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Abstract Let A ⊂ B be an integral ring extension of integral domains with fields of fractions K and L,
respectively. The integral degree of A ⊂ B, denoted by dA(B), is defined as the supremum of the degrees
of minimal integral equations of elements of B over A. It is an invariant that lies in between dK(L) and
µA(B), the minimal number of generators of the A-module B. Our purpose is to study this invariant.
We prove that it is sub-multiplicative and upper-semicontinuous in the following three cases: if A ⊂ B
is simple; if A ⊂ B is projective and finite and K ⊂ L is a simple algebraic field extension; or if A is
integrally closed. Furthermore, d is upper-semicontinuous if A is noetherian of dimension 1 and with
finite integral closure. In general, however, d is neither sub-multiplicative nor upper-semicontinuous.

Keywords: integral extension; integral degree; integral closure; field extension; Dedekind domain;
Nagata ring
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1. Introduction

Let A ⊂ B be an integral ring extension, where A and B are two commutative integral
domains with fields of fractions K = Q(A) and L = Q(B), respectively. Then, for any
element b ∈ B, there exist n ≥ 1 and ai ∈ A, such that

bn + a1b
n−1 + a2b

n−2 + · · · + an−1b + an = 0.

The minimum integer n ≥ 1 satisfying such an equation is called the integral degree of
b over A and is denoted by idA(b). The supremum, possibly infinite, of all the integral
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degrees of elements of B over A, sup{idA(b) | b ∈ B}, is called the integral degree of B
over A and is denoted by dA(B).

These notions are indeed very natural. They were explicitly considered in [3] and,
previously, in a different framework, by Kurosch [11], Jacobson [5], Kaplansky [9] and
Levitzki [12], and more recently by Voight [20].

The goal in [3] was to study the uniform Artin–Rees property with respect to the set
of regular ideals having a principal reduction. It was proved that the integral degree, in
fact, provides a uniform Artin–Rees number for such a set of ideals.

The purpose of the present paper is to investigate more deeply the invariant dA(B).
We first note that dA(B) is between dK(L), the integral degree of the corresponding
algebraic field extension K ⊂ L, and μA(B), the minimal number of generators of the
A-module B. That is,

dK(L) ≤ dA(B) ≤ μA(B).

In a sense, dA(B) can play the role of, or just substitute for, one of them. For instance,
it is a central question in commutative ring theory whether the integral closure A of a
domain A is a finitely generated A-module. It is well known that, even for one-dimensional
noetherian local domains, μA(A) might be infinite (see, e.g., [4, § 4.9], [15, § 33]). However,
for one-dimensional noetherian local domains dA(A) is finite [3, Proposition 6.5]. Hence,
in this situation, dA(B) would be an appropriate substitute for μA(B). Another positive
aspect of dA(B), compared with μA(B), is good behaviour with respect to inclusion, that
is, if B1 ⊂ B2, then dA(B1) ≤ dA(B2), while in general we cannot deduce that μA(B1) is
smaller than or equal to μA(B2).

Similarly, dK(L) is a simplification of dA(B). Note that dK(L) ≤ [L : K], the degree
of the algebraic field extension K ⊂ L. We will see that dK(L) = [L : K] if and only if
K ⊂ L is a simple algebraic field extension.

Of special interest would be to completely characterise when dA(B) reaches its maximal
or its minimal value. We will say that A ⊂ B has maximal integral degree when dA(B) =
μA(B). Similarly, we will say that A ⊂ B has minimal integral degree when dK(L) =
dA(B). Examples of maximal integral degree are simple integral extensions A ⊂ B =
A[b], b ∈ B (Proposition 2.3(b)). Examples of minimal integral degree occur when A ⊂ B
is a projective finite integral ring extension with corresponding simple algebraic field
extension K ⊂ L or when A is integrally closed (cf. Theorem 5.2 and Proposition 6.1).
By a projective, respectively free, finite ring extension A ⊂ B we mean that B is a finitely
generated projective, respectively free, A-module. Moreover, integral ring extensions A ⊂
B of both at the same time minimal and maximal integral degree are precisely free finite
integral ring extensions A ⊂ B with corresponding simple algebraic field extension K ⊂ L
(see Corollary 5.3).

Considering the multiplicativity property of the degree of algebraic field extensions K ⊂
L ⊂ M , that is, [M : K] = [L : K][M : L], and the sub-multiplicativity property of the
minimal number of generators of integral ring extensions A ⊂ B ⊂ C, namely, μA(C) ≤
μA(B)μB(C), it is natural to ask for the same property of dA(B). We will say that the
integral degree d is sub-multiplicative with respect to A ⊂ B if dA(C) ≤ dA(B)dB(C), for
every integral ring extension B ⊂ C. We prove that d is sub-multiplicative with respect
to A ⊂ B in the following three situations: if A ⊂ B has maximal integral degree (e.g., if

https://doi.org/10.1017/S0013091518000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000275


Integral degree of integral ring extensions 27

A ⊂ B is simple); if A ⊂ B is projective and finite and K ⊂ L is simple; or if A is integrally
closed (see Corollaries 3.4, 5.5 and 6.7). Note that in the three cases above, A ⊂ B has
either maximal integral degree, or else minimal integral degree. We do not know an
instance in which d is sub-multiplicative with respect to A ⊂ B and dK(L) < dA(B) <
μA(B). We will prove that d is not sub-multiplicative in general. Taking advantage of an
example of Dedekind, we find a non-integrally closed noetherian domain A of dimension
1, with finite integral closure B, where B is the ring of integers of a number field, and
a degree-two integral extension C of B, such that dA(C) = 6, whereas dA(B) = 2 and
dB(C) = 2. In this particular example, dK(L) = 1, dA(B) = 2 and μA(B) = 3, so A ⊂ B
is neither of maximal nor of minimal integral degree (see Example 6.8).

Another aspect well worth considering is semicontinuity, taking into account that the
minimal number of generators is an upper-semicontinuous function (see, e.g., [10, Chap-
ter IV, § 2, Corollary 2.6]). Note that if p is a prime ideal of A, clearly Ap ⊂ Bp is
integral. Thus one can regard the integral degree as a function d : Spec(A) → N, defined
by d(p) = dAp(Bp). We will say that the integral degree d is upper-semicontinuous with
respect to A ⊂ B if d : Spec(A) → N is an upper-semicontinuous function, that is, if
{p ∈ Spec(A) | d(p) < n} is open, for all n ≥ 1. We prove (in Proposition 7.1) that d
is upper-semicontinuous with respect to A ⊂ B in the following two situations: if A ⊂ B
is simple; or if A ⊂ B has minimal integral degree (e.g., if A ⊂ B is projective and finite
and K ⊂ L is simple; or if A is integrally closed). Note that in the two cases above, A ⊂ B
has either maximal integral degree, or else minimal integral degree. There is a setting in
which we can prove that d is upper-semicontinuous with respect to A ⊂ B, yet dA(B)
might be different from dK(L) and μA(B). This happens when A is a non-integrally
closed noetherian domain of dimension 1 with finite integral closure (see Theorem 7.2).
However, d is not upper-semicontinuous in general, even if A is a noetherian domain of
dimension 1 (see Example 7.4).

The paper is organized as follows. In § 2 we recall some definitions and known results
given in [3]. We also prove that dA(B) is a local invariant in the following sense:

dA(B) = sup{dAm(Bm) | m ∈ Max(A)} = sup{dAp(Bp) | p ∈ Spec(A)}.
Observe that the analogue for μA(B) is not true in general. Section 3 is mainly devoted
to the sub-multiplicativity of the integral degree. Sections 4, 5 and 6 are devoted to the
integral degree of, respectively, algebraic field extensions, projective finite ring extensions
and integral ring extensions with base ring integrally closed. Finally, § 7 is devoted to the
upper-semicontinuity of the integral degree.

