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Abstract

In this paper we consider the problem of simultaneously estimating rare-event probabili-
ties for a class of Gaussian random fields. A conventional rare-event simulation method is
usually tailored to a specific rare event and consequently would lose estimation efficiency
for different events of interest, which often results in additional computational cost in
such simultaneous estimation problems. To overcome this issue, we propose a uniformly
efficient estimator for a general family of Hölder continuous Gaussian random fields. We
establish the asymptotic and uniform efficiency of the proposed method and also conduct
simulation studies to illustrate its effectiveness.
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1. Introduction

Consider a continuous Gaussian random field {f (t) : t ∈ T } with zero mean and unit
variance, living on a d-dimensional compact set T ⊂ Rd ; that is, for every finite subset of
{t1, . . . , tn} ⊂ T , (f (t1), . . . , f (tn)) is a multivariate Gaussian random vector with Ef (ti) = 0
and var(f (ti)) = 1 for i = 1, . . . , n. We are interested in estimating the tail probability

wσ,μ(b) = P

(
sup
t∈T

{σ(t)f (t) + μ(t)} > b
)

as b → ∞,

simultaneously for a class of continuous mean and variance functions μ(t) and σ 2(t), where
the functions μ(t) and σ 2(t) may be unspecified and known only to be in certain ranges.

The extremes of Gaussian random fields have wide applications in finance, spatial analysis,
physical oceanography, and many other disciplines; see [4] and [5]. Tail probabilities of
the extremes have been extensively studied in the literature, with its focus mostly on the
development of approximations and bounds for the suprema; see, e.g. [1], [7], [9]–[13], [18],
[19], and [29]–[33]. Tail probabilities of other convex functions of Gaussian random fields
have also been studied; see [21], [23], [25], and [28],

Most of the sharp theoretical approximations developed in the literature require the evaluation
of certain constants that are hard to estimate, such as Lipschitz–Killing curvatures and Pickands’
constant. Moreover, although the asymptotic results may provide good approximations for large
tail values as b → ∞, evaluation of the approximation results for finite b may be challenging and
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it is often unclear how large the tail values need to be to ensure the approximations are within an
acceptable range relative to the quantity of interest. Therefore, to evaluate the tail probabilities,
rare-event simulation serves as an appealing alternative from a computational point of view.
In particular, the design and the analysis do not require very sharp approximations of the tail
probabilities. Importance sampling-based efficient simulation procedures have been proposed
in the literature to estimate the tail probabilities. Numerical methods for rare-event analysis of
the suprema were studied in [2] and [3]; see also [8], [20], [24], [26]–[28], and [34] for related
studies.

To design an asymptotically efficient importance sampling estimator, one needs to construct
a change of measure that is tailored to a specific event. Such a construction usually requires
detailed information of the Gaussian random fields, such as μ(t) and σ(t) where computation is
sometimes intensive. In addition, the specific form of the change of measure is sensitive to μ(t)

and σ(t) in the sense that the entire simulation needs to be redone even if there is a tiny change of
the system. This often leads to additional computational overheads, especially at the exploratory
stage when one often needs to tune different model parameters. This motivates us to find a single
Monte Carlo scheme that is efficient for a class of distributions. An advantage of such uniformly
efficient methods is that there is no need to regenerate samples if there is a change in the original
system and one just needs to recompute the importance weights. This could save substantial
computational time. Moreover, this may help to efficiently estimate many probabilities for a
certain range of mean and variance parameter values, which are often of practical importance.
For instance, in finance risk analysis, there is often uncertainty surrounding the true population
values for the mean and variance; portfolio credit risk management may require the estimation
of the tail probabilities of extremes for a family of Gaussian processes; in physical system
reliability analysis, we may need to evaluate the failure probability for a range of system
parameters.

To address the above issues, this study focuses on the problem of the simultaneous efficient
estimation of wσ,μ(b) for all possible μ(t) ∈ [μl, μu] and σ 2(t) ∈ [σ 2

l , σ 2
u ], t ∈ T , where

μl ≤ μu ∈ R and σl ≤ σu ∈ (0, ∞) are constants that are prespecified. We propose a
mixture type change of measure that yields a uniformly efficient estimation (criterion defined
in Section 2). In particular, the uniform efficiency result holds for general Hölder continuous
Gaussian random fields and therefore it is applicable to most of the practical problems.

