model
support of 0.34. These classifications are gen-
erally supported when using more complex
classification trees, with all eight Kope sections
best classified as 90–100% strict partitioning
models, but a greater number of Waynesville
sections classified as 50–90% redundancy
models (Supplementary Appendix 4).

At the larger sample sizes of stratigraphic
members and formations, it is possible to use
more complex classification trees (i.e., adding
90%-strength training data sets or adding
75%-, 90%-, and 95%-strength implementa-
tions) to conduct model selection. This is
especially worthwhile, because the dynamics
of redundancy and both partitioning models
are similar if even slightly weakened (i.e.,
90–99%). This is evident by their overlapping
dynamics in Figure 3C and when examining
model classifications and confusion matrices
on validation data sets (Supplementary Fig. 9,
Supplementary Appendix 2). In particular,
slightly weakened (90–95%) redundancy
models are typically misclassified by the
simple tree as strong strict partitioning models
at sample sizes >30 (Supplementary Fig. 9),
and moderately weak (75–90%) relaxed parti-
tioning models are typically misclassified as
strong relaxed partitioning and weak redun-
dancy models (Supplementary Fig. 9). Note
that these misclassifications tend to occur only
at sample sizes >30, where the more asympto-
tic dynamics make it easier for the simple
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classification tree to reject implementations
that are different from those in the training
data set. One might argue that these classifica-

tions point to indistinguishable dynamics for
these models, regardless of whether named
“redundancy” or “partitioning.” Yet the
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simple tree is able to correctly distinguish these
models more than 33% of the time (Supple-
mentary Fig. 9). In contrast, the more complex
three-strength (50%, 75%, and 100%) and five-
strength (50%, 75%, 90%, 95%, and 100%) trees
classified 90% of training data sets correctly
and displayed improved ability to distinguish
all weakened implementations of each model.
When the five-strength tree is used, all four

Kope members are classified as strong
(90–95%) strict partitioning models, consistent
with model classifications at smaller scales
(Fig. 4). The Waynesville members have divided
support, with three best classified as 90–95%
strict partitioning and two as 90% redundant
models (Supplementary Appendix 4). Classifica-
tions using the three-strength tree are identical,
but with the 95% votes classified instead as
90%-strength implementations.
The entire Kope Formation species pool, using

the five-strength tree (Fig. 4), is classified as 90%
strict partitioning (0.52 support), with substantial
support for a 90% redundancy model (0.34),
whereas the Waynesville formation pool is
classified as 90% redundancy (0.78 support) with
the remainder for 95% strict partitioning. The
three-strength tree provides similar classifica-
tions (Supplementary Appendix 4). This classifi-
cation is intuitively evident when considering
the ratio of unique life habits to taxa (H/S) in
each formation: the Waynesville pool has sub-
stantially more true redundancy (81 of 174 taxa,
or 47%, are functionally identical) compared
with the Kope (with 52 of 135 taxa, or 37%
functionally identical). The structure of each
formation is visualized in Figure 5. Although
they look quite similar (the most obvious
difference being the presence of corals in the
Waynesville, one of many new immigrants
during the Richmondian Invasion; Holland and

Patzkowsky 2007, 2009), the classification trees
are sufficiently sensitive to their structural
differences to classify them accordingly.

When comparing classifications across spa-
tially and temporally mixed scales, the Kope
Formation remains consistently classified by
strong (>90%) strict partitioning models. There
is no evidence of change in ecospace structure
across scales. In contrast, the Waynesville is
typically classified as representing partitioning
models (both relaxed and strict versions) at the
scale of samples, switching to greater support
for ~ 90% redundant models at larger scales,
especially when considering the entire forma-
tion species pool. The consistent lack of sup-
port for neutral and expansion models at any
scale is evidence that the ecospace structure of
these Late Ordovician samples is decidedly
nonrandom and restricted. Even when
weighted by the life-habit traits known to
occur in the Late Ordovician regional species
pool, the ecospace actually inhabited by this
biota remains substantially constrained.