Notation and conventions. All rings are assumed to be commutative and with
unity. Throughout, A ⊂ B and B ⊂ C are integral ring extensions. Moreover, we always
assume that A, B and C are integral domains, though many definitions and results
can easily be extended to the non-integral domain case. The fields of fractions of A, B
and C are denoted by K = Q(A), L = Q(B) and M = Q(C), respectively. The integral
closure of A in K = Q(A) is denoted by A and is simply called the ‘integral closure of
A’. In the particular case in which A, B and C are fields, we write A = K, B = L and
C = M . Whenever {x1, . . . , xr} ⊂ N is a generating set of an A-module N , we will write
N = 〈x1, . . . , xr〉A. The minimal number of generators of N as an A-module, understood
as the minimum of the cardinalities of generating sets of N , is denoted by μA(N).
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2. Preliminaries and first properties

We start by recalling and extending some definitions and results from [3, § 6]. Recall that
A ⊂ B is an integral ring extension of integral domains, and K = Q(A) and L = Q(B)
are their fields of fractions.

Definition 2.1. Let b ∈ B. A minimal degree polynomial of b over A (which is not
necessarily unique) is a monic polynomial m(T ) = Tn + a1T

n−1 + · · · + an−1T + an ∈
A[T ], n ≥ 1, with m(b) = 0, and such that there is no other monic polynomial of lower
degree in A[T ] and vanishing at b. The integral degree of b over A, denoted by idA(b), is
the degree of a minimal degree polynomial m(T ) of b over A. In other words:

idA(b) = deg m(T ) = min{n ≥ 1 | b satisfies an integral equation over A of degree n}.
The integral degree of B over A is defined as the value (possibly infinite)

dA(B) = sup {idA(b) | b ∈ B}.
Note that dA(B) = 1 if and only if A = B.

We give a first example, which will be completed subsequently (see Corollary 5.6).

Example 2.2. Let B be an integral domain and let G be a finite group acting as
automorphisms on B. Let A = BG = {b ∈ B | σ(b) = b, for all σ ∈ G}. Then A ⊂ B is
an integral ring extension and dA(B) ≤ o(G), the order of G.

Proof. Let G = {σ1, . . . , σn}. For every b ∈ B, take p(T ) = (T − σ1(b)) · · · (T −
σn(b)). Clearly p(T ) ∈ A[T ] and p(b) = 0. Thus b is integral over A and idA(b) ≤ n =
o(G). �

The following is a first list of properties of the integral degree mainly proved in [3].

Proposition 2.3. Let A ⊂ B be an integral ring extension. The following properties
hold.

(a) dA(B) ≤ μA(B).

(b) If A ⊂ B = A[b] is simple, then idA(b) = dA(B) = μA(B).

(c) If S is a multiplicatively closed subset of A, then S−1A ⊂ S−1B is an integral ring
extension and dS−1A(S−1B) ≤ dA(B).

(d) If S = A \ {0}, then S−1B = L.

(e) dK(L) ≤ dAp(Bp) ≤ dA(B), for every p ∈ Spec(A).

(f) dK(L) ≤ [L : K].

Proof. (a), (b) and (c) can be found in [3, Corollary 6.3, Corollary 6.2 and Proposi-
tion 6.8]. For (d), since K = S−1A ⊂ S−1B is an integral ring extension, then S−1B is
a zero-dimensional domain, hence a field, lying inside L = Q(B). Thus S−1B = L. Let
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us prove (e). Take p ∈ Spec(A), so A \ p ⊆ S. Since A ⊂ B is an integral ring extension,
then Ap ⊂ Bp and

K = S−1A = (Ap \ {0})−1Ap ⊂ (Ap \ {0})−1Bp = S−1B = L

are integral ring extensions. Applying (c) twice, we get (e). Finally, applying (d) and
(a), one has dK(L) = dS−1A(S−1B)) ≤ μS−1A(S−1B) = μK(L) = [L : K], which proves
(f). �

Notation 2.4. The following picture can help in reading the paper

dK(L) ≤ dA(B)
∧ ∧

[L : K] ≤ μA(B).

We say that A ⊂ B has minimal integral degree when dK(L) = dA(B). Similarly, we say
that A ⊂ B has maximal integral degree when dA(B) = μA(B).

Remark 2.5. By Proposition 2.3(b), A ⊂ B simple implies A ⊂ B has maximal
integral degree. We will see that the converse is true for finite field extensions (see Propo-
sition 4.2). However, in general, A ⊂ B of maximal integral degree does not imply A ⊂ B
simple. Take for instance A = Z and B the ring of integers of an algebraic number field L,
that is, B is the integral closure of A = Z in L, a finite field extension of the field of ratio-
nal numbers K = Q. Then dA(B) = μA(B) (see Corollary 5.7). Nevertheless, not every
ring of integers B is a simple extension of A = Z. We will take advantage of this fact in
Example 6.8.

Clearly, there are integral ring extensions of non-maximal integral degree. This can
already happen with affine domains, as shown in the next example.

Example 2.6. Let k be a field and t a variable over k. Let A = k[t3, t8, t10] and
B = k[t3, t4, t5]. Then A ⊂ B is a finite ring extension with dA(B) = 2 and μA(B) = 3.

Proof. Since k[t3] ⊂ A, then B = 〈1, t4, t5〉A and A ⊂ B is a finite ring extension
with μA(B) ≤ 3. If x = a + bt4 + ct5 ∈ B, with a, b, c ∈ A, then x2 − 2ax ∈ A. There-
fore dA(B) = 2. Let us see that μA(B) = 3. Suppose that there exist f, g ∈ B such
that B = 〈f, g〉A, that is, 1, t4, t5 ∈ 〈f, g〉A. Write f = a0 + t3f1 and g = b0 + t3g1, with
a0, b0 ∈ k and f1, g1 ∈ k[t]. Since 1 ∈ 〈f, g〉A, one can suppose that a0 = 1 and b0 = 0.
Thus f = 1 + a3t

3 + a4t
4 + a5t

5 + · · · and g = b3t
3 + b4t

4 + b5t
5 + · · · . In particular,

every element of 〈f, g〉A is of the form:

(λ0 + λ3t
3 + λ6t

6 + λ8t
8 + · · · )(1 + a3t

3 + a4t
4 + a5t

5 + · · · )
+ (μ0 + μ3t

3 + μ6t
6 + μ8t

8 + · · · )(b3t
3 + b4t

4 + b5t
5 + · · · )

= (λ0) + (λ3 + λ0a3 + μ0b3)t3 + (λ0a4 + μ0b4)t4 + (λ0a5 + μ0b5)t5 + · · · .

From t4 ∈ 〈f, g〉A, one deduces that (λ0 = 0 and) b4 �= 0. Hence, one can suppose that
a4 = 0. From 1 ∈ 〈f, g〉A, it follows that (λ0 = 1, μ0 = 0 and) a5 = 0. From t4 ∈ 〈f, g〉A
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again, now it follows b5 = 0. But from t5 ∈ 〈f, g〉A, one must have b5 �= 0, a contradiction.
Hence μA(B) = 3. �

Remark 2.7. In the example above K = L and so A ⊂ B does not have minimal
integral degree. We will prove that if A ⊂ B is projective and finite with K ⊂ L simple,
or if A is integrally closed, then A ⊂ B has minimal integral degree (see Theorem 5.2 and
Proposition 6.1).

As for the finiteness of the integral degree, we recall the following.

Remark 2.8. There exist one-dimensional noetherian local domains A with integral
closure A such that dA(A) is finite while μA(A) is infinite (see [3, Proposition 6.5]).
There exist one-dimensional noetherian domains A such that dA(A) is infinite (see [3,
Example 6.6]).