The remainder of the paper is organized as follows. In Section 2 we introduce some
notions of efficiency and computational complexity under the setting of rare-event simulation.
In Section 3 we provide the construction of our importance sampling estimator and present
the main properties of our algorithm. Numerical simulations are conducted in Section 4 and
detailed proofs of our main theorems are given in Section 5.

2. Efficiency criteria

2.1. Efficiency of rare-event simulation and importance sampling

We first introduce some general notions of rare-event simulations. Given that the tail
probability wσ,μ(b) converges to 0, it is usually meaningful to consider the relative error of
a Monte Carlo estimator L(b) with respect to wσ,μ(b). This is because a trivial estimator
L∗(b) ≡ 0 has an error |L∗(b) − wσ,μ(b)| = wσ,μ(b) → 0. In the literature of rare-event
simulation (see, e.g. [3], [6], and [17]), one usually employs the concept of polynomially
efficiency as an efficiency criterion.
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Definition 1. (Polynomial efficiency.) An estimator L(b) is said to be polynomially efficient
with order q in estimating wσ,μ(b) if EL(b) = wσ,μ(b) and there exist constants q ≥ 0 and
b0 ≥ 0 such that

sup
b≥b0

var(L(b))

| log wσ,μ(b)|qw2
σ,μ(b)

< ∞.

When q = 0, L(b) is also called strongly efficient.

To illustrate this efficiency criterion, we compare a polynomially efficient estimator with a
standard Monte Carlo estimator. Suppose that we want to estimate wσ,μ(b) with certain relative
accuracy with a high probability. That is, we would like to have an estimator Z(b) such that
for some prescribed ε, δ > 0,

P

(∣∣∣∣ Z(b)

wσ,μ(b)
− 1

∣∣∣∣ > ε

)
< δ. (1)

If a standard Monte Carlo simulation method is used, then it requires at least n = O(ε−2δ−1

w−1
σ,μ(b)) independent and identically distributed (i.i.d.) replicates, according to the central

limit theorem. By the Borell–Tsirelson–Ibragimov–Sudakov (Borell–TIS) lemma (Lemma 3),
we know that wσ,μ(b) ≤ exp{−(1 + o(1))b2/(2 supt∈T σ 2(t))}. Therefore, n has to grow at
an exponential rate in b2. On the contrary, suppose that a polynomially efficient estimator of
wσ,μ(b) has been obtained, denoted by L(b). Let {L(j)(b) : j = 1, . . . , n} be n i.i.d. copies
of L(b). Then the averaged estimator Z(b) = (1/n)

∑n
j=1L

(j)(b) has a mean-squared error
(MSE) E[Z(b) − wσ,μ(b)]2 = var(L(b))/n. A direct application of Chebyshev’s inequality
yields

P

(∣∣∣∣ Z(b)

wσ,μ(b)
− 1

∣∣∣∣ ≥ ε

)
≤ var(L(b))

nε2w2
σ,μ(b)

. (2)

Thus, if L(b) is a polynomially efficient estimator with the order q, it suffices to simulate
n = ε−2δ−1| log wσ,μ(b)|q = O(ε−2δ−1b2q) i.i.d. replicates of L(b) to achieve the accuracy
in (1). Compared with the standard Monte Carlo simulation, polynomially efficient estimators
reduce the computational cost substantially for large b.

Remark 1. In the rare-event analysis literature, another widely used efficiency criterion is that
of weak efficiency [6]. An estimator L(b) is said to be weakly efficient in estimating wσ,μ(b),
if EL(b) = wσ,μ(b) and, for all positive constants ε > 0,

lim sup
b→∞

var(L(b))

w2−ε
σ,μ (b)

= 0.

It is easy to verify that if L(b) is polynomially efficient then L(b) is also weakly efficient. That
is, polynomial efficiency is a stronger criterion than the weak efficiency.