Although the simulations do not incorporate
phylogenetic structure (newly added species
are added solely on account of their functional
traits), it is promising that model selection is
not a simple artifact of which taxa are present
within a sample (Fig. 5). If it were, one might
expect that samples classified as redundancy or
partitioning would be dominated by one or a
few taxonomic groups, whereas samples clas-
sified as expansion might have greater taxo-
nomic diversity. That is not the case here,
where a wide range of major taxonomic groups
is present at all scales and clusters of function-
ally similar species likewise tend to be taxono-
mically diverse. The same ecological structure
reoccurs when taxonomically quite different
biotas are analyzed.

FIGURE 4. Relative model support for Kope (left column) and Waynesville (right column) samples at scales of
individual samples, aggregated stratigraphic sections, members, and entire formation species pool. Model support for
samples and sections was calculated using a classification tree trained on the 100% and 50% simulations used in
Figure 3C; model support for members and formations used the classification tree trained on 50%, 75%, 90%, 95%, and
100% simulations, which is a more powerful classifier at larger sample sizes. Models are only listed (middle column)
when they have support in a particular scale. Support for all but the formation scale is the number of samples/
sections/members that were classified for each model. Support for the formations (bottom row) is the proportion of
votes for each model. The aggregate Kope Formation is overwhelmingly (0.52) classified as the 90% strict partitioning
model, although there is also substantial support (0.34) for the 90% redundancy model. The aggregate Waynesville
Formation has overwhelming support (0.78) for the 90% redundancy model, with less but substantial support (0.22) for
the 95% strict partitioning model.
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Ecological and evolutionary theory under-
lying these models (see companion article
[Novack-Gottshall 2016]) allows speculation

as to the nature of processes structuring these
biotas. At the scale of individual samples,
partitioning dynamics are consistent with
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ecological niche partitioning: coexisting taxa
have similar (but not identical) life habits.
Holland and Patzkowsky (2007; Patzkowsky
and Holland 2007) demonstrated similar tight
packing of species along onshore–offshore
gradients in these intervals, even more so in
the Waynesville samples. This partitioning
could be manifested at the scale of local
communities or through evolutionary pro-
cesses at the regional scale, in which speciation
produces multiple variants with slightly dif-
ferent specializations. Consideration of phylo-
genetic relatedness could offer a useful test of
these claims (Gerhold et al. 2015), in particular
whether newly evolving taxa within the regio-
nal species pool were more likely to have life
habits different from those previously existing.
Patzkowsky and Holland (2003) found no
evidence for saturation within Cincinnatian
samples, suggesting regional processes as the
more important factor. This conclusion is
tentatively supported here, especially for the
Kope Formation, where the same model sup-
port across all scales could suggest a shared
cause. Within the Waynesville sequence, Patz-
kowsky and Holland (2007) identified greater
beta diversity, driven in large part by faunal
incursions during the Richmondian Invasion.
This could explain the redundancy dynamics
found within the Waynesville Formation and
its members, in which the accumulation of
many different life habits within individual
samples results in functional duplication when
aggregated.
These results, however, do not rule out an

important role for local processes. Although
not illustrated here, individual Kope and
Waynesville samples, even those classified by
the same model, do not share the same life
habits (or taxa). In other words, when plotted
on a common ordination (such as for the
partitioning samples in Fig. 5), taxonomic and

functional composition varies substantially
among samples. Model selection results simply
suggest that most samples share a similar level
of ecological disparity (Fig. 4), one best
represented by the partitioning model. This
consistency of structure suggests that local
processes could still play an important role in
regulating these communities. Among the
many possible life habits available within the
regional species pool, individual communities
were preferentially composed of groups of
generally similar but nonidentical life habits,
although the particular life habits present in
any setting could vary a great deal.

Relevance to Broader Phanerozoic Trends in
Ecospace Utilization

The general correspondence between
empirical samples and the dynamics of the
model simulations suggests that the simula-
tions provide reasonable null models for
understanding how ecospace is structured in
extant and fossil biotas, at many spatiotem-
poral scales. Support for the partitioning
model, and to a lesser extent redundancy,
indicates that these Late Ordovician biotas
had relatively constrained ecospace structures.
Broader discussion of this model support is
warranted, especially within the context of
how these results might generalize to under-
standing Phanerozoic-wide trends in ecospace
utilization. In particular, one might want to
know whether these results are consistent with
an expansion in ecospace utilization in later
Phanerozoic biotas, as has beenwidely claimed
(Bambach 1983; Vermeij 1987, 2011, 2013; Knoll
and Bambach 2000; Bush et al. 2007; Novack-
Gottshall 2007; Bush and Bambach 2011). A
conclusion cannot be made at this point, but
speculation might be made based on the
interactions of three factors: changes in the