Next we prove that the integral degree coincides with the supremum of the integral
degrees of the localizations. (The analogue for μA(B) is not true in general.)

Proposition 2.9. Let A ⊂ B be an integral ring extension. For any b ∈ B, there exists
a maximal ideal m ∈ Max(A) such that idA(b) = idAm(b/1). In particular,

dA(B) = sup{dAm(Bm) | m ∈ Max(A)} = sup{dAp(Bp) | p ∈ Spec(A)}.
Furthermore, if dA(B) is finite, then there exists m ∈ Max(A) such that dA(B) =
dAm(Bm).

Proof. If idA(b) = 1, then b ∈ A. Thus, for any m ∈ Max(A), b/1 ∈ Am, so idAm(b/1) =
1 and idA(b) = idAm(b/1). Suppose that idA(b) = n ≥ 2. Then

A[b]/〈1, b, . . . , bn−2〉 �= 0 and A[b]/〈1, b, . . . , bn−1〉 = 0.

Clearly, for every p ∈ Spec(A), and for every m ≥ 1,

(A[b]/〈1, b, . . . , bm〉)p = Ap[b/1]/〈1, b/1, . . . , bm/1〉.
In particular, Ap[b/1]/〈1, b/1, . . . , bn−1/1〉 = 0, for every p ∈ Spec(A). Since A[b]/
〈1, b, . . . , bn−2〉 �= 0, then there exists a maximal ideal m ∈ Max(A) with

Am[b/1]/〈1, b/1, . . . , bn−2/1〉 �= 0 and Am[b/1]/〈1, b/1, . . . , bn−1/1〉 = 0.

Therefore, idAm(b/1) = n and idA(b) = idAm(b/1). In particular,

dA(B) ≤ sup{dAm(Bm) | m ∈ Max(A)} ≤ sup{dAp(Bp) | p ∈ Spec(A)}.
On the other hand, by Proposition 2.3, sup{dAp(Bp) | p ∈ Spec(A)} ≤ dA(B). Finally, if
dA(B) is finite, then there exists b ∈ B such that idA(b) = dA(B). We have just shown
above that there exists a maximal ideal m ∈ Max(A) with idA(b) = idAm(b/1). Therefore

dA(B) = idA(b) = idAm(b/1) ≤ dAm(Bm) ≤ dA(B)

and the equality holds. �
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Remark 2.10. Suppose that A ⊂ B is finite. Since A is a domain, by generic flat-
ness, there exists f ∈ A \ {0} such that Af ⊂ Bf is a finite free extension (see, e.g.,
[14, Theorem 22.A]). In particular, for every p ∈ D(f) = Spec(A) \ V (f), Ap ⊂ Bp is a
finite free ring extension. So dA(B) = max{d1,d2}, where d1 = sup{dAp(Bp) | p ∈ V (f)}
and d2 = sup{dAp(Bp) | Ap ⊂ Bp is free}. Therefore, if one is able to control the inte-
gral degree for finite free ring extensions, the calculation of dA(B) is reduced to find
d1 = sup{dAp(Bp) | p ∈ V (f)}, where V (f) is a proper closed set of Spec(A). We will
come back to this question in Theorem 5.3.

3. Sub-multiplicativity

In this section we study the sub-multiplicativity of the integral degree with respect to
A ⊂ B, that is, whether dA(C) ≤ dA(B)dB(C) holds for every integral ring extension
B ⊂ C. Observe that, in this situation, A ⊂ C is an integral ring extension too and, by
definition, dB(C) ≤ dA(C). We start with a useful criterion to determine possible bounds
ν ∈ N in the inequality dA(C) ≤ ν dB(C).

Lemma 3.1. Let A ⊂ B and B ⊂ C be two integral ring extensions. Set ν ∈ N. The
following conditions are equivalent:

(i) dA(D) ≤ ν dB(D), for every ring D such that B ⊆ D ⊆ C;

(ii) dA(D) ≤ ν dB(D), for every ring D such that D = B[α] for some α ∈ C;

(iii) idA(α) ≤ ν idB(α), for every element α ∈ C.

In particular, if (iii) holds, then dA(C) ≤ ν dB(C).

Proof. Clearly, (i) ⇒ (ii). Let α ∈ C; in particular, α is integral over A. Since A[α] ⊂
B[α], then idA(α) = dA(A[α]) ≤ dA(B[α]). By hypothesis (ii), dA(B[α]) ≤ ν dB(B[α]) =
ν idB(α). Therefore, idA(α) ≤ ν idB(α), which proves (ii) ⇒ (iii). To see (iii) ⇒ (i), take
D with B ⊆ D ⊆ C and α ∈ D, which will be integral over B and, hence, integral over
A. By hypothesis (iii), idA(α) ≤ ν idB(α) ≤ ν dB(D). Taking supremum over all α ∈ D,
dA(D) ≤ ν dB(D).

Finally, if (iii) holds, then (i) holds for D = C, so dA(C) ≤ ν dB(C). �

The next result shows that we can take ν = μA(B) as a particular ν ∈ N, understanding
that if A ⊂ B is not finite, then μA(B) = ∞ and the inequality is trivial.

Theorem 3.2. Let A ⊂ B and B ⊂ C be two integral ring extensions. Then, for every
α ∈ C,

idA(α) ≤ μA(B)idB(α).

In particular,

dA(C) ≤ μA(B)dB(C).
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Proof. Let α ∈ C, which is integral over B and A. Then

idA(α) = dA(A[α]) ≤ dA(B[α]) ≤ μA(B[α]) ≤ μA(B)μB(B[α]) = μA(B)idB(α).

To finish, apply Lemma 3.1. �

Remark 3.3. A proof of Theorem 3.2 using the standard ‘determinantal trick’ would
be as follows. Suppose B = 〈b1, . . . , bn〉A, with μA(B) = n, and consider α ∈ C with
idB(α) = m. Let X be the following nm × 1 vector, whose entries form an A-module
generating set of B[α],

X� = (1, α, . . . , αm−1, b1, b1α, . . . , b1α
m−1, . . . , bn, bnα, . . . , bnαm−1).

Then there exists an nm square matrix P with coefficients in A, such that αX = PX.
Therefore, (αI − P )X = 0. Multiplying by the adjugate matrix (that is, the transpose of
the cofactor matrix) leads to QP (α) = det(αI − P ) = 0, where QP (T ) is the character-
istic polynomial of P (recall that C is a domain). Hence idA(α) ≤ deg QP (T ) = nm =
μA(B)idB(α).

As an immediate consequence of Theorem 3.2, we obtain the sub-multiplicativity of
the integral degree with respect to integral ring extensions of maximal integral degree.

Corollary 3.4. Let A ⊂ B and B ⊂ C be two integral ring extensions. If dA(B) =
μA(B), then

dA(C) ≤ dA(B)dB(C).

To finish this section we recover part of a result shown in [3], but now with a slightly
different proof.

Corollary 3.5 (see [3, Proposition 6.7]). Let A ⊂ B and B ⊂ C be two integral
ring extensions. Then, for every α ∈ C,

idA(α) ≤ dA(B)dB(C)idB(α).

In particular,

dA(C) ≤ dA(B)dB(C)dB(C).

Furthermore, if A ⊂ B and B ⊂ C have finite integral degrees, then A ⊂ C has finite
integral degree.

Proof. Let α ∈ C; in particular, α is integral over B and over A. Let m(T ) be a
minimal degree polynomial of α over B, m(T ) = Tn + b1T

n−1 + · · · + bn ∈ B[T ], so that
n = idB(α) ≤ dB(C). Set E = A[b1, . . . , bn], where A ⊆ E ⊆ B. Therefore,

idA(α) = dA(A[α]) ≤ dA(E[α]) ≤ μA(E[α]) ≤ μA(E)μE(E[α]),

where clearly μA(E) ≤ ∏n
i=1 idA(bi) ≤ dA(B)dB(C), and μE(E[α]) = idE(α) = idB(α). To

finish, apply Lemma 3.1. �
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4. Integral degree of algebraic field extensions

In this section, we suppose that A = K, B = L and C = M are fields. For ease of reading,
we begin by recalling some definitions and basic facts (see, e.g., [2, Chapter V] and [6]).

