
Math. Struct. in Comp. Science (2009), vol. 19, pp. 169–191. c© 2009 Cambridge University Press

doi:10.1017/S0960129508007378 Printed in the United Kingdom

Cupping Δ0
2 enumeration degrees to 0′

e
†

MARIYA IVANOVA SOSKOVA‡ and GUOHUA WU§

‡Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Email: mariya@maths.leeds.ac.uk
§School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore 639798, Republic of Singapore

Email: guohua@ntu.edu.sg

Received 17 November 2007

In this paper we prove that every non-zero Δ0
2 e-degree is cuppable to 0′

e by a 1-generic Δ0
2

e-degree (and is thus low and non-total), and that every non-zero ω-c.e. e-degree is cuppable

to 0′
e by an incomplete 3-c.e. e-degree.

1. Introduction

Intuitively, we say that a set A is enumeration reducible to a set B, denoted A �e B, if there

is an effective procedure to enumerate A given any enumeration of B. More formally,

A �e B if there is a computably enumerable set W such that

A = {x : (∃u)[〈x, u〉 ∈ W & Du ⊆ B]}

where Du is the finite set with canonical index u. Therefore, every c.e. set gives rise to

an operator, which is called an enumeration operator. We will identify an enumeration

operator with the c.e. set that defines it. An enumeration operator is denoted by a capital

Greek letter, and the elements of an enumeration operator are called axioms.

Let ≡e denote the equivalence relation generated by �e, and [A]e be the equivalence

class of A, called the enumeration degree (e-degree) of A. The degree structure 〈De,�〉
is defined by setting De = {[A]e : A ⊆ ω}, and setting [A]e � [B]e if and only if

A �e B. The operation of least upper bound is given by [A]e ∪ [B]e = [A ⊕ B]e, where

A⊕B = {2x : x ∈ A} ∪ {2x+1 : x ∈ B}. The structure De is an upper-semilattice with the

least element 0e, which is the collection of computably enumerable sets. Gutteridge (1971)

proved that De does not have minimal degrees (see Cooper (1982)).

An important substructure of De is given by the Σ0
2 e-degrees, that is, the e-degrees

of Σ0
2 sets. Cooper (1984) proved that Σ0

2 e-degrees are exactly those e-degrees below 0′
e,

which is the e-degree of K . An e-degree is Δ0
2 if it contains a Δ0

2 set, which is a set A with

a computable approximation f such that for every element x, f(x, 0) = 0 and lims f(x, s)

† An extended abstract of this paper was first published as Soskova and Wu (2007).
‡ This author is supported by the Marie Curie Early Training grant MATHLOGAPS (MEST-CT-2004-504029).
§ This author is partially supported by a start-up grant No. M48110008 and a research grant No. RG58/06

from NTU.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 170

exists and is equal to A(x). Cooper and Copestake (1988) proved that there are e-degrees

below 0′
e that are not Δ0

2, and these e-degrees are called properly Σ0
2 e-degrees.

In this paper we are mainly concerned with the cupping property of Δ0
2 e-degrees. An

e-degree a is cuppable if there is an incomplete e-degree c such that a ∪ c = 0′
e. Cooper,

Sorbi and Yi proved that all the non-zero Δ0
2 e-degrees are cuppable and that there are

non-cuppable Σ0
2 e-degrees (Cooper et al. 1996).

Theorem 1.1 (Cooper et al. 1996). Given a non-zero Δ0
2 e-degree a, there is an incomplete

total Δ0
2 e-degree c such that a ∪ c = 0′

e, where an e-degree is total if it contains the graph

of a total function. Meanwhile, non-cuppable Σ0
2 e-degrees exist.

In this paper we first prove that each non-zero Δ0
2 e-degree a is cuppable to 0′

e by a

non-total Δ0
2 e-degree.

Theorem 1.2. Given a non-zero Δ0
2 e-degree a, there is a 1-generic Δ0

2 e-degree b such that

a ∪ b = 0′
e. Since 1-generic e-degrees are quasi-minimal, and 1-generic Δ0

2 e-degrees are

low, b is non-total and low.

Here, a set A is 1-generic if for every computably enumerable set S of {0, 1}-valued

strings, there is some initial segment σ of A such that either S contains σ, or S contains

no extension of σ. An enumeration degree is 1-generic if it contains a 1-generic set.

Obviously, no non-zero e-degree below a 1-generic e-degree contains a total function, and

hence 1-generic e-degrees are quasi-minimal. Copestake proved that a 1-generic e-degree

is low if and only if it is Δ0
2 (see Copestake (1990)).

Our second result is concerned with cupping ω-c.e. e-degrees to 0′
e. A set A is n-c.e. if

there is an effective function f such that for each x, we have f(x, 0) = 0, |{s : f(x, s) �=
f(x, s+1)}| � n and A(x) = lims f(x, s). A is is ω-c.e. if there are two computable functions

f(x, s), g(x) such that for all x, we have f(x, 0) = 0, |{s : f(x, s) �= f(x, s + 1)}| � g(x) and

A(x) = lims f(x, s).

An enumeration degree is n-c.e. (ω-c.e.) if it contains an n-c.e. (ω-c.e.) set. It is easy

to see that the 2-c.e. e-degrees are all total and coincide with the Π0
1 e-degrees – see

Cooper (1990). Cooper also proved the existence of a 3-c.e. non-total e-degree. As the

construction presented in Cooper et al. (1996) actually proves that any non-zero n-c.e.

e-degree can be cupped to 0′
e by an (n + 1)-c.e. e-degree, we will prove that any non-zero

ω-c.e. e-degree is cuppable to 0′
e by a 3-c.e. e-degree.

Theorem 1.3. Given a non-zero ω-c.e. e-degree a, there is an incomplete 3-c.e. e-degree b

such that a ∪ b = 0′
e.

This is the strongest possible result. We can explain this as follows. Consider the

standard embedding ι from DT to De given by ι(degT (A)) = dege(χA), where χA denotes

the graph of the characteristic function of A. It is well known that ι is an order-preserving

mapping, and that the Π0
1 e-degrees are exactly the images of the Turing c.e degrees under

ι. Now consider a non-cuppable c.e. degree a. ι(a) is Π1, and hence ω-c.e., and ι(a) is not

cuppable by any Π0
1 e-degree, as ι preserves the least upper bounds. Therefore, no 2-c.e.

e-degree cups ι(a) to 0′
e.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 171

The results in this paper were presented at the conference ‘Computability in Europe

2007’ and an extended abstract was published in Soskova and Wu (2007). Due to the

limited space available in Soskova and Wu (2007), we were only able to present the basic

ideas and a sketch of the verifications. In this paper, we provide complete constructions,

together with detailed motivations and full verifications. At each stage in the constructions

we perform the ‘K-check’ and the ‘A-check’ first, and the corresponding actions of this

part can be out of the true path – a crucial feature of both constructions. Furthermore, we

introduce the notion of ‘the one axiom rule’ – at any stage, at most one axiom in Γ can

enumerate a number n into ΓA,B . This is another crucial feature of the construction of Γ,

and we hope that this rule can help explain and motivate the constructions of Γ clearly.

In Section 3, we introduce the notion of ‘pretargets’ and ‘targets’ in the construction of

the 1-generic set B to clarify the actions of the strategy. In the verifications, we define the

true path as the limit of δs, rather than the liminf of δs (which is true, but not accurate),

where δs is the current approximation of the true path at stage s. In Lemmas 3.1 and 4.1

we prove that the true paths are infinite. This was not specified in Soskova and Wu (2007).

Our notation is standard – see Cooper (2004) and Soare (1987) for reference.

2. Basic ideas of the Cooper–Sorbi–Yi cupping

In this section we describe the basic ideas of Cooper, Sorbi and Yi’s construction given

in Cooper et al. (1996). Let {As}s∈ω be a Δ0
2 approximation of the given Δ0

2 set A, which

is assumed to be not computably enumerable. We will construct two Δ0
2 sets B and

E (auxiliary) and an enumeration operator Γ such that the following requirements are

satisfied:

S : ΓA,B = K

NΦ : E �= ΦB.