To construct polynomially efficient estimators, importance sampling is a commonly used
method for the variance reduction. In particular, we have

wσ,μ(b) = E[1(supt∈T {σ(t)f (t) + μ(t)} > b)]
= EQ

[
dP

dQ
1(supt∈T {σ(t)f (t) + μ(t)} > b)

]
,

where 1(·) denotes the indicator function, Q is a probability measure that is absolutely con-
tinuous with respect to P on the set {supt∈T {σ(t)f (t) + μ(t)} > b}, and we use E and EQto
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denote the expectations under the measures P and Q, respectively. Then the random variable
defined by

Lσ,μ(b) = dP

dQ
1(supt∈T {σ(t)f (t) + μ(t)} > b)

is an unbiased estimator of wσ,μ(b) under the measure Q. To have an efficient estimator, we want
to choose Q such that the variance varQ(Lσ,μ(b)) is small. It is straightforward to show that the
optimal change of measure is the conditional probability Q∗(·) := P(· | supt∈T {σ(t)f (t) +
μ(t)} > b) = P(· ∩ {supt∈T {σ(t)f (t) + μ(t)} > b})/wσ,μ(b), for which the corresponding
importance sampling estimator has a zero variance. However, Q∗ cannot be implemented
in practice because wσ,μ(b), the probability of interest, is unknown beforehand. Therefore,
constructing an efficient change of measure usually involves analysis and approximation of the
optimal change of measure Q∗.

2.2. Nonuniformly efficient issue and an example

Various importance sampling estimators for rare-event analysis of the suprema of Gaussian
random fields have been studied in [2], [3], [8], and [20]. As the measure Q∗ depends on
the mean and variance function σ(·) and μ(·), the designed measures usually depend on
the μ(·) and σ(·) as well. As a consequence, a measure Q that gives an efficient estimator
Lσ,μ(b) = (dP/dQ) 1(supt∈T {σ(t)f (t) + μ(t)} > b) for wσ,μ(b) may no longer be efficient
for estimating wσ ′,μ′(b), where σ ′(t) and μ′(t) are two different variance and mean functions.
That is, the corresponding importance sampling estimator based on Q,

Lσ ′,μ′(b) := dP

dQ
1(supt∈T {σ ′(t)f (t) + μ′(t)} > b),

may not be an efficient estimator for wσ ′,μ′(b) .
To illustrate the nonuniform efficiency issue, we take the estimator proposed in [3] as an

example. For simplicity, we consider the case when T contains finite points and write T :=
{t1, . . . , tM}.

For known μ and σ , Adler et al. [3] proposed the following simulation procedure.

Algorithm 1. (Sampling procedure proposed by Adler et al. [3].) The algorithm proceeds as
follows.

Input: T = {t1, . . . , tM}.
1 Simulate a random variable τ ∈ {t1, . . . , tM} according to the following probability

measure:

P(τ = ti ) = P(σ (ti)f (ti) + μ(ti) > b)∑M
j=1 P(σ (tj )f (tj ) + μ(tj ) > b)

.

2 Given the realized τ , simulate f (τ) conditional on σ(τ)f (τ) + μ(τ) > b.

3 Given (τ, f (τ )), simulate the rest {f (t) : t �= τ, t ∈ T } from the original conditional
distribution under P.

Output: f (t) for t ∈ T .

Let Q† be the corresponding change of measure. We have

dQ†

dP
=

∑M
i=1 1(σ (ti)f (ti) + μ(ti) > b)∑M
i=1 P(σ (ti)f (ti) + μ(ti) > b)

.
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Adler et al. [3] showed that Lσ,μ(b) = (dP/dQ†) 1(supt∈T {σ(t)f (t) + μ(t)} > b) is a polyno-
mially efficient estimator for wσ,μ(b) with order q = 0. We explain intuitively why this estima-
tor is efficient. First,Algorithm 1 samples a random index τ whose distribution is approximating
that of t∗ := arg maxti (σ (ti)f (ti) + μ(ti)). Second, it simulates f (τ) approximately from the
conditional distribution P(f (t∗) ∈ · | f (t∗) > b). Finally, Algorithm 1 simulates the f (t)

at t �= τ according to the original conditional distribution given (f (τ ), τ ). Combining these
three steps, the entire sample path {f (t) : t ∈ T } generated from Algorithm 1 approximately
follows the conditional distribution {f (t) : t ∈ T | maxti (σ (ti)f (ti) + μ(ti)) > b}. According
to the earlier discussion, this conditional probability measure is the optimal change of measure.
See [3] for rigorous justifications of the above statements.

Let μ′ and σ ′ be a different mean and variance function. We present Proposition 1 for the
estimator

Lσ ′,μ′(b) := dP

dQ† 1(supt∈T {σ ′(t)f (t) + μ′(t)} > b).