Reminder 4.1. Let K ⊂ L be a finite field extension.

• A polynomial is separable if it has no multiple roots (in any field extension). The
extension K ⊂ L is separable if every element of L is the root of a separable polyno-
mial of K[T ]. A field K is perfect if either has characteristic zero or else, when it has
characteristic p > 0, every element is a pth power in K. If K is perfect, then K ⊂ L
is separable.

• The primitive element theorem states that a finite separable field extension is simple.
Even more, there exists an ‘extended’ version which affirms that a simple algebraic
field extension of a finite separable field extension is again simple (cf. [6, III, Chapter I,
§ 11, Theorem 14]).

• Let Ks be the separable closure of K in L, that is, the set of all elements of L which
are separable over K. Then Ks is a field and K ⊂ Ks is a separable extension. Its
degree [Ks : K] is called the separable degree and is denoted by [L : K]s := [Ks : K].

For the rest of the reminder, suppose that K has characteristic p > 0 and let Ks be the
separable closure of K in L.

• Then Ks ⊂ L is a purely inseparable field extension, that is, for every element α ∈
L, there exists an integer m ≥ 1 such that αpm ∈ Ks. The least such integer m is
called the height of α over Ks. Let htKs

(α) stand for the height of α over Ks. Set
h = sup{htKs

(α) | α ∈ L} and call h the height of the purely inseparable extension
Ks ⊂ L.

• Given α ∈ L with htKs
(α) = m, setting a = αpm

, one proves that T pm − a is irre-
ducible in Ks[T ] (see, e.g., [2, Chapter V, § 5]). Thus [Ks(α) : Ks] = pm. Since Ks ⊂ L
is a finite extension, then L = Ks(α1, . . . , αr), where each αi is purely inseparable
over Ks(α1, . . . , αi−1), i = 2, . . . , r. Hence [L : Ks] = pe, for some e ≥ 1. Call e the
exponent of the purely inseparable extension Ks ⊂ L. Note that, since [Ks(α) : Ks]
(which is pm) divides [L : Ks] = [L : Ks(α)][Ks(α) : Ks] (which is pe), then m ≤ e
and h ≤ e.

Our first result characterizes simple finite field extensions as finite field extensions of
maximal integral degree.

Proposition 4.2. Let K ⊂ L be a finite field extension. Then K ⊂ L is simple if and
only if dK(L) = [L : K].

Proof. Since K ⊂ L is an algebraic extension, K(α) = K[α], for any α ∈ L. By
Proposition 2.3(b), idK(α) = dK(K(α)) = [K(α) : K]. Therefore,

[L : K] = [L : K(α)][K(α) : K] = [L : K(α)]dK(K(α)) = [L : K(α)]idK(α). (1)
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If K ⊂ L is simple, then L = K(α), for some α ∈ L. Using (1), it follows that

[L : K] = [L : K(α)]dK(K(α)) = dK(L).

Conversely, if dK(L) = [L : K] < ∞, by definition, there exists α ∈ L with idK(α) =
[L : K]. By (1) again, it follows that [L : K(α)] = 1 and K ⊂ L is simple. �

Using the primitive element theorem we obtain the following result.

Corollary 4.3. Let K ⊂ L be a finite separable field extension. Then dK(L) = [L : K].

The ‘extended’ version of the primitive element theorem will be very useful in proving
the next result.

Proposition 4.4. Let K ⊂ L be a finite field extension. Suppose that K has charac-
teristic p > 0 and let Ks be the separable closure of K in L. Set h and e to be the height
and exponent, respectively, of the finite purely inseparable field extension Ks ⊂ L. Then
the following hold.

(a) dK(L) = dK(Ks)dKs
(L).

(b) For every α ∈ L, dKs
(α) = pm, where m is the height of α over Ks.

(c) dKs
(L) = ph and [L : Ks] = pe.

(d) [L : K]s divides dK(L) and dK(L) divides [L : K]. Concretely,

dK(L) = [L : K]sph and [L : K] = pe−hdK(L).

Proof. By Corollary 4.3, dK(Ks) = [Ks : K]. By Corollary 3.4, dK(L) ≤ dK(Ks)
dKs

(L). To see the other inequality, take α ∈ L with idKs
(α) = dKs

(L). By Proposi-
tion 2.3(b),

idKs
(α) = dKs

(Ks[α]) = μKs
(Ks[α]).

By the extended primitive element theorem, K ⊂ Ks[α] is a simple algebraic field
extension (cf. [6, III, Chapter I, § 11, Theorem 14]). Hence, by Proposition 2.3(b),
dK(Ks[α]) = [Ks[α] : K]. Since K ⊂ Ks is a finite separable extension, by Corollary 4.3,
dK(Ks) = [Ks : K]. Writing all together:

dK(Ks)dKs
(L) = [Ks : K]idKs

(α) = [Ks : K]μKs
(Ks[α]) = [Ks[α] : K]

= dK(Ks[α]) ≤ dK(L).

This proves (a). Let α ∈ L with htKs
(α) = m. Set a = αpm

. Then T pm − a ∈ Ks[T ] is
irreducible in Ks[T ] and hence it is the minimal polynomial of α over Ks. It follows that
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idKs
(α) = pm. This proves (b). Therefore,

dKs
(L) = sup{idKs

(α) | α ∈ L} = sup{phtKs (α) | α ∈ L} = psup{htKs (α)|α∈L} = ph,

which proves (c). Finally, (d) follows from (a), (c) and Corollary 4.3 applied repeatedly.
Indeed,

dK(L) = dK(Ks)dKs
(L) = [Ks : K]ph = [L : K]sph

and

[L : K] = [L : Ks][Ks : K] = pedK(Ks) = pe−hdKs
(L)dK(Ks) = pe−hdK(L). �

Here there is an example of a finite field extension of non-maximal integral degree.

Example 4.5. Let p > 1 be a prime and K = Fp(u
p
1, u

p
2), where u1, u2 are algebraically

independent over Fp. Set L = K[u1, u2]. Then K ⊂ L is a finite purely inseparable field
extension with dK(L) = p. However [L : K] = p2.

Proof. Any β ∈ L is of the form β =
∑

0≤i,j≤p−1 ai,ju
i
1u

j
2, with ai,j ∈ K. So

βp =
∑

0≤i,j≤p−1

ap
i,ju

ip
1 ujp

2 =
∑

0≤i,j≤p−1

ap
i,j(u

p
1)

i(up
2)

j ,

which is an element of K. Therefore βp ∈ K and idK(β) ≤ p. Since idK(u1) = p, it follows
that dK(L) = p. Since K � K(u1) � L are finite field extensions, each one of degree p,
by the multiplicative formula for algebraic field extensions, [L : K] = [L : K(u1)][K(u1) :
K] = p2. �

Similarly, we obtain an example of an infinite field extension with finite integral degree
(see also Remark 2.8).

Example 4.6. Let p > 1 be a prime and K = Fp(u
p
1, u

p
2, . . .), where u1, u2, . . . are

algebraically independent over Fp. Set L = K[u1, u2, . . .]. Then dK(L) = p but [L : K] =
∞.

Now we prove the sub-multiplicativity of the integral degree with respect to an algebraic
field extension K ⊂ L.

Theorem 4.7. Let K ⊂ L and L ⊂ M be two algebraic field extensions. Then, for
every α ∈ M ,

idK(α) ≤ dK(L)idL(α).