The first requirement is a global requirement guaranteeing that the least upper bound

of the e-degrees of A and B is 0′
e. Here ΓA,B denotes an enumeration operation relative to

the enumerations of A and B.

The second group of requirements NΦ, where Φ ranges over all enumeration operators,

guarantee that the e-degree of B is incomplete, as the e-degree of E is not below that

of B.

To satisfy the global requirement S , we will construct an enumeration operator Γ such

that K = ΓA,B . That is, at stage s, we find the least x < s (if any) such that x ∈ Ks

but x �∈ ΓA,B[s], the approximation of ΓA,B at stage s, and define two markers ax (the

bound of the A-part) and bx (the bound of the B-part and bx ∈ B) and enumerate x into

ΓA,B by enumerating the axiom 〈x, As � ax + 1, Bs � bx + 1〉 into Γ. If x leaves K later,

we will make this axiom invalid by extracting bx from B, or by a change (from 1 to 0)

of A on As � ax + 1. We must use the A-part in the definition of Γ, since otherwise B

would have a complete e-degree, contradicting the N-requirements. Since A is not in our

control, if A does not provide such changes, we have to extract bx from B. This process is

called the rectification of ΓA,B at x. If at the end of the construction, As �ax + 1⊂A and

Bs �bx + 1⊂B, then x ∈ ΓA,B . Our construction will ensure that ΓA,B(x) = K(x).

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 172

Note that after stage s, at a stage t > s say, if x ∈ Kt but As � ax + 1 �⊆ At or

Bs � bx + 1 �⊆ Bt, then in order to put x into ΓA,B again, we need to enumerate another

axiom into Γ. If such a procedure happens infinitely often, x is not in ΓA,B and we cannot

make ΓA,B(x) = K(x). To avoid this, in general (but not always, as we will see soon when

the N-strategies are considered), at stage t, when we re-enumerate x into ΓA,B , we keep

ax the same as before but let bx be a bigger number. We put bx[t] into B and extract

bx[s] from B (we do this because we want only one axiom enumerating x into ΓA,B to be

valid). Again, this is not always true when N-strategies are considered. The crucial point

is that at any stage in the construction there is just one axiom in ΓA,B(x) enumerating x.

We call this the one axiom rule. Now, as ax is fixed and A is Δ0
2, there can be only finitely

many changes in A�ax + 1, and hence we will eventually stop enumerating axioms for x

into Γ.

In general, we define ΓA,B(x) as follows:

1. Choose two markers ax (the bound of the A-part) and bx (the bound of the B-part and

bx ∈ B) and enumerate x into ΓA,B by enumerating the axiom 〈x, As �ax +1, Bs �bx +1〉
at a stage s, say, into Γ.

2. Check whether A or K changes first.

2.1. If at a stage t > s we have As �ax + 1 �⊆ At �ax + 1, then extract bx[s] from B, and

go back to Step 1, but keep ax the same.

2.2. If at a stage t > s we have that x leaves K , then extract bx[s] from B.

Because K is Π0
1, after reaching Step 2.2, we will do nothing further. On the other hand,

as explained above, because ax is fixed and A is Δ0
2, we can only reselect bx (go back to

Step 1) finitely often. Therefore, if x remains in K , Step 2.1 can only happen at most

finitely often, and after a late enough stage, x will be enumerated into ΓA,B forever, which

ensures that ΓA,B(x) = K(x). Note that the extraction of each bx from B at Step 2.1 is

done to guarantee our one axiom rule.

Here, ax and bx are chosen bigger than any ay, by if y < x. In general, when some y

leaves ΓA,B , we extract bx from B to make sure that the axiom 〈x, As � ax + 1, Bs � bx + 1〉
can never be valid again. We will make a crucial modification to this when N-strategies are

considered and we need to ensure that the associated enumeration will not be injured by the

construction of ΓA,B .

Now we consider how to satisfy one NΦ-requirement. Here we shall see the necessity of

modifying the way of defining ΓA,B(x) described above. An NΦ-requirement is a variant

of the Friedberg–Muchnik strategy. Namely, we select x as a witness, enumerate it into E

and wait for x ∈ ΦB . If x never enters ΦB , then NΦ is satisfied. Otherwise, we will extract

x from E, preserving B � ϕ(x), where ϕ(x) denotes the use of x in the enumeration of

ΦB(x).

However, as the S-strategy has the highest priority, it can rectify ΓA,B at any time of the

construction, which may injure this NΦ-strategy, possibly infinitely many times. To avoid

this, before choosing x, this strategy will first choose a (big) number k, the threshold of

this NΦ-strategy. That is, whenever K changes below k+1 (correspondingly, we may need

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 173

to change B to rectify ΓA,B , and any effort this NΦ-strategy has made can be injured) or

ΓA,B changes below k + 1 (because of the changes in A or B below the corresponding

uses), we reset this NΦ-strategy by cancelling all the associated parameters except this k.

Since k is fixed and A is a Δ0
2 set, such a resetting process can happen at most finitely

many times, so we can assume that after a sufficiently late stage this NΦ-strategy will

never be reset again.

In the construction, k can enter K , and if it does, the threshold is moved automatically

to the next least number in K . Since K is infinite, the threshold will stop changing its

value eventually. This will be the real threshold of the NΦ-strategy.

To preserve some initial segment of B for the diagonalisation, NΦ will first try to move

all the markers bn for n � k above the restraint. A useful A-change will facilitate this.

An NΦ-strategy works as follows:

Setup

Define a threshold k to be a big number. Choose a witness x > k and enumerate x

into E.

K-Check

If an element n � k leaves K or ΓA,B (bn is extracted from B for the Γ-rectification, or

some elements below the corresponding A-part use leaves A, respectively), reset this

strategy, by cancelling all the associated parameters except k.

If k leaves K , redefine k as the least element in K bigger than the current value of k.

This will happen at most finitely many times.

Attack

1. Wait for x ∈ ΦB .

While waiting, at each stage s, we check to see whether a previous guess (the last one)

of A defined at a stage t < s, Ât, is not true. That is, t is the last stage at which we

were at Step 2 when a guess of A, Ât, was made and ak was requested to be defined as

a new number. If the answer is yes, go to Step 3. This will be one part of the A-Check

module.

2. Suppose that x enters ΦB at stage s. Then, at this stage, we:

— Extract bk[s] from B to prevent the enumeration of ΦB(x) from being injured by

the S-strategy.

— Cancel all the markers an and bn for n � k.

— Request that ak be defined big – bigger than any element seen so far in the

construction.

— Go back to Step 1 and, simultaneously, wait for some element Âs = As �ak[s] to

leave A.

(Here we are guessing that Âs ⊆ A, and if our guess is wrong, the corresponding A-

change will undefine ΓA,B(n) for n � k, and hence the further construction of ΓA,B will

not change the enumeration ΦB(x).)

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 174

(�) We want to preserve B up to this ϕ(x), and at this stage, we only extract bk[s] from

B, not the other bn’s for n � k. As we will ensure that at any later stage, either bk[s]

is not in B or Âs �⊆ A, every axiom for ΓA,B(n), n � k, defined between stages s0 and s,

where s0 is the last stage we define γ(k), is invalid forever. That is, to extract n from

ΓA,B , we do not need to extract the corresponding bn’s from B – extracting bk[s] is

enough. This is a crucial point in our one axiom rule.

3. Extract x from E and put bk[s] back into B. We also remove bn[t], n � k, t > s, from

B, and keep these numbers out of B forever. Thus, the axioms in Γ enumerating n

into ΓA,B during this period will be invalid forever. This is another crucial feature of

the one axiom rule. Note that extracting these numbers from B will not change the

enumeration ΦB(x)[s].