FIGURE 5. Ordinations of four representative Kope and Waynesville samples best fit by various models, and the
corresponding ordination of each formation species pool. Ordinations were conducted as two-dimensional nonmetric
multidimensional scaling on a common Kope/Waynesville species pool to allow comparison across graphs. Text above
each graph notes which model was best fit (i.e., had the most votes in the classification tree) for each sample, as well as
the relative support for that “vote-winning” model. Also listed are the Paleobiology Database sample collection
number, its taxonomic richness and number of unique life habits (H), and symbols representing major taxonomic
groups. Note that jittering (moving overlapping points by tiny amounts) was not used in this figure; points that overlap
incompletely represent distinct life habits. Aside from at the formation scale, there is relatively little absolute
redundancy among life habits.
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species pool used (which changes allowable
ecospace traits and resulting simulation
dynamics), measures of functional diversity/
disparity in later biotas, and changes in
taxonomic richness.

The most important of these factors is the
species pool one chooses to use (cf. Cornell
1999; de Bello 2012). The analyses above used a
narrowly defined one, the aggregate pool of
species known from a single habitat in one
small (tristate) region during a short (~8 Myr)
time interval. Analyses using a Kope-only
versus Waynesville-only pool had negligible
effect, but future analyses should test the
sensitivity of simulation dynamics to more
distinct species pools. Use of a much larger
pool would allow for a greater range of life
habits in the framework, which could increase
dynamical values in simulations (although this
remains to be determined). The effect of this
change might be to increase classification-tree
support for the partitioning and redundancy
models, and especially so if using a Paleozoic-
wide or Phanerozoic-wide species pool, given
the greater range of epifaunal and infaunal
tiering (Ausich and Bottjer 1982; Bottjer and
Ausich 1986) and body sizes (Novack-
Gottshall 2008a; Heim et al. 2015; Zhang et al.
2015) evolved by later biotas. Because the
analyses above rescaled these ordered numeric
characters, incorporating broader ranges
would depress the empirical disparity statistics
calculated here to some extent. However, the
effect of this is likely minor, as post-Ordovician
ranges would only add a single bin (given the
logarithmic binning scale used in the frame-
work) and the largest, most deeply infaunal,
and tallest tiering animals were likely propor-
tionally minor components of these biotas
(which diminishes their effect for these extreme
character states because of the empirical
weighting used). It remains to be determined
what pool is best suited to such analyses given
themajor evolutionary changes throughout the
Phanerozoic, but the use of more inclusive
pools would likely demonstrate that these
Ordovician samples are even more function-
ally restricted (i.e., less ecologically disparate)
compared with later Phanerozoic samples.

Species richness also increased during the
Phanerozoic, both globally (Sepkoski 1981;

Alroy et al. 2008) and within individual
assemblages (Bambach 1977; Powell and
Kowalewski 2002; Bush and Bambach 2004;
Kowalewski et al. 2006). The effect of this
increase, by itself, is also likely to be limited
here, because the dynamics tend to reach
asymptotic values at moderate (>20) species
richness values, which means that simply
increasing sample sizes, all things equal, will
yield negligible changes to statistical values.
The greater effect will be related to how these
larger biotas utilize ecospace. Novack-
Gottshall (2007) demonstrated that extant
marine biotas had greater ecological disparity
(measured as D, after accounting for differ-
ences in sample sizes) than early–middle
Paleozoic ones, despite an insignificantly
greater number of life habits. Increasing values
for statistics D and H through time could
provide greater support for the expansion
model for such biotas, although it remains
uncertain whether this increase would be
attenuated by using a larger species pool. It is
worth reiterating that one would expect these
statistics to increase with increasing species
richness, even if ecospace was occupied by a
passive process (i.e., that expected by the
neutral model). The discussion above includes
many subjective hypotheticals, and so this
author is unwilling to make a wager on the
outcome. Without conducting formal simula-
tions and statistical analyses, it simply remains
too early to predict whether the Phanerozoic
trend would be better supported by the driven
expansion model, the passive neutral one, or
perhaps another. It seems a worthwhile goal to
conduct such analyses.