Proposition 1. Let μ′(t) = μ(t) = 0 for all t ∈ T .

(i) If σ ′(t) ≤ σ(t) for all t ∈ T and maxti∈T σ ′(ti) < maxti∈T σ (ti), then, for some constant
ε > 0,

lim
b→∞

EQ† [(dP/dQ†)2; maxti∈T σ ′(ti)f (ti) > b]
w2−ε

σ ′,μ(b)
= ∞.

(ii) If maxti∈T σ ′(ti) > maxti∈T σ (ti) then dP/dQ† is not well defined on the event

{maxti∈T σ ′(ti)f (ti) > b}.
According to the definition of the weakly efficient estimator in Remark 1, Proposition 1(i)

implies that Lσ,μ(b) is not weakly efficient for estimating wσ ′,μ′(b) if maxti∈T σ ′(ti) >

maxti∈T σ (ti), and is therefore not polynomially efficient. Proposition 1(ii) implies that the
estimator Lσ,μ(b) is not well defined when maxti∈T σ ′(ti) > maxti∈T σ (ti). Therefore, for
each Lσ,μ(b), there always exist mean and variance functions μ′(·), σ ′(·) such that μ′(t) ∈
[μl, μu], σ ′(t) ∈ [σl, σu] and Lσ,μ(b) is not (weakly) efficient for estimating wσ ′,μ′(b). We use
a simple numerical study to further illustrate this.

Example 1. Consider i.i.d. standard normal random variables {f (t), t = 1, . . . , 100}. For
simplicity, we take μ(t) = 0 and σ(t) = σ for all t . We are interested in the probabil-
ity P(σ maxt f (t) > b) for σ ∈ [0.3, 1.0] and b = 3. This is equivalent to simulating
P(maxt f (t) > b) for all b ∈ [3, 10]. In Table 1 we present the simulation results for σ = 0.3,
0.6, and 1.0, from Algorithm 1, where the change of measure is constructed based on σ = 1.
The results are based on 104 independent simulations. We report the estimated tail probability
(EST), the estimated standard deviation (SD) of Lσ,μ(b), and the coefficient of variation (CV),
which is the ratio SD/EST. We also state the theoretical values of the tail probabilities, that is,
P(maxi f (ti) > b/σ) = 1 − �(b/σ)100, where �(x) = ∫ x

−∞(1/
√

2π)e−t2/2 dt denotes the
left tail probability of the standard Gaussian distribution. We can see that the estimator is more
efficient when the value of σ is equal to the designed value 1 and less for other values of σ .
In particular, when σ = 0.3, it yields the estimated value 0.

The above nonuniform efficiency result can be extended, using similar techniques, to the
importance sampling estimators of [3] when {f (t), t ∈ T } is a continuous Gaussian random
field. It can also be extended to the case when other change of measures are used such as [20].
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Table 1: Estimates based on Algorithm 1.

σ EST SD CV Theoretical value

0.3 0 0 – 7.62 × 10−22

0.6 1.35 × 10−5 1.35 × 10−3 1.00 × 10−2 2.87 × 10−5

1.0 1.26 × 10−1 2.32 × 10−2 1.84 × 10−1 1.26 × 10−1

In general, if the construction of a rare-event change of measure relies heavily on the mean and
variance functions, then it would not be efficient for another set of functions.

2.3. Uniform efficiency

In applications, one is often interested in estimating many probabilities for a certain range of
mean and variance parameter values, such as evaluating the tail probabilities of a loss distribution
for a range of loss thresholds in portfolio credit risk management (e.g. [15] and [16]). This
motivates us to construct a change of measure such that the corresponding importance sampling
estimator Lσ,μ(b) is polynomially efficient for a family of functions μ and σ . In particular, in
this paper we consider μ and σ satisfying the following condition.

(C1) For all t ∈ T , μ(t) ∈ [μl, μu] and σ 2(t) ∈ [σ 2
l , σ 2

u ]. Moreover, μ and σ are Hölder
continuous in the sense that there exist positive constants κH and β > 0 such that for all
s, t ∈ T , |σ(t) − σ(s)| + |μ(t) − μ(s)| ≤ κH|s − t |β .

Denote by C(μl, μu, σl, σu, β, κH) the class of functions σ(·) and μ(·) that satisfy condi-
tion (C1). We introduce the following uniform efficiency criterion.