From now until the next stage s′ when Âs ⊆ As′ (at which point we will go to Step 4),

this strategy will do nothing, as ΦB(x) is recovered and this NΦ-strategy is satisfied

(temporarily maybe). As indicated in the last paragraph, those axioms enumerated

into Γ between stages s and t are invalidated because the corresponding markers bn
are removed. This A-change lifts γ(n) for n � k to numbers bigger than ϕs(x), even

though bk[s] is now back in B. So the enumeration ΦB(x) is preserved and kept from

being injured by the further construction of Γ.

4. Wait for a later stage s′ such that Âs ⊆ As′ . So the A-change we see at Step 3 is no

longer valid. Then:

— Enumerate x into E again.

— Extract bk[s] from B.

Again we do this because we want to prevent the enumeration of ΦB(x) from being

injured by the S-strategy.

— For n � k, if n is enumerated into ΓA,B after Step 3 (note that an, bn have new

definitions in this period), extract the corresponding bn from B.

As these bn are defined as big numbers, extracting these numbers from B will not

injure the enumeration ΦB(x)[s].

— Go back to Step 1 and, simultaneously, wait for a stage s′′ with Âs �⊆ As′′ until

Step 1 is reached.

As above, we also take bn[t
′], n � k, t′ � s′, out of B, and keep these numbers out of

B forever. Thus, the axioms in Γ enumerating n into ΓA,B in this period will be invalid

forever.

If after a sufficiently late stage the strategy waits at Step 1 or 3 forever, this NΦ-

requirement is obviously satisfied. In the latter case,

ΦB(x) = 1 �= 0 = E(x),

and the construction of Γ will never change the enumeration of ΦB(x) = 1 since all the

γ-markers are lifted to bigger numbers by the changes of A (out) below ak[s].

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 175

We show below that this strategy will not go from Step 2 or 4 back to Step 1 infinitely

often, so the strategy waits at Step 1 or 3 forever, and the corresponding NΦ-requirement

is satisfied.

If this were not the case, this strategy would go through Step 2 infinitely often, because

A is assumed to be Δ0
2 and for a fixed s, ak[s] is fixed. In the construction, for a fixed

ak[s], the A-changes below ak[s] can happen only finitely often, giving us chances to go

to Step 4 finitely often. We prove now that A is c.e. Let ti be the stages at which Step 2

is reached. Then at each stage ti, we know that Âti ⊂ A, because otherwise, one element

in Âti but not in A will allow us to go to Step 4 and stop there (NΦ is satisfied by a

diagonalisation) forever. By this property, A is computably enumerable because for each

x, x is in A if and only if x is in Âti for some i. This contradicts our assumption on A.

Note that according to the actions at Step 2, for any i < j, we have ak[ti] < ak[tj].

It is possible that at a stage later than tj , there is a number m < ak[ti], and hence

m < ak[tj], leaving A, which gives us choices to put bk[ti] or bk[tj] back into B to realise

a diagonalisation. In the construction, we always put bk[tj], the bigger one, into B to

recover the enumeration ΦB(x) to ΦB(x)[tj] in order to diagonalise. If m never comes back

to A, then NΦ is satisfied.

We now show that this NΦ-strategy is consistent with the definition of ΓA,B . Again,

k is the threshold of this strategy. First note that this NΦ-strategy does not affect the

definition of ΓA,B(n) when n < k. For n � k, this NΦ-strategy can invalidate the axiom for

n in ΓA,B at most finitely often at Step 2 or 4, and, eventually, after ak has settled down

(after which we will not go through Step 2), A can change below ak at most finitely often

(after which we will not go through Step 4), and, finally, once a new axiom enumerating

n into ΓA,B is enumerated into Γ, it will not be invalidated by this NΦ-strategy again.

3. Cupping by 1-generic degrees

In this section we prove Theorem 1.2. That is, given a non-c.e. Δ0
2 set A, we will construct a

Δ0
2 1-generic set B and an enumeration operator Γ satisfying the following requirements:

S : ΓA,B = K

Gi : (∃λ ⊂ B)[λ ∈ Wi or (∀μ ⊇ λ)(μ /∈ Wi)] .

If all the requirements Gi, together with the global requirement S , are satisfied, then

B will have the intended properties. It is well known that the e-degree of a 1-generic set

cannot be complete.

The strategy for satisfying S is the same as that described in the last section. The idea of

satisfying one Gi-requirement is an easy full-approximation argument: we select a string

λ first, and wait for an extension of λ to enter Wi. While we are waiting for such an

extension to appear, we let B extend λ, and once we find an extension μ of λ appearing

in Wi, we let B extend μ. Here, letting B extend μ means that for any x, we put x into

B if μ(x) = 1, and keep x out of B if μ(x) = 0. As we also need to code K into A ⊕ B,

the construction of Γ may prevent B from extending μ. Because of this, we call μ a target

and λ a pretarget of Gi. We can either satisfy Gi through a pretarget λ (λ ⊂ B and no

extension of λ is in Wi) or a target μ (μ ⊂ B and μ is in Wi).

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 176

Now we consider the interaction between the S-strategy and a Gi-strategy. As mentioned

above, it may happen that after we select a pretarget λ or a target μ, the construction of

Γ will not allow B to extend it because S has the highest priority. We get around this

difficulty by applying the threshold strategy. That is, we set k as the threshold first, and if

K changes below k + 1 or some n � k leaves ΓA,B (the conflict situation described above

can happen), we reset this Gi-strategy by giving up the selected pretargets and targets,

and then select new ones that are consistent with the current construction of ΓA,B � (k+1).

As k is fixed and A is Δ0
2, this Gi-strategy can be reset only finitely often.

After we choose k, we wait for γ(k) to be defined (that is, ak and bk are both defined),

and then select a pretarget λ (we will make B extend λ from now on) with λ(bk) = 1. If

later we find a μ ⊇ λ in Wi, instead of making B extend μ immediately, we define μ̂ as

a string the same as μ, except that μ̂(bk) = 0, and make the current approximation of

B extend μ̂. (So bk is taken out of B, which extracts all the numbers enumerated into ΓA,B

from the stage λ is selected. We do this mainly because we want S to be happy with Gi’s

actions.) We actually want B to extend μ, so once A changes below ak (from 1 to 0), we

can re-enumerate bk (and nothing else, as in this way we make B extend μ̂) into B to

satisfy Gi. If there are no A-changes below ak , or a change in A is not permanent, we will

ensure that bk is out of B, so B extends μ̂. If A � ak recovers to its initial value (or we

have not observed a change in A � ak at all), we select another pretarget λ′, which is an

extension of μ̂, and work on λ′ in a similar way.

Again, to satisfy the S-requirement, the construction of Γ follows the one axiom rule,

as explained in Section 2.

We are now ready to give the full construction of B. The construction will proceed on

a binary tree T , where each node α on T is a Gi-strategy with i = |α|. Each α works to

satisfy G|α| and has the following related parameters:

— kα, the threshold of α;

— λα, a pretarget of α;

— μα, a target of α;

— μ̂α, a variant of μα;

— Uα, the collection of α’s guesses of A, Âs, s ∈ ω.

Each node has two outcomes, 0, 1, with 0 <L 1.

As S is a global requirement, we do not put it on T .

Construction

The construction is as follows:

Stage 0:

Let B = �, Γ = �, Uα = � for all α, and let all the thresholds, pretargets and targets

be undefined.

Stage s + 1:

At stage s + 1, we first perform two checks: the K-Check and the A-Check.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 177

K-Check

Suppose ks leaves K at this stage. We determine which strategy is reset by this

K-change. Find a strategy α with the highest priority such that kα � ks. Reset α by

cancelling all the parameters of α, except the threshold kα. If kα � ks, redefine kα
as the next number in Ks+1. After this resetting, Uα becomes empty. Initialise all the

strategies with lower priority. If there is such a strategy, do nothing.