Conclusions

Despite documentation of synoptic paleoe-
cological trends across the Phanerozoic and
speculation about their causes, we lack
in many—perhaps most—cases specific
quantitative claims on ecospace inhabitation
that can be tested analytically. The models
and analytical methods proposed here, none
of which are entirely novel, offer potentially
fruitful avenues for such tests, whether
applied to individual assemblages or to
the entire biosphere throughout the Geozoic.
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In particular, the analyses presented here, and
in the accompanying article, lead to the
following conclusions.

1. Simulations of the redundancy, partition-
ing, expansion, and neutral models demon-
strate dynamical consistency in functional
diversity/disparity statistics across differ-
ent data structures (ecospace frameworks),
number and type of functional traits (char-
acters), and implementations of the simula-
tions. However, ecospace frameworks with
greater numbers of functional traits, use of
ordered factors, and modest numbers of
seed species tend to be statistically more
powerful for differentiating the models,
especially the dynamically similar neutral
and expansion models and the often similar
partitioning and redundancy models. The
ecospace package provides R functions to
conduct simulations for any ecospace fra-
mework and to calculate a wide range of
functional diversity/disparity statistics.

2. Classification trees are a powerful method
for rigorously classifying these models in a
multimodel inference framework (Breiman
et al. 1993; Cutler et al. 2007), with relative
support allocated to candidate models
according to proportion of votes from the
classification tree. Classification trees are
successful in identifying models correctly,
even when the statistical dynamics are
similar and when tested with foreign data
sets unlike those used to train the tree. The
trees are also able to identify which statistics
are most valuable. This method identifies
number of unique life habits (functional-
trait combinations,H) as the most important
statistical discriminant, followed by func-
tional evenness (FEve) and functional dis-
persion (FDis). However, because all metrics
retain useful information on ecospace struc-
ture and tree algorithms perform well using
a large number of predictive variables, it is
recommended that analyses of ecological
disparity/functional diversity use all statis-
tics when conducting model-selection
analyses.

3. Comparison of stochastic simulation
dynamics to those of Ordovician empirical
samples demonstrates that actual fossil

assemblages are substantially constrained
in their inhabitation of life habits compared
with what is possible in the theoretical
ecospace framework. Although the identi-
ties of constraints are not analyzed here
specifically, they likely reflect a combination
of logically impossible trait combinations,
maladaptive strategies, inherent covariation
among functional traits, ecologically mean-
ingful restrictions to the regional species
pool, and other factors. Incorporating con-
straints into the ecospace framework (such
as limiting allowed life-habit combinations
and weighting functional traits by those
occurring in the empirical species pool)
causes simulation dynamics to converge
on more realistic values, allowing simple
approximations for many of these con-
straints. However, doing so still demon-
strates that these Late Ordovician biotas
had substantially constrained ecospace
structures.

4. Empirical application of the classification
trees demonstrates that Late Ordovician
(type Cincinnatian) samples from the Kope
and Waynesville formations are primarily
best fit by partitioning models. When larger
stratigraphic and temporal aggregates are
analyzed, the entire Kope Formation pool
remains best fit by the partitioning model,
but the aggregate Waynesville pool is better
fit by the redundancy model. This structural
transition in the Waynesville Formation can
be biologically interpreted by greater beta
diversity in this unit, likely related to faunal
incursions caused by the Richmondian
Invasion. However, the consistency of sup-
port for the partitioning model at small
scales suggests an important role for local
processes.

5. Most hypotheses regarding patterns in eco-
space utilization across the Phanerozoic are
superficially consistent with multiple mod-
els of ecological diversification, despite
being caused by distinct processes. Most
documented trends are equally consistent
with passive processes. Statistical tests that
consider alternative stochastic models must
be conducted before we can confidently
claim that ecological patterns across the
Geozoic history of life had driven causes.
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Similar concerns are shared with ongoing
research in community ecology and func-
tional ecology.
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