In particular,

dK(M) ≤ dK(L)dL(M).

Proof. We can assume that dK(L) and dL(M) are finite.
Let α ∈ M and let m(T ) = Tn + b1T

n−1 + · · · + bn ∈ L[T ] be a minimal degree poly-
nomial of α over L. Let h be the height of the purely inseparable field extension Ks ⊂ L,
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where Ks is the separable closure of K in L. Let p = char(K). If K has characteris-
tic 0, we understand that ph = 1. Then 0 = m(α)ph

= αnph

+ bph

1 α(n−1)ph

+ · · · + bph

n .
It follows that α is a root of a monic polynomial in Ks[T ] of degree phidL(α).
So we have

idK(α) = dK(K[α]) ≤ dK(Ks[α]) ≤ μK(Ks[α]) ≤ μK(Ks) · μKs
(Ks[α])

= dK(Ks) · idKs
(α) ≤ dK(Ks)phidL(α) = dK(L)idL(α).

To finish, apply Lemma 3.1. �

Though sub-multiplicative, the integral degree might not be multiplicative, even for
two simple algebraic field extensions.

Example 4.8. Let p > 1 be a prime and let K = Fp(u
p
1, u

p
2), where u1, u2 are alge-

braically independent over Fp. Set L = K[u1] and M = L[u2]. Then K ⊂ L and L ⊂ M
are two finite field extensions with dK(M) = p and dK(L)dL(M) = idK(u1)idL(u2) = p2

(see Example 4.5 and Proposition 2.3).

However, for finite separable field extensions, multiplicativity holds.

Remark 4.9. Let K ⊂ L be a finite separable field extension and L ⊂ M be a simple
algebraic field extension. Then

dK(M) = dK(L)dL(M).

Proof. By the extended primitive element theorem, K ⊂ M is simple. Hence, by
Proposition 4.2, dK(M) = [M : K], dK(L) = [L : K] and dL(M) = [M : L]. �

5. Integral degree of projective finite ring extensions

We return to the general hypotheses: A ⊂ B and B ⊂ C are integral ring extensions of
integral domains, and K, L and M are their fields of fractions, respectively. In this section
we are interested in the integral degree of projective finite ring extensions (by a projective,
respectively free, ring extension A ⊂ B we understand that B is a projective, respectively
free, A-module). We begin by recalling some well-known definitions and facts (see, e.g.,
[10, Chapter IV, § 2, 3]).

Reminder 5.1. Let A be a domain and let N be a finitely generated A-module.

• N is a free A-module if it has a basis, that is, a linearly independent system of
generators. The rank of a free module N , rankA(N), is defined as the cardinality of
(indeed, any) a basis. Clearly, N is free of rank n if and only if N ∼= An. If N is a
free A-module, the minimal generating sets are just the bases of N . In particular,
μA(N) = rankA(N).

• N is a projective A-module if there exists an A-module N ′ such that N ⊕ N ′ is
free. One has that N is projective if and only if N is finitely presentable and locally
free. The rank of a projective module N at a prime p, rankp(N), is defined as
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the rank of the free Ap-module Np, that is, rankp(N) = rankAp(Np) = μAp(Np) =
dimk(p)(N ⊗ k(p)), where k(p) = Ap/pAp stands for the residue field of A at p.

• If N is projective, then p �→ rankp(N) is constant (since A is a domain, Spec(A)
is connected) and is simply denoted by rankA(N). In particular, on taking the
prime ideal (0), then rankA(N) = μK(N ⊗ K) = rankp(N), for every prime ideal
p. Clearly, when N is free both definitions of rank coincide.

Theorem 5.2. Let A ⊂ B be a projective finite ring extension. Then

dK(L) ≤ dA(B) ≤ rankA(B) = [L : K].

If moreover K ⊂ L is simple, then

dK(L) = dA(B) = rankA(B) = [L : K].

Proof. By Proposition 2.9, there exists a maximal ideal m of A such that dA(B) =
dAm(Bm). By Proposition 2.3 and using that Bm is Am-free and B is A-projective, then

dK(L) ≤ dA(B) = dAm(Bm) ≤ μAm(Bm) = rankAm(Bm)

= rankA(B) = μK(B ⊗ K) = [L : K].

To finish, recall that if K ⊂ L is simple, then dK(L) = [L : K] (see Propositions 2.3 or
4.2). �

The next result characterizes finite ring extensions of maximal and minimal integral
degree at the same time.

Corollary 5.3. Let A ⊂ B be a finite ring extension.

(a) A ⊂ B is free if and only if [L : K] = μA(B).

(b) A ⊂ B is free and K ⊂ L is simple if and only if dK(L) = dA(B) = μA(B).

Proof. If A ⊂ B is free, then μA(B) = rankA(B) = [L : K] (see Reminder 5.1 and
Theorem 5.2). Reciprocally, suppose that [L : K] = μA(B). Set μA(B) = n and let
u1, . . . , un be a system of generators of the A-module B. Thus, u1, . . . , un is a sys-
tem of generators of the K-module L, where n = [L : K] (recall that, if S = A \ {0},
then K = S−1A and L = S−1B, cf. Proposition 2.3). Hence, they are a K-basis of L, so
K-linearly independent. In particular, u1, . . . , un are A-linearly independent. Since they
also generate B, one concludes that u1, . . . , un is an A-basis of B and that B is a free
A-module. This shows (a). Since dK(L) ≤ dA(B) ≤ μA(B) and dK(L) ≤ [L : K] ≤ μA(B)
(see Notation 2.4), part (b) follows from part (a) and Proposition 4.2. �

Corollary 5.4. Let A ⊂ B = A[b] be a projective simple integral ring extension. Then
A ⊂ B is free and 1, b, . . . , bn−1 is a basis, where

n = idA(b) = dA(B) = μA(B) and n = idK(b/1) = dK(L) = [L : K].
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Proof. If S = A \ {0}, then K = S−1A and L = S−1B = S−1A[b] = K[b/1]. Thus
K ⊂ L = K[b/1] is a simple algebraic field extension. By Proposition 2.3, idA(b) =
dA(B) = μA(B) = n, say, and idK(b/1) = dK(L) = [L : K] = m, say. By Theorem 5.2
and Corollary 5.3, n = m and A ⊂ B is free. Since {1, b, . . . , bn−1} is a minimal system of
generators of B = A[b], then it is a basis of the free A-module B (see Reminder 5.1). �

Sub-multiplicativity holds in the case of projective finite ring extensions A ⊂ B with
K ⊂ L being simple.

Corollary 5.5. Let A ⊂ B and B ⊂ C be two finite ring extensions. If A ⊂ B is
projective and K ⊂ L is simple, then

dA(C) ≤ dA(B)dB(C).

If moreover, K ⊂ L is separable, B ⊂ C is projective and L ⊂ M is simple, then

dA(C) = dA(B)dB(C).

Proof. By Proposition 2.9, there exists a maximal ideal m of A such that dA(C) =
dAm(Cm). Since A ⊂ B is projective, then Am ⊂ Bm is free with fields of fractions
Q(Am) = Q(A) = K and Q(Bm) = Q(B) = L, respectively, where K ⊂ L is simple by
hypothesis. By Corollary 5.3, dAm(Bm) = μAm(Bm). Therefore, by Corollary 3.4 and
Proposition 2.3,

dA(C) = dAm(Cm) ≤ dAm(Bm)dBm(Cm) ≤ dA(B)dB(C).