A-Check

Let as be the number such that A(as) changes at stage s + 1.

Find a strategy α with the highest priority such that as < akα [s] and initialise all the

strategies with lower priority. If there is no such α, then for any n with as < an[s],

we extract bn[s] from B to remove n from ΓA,B . We assume in the following that

there is such an α.

For n > kα, remove bn[s] from B to ensure that n is extracted from ΓA,B .

If there is an m < kα with as < am[s], then reset α by cancelling all parameters of α

except kα. Again we remove bm[s] from B to ensure that m is extracted from ΓA,B .

(When m is enumerated into ΓA,B again, we define am as am[s]. As A is Δ0
2 and am is

fixed, such a resetting procedure can happen at most finitely often.)

Otherwise, extract bkα [s] from B to remove kα from ΓA,B . Consider the following

two cases:

Case 1: as enters A.

If Ât ⊆ As+1, where Ât is the largest one in Uα, we also extract the associated

bkα [t] from B. Note that between stages t and s + 1, bkα [t] has been enumerated

into B at some point (the last one), since Ât is not a subset of A from that point

on. We have α is satisfied, temporarily, until stage s+1. We also require that the

new pretarget λα be defined as an extension of Bs+1. In particular, as bkα [t] is

removed, when we define λα again, we will define λα(bkα [t]) as 0. We also require

that both akα and bkα be defined bigger.

If Ât �⊆ As+1, we keep bkα [t] in B to make sure that α is still satisfied. In this

case, as bkα [s] (if any) is removed from B, and will be kept out of B, the recent

axiom enumerating kα into ΓA,B is invalidated forever. We require that only bkα
be defined bigger.

Case 2: as leaves A.

Check whether Uα contains a guess Ât, the largest one such that Ât ⊆ As and

that as ∈ Ât.

If there is none, do nothing, but require that only bkα be defined bigger.

Otherwise, we know that Ât �⊆ As+1 (because of as), and we enumerate the

related bkα [t] into B, and extract the associated xα from E. Then declare that

α is satisfied until the next stage when Ât is contained in A again. In this

case, bkα [t] is enumerated into B and bkα [s] is removed from B (without loss of

generality, we assume that they are different) at this stage, and bkα [s] will be kept

outside B forever. Again, we require that only bkα be defined bigger.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 178

Here, we try to approximate A using a computable sequence {Ât : t ∈ ω}, where

each Ât is defined at stage t as the set of elements already in A currently, and for

any t < t′, if both Ât, Ât′ are defined, then Ât ⊂ Ât′ . As A is Δ0
2, if we can define

Ât infinitely often, then
⋃

t∈ω Ât = A, and A is computably enumerable, which is

impossible.

After these two checks, we rectify ΓA,B as follows:

ΓA,B-rectification module

Check for all elements n < s to see whether there is some n such that ΓA,B(n) �= K(n).

If there is no such n, do nothing. Otherwise, perform the following actions for the

least such n:

n ∈ K .

If n has not been enumerated into ΓA,B before (so an and bn have not been

defined), define both an and bn as big numbers. Otherwise, let s− < s be the

last stage when n is in ΓA,B . If both an and bn are required to be defined as big

numbers in the A-Check part, or n is a threshold of some G-strategy, and this

G-strategy requires that an be redefined as a big number, we define an and bn big.

Otherwise, leave an the same as before and define bn as a big number.

In all cases, enumerate bn into B and the axiom 〈n, As+1 � an + 1, {bm|m � n}〉
into Γ.

n /∈ K .

Find the valid axiom in Γ for n (if any), 〈n, A�an + 1,Mn〉 say, and extract the

largest element of Mn from B. This action invalidates the axiom 〈n, A�an+1,Mn〉,
and n is removed from ΓA,B .

Now we construct a path through the tree T , δs+1, of length � s, as the

approximation of the true path f at stage s + 1. Each node α ⊆ δs+1 is said

to be visited at stage s + 1.

Construction of δs+1

We define δs+1(n) for n < s + 1 by induction on n. When n = s + 1, we stop stage

s + 1 and go to the next stage. Suppose δs+1(i − 1) is defined. We let δs+1 � i be

α, a strategy working on the requirement Gi. When α is visited for the first time

after being initialised, it starts from Setup to define kα, the threshold of α, define

δs+1 = α, and go to the next stage. Otherwise, we go to the check part.

Setup

If a threshold kα has not been defined or is cancelled, define it as a big number –

bigger than any element that has appeared so far in the construction.

Attack

1. If γs(kα) has not been defined yet, let δs+1 = α. Go to the next stage. We wait

for γs(kα) to be defined, which will be done at some later stage.

2. If α is declared to be satisfied at (the most recent) stage t < s through target

μt, and Ât �⊆ As+1, let the outcome of α be 0 (satisfied). Go to substage i + 1.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 179

3. If Cases 1 and 2 do not apply and the pretarget λα needs to be defined or

redefined, define it as Bs+1 � bkα + 1. (Note that λα(bkα) = 1 as bkα is currently

in B.) Let δs+1 = α. Initialise all the strategies of lower priority and go to the

next stage. From now on, we will search for a target in Wi extending λα.

4. If λα is defined and there is no μ ⊇ λα in Wi,s+1 (so μα is not defined), let the

outcome of α be 1 (waiting). Go to substage i + 1.

5. If λα is defined, μα is not defined and there is some μ ⊇ λα in Wi,s+1, choose

the least such μ, denote it by μα, and undefine λα. Enumerate in the guess list

Uα a new guess Âs = As� (akα + 1)[s + 1] as an approximation of A�akα [s + 1]

at stage s + 1. Extract bkα [s] from B. (This extraction removes n from ΓA,B for

each n � kα.) We have found a μα in Wi extending λα, and μα is our target, as

we want μα ⊂ B. We need α to cooperate with the S-strategy, and if Âs �⊂ A, we

can make B extend μ by enumerating bkα [s] into B again.

Let μ̂ be a string that is the same as μ except at position bkα [s], where we

have μ̂(bkα [s]) = 0. Let μ̂ ⊆ Bs+1. When α defines λα again, α defines it as

an extension of μ̂. Here, when we say that B extends μ̂, we mean that bkα [s] is

moved from B. If later, after we see Âs �⊂ A, we put bkα [s] into B, then B extends

this μα immediately, which will satisfy Gi.

λα is undefined, so we will choose another pretarget later, extending Bs+1.

Cancel all the markers an and bn for n � kα, and request akα and bkα be defined

as big numbers. We can do so because bkα [s] is removed from B.

Let δs+1 = α. Initialise all the strategies of lower priority and go to the next

stage.

This completes the construction of B.

Verification

We now verify that the B we have just constructed satisfies all the requirements. Define

the true path f ⊂ T as the limit of δs, s ∈ ω. That is,

∀n∃sn∀s > sn(f � n ⊆ δs) .

The following lemma ensures that f is well defined and infinite.

Lemma 3.1. For each n, let tn be the last stage at which f �n is initialised. The following

are true:

(0) tn exists.

(1) There is a stage t1(n) � tn after which f �n cannot be reset again. In particular, after

stage t1(n), we will not cancel Uf�n again.

(2) There is a stage t2(n) � t1(n) after which f �n does not act according to the A-changes

in the A-Check part or in the Attack part. In particular, after stage t2(n), f � n does

not initialise lower priority strategies and does not affect the definition of Γ.

(3) f(n) is defined. That is, after a stage t3(n) � t2(n), for any s, we have f�n�O ⊆ δs,

where O is the true outcome of f �n.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 180

Proof. We prove the lemma by induction on n. Suppose that (0)–(3) are all true for

m < n. We will prove that (0)–(3) are also true for n. Let f �n = α.

It is easy to see that tn exists from the assumption that (0)–(3) are true for f � (n − 1).

In particular, by (3), after a stage large enough, whenever f � (n− 1) is visited, f �n is also

visited, and hence the construction never goes to the left of f �n. Thus (0) is true for n.

Let s0 be the first α-stage after tn. At this stage, α defines kα, and will never redefine it

again, modulo finitely many times of shifting. That is, if the current kα leaves K , we take

the next element in K to be kα automatically. As K is infinite, such a shifting process can

happen at most finitely often. Let s1 � s0 be the last stage after which such a shifting

never happens again.

We now show that α can be reset at most finitely often. Note that in the construction,

only A-changes and K-changes can reset α. First, after stage s1, because kα is fixed, α can

be reset by the K-changes only finitely often. Thus, there is a stage s2 � s1 after which K

never changes below this kα, and hence, α will never be reset by the K-changes again.

As Uα can only be cancelled when α is initialised or reset by the K-changes, we know

that Uα can never be cancelled after stage s2.

Since A is Δ0
2, in order to prove that α can be reset by the A-changes only finitely often,

we only need to prove by induction that after a sufficently late stage s3 � s2, for any

j < kα, if γ(j) is defined, then aj[s3] is fixed, which is obviously true. Let t1(n) = s3. Then

after stage t1(n) no A-changes can reset α again (correspondingly, no bj with j < kα will

be extracted from B to rectify ΓA,B , to ensure that the construction of ΓA,B follows the one

axiom rule).

As Uα can only be cancelled when α is initialised or reset, we know that Uα can never

be cancelled after stage t1. Thus (1) is true for n.

We now prove (2). By the choice of s3 above, we assume that for each j < kα, aj is

fixed, and A does not change below aj again.

In order to show a contradiction, suppose that α acts infinitely many times. As A is Δ0
2,

for a particular akα [s], A can change below it at most finitely often. Therefore, α reaches

Case 5 in the Attack part infinitely often, and each time a guess Âs(= As �akα [s] + 1) of A

for some s is put into Uα, and akα is required to be defined bigger. Let

s′
1 < s′

2 < · · · < s′
m < · · ·

be the list of these stages after stage s3 at which α reaches Case 5 through akα [s
′
i],

respectively.

We claim that for each i, Âs′
i

⊂ A. Suppose this were not the case, and let y be in Âs′
i
,

but not in A. Then this y is less than akα [s
′
i] + 1, and can provide chances for α to do

an action in the A-Check part, and, eventually, α will be satisfied forever through this y

(shown in the next paragraph), and α will do no more actions in the construction, which

contradicts our assumption.

We now show that this y enables us to satisfy α. Note that at stage s′
i, at Case 5, a target

string μα is found in Wn, and bkα [s
′
i] is extracted from B to remove all l � kα from ΓA,B .

The process is that if before stage s′
i+1, some element, z (which can be different from y,

or the same as y), in Âsi leaves A, then bkα [s
′
i] is put into B to make B extend μα. By our

assumption, if s′
i+1 exists, this z enters A again between s′

i and s′
i+1, and, as a consequence,

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 181

bkα [s
′
i] is removed from B. As A is Δ0

2, and we assume that y is not in A, there is a biggest

j such that y is in Âs′
i+j

, and y leaves A after stage s′
i+j . As y is also in Âs′

i+j
and y is less

than bkα [s
′
i+j], we get that bkα [s

′
i+j] is enumerated into B to make B extend the current μα,

and α is satisfied. After this, y remains out of A, and hence Âs′
i+j

�⊂ A afterwards, and α is

satisfied forever.

We need to mention here that the ΓA,B-rectification procedure will not change B on

|μα|. This is because at stage s′
i+j , only bkα [s

′
i+j] is moved from B, and nothing else, and

further construction of B extends μ̂α until Âs′
i+j

�⊂ A is found, and bkα [s
′
i+j] is put back

into B, so B extends μα. Also note that all the lower priority strategies are initialised at

this stage, and the strings they select later will be extensions of μα, or μ̂α. This ensures

that we can make B extend μα whenever we can. Note that in the construction we always

ensure that either Âs′
i+j

�⊂ A or bkα [s
′
i+j] is not in B, so there is no conflict between α and

the ΓA,B-rectification procedure.

From the claim above, we can conclude that A is computably enumerable as follows:

for each x, x is in A if and only if x is in Âs′
i
for some i. This contradicts our assumption

that A is not computably enumerable.

Therefore, α can act at most finitely often and (2) is true for α. Let t2(n) be the last

stage at which α acts.

Now we can see that after t2(n), the Attack part is always at Case 2 (satisfied) or Case 4

(waiting). Correspondingly, α will always have outcome 0 or 1, respectively. If α remains at

Case 4, then (the most recent version of) λα has no string μ in Wn extending λ (otherwise,

we could have one more action later in Case 5, which is impossible by our assumption)

and B extends λα in this case. If α stops at Case 2, α is satisfied through μα because μα is

in Wn and B extends μα.

Let O be the true outcome of α. Then after stage t2(n), whenever α is visited, α�O is

also visited, so (3) is proved.

This completes the proof of the lemma.

Lemma 3.1 immediately gives us the following lemma.

Lemma 3.2. The true path f is well defined and infinite.

Now we prove that every G-requirement is satisfied.

Lemma 3.3. Every Gi-requirement is satisfied.

Proof. Fix i and let α be a Gi-strategy on f. By Lemma 3.1, there is a late enough

stage, t, after which α cannot be initialised or reset again, so α will not act again in the

remainder of the construction. Also, we can assume that α has true outcome O, and after

stage t, each stage is an α�O-stage.

There are two cases:

— O is 1.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 182

After stage t in the construction, α is always in Case 4, which means that λα (the last

version) has no extension in Wi since otherwise if a string extending λα appears in

Wi after stage t, then α will be in Case 5 and α will initialise all strategies with lower

priority, contradicting our choice of t, and if a string extending λα enters Wi before

stage t, then according to the construction, λα should have been redefined as another

string. Note that in this case, B extends λα, and Gi is satisfied.

— O is 0.

After stage t, α is always in Case 2, which means that μα is in Wi and that B extends

μα, and again Gi is satisfied.

The next lemma states that the S-requirement is satisfied.

Lemma 3.4. The S requirement is satisfied.

Proof. We need to prove that for each n, we have ΓA,B(n) = K(n). Fix n.

Now find the Gn strategy α on the true path f, and let s be the last stage on which α

acts. By Lemma 3.1, s exists, so we know n < kα and:

(a) Ks � kα = K � kα.

(b) At stage s, for any m < kα, m ∈ Ks if and only if m ∈ ΓA,B[s].

(c) no m < kα leaves ΓA,B after stage s.

If (a) were not true, α would be reset later, which, by our choice of s, cannot happen, so

(a) is true. (b) and (c) are true because at stage s, γ(kα) is defined and our ΓA,B-rectification

procedure ensures that for l < kα, if l is in K , then l is also in ΓA,B[s]. On the other hand,

if l is not in K , suppose that l leaves K at stage t, and, without loss of generality, suppose

that l is in ΓA,B[t]. Then, at the ΓA,B-rectification part of stage t, bl[t] is extracted from B

to remove l from ΓA,B , and after stage t, l can never be enumerated into ΓA,B again. Note

that after stage s, the ΓA,B-rectification procedure will never define γ(m) for those m < kα
again.

Now, as n < kα, from (a), (b) and (c), we know that

ΓA,B(n) = ΓA,B(n)[s] = Ks(n) = K(n),

which is the equality we want.

Finally, we prove that the constructed B is a Δ0
2 set, which completes the proof of

Theorem 1.2.

Lemma 3.5. B is Δ0
2.

Proof. We need to show that for each n, n can be enumerated and extracted from B at

most finitely times. To see this, fix n, and again, as in the previous lemma, we consider

the Gn-strategy α on the true path f. Let s be the last stage at which α acts. Then λα has

length greater than n, and after stage s, B will never change on λα, and hence will not

change on n. This means that B(n) changes at most s times.