As for the second part of the statement, by hypothesis, A ⊂ C is projective and K ⊂ M is
simple (again, we use the extended primitive element theorem). By Theorem 5.2, dK(L) =
dA(B), dL(M) = dB(C) and dK(M) = dA(C). By Remark 4.9, dK(M) = dK(L)dL(M),
so dA(C) = dA(B)dB(C). �

Now we can complement Example 2.2. Let A ⊂ B a ring extension. Let G be a finite
group acting as A-algebra automorphisms on B. Define BG as the subring BG = {b ∈
B | σ(b) = b, for all σ ∈ G}. It is said that A ⊂ B is a Galois extension with group G if
BG = A, and for any maximal ideal n in B and any σ ∈ G \ {1}, there is a b ∈ B such
that σ(b) − b �∈ n (see, e.g., [8, Definition 4.2.1]).

Corollary 5.6. Let G be a finite group and let A ⊂ B be a Galois ring extension
with group G. Then A ⊂ B is a projective finite ring extension and dK(L) = dA(B) =
[L : K] = o(G).

Proof. Since A ⊂ B is a Galois ring extension of domains with group G, then A ⊂ B
is a projective finite ring extension, K ⊂ L is a Galois field extension with group G and
[L : K] = o(G) (see, e.g., [8, subsequent Remark to Definition 4.2.1 and Lemma 4.2.5]).
In particular, K ⊂ L is separable and hence simple. By Theorem 5.2, dK(L) = dA(B) =
[L : K] = o(G). �
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Next we calculate the integral degree when A is a Dedekind domain and K ⊂ L is
simple, for example, when B is the ring of integers of an algebraic number field (see
Remark 2.5).

Corollary 5.7. Let A ⊂ B be a finite ring extension. Suppose that A is Dedekind and
that K ⊂ L is simple. Then A ⊂ B is projective and dK(L) = dA(B) = rankA(B) = [L :
K]. If moreover A is a principal ideal domain, then A ⊂ B is free and dK(L) = dA(B) =
μA(B).

Proof. From the structure theorem of finitely generated modules over a Dedekind
domain, and since B is a torsion-free A-module, it follows that A ⊂ B is a projective
finite ring extension (see, e.g., [16, Corollary to Theorem 1.32, p. 30]). Since A ⊂ B is
projective finite and K ⊂ L is simple, then dK(L) = dA(B) = rankA(B) = [L : K] (see
Theorem 5.2). Finally, if A is a principal ideal domain, then A ⊂ B must be free and we
apply Corollary 5.3. �

6. Integrally closed base ring

As always, A ⊂ B and B ⊂ C are integral ring extensions of domains, and K, L and M
are their fields of fractions, respectively. Recall that A denotes the integral closure of A
in K. In this section we focus our attention on the case where A is integrally closed. We
begin by noting that, in such a situation, A ⊂ B has minimal integral degree.

Proposition 6.1. Let A ⊂ B be an integral ring extension. Then, for every b ∈ B,
idK(b) = idA(b). In particular, if A is integrally closed, then dK(L) = dA(B).

Proof. Since K ⊃ A, idK(b) ≤ idA(b). On the other hand, it is well known that the
minimal polynomial of b over K has coefficients in A (see, e.g., [1, Chapter V, § 1.3,
Corollary to Proposition 11]), which forces idA(b) ≤ idK(b). So idK(b) = idA(b).

Suppose now that A is integrally closed. Then, for every b ∈ B, idA(b) = idA(b) =
idK(b) ≤ dK(L). Thus dA(B) ≤ dK(L). The equality follows from Proposition 2.3. �

Certainly, idA(b) may not be equal to idA(b), as the next example shows.

Example 6.2. Let A = Z[
√−3]. Then K = Q(A) = Q(

√−3). Let b = (1 +
√−3)/2 ∈

K. Clearly, b is integral over A, and the minimal polynomial of b over A is T 2 − T + 1.
Thus idA(b) = 2, whereas idK(b) = 1.

Recall that a simple integral ring extension B = A[b] over an integrally closed domain
A is free. Indeed, as said above, the minimal polynomial p(T ) of b over K has coefficients
in A. Therefore 1, b, . . . , bn−1 is a set of generators of the A-module A[b] (where n =
deg p(T )). Moreover, since they are linearly independent over K, they are also linearly
independent over A. The next result, which is a rephrasing of this fact, is obtained as a
direct consequence of Proposition 6.1.

Corollary 6.3. Let A ⊂ B be a finite ring extension. Suppose that A is an integrally
closed domain. Then, dA(B) = μA(B) is equivalent to A ⊂ B free and K ⊂ L simple. In
particular, if A ⊂ B is simple and A is integrally closed, then A ⊂ B is free.
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Proof. By Proposition 6.1, one has dK(L) = dA(B). Thus, dA(B) = μA(B) is equiv-
alent to dK(L) = [L : K] = μA(B) (see Notation 2.4). The latter is equivalent to A ⊂ B
free and K ⊂ L simple (see Corollary 5.3). To finish apply Proposition 2.3. �

This corollary suggests how to find a finite integral extension A ⊂ B with dK(L) =
dA(B) and [L : K] < μA(B). It suffices to take, as in the next example, an extension
of number fields K ⊂ L which does not admit a relative integral basis (see also Final
comments § 8).

Example 6.4. Let K = Q(
√−14) and L = K(

√−7). Let A be the integral closure of Z
in K and let B be the integral closure of Z in L. Then A ⊂ B is a finite integral extension,
A is integrally closed, K ⊂ L is simple, but A ⊂ B is not free (see [13]). Hence, by
Corollary 6.3, dA(B) < μA(B). Note that dK(L) = dA(B) = [L : K] = 2. Moreover, it is
well known that A = Z[

√−14] and B = Z[(1 +
√−7)/2,

√
2] (see, e.g., [7, Theorem 9.5]).

An easy calculation shows that B = 〈1, (1 +
√−7)/2,

√
2〉A. Thus μA(B) = 3.

Now, we return to the sub-multiplicativity question.

Theorem 6.5. Let A ⊂ B and B ⊂ C be two integral ring extensions. Then, for every
α ∈ C,

idA(α) ≤ μA(A)dA(B)idB(α).

In particular,

dA(C) ≤ μA(A)dA(B)dB(C).

Proof. Let α ∈ C. Consider the integral extensions A ⊂ A and A ⊂ A[C], where A[C]
stands for the A-algebra generated by the elements of C. By Theorem 3.2, idA(α) ≤
μA(A)idA(α). But, by Proposition 6.1, idA(α) = idK(α). On the other hand, applying
Theorem 4.7 and Proposition 2.3, we have

idK(α) ≤ dK(L)idL(α) ≤ dA(B)idB(α).

Hence, idA(α) ≤ μA(A)dA(B)idB(α). By Lemma 3.1, we are done. �

Remark 6.6. The ring A[C] appears in the proof of Theorem 6.5. A natural ques-
tion is whether this ring is the tensor product A ⊗A C. Observe that indeed there is
a natural surjective morphism of rings A ⊗A C → A[C]. However this morphism is not
necessarily an isomorphism. For instance, take A = k[t2, t3] and C = A, where A = k[t].
So A[C] = A = k[t]. One can check that A ⊗A C is not a domain. Indeed, write A =
A[X]/I, with I = (X2 − t2, t2X − t3, t3X − t4). Therefore A ⊗A C = A[X,Y ]/H, where
H = (X2 − t2, t2X − t3, t3X − t4, Y 2 − t2, t2Y − t3, t3Y − t4). Note that X2 − Y 2 is in
H, but neither X − Y nor X + Y are in H. Hence A ⊗A C is not a domain and cannot
be isomorphic to A[C] = k[T ], which is a domain.

As an immediate consequence of Theorem 6.5, we get the sub-multiplicativity of the
integral degree with respect to A ⊂ B when A is integrally closed.
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Corollary 6.7. Let A ⊂ B and B ⊂ C be two integral ring extensions. Suppose that
A is an integrally closed domain. Then

dA(C) ≤ dA(B)dB(C).