This completes the proof of Theorem 1.2.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 183

4. Cupping by 3-c.e. degrees

In this section we give a proof of Theorem 1.3. Suppose that we are given an ω-c.e. set A

that is not computably enumerable and has a change-bounding function g. We will modify

the construction of B given in Section 2, to make it 3-c.e.. The following requirements will

be satisfied:

S : ΓA,B = K

NΦ : E �= ΦB.

We have explained how to satisfy the S-requirement in detail in the previous two

sections. In particular, we have seen how to ensure that the constructed ΓA,B satisfies the

one axiom rule. As we now want to make B 3-c.e., the construction of ΓA,B in this section

will contain some new features. Again, for a fixed n, if we want to enumerate n into ΓA,B ,

we will have one A-marker an, but instead of having just one B-marker bn, we will have

a block of B-markers Bn of size hn, where hn =
∑

x<an
g(x) + 1, together with a counter

cn, which is a parameter telling us which element in this block can be extracted if needed.

When γ(n) is defined, we enumerate all elements in Bn into B. We can extract n from

ΓA,B by extracting just one of Bn. We use bcn to denote the element in Bn at which cn is

pointing. In the construction, whenever we extract bcn from Bn, we also decrease cn by 1,

indicating that if we need to extract a number from Bn again, we will extract the next

available number, which will be less than the previous one. As A is ω-c.e., and g is the

change-bounding function, the size of Bn is large enough, and we can never run out of

elements of Bn. This ensures that every element of Bn can be extracted from B at most

once in the construction to satisfy NΦ. Note that after being extracted from B, bcn can be

enumerated into B again (the second time) when requested by the same NΦ-strategy.

An N-strategy works as follows:

Setup

Define a threshold k to be a big number. Choose a witness x > k and enumerate x

into E.

Again, whenever an element n � k leaves K or ΓA,B (bn is extracted from B for the

Γ-rectification or A changes below the corresponding A-part use, respectively), reset

this strategy by cancelling all the associated parameters except k, and if k leaves K ,

redefine k as the least element in K bigger than the current value of k.

Attack

1. Wait for x ∈ ΦB .

While waiting at each stage s we check to see whether a previous enumeration guess

(the last one) of A, Ât ∈ Uα, was defined at a stage t < s such that Ât �⊆ As. If it was,

go to Step 3.

2. Suppose that x enters ΦB at stage s. Also suppose that at this stage k is in ΓA,B with

ak , Bk and ck defined. Then, at this stage we extract bck [s] from B, to remove n � k

from ΓA,B . Also, cancel all the markers an and Bn for n � k, and request that ak
and elements of Bk be defined big (of course, an and elements of Bn, n > k, are also

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 184

automatically defined to be big.). Go back to Step 1 and, simultaneously, wait for

Âs �⊆ A.

Again, the corresponding A-change will allow us to invalidate the current axiom for n

in ΓA,B(n) and lift its marker block Bn, n � k, so that the further construction of ΓA,B

will not change the enumeration ΦB(x) = 1. Here we want to preserve B up to this

ϕ(x), and at this stage we only extract bck [s] from B, and not the other bn’s for n � k.

This is to ensure that our N-strategy is consistent with the ΓA,B-construction. Again,

the one axiom rule is a crucial point.

3. Extract x from E and put bck [s] back into B. We also take elements in Bn[t], n � k,

t > s, out of B if these elements have not been extracted from B already, and

keep these numbers out of B forever to satisfy the one axiom rule. We do this to

invalidate the axioms in Γ, which enumerates n into ΓA,B during this period. Note

that extracting these numbers from B will not change the enumeration ΦB(x)[s], and

putting bck [s] back into B recovers ΦB(x) to ΦB(x)[s].

Decrease ck by one.

From now until the next stage s′ when Âs ⊆ As′ (we will go to Step 4 when this is the

case), this strategy will do nothing since ΦB(x) is recovered and this NΦ-strategy is

satisfied (temporarily maybe).

4. Wait for a later stage s′ such that Âs ⊆ As′ . So the A-change we saw at Step 3 is no

longer there. We now do as follows:

— Enumerate x into E again.

— Extract bck [s
′] from B. Again, this extraction is to prevent the enumeration of ΦB(x)

from being injured by the S-strategy. Note that bck [s] and bck [s
′] are different.

— For n � k, if n is enumerated into ΓA,B after Step 3 (note that an, Bn have new

definitions in this period), extract elements in Bn from B, provided these elements

have not been extracted from B already. As these elements are defined as big

numbers, extracting them from B will not injure the enumeration ΦB(x)[s].

— Request that ak and elements in Bk be defined as big numbers.

— Go back to Step 1 and, simultaneously, wait for Âs �⊂ A until Step 2 is reached.

This NΦ-requirement is obviously satisfied if after a late enough stage the strategy waits

at Step 1 or 3 forever. In the latter case,

ΦB(x) = 1 �= 0 = E(x),

and the construction of ΓA,B will never change the enumeration of ΦB(x) = 1 since all the

γ-markers are lifted to bigger numbers by the changes of A (out) below ak[s].

As in Section 2, we can show that this strategy will not go from Step 2 or 4 back

to Step 1 infinitely often. Therefore, the strategy waits at Step 1 or 3 forever, and the

corresponding NΦ-requirement is satisfied.

We now show that this NΦ-strategy is consistent with the definition of ΓA,B . Again,

k is the threshold of this strategy. First note that this NΦ-strategy does not affect the

definition of ΓA,B(n) when n < k. This NΦ-strategy can undefine ΓA,B(n) for n � k at most

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 185

finitely often at Step 2 or Step 4, and, eventually, after ak has settled down (after which

we will not reach Step 2 again), A can change below ak at most finitely often (after which

we will not reach Step 4), and, finally, once ΓA,B(k) is defined, it will not be undefined by

this NΦ-strategy again.

The crucial point here is that the block Bk contains enough elements for us to extract

at Step 4, because we know the change-bounding function g in advance. It is possible

that after Step 4 we define ak and Bk afresh (so the elements in Bk are bigger than the

use of the enumeration we see at Step 2) and enumerate k into ΓA,B (the numbers in this

new Bk are enumerated into B), and later we have an A-change (out) below ak[s]. We go

to Step 4 by enumerating bck [s] into B to recover the enumeration. If so, as specified at

Step 4, we also remove elements from the new Bk forever to make sure that these axioms

can never enumerate k into ΓA,B . If k is enumerated into ΓA,B , it should be enumerated

by other (new) axioms. Again, it is a significant point of our one axiom rule.

We now describe the construction of Γ and B. As in Section 2, the construction

proceeds on a binary tree, and each node α is a strategy working on the NΦi
-requirement

where i = |α|. Parameters kα, Uα, Âi are exactly the same as those in Section 3. Some

modifications are made to make B 3-c.e.

Construction

Stage 0:

Let B = �, Γ = �, Uα = � for all α, and let all the thresholds be undefined.

Stage s + 1:

At stage s + 1, we first perform two checks: the K-Check and A-Check.

K-Check

Suppose that ks leaves K at this stage and determine which strategy is reset by

this K-change. Find a strategy α with the highest priority such that kα � ks. Reset

α by cancelling all the parameters of α, except the threshold kα. If kα � ks, then

also redefine kα as the next number in Ks+1. After this resetting, Uα becomes empty.

Initialise all the strategies with lower priority. If there is no such a strategy, do

nothing.

A-Check

Let as be the number such that A(as) changes at stage s + 1.

Find a strategy α with the highest priority such that as < akα [s] and initialise all the

strategies with lower priority. If there is no such α, then for any n with as < an[s], we

extract all elements in Bn[s] from B, provided these elements have not been extracted

from B already, in order to remove n from ΓA,B . We assume below that such an α

exists.