However, in the non-integrally closed case, this formula may fail already for noetherian
domains of dimension 1, as shown below. To see this, we take advantage of an example
due to Dedekind of a non-monogenic number field L. Concretely, we consider B as the
ring of integers of L and find A and C such that dA(C) > dA(B)dB(C).

Example 6.8. Let γ1 be a root of the irreducible polynomial T 3 − T 2 − 2T − 8 ∈
Q[T ]. Let L = Q(γ1). Let B be the integral closure of Z in L (i.e., the ring of integers of
L). Then:

(a) B is a free Z-module with basis {1, γ1, γ2}, where γ2 = (γ2
1 + γ1)/2;

(b) dQ(L) = dZ(B) = μZ(B) = 3 and the extension Z ⊂ B is not simple (L is non-
monogenic).

Let A = 〈1, 2γ1, 2γ2〉Z = {a + bγ1 + cγ2 ∈ B | a, b, c ∈ Z, b ≡ c ≡ 0 (mod 2)}. Then:

(c) A is a free Z-module and an integral domain with field of fractions K = Q(A) = L;

(d) B is the integral closure of A in L, dA(B) = 2 and μA(B) = 3.

Let C = B[α], where α is a root of p(T ) = T 2 + γ1T + (1 + γ2) ∈ B[T ]. Then:

(e) B ⊂ C is an integral extension with dB(C) = 2 and dA(C) = 6.

In particular, dA(B)dB(C) < dA(C) < dA(A)dA(B)dB(C).

Proof. By Corollary 5.7, Z ⊂ B is free and dQ(L) = dZ(B) = μZ(B). Moreover, since
γ1 ∈ B with idZ(γ1) = 3, then dZ(B) ≥ 3. The proof that {1, γ1, γ2} is a free Z-basis of
B and that Z ⊂ B is not simple is due to Dedekind (see, e.g., [16, p. 64]). This proves
(a) and (b).

Note that, from the equalities

γ2
1 = −γ1 + 2γ2, γ2

2 = 6 + 2γ1 + 3γ2 and γ1γ2 = 4 + 2γ2,

the product in B can be immediately computed in terms of its Z-basis {1, γ1, γ2}.
Clearly {1, 2γ1, 2γ2} are Z-linearly independent. One can easily check that A is a ring

and that x2 + x ∈ A, for every x ∈ B. Hence, A ⊂ B is an integral extension with dA(B) =
2. Moreover, the field of fractions of A is K = Q(A) = L, and the integral closure of A in
K is B. Observe that μA(B) ≤ μZ(B) = 3. Below we will see that μA(B) = 3.

Now let us prove that dB(C) = 2. One readily checks that the discriminant Δ = −γ2
1 −

2γ1 − 4 of p(T ) has norm NL/Q(Δ) = −16. Since −16 is not a square in Q, then Δ cannot
be a square in L. Therefore p(T ) is irreducible over L and dB(C) = 2.

Let h(T ) ∈ A[T ] be a minimal degree polynomial of α over A. Since p(T ) is the irre-
ducible polynomial of α over L, it follows that h(T ) = p(T )q(T ), for some q(T ) ∈ L[T ].
Moreover, q(T ) must necessarily belong to B[T ], because B is integrally closed in L

https://doi.org/10.1017/S0013091518000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000275


42 J. M. Giral and others

(see, e.g., [1, Chapter V, § 1.3, Proposition 11]). Therefore, q(T ) is a monic polynomial
in B[T ] such that p(T )q(T ) ∈ A[T ]. An easy computation shows that this implies that
deg(q(T )) ≥ 4 (note that the existence of such a polynomial q(T ) = Tn + b1T

n−1 + · · · +
bn−1T + bn is equivalent to the solvability in Zmodulo 2 of a certain system of linear equa-
tions with coefficients in Z, in the unknowns aij ∈ Z, where bi = ai,1 + ai,2γ1 + ai,3γ2).
Thus, idA(α) = deg(h(T )) ≥ 6. By Theorem 3.2,

6 ≤ idA(α) ≤ dA(C) ≤ μA(B)dB(C) ≤ 6.

Hence dA(C) = 6 and μA(B) = 3. �

Remark 6.9. It is not possible to construct a similar example with B having rank
2 over Z, because dA(B) ≤ μA(B) ≤ rankZ(B) = 2 implies dA(B) = μA(B) and then, by
Corollary 3.4, dA(B) ≤ dA(B)dB(C).

7. Upper-semicontinuity

Recall that A ⊂ B is an integral ring extension of integral domains, and K = Q(A) and
L = Q(B) are their fields of fractions. Let d : Spec(A) → N be defined by d(p) = dAp(Bp).
In this section we study the upper-semicontinuity of d, that is, whether or not,

d−1([n,+∞)) = {p ∈ Spec(A) | d(p) ≥ n}
is a closed set for every n ≥ 1. There are two cases in which upper-semicontinuity follows
easily from our previous results.

Proposition 7.1. Let A ⊂ B be an integral ring extension. Then d : Spec(A) → N,
defined by d(p) = dAp(Bp), is upper-semicontinuous in any of the following cases:

(a) A ⊂ B is simple;

(b) A ⊂ B has minimal integral degree (e.g., A ⊂ B is projective finite and K ⊂ L is
simple; or A is integrally closed).

Proof. If A ⊂ B = A[b] is simple, then Ap ⊂ Bp = Ap[b/1] is simple too, for every p ∈
Spec(A). By Proposition 2.3, it follows that d(p) = dAp(Bp) = μAp(Bp). But the minimal
number of generators is known to be an upper-semicontinuous function (see, e.g., [10,
Chapter IV, § 2, Corollary 2.6]). This shows case (a). By Proposition 2.3(e), dK(L) ≤
dAp(Bp) ≤ dA(B), for every p ∈ Spec(A). In case (b), that is, if dK(L) = dA(B), then
d(p) = dAp(Bp) = dK(L) is constant, and thus upper-semicontinuous. �

A possible way to weaken the integrally closed hypothesis is to shrink the conduc-
tor C = (A : A) of A in its integral closure A. A first thought would be to suppose
that C is of maximal height. However, with some extra assumptions on A, e.g., A local
Cohen–Macaulay, analytically unramified and A not integrally closed, one can prove that
the conductor must have height 1 (see, e.g., [4, Exercise 12.6]). In this sense, it seems
appropriate to start by considering the case when dimA = 1.
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Theorem 7.2. Let A ⊂ B be an integral ring extension. Suppose that A is a noetherian
domain of dimension 1 and with finite integral closure (e.g., A is a Nagata ring). Then
d : Spec(A) → N, defined by d(p) = dAp(Bp), is upper-semicontinuous.

Proof. If A is integrally closed, the result follows from Proposition 7.1. Thus we can
suppose that A is not integrally closed. Since A is finitely generated as an A-module, then
C = (A : A) �= 0. Since A is a one-dimensional domain, C has height 1 and any prime ideal
p containing C must be minimal over it. Therefore, the closed set V (C) coincides with
the set of minimal primes over C, so it is finite. Note that, for any p ∈ Spec(A), d(p) =
dAp(Bp) ≥ dK(L) (see Proposition 2.3). Moreover, if p �∈ V (C), then Ap = Ap and d(p) =
dK(L) (see Proposition 6.1). Now, take n ≥ 1. If n > dK(L), then {p ∈ Spec(A) | d(p) ≥
n} ⊆ V (C) is a finite set, hence a closed set. If n ≤ dK(L), then {p ∈ Spec(A) | d(p) ≥
n} = Spec(A). Thus, for every n ≥ 1, d−1([n,+∞)) is a closed set and d : Spec(A) → N

is upper-semicontinuous. �

Remark 7.3. Note that the proof of Theorem 7.2 only uses that V (C) is a finite set
of Spec(A). For instance, it also holds if A is a noetherian local domain of dimension 2
and with finite integral closure A. Another example where it would work would be the
following: let A be the coordinate ring of a reduced and irreducible variety V over a
field of characteristic zero. Then the conductor C contains the Jacobian ideal J . Now J
defines the singular locus of V , so if we suppose that V has only isolated singularities,
then J is of dimension zero, so C is of dimension zero also. Hence V (C) is finite (see [4,
Theorem 4.4.9] and [19, Corollary 6.4.1]).

If we skip the condition that A be finitely generated, the result may fail. The following
example is inspired by [17, Example 1.4] (see also [3, Example 6.6]).

Example 7.4. There exists a noetherian domain A of dimension 1 with dA(A) =
2, but μA(A) = ∞, and such that d : Spec(A) → N, defined by d(p) = dAp(Ap), is not
upper-semicontinuous.

Proof. Let t1, t2, . . . , tn, . . . be infinitely many indeterminates over a field k. Let

R = k[t21, t
3
1, t

2
2, t

3
2, . . .] ⊂ D = k[t1, t2, . . .].

Clearly R = D. Note that for f ∈ D = k[t1, t2, . . .], f ∈ R if and only if every monomial
λti11 · · · tir

r of f has each ij = 0 or ij ≥ 2.
For every n ≥ 1, let qn = (t2n, t3n)R, which is a prime ideal of R of height 1. Note that

for f ∈ R, f ∈ qn if and only if every monomial λti11 · · · tir
r of f has in ≥ 2. It follows that

tn �∈ Rqn , because if tn = a/b, a, b ∈ R and b �∈ qn, then every monomial of a = btn has
each ij = 0 or ij ≥ 2, so has in ≥ 2. Therefore, tn appears in each monomial of b, but
since b ∈ R, the exponent of tn in each monomial of b must be at least 2, so b ∈ qn, a
contradiction.

Now, set R ⊂ Dn = k[t1, . . . , tn−1, t
2
n, t3n, tn+1, . . .] ⊂ D and Sn = R \ qn, a multiplica-

tively closed subset of R. Clearly Rqn = S−1
n Dn.

Claim. Let I be an ideal of R such that I ⊆ ∪n≥1qn. Then I is contained in some qj .
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If I is contained in a finite union of qi, using the ordinary prime avoidance lemma, we
are done. Suppose that I is not contained in any finite union of qi and let us reach
a contradiction. Take f ∈ I, f �= 0. Then f ∈ k[t1, . . . , tn] for some n ≥ 1 and f is in a
finite number of qi, corresponding to the variables ti that appear in every single monomial
of f . We can suppose that f ∈ q1 ∩ · · · ∩ qr, for some 1 ≤ r ≤ n, and f �∈ qi, for i > r.
Since I �⊂ q1 ∪ · · · ∪ qr, there exists g ∈ I such that g �∈ q1 ∪ · · · ∪ qr. Let h = t2sg ∈ I,
where s > n, so that f and h have no common monomials. Since qi are prime, then
h = t2sg �∈ q1 ∪ · · · ∪ qr. Since f, h ∈ I ⊆ ∪n≥1qn, then f + h ∈ qm, for some m ≥ 1. But
since f ∈ q1 ∩ · · · ∩ qr and h �∈ q1 ∪ · · · ∪ qr, then necessarily m > r. Thus f + h ∈ qm,
where m > r. But since f and h have no common monomials, this implies that every
monomial of f must contain t2m, so f ∈ qm, a contradiction. Hence I ⊆ qj for some j
and the Claim is proved. (An alternative proof would follow from [18, Proposition 2.5],
provided that k is uncountable.)

Let S = R \ ∪n≥1qn, a multiplicatively closed subset of R. Let A = S−1R and pn =
S−1qn. If Q is a prime ideal of R such that Q ⊆ ∪n≥1qn, then, by the Claim above,
Q ⊆ qj , for some n ≥ 1. In particular, Spec(A) = {(0)} ∪ {pn | n ≥ 1}, where each pn is
finitely generated. Therefore A is a one-dimensional noetherian domain.

For every n ≥ 1, Apn
= (S−1R)S−1qn

= Rqn
= S−1

n Dn. Moreover, tn = t3n/t2n is in the
field of fractions of Apn

and t2n ∈ Apn
, that is, tn is integral over Apn

. Thus

Apn
[tn] = (S−1

n Dn)[tn] = S−1
n D and Apn

= Apn
[tn] = S−1

n D = S−1
n (D) = S−1

n D.

Hence Apn
= Apn

[tn]. Recall that tn �∈ Rqn
= Apn

and dApn
(tn) ≤ 2. By Proposition 2.3,

dApn
(Apn

) = dApn
(Apn

[tn]) = 2.
Consider the integral extension A ⊂ A and d : Spec(A) → N, defined by d(p) =

dAp(Ap) = dAp(Ap). We have just shown that, for every n ≥ 1, d(pn) = dApn
(Apn

) =
2. On the other hand, d((0)) = dQ(A)(Q(A)) = 1 because Q(A) = Q(A). Therefore,
d−1([2,+∞)) = Spec(A) \ {(0)}, which is not a closed set. Indeed, suppose that Spec(A) \
{(0)} = V (I), for some non-zero ideal I. Since A is a one-dimensional noetherian
domain, I has height 1 and V (I) is the finite set of associated primes to I. However,
Spec(A) \ {(0)} = Max(A), which is infinite, a contradiction. So d : Spec(A) → N is not
upper-semicontinuous. �

Remark 7.5. Contrary to the upper-semicontinuity, sub-multiplicativity does not
work for one-dimensional noetherian domains with finite integral closure. See Exam-
ple 6.8, where A was a noetherian domain of dimension 1 and with finite integral
closure.

8. Final comments

We finish the paper by mentioning some points that we think would be worth clarifying.
To simplify, suppose that A ⊂ B and B ⊂ C are two finite ring extensions, where, as
always, A and B are two integral domains, and K and L are their fields of fractions,
respectively.

(1) We have shown that A ⊂ B of maximal integral degree implies sub-multiplicativity
(cf. Corollary 3.4). Does the same work for minimal integral degree?
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(2) We have shown that A ⊂ B of minimal integral degree implies upper-semicontinuity
(cf. Proposition 7.1). Does the same work for maximal integral degree?

(3) We have shown that A ⊂ B free and K ⊂ L simple implies dK(L) = dA(B)
(Corollary 5.3). Can we omit the hypothesis K ⊂ L simple? In other words, does
[L : K] = μA(B) imply dK(L) = dA(B)? If so, we would have a ‘down-to-up rigid-
ity’ in the diagram of Notation 2.4. Note that the ‘up-to-down rigidity’ is not true
(see, e.g., Example 6.4).

(4) Does the condition dA(B) = μA(B) localize? In particular, does dA(B) = μA(B)
imply dK(L) = [L : K]? That would imply a ‘right-to-left rigidity’ in the diagram
of Notation 2.4. If A is integrally closed, the answer is affirmative. Note that
Examples 2.6 and 6.8 affirm that the ‘left-to-right rigidity’ is not true.

(5) It would be interesting to study the sub-multiplicativity and upper-semicontinuity
properties for the specific case of affine domains A and B.

(6) Can one replace μA(A) by dA(A) in the inequality dA(C) ≤ μA(A)dA(B)dB(C) of
Theorem 6.5?

(7) Is the integral degree upper-semicontinuous for Nagata rings of dimension greater
than 1?

(8) Is there any clear relationship between dA(B) and the pair of numbers dA/p(B/pB)
and dAp(Bp)? An affirmative answer could be useful in recursive arguments.

(9) Upper-semicontinuity does not imply sub-multiplicativity. We wonder to what
extent sub-multiplicativity could imply upper-semicontinuity.
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