For n > kα, remove elements in Bn[s] from B, provided these elements have not

been extracted from B already, to ensure that n is extracted from ΓA,B .

If there is an m < kα with as < am[s], reset α by cancelling all the parameters of α

except kα. Again, we remove elements of Bm[s] from B, if these elements have not

been extracted from B already, to ensure that m is extracted from ΓA,B . (When m

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 186

is enumerated into ΓA,B again, we define am as am[s], but with Bm new. As A is Δ0
2

and am is fixed, such a resetting procedure can happen at most finitely often.)

Otherwise, extract bckα [s] from B to remove kα from ΓA,B . Consider the following

two cases:

Case 1: as enters A.

If Ât ⊆ As+1, where Ât is the largest one in Uα, we also extract the associated

bckα [t] from B, and put the corresponding xα back into E. Note that bckα [t]

has been enumerated into B at some point (the last one) between stages t and

s + 1 since Ât is not a subset of A from that point on. We have α is satisfied,

temporarily, until stage s + 1. We also require that both akα and Bkα be defined

bigger.

If Ât �⊆ As+1, we keep bckα [t] in B to make sure that α is still satisfied. In this

case, as bckα [s] (if any) is removed from B and will be kept out of B, the recent

axiom enumerating kα into ΓA,B is invalidated forever. We require that only Bkα

be defined bigger.

Case 2: as leaves A.

Check whether Uα contains a guess Ât, the biggest one, such that Ât ⊆ As and

as ∈ Ât.

If it does, do nothing, but require that only Bkα be defined bigger.

Otherwise, we know that Ât �⊆ As+1 (because of as), and we enumerate the

related bckα [t] into B and extract the associated xα from E. Declare that α is

satisfied until the next stage when Ât is contained in A again. In this case,

bckα [t] is enumerated into B and bckα [s] (from the new block) is removed from B

(without loss of generality, we can assume that they are different) at this stage,

and bckα [s] will be kept outside B forever. Again we require that only Bkα be

defined bigger.

After these two checks, we rectify ΓA,B as follows:

ΓA,B-rectification module.

For all elements n < s, check whether there is some n such that ΓA,B(n) �= K(n).

If there is no such n, do nothing. Otherwise, perform the following actions for the

least such n:

— n ∈ K .

If n has not been enumerated into ΓA,B before (so an and Bn (also cn) have not

been defined), define both an and the elements of Bn as big numbers. We let Bn

have size gn + 1, where gn =
∑

x<an
g(x). Let cn = gn + 1.

Otherwise, let s− < s be the last stage when n was in ΓA,B .

We define both an and elements of Bn as big numbers if between stages s− and s

there is some l � n such that l leaves ΓA,B or n is a threshold of some N-strategy

and this N-strategy requires that an and Bn be redefined big. Again we let Bn

have size gn + 1, where gn =
∑

x<an
g(x). Set cn = gn + 1. In the former case we

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 187

extract all elements � bcm [s + 1] in Bm for m � n from B to remove m from

ΓA,B .

If there is no such l or N-strategy, redefine an as before and Bn as a new block

consisting of big elements. We let Bn have size gn + 1, where gn =
∑

x<an
g(x).

Set cn = gn + 1.

In all cases, enumerate all numbers from Bn into B and the axiom

〈n, As+1 � an + 1,
⋃

m�n

Bm[s + 1]〉

into Γ.

— n /∈ K .

Find the valid axiom in Γ for n (if any), 〈n, At �an +1,Mn〉 say, and let t < s+1

be the stage at which 〈n, At � an + 1,Mn〉 is enumerated into Γ. Extract all

elements � bcm [s + 1] in Bm,m � n, from B to remove m from ΓA,B . This action

removes all m � n from ΓA,B .

Now we construct a path δs+1 of length � s through the tree T . Each node α ⊆ δs+1

is said to be visited at stage s + 1.

Construction of δs+1

We will define δs+1(n) for n < s + 1 by induction on n. If n = s + 1, we stop stage

s + 1 and go to the next stage. Suppose δs+1(i − 1) is defined. We let δs+1 � i be α,

a strategy working on the requirement NΦi
. When α is visited for the first time after

being initialised, it starts from Setup to define kα, the threshold of α, and we define

δs+1 = α and go to the next stage. Otherwise, we go to the Attack part.

Setup

If a threshold kα has not been defined or is cancelled, we define it as a big number –

bigger than any element that has appeared so far in the construction.

Attack

1 If xα has no definition at stage s, define xα as a big number and let δs+1 = α. Go to

the next stage.

2 If γs(kα) has not been defined yet, let δs+1 = α. Go to the next stage.

3 If α is declared to be satisfied at (the last one) stage t < s and the associated guess

Ât is not contained in As+1, let the outcome of α be 0 (satisfied). Go to the next

substage.

4 If none of 1–3 applies and xα is not in ΦB
α [s+1], let the outcome of α be 1 (waiting).

Go to the next substage.

5 If none of 1–3 applies and xα is in ΦB
α [s + 1], enumerate into Uα a new guess

Âs+1 = As+1 �akα [s+1]. Extract bckα [s+1] from B. Decrease ck(α) by one. (This action

moves n out of ΓA,B for each n � kα.)

Cancel all the markers an and Bn for n � kα, and request that akα and Bkα be defined

as big numbers.

Let δs+1 = α. Initialise all the strategies of lower priority and go to stage s + 1.

This completes the construction of B.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 188

Verification

As in Section 3, we can now verify that the constructed B satisfies all the requirements.

Define the true path f ∈ [T] as the limit of δs, s ∈ ω, as in Section 3. We can now prove

the following crucial lemma in a similar way.

Lemma 4.1. For each n, let tn be the last stage at which f �n is initialised. The following

are true:

(0) tn exists.

(1) There is a stage t1(n) � tn after which f �n cannot be reset again.

(2) There is a stage t2(n) � t1(n) after which f �n does not act according to the A-changes

in the A-Check part or in the Attack part. In particular, after stage t2(n), f � n does

not initialise lower priority strategies and does not affect the definition of Γ.

(3) f(n) is defined. That is, after a stage t3(n) � t2(n) for any s > t3(n), we have

f �n�O ⊆ δs, where O is the true outcome of f �n.

Proof. We prove the lemma by induction on n. Suppose (0)–(3) are all true for m < n.

We will prove that (0)–(3) are also true for n. Let f �n = α. It is easy to see that tn exists

from the assumption that (0)–(3) are true for f � (n − 1). In particular, by (3), after a late

enough stage, whenever f � (n − 1) is visited, f �n is also visited, so the construction never

goes to the left of f �n again. Thus (0) is true for n.

Let s0 be the first α-stage after tn. At this stage α defines kα and will never redefine it

again, modulo finitely many occurrences of shifting when the selected kα enters K . As K

is infinite, such a shifting process can happen at most finitely often. Let s1 � s0 be the

last stage after which such a shifting never happens again.

We now show that α can be reset at most finitely often. In the construction, only A-

changes and K-changes can reset α. First, after stage s1, α can be reset by the K-changes

only finitely often as kα is fixed. So there is a stage s2 � s1 after which K never changes

below this kα, and thus α will never again be reset by the K-changes. As Uα can only be

cancelled when α is initialised or reset by the K-changes, Uα can never be cancelled after

stage s2.

To prove that α can be reset by the A-changes only finitely often, as A is Δ0
2, we

only need to prove by induction that after a late enough stage s3 � s2, for any j < kα,

if γ(j) is defined, then aj[s3] is fixed, which is obviously true. Let t1(n) = s3. Then

after stage t1(n) no A-changes can reset α again (correspondingly, to ensure that the

construction of ΓA,B follows the one axiom rule, no bj with j < kα will be extracted from B to

rectify ΓA,B).

As Uα can only be cancelled when α is initialised or reset, we know that Uα can never

be cancelled after stage t1. Thus (1) is true for n.

We now prove (2). By the choice of s3 above, we assume that for each j < kα,we have

aj is fixed and A does not change below aj again.

In order to show a contradiction, suppose that α acts infinitely many times. As A is Δ0
2,

for a particular akα [s], A can change below it at most finitely often. Therefore, α reaches

Case 5 in the Attack part infinitely often, each time a guess Âs(= As �akα [s] + 1) of A for

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 189

some s is put into Uα, and akα is required to be defined bigger. Let

s′
1 < s′

2 < · · · < s′
m < · · ·

be the list of these stages after stage s3 at which α reaches Case 5 through akα [s
′
i],

respectively.

We claim that for each i, Âs′
i

⊂ A. Assume this is not the case, and let y be in Âs′
i
,

but not in A. Then this y is less than akα [s
′
i] + 1 and can provide chances for α to do an

action in the A-Check part, so, eventually, α will be satisfied forever through this y (see

next paragraph), and α will do no more actions in the construction, which contradicts our

assumption.

We now show that this y enables us to satisfy α. Note that at stage s′
i, at Case 5, xα

is enumerated into ΦB
n by an enumeration, and the action we did then was to extract

bckα [s
′
i] from B to remove all l � kα from ΓA,B . If before stage s′

i+1 some element, z, in

Âsi leaves A, then bkα [s
′
i] is put into B to re-enumerate xα into ΦB

n . By our choice of s′
i+1

(by our assumption, it exists), this z must enter A again between s′
i and s′

i+1, and, as a

consequence, bckα [s
′
i+1], which is less than bckα [s

′
i], is removed from B. As A is Δ0

2, and we

assume that y is not in A, there is a (biggest) j such that y is in Âs′
i+j

and y leaves A after

stage s′
i+j . As y is also in As′

i+j
and y is less than bckα [s

′
i+j], when y leaves A again, bckα [s

′
i+j]

is enumerated into B, and, as a consequence, xα is enumerated into ΦB
n again. After this,

y remains out of A, so Âs′
i+j

�⊂ A afterwards, and α is satisfies forever.

We can conclude from the above claim that A is computably enumerable as follows:

for each x, x is in A if and only if x is in Âs′
i
for some i. This contradicts our assumption

that A is not computably enumerable.

Therefore, α can act at most finitely often and (2) is true for α. Let t2(n) be the last

stage at which α acts.

Now we can see that after t2(n) the Attack part is always at Case 3 (satisfied) or Case 4

(waiting). Correspondingly, α will always have outcome 0 or 1, respectively. If α remains

at Case 4, then after stage t2(n), xα can never be enumerated into ΦB
n . If α stops at Case 3,

stage t2(n) is the last stage at which α acts, and at this stage a number y, as mentioned

above, is found and never enters A afterwards.

Let O be the true outcome of α. Then after stage t2(n), whenever α is visited, α�O is

also visited and (3) is proved.

This completes the proof of the lemma.

Following Lemma 4.1, we get the following two lemmas immediately.

Lemma 4.2. f is well defined and infinite.

Now we show that the constructed B is a 3-c.e. set.

Lemma 4.3. B is a 3-c.e., as required.

Proof. Note that in the construction whenever we extract a number from B to lift the

γ uses, we can always do so because we can select an first, and then using the change-

bounding function, g, we select Bn with enough elements. We only need to show that

every number is extracted from B at most once, and hence B is 3-c.e.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

M. Soskova and G. Wu 190

Fix n. We consider a γ-use, γ(n).

If n is not a threshold of some N-strategy, then for any an, Bn, selected in the

construction, there are two cases:

— One case is when we either keep all elements of Bn in B because n is in K and A

does not have changes below an, or we are not allowed to remove elements from B

because some strategy α with kα < n goes to Case 5 in the Attack part. In this case

some element from Bkα is removed from B, and moves n out of ΓA,B .

— The other case is when A changes below an later and we are allowed to move all

elements of Bn out. In this case we just do it, and define Bn later as a set of bigger

numbers. After this stage, no element in this old Bn can be enumerated into B again.

If n is a threshold of some N-strategy α, kα say, there are three cases. The first two cases

are exactly the same as the cases discussed in the last paragraph. We now consider the

third case: α attacks at Case 5 of the Attack part by extracting bckα , m say, from B when

we see that some Ât �⊂ A. Note that ckα is decreased by one, and the new bckα is different

from the previous one, m. If after this stage we never have Case 2 for this particular α, we

can never re-enumerate this m into B. Otherwise, m is re-enumerated into B during the

A-check, and from that point on we wait for Ât �⊂ A to happen again or for a new Bkα to

be defined. If Ât �⊂ A happens first, we extract bckα , the new one, from B. Otherwise, we

have a new Bkα , and we will take bckα from this new Bkα . Of course, m is not in this new

Bkα . In any case, m can be removed from B at most once.

The next lemma states that all the N-requirements are satisfied.

Lemma 4.4. Every N-requirement is satisfied.

Proof. Fix n and let α be a Nn-strategy on f. By Lemma 4.1, there is a late enough

stage, t, after which α cannot be initialised or reset again, α will not act again in the

remainder of the construction. Also, we can assume that α has true outcome O, and after

stage t, each stage is an α�O-stage.

There are two cases:

— O is 1.

Then after stage t in the construction, α is always in Case 4, which means that no

axiom will enumerate xα into ΦB
n , so E(xα) = 1 �= 0 = ΦB

n (xα), and Nn is satisfied.

— O is 0.

Then α is always in Case 3 after stage t, which means that at the last stage when α acts,

xα is actually enumerated into ΦB
n and extracted from E. As described in Lemma 4.1,

the enumeration of ΦB
n (xα) is clear of the γ-uses, and hence it is preserved. Again, Nn

is satisfied.

Exactly the same argument in the proof of Lemma 3.4 shows that the S is satisfied.

Lemma 4.5. The S requirement is satisfied. That is, for any n, we have ΓA,B(n) = K(n).

This completes the proof of Theorem 1.3.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

Cupping Δ0
2 enumeration degrees to 0′

e 191

References

Cooper, S. B. (1982) Partial degrees and the density problem. J. Symb. Log. 47 854–859.

Cooper, S. B. (1984) Partial Degrees and the density problem, part 2: the enumeration degrees of

the Σ2 sets are dense. J. Symb. Log. 49 503–513.

Cooper, S. B. (1990) Enumeration reducibility, nondeterministic computations and relative compu-

tability of partial functions. In Recursion Theory Week, Oberwolfach 1989. Springer-Verlag

Lecture Notes in Mathematics 1432 57–110.

Cooper, S. B. (2004) Computability Theory, Chapman and Hall/CRC Mathematics.

Cooper, S. B. and Copestake, C. S. (1988) Properly Σ2 enumeration degrees. Zeits. f. Math. Logik. u.

Grundl. der Math. 34 491–522.

Cooper, S. B., Sorbi, A. and Yi, X. (1996) Cupping and noncupping in the enumeration degrees of

Σ0
2 sets. Ann. Pure Appl. Logic 82 317–342.

Copestake, K. (1988) 1-Genericity enumeration Degrees. J. Symb. Log. 53 878–887.

Copestake, K. (1990) 1-Genericity in the enumeration degrees below 0′
e. In: Petkov, P. P. (ed.)

Mathematical Logic, Plenum Press 257–265.

Gutteridge, L. (1971) Some Results on Enumeration Reducibility, Ph.D. thesis, Simon Fraser

University.

Soare, R. I. (1987) Recursively enumerable sets and degrees, Springer-Verlag.

Soskova, M. and Wu, G. (2007) Cupping Δ0
2 enumeration degrees to 0′

e (extended abstract). In:

Computability in Europe 2007. Springer-Verlag Lecture Notes in Computer Science 4497 727–738.

https://doi.org/10.1017/S0960129508007378 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007378