Definition 2. (Uniform polynomially efficient change of measure.) We say that a change of
measure Q is uniformly polynomially efficient with order q ≥ 0 if there exists a constant
b0 ≥ 0 such that the importance sampling estimator

Lσ,μ(b) = dP

dQ
1(supt∈T {σ(t)f (t) + μ(t)} > b)

satisfies

sup
b≥b0, μ,σ∈C(μl,μu,σl ,σu,β,κH)

var(Lσ,μ(b))

| log wσ,μ(b)|qw2
σ,μ(b)

< ∞.

Similar to the previous discussion, we consider the relative accuracy of a class of importance
sampling estimators corresponding to a uniformly polynomially efficient change of measure.
Let the Q be uniformly polynomially efficient for σ(·), μ(·) ∈ C(μl, μu, σl, σu, β, κH). Then,
according to (2), there exists some κu > 0 such that the averaged estimator Zσ,μ(b) =
(1/n)

∑n
i=1L

(i)
σ,μ(b), based on n = κub

2qδ−1ε−2 i.i.d. Monte Carlo samples, satisfies

sup
(σ,μ)∈C(μl,μu,σl ,σu,β,κH)

P(|Zσ,μ(b) − wσ,μ(b)| > εwσ,μ(b)) < δ.

Remark 2. Although in this paper we focus on rare-event simulation for the extremes of
Gaussian random fields, the uniform efficiency criterion as well as the proposed method can be
easily extended to other Gaussian-related rare-event problems, such as the exponential integrals
of Gaussian random fields (see, e.g. [27] and [28]) where the mean and variance functions
are unspecified and we are interested in estimating a family of tail probabilities. Moreover,
the proposed method can be extended to the estimation of non-Gaussian tail probabilities.
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For instance, in statistical hypothesis testing, with data generated independently from certain
distribution with unknown parameters that are of interest, it often necessary to evaluate the test
power/error probabilities for a range of model parameters as the sample size increase; see [22]
for an example.

Remark 3. In the literature, a similar uniform efficiency definition was proposed by Glasser-
man and Juneja [16] in order to design an algorithm that is asymptotically efficient uniformly
for a family of probability sets when estimating the tail probabilities of sums of light-tailed
random variables. Unlike in this study, the random variable parameters were assumed to be
known in their case.

3. Uniformly efficient estimation

3.1. Discrete case

We start with the case when T contains finite points and propose a new change of measure
which yields a uniformly efficient estimator. We assume that T := {t1, . . . , tM}. We describe
the new measure Q in two ways. First, we specify the sampling scheme of f under Q and
then provide its Radon–Nikodym derivative with respect to P. Under the measure Q, f (t) is
generated according to the following algorithm.

Algorithm 2. (Simulating f (·) under Q.) The algorithm proceeds as follows.
Input: T = {t1, . . . , tM}, δb = ab−1 for some constant a > 0.

1 Simulate a random variable ς with respect to some positive continuous density function
g on [σl, σu + δ2

b].
2 Simulate a random variable ν with respect to some positive continuous density function

h on [μl, μu + δb].
3 Simulate a random variable τ uniformly over T = {t1, . . . , tM}.
4 Given the realized ς , ν, and τ , simulate f (τ) conditional on ςf (τ) + ν > b.

5 Given (τ, f (τ )), simulate the Gaussian process {f (t) : t �= τ, t ∈ T } from the original
conditional distribution under P.

Output: f (t) for t ∈ T .

For the measure Q defined above, it is not difficult to verify that P and Q are mutually
absolutely continuous with the Radon–Nikodym derivative being

dQ

dP
=

∫ μu+δb

μl

∫ σu+δ2
b

σl

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς)h(ν) dς dν.

This yields the importance sampling estimator

Lσ,μ(b) =
(∫ μu+δb

μl

∫ σu+δ2
b

σl

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς)h(ν) dς dν

)−1

× 1(supi : ti∈T σ (ti)f (ti) + μ(ti) > b). (3)

Note that under Q, if maxti∈T σ (ti)f (ti) + μ(ti) > b then ςf (ti) + ν > b holds for all i,
ς > maxti∈T σ (ti), and ν > maxti∈T μ(ti). Therefore, the change of measure is well defined.
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We take a closer look at the proposed change of measure Q by comparing it with the measure
Q† discussed in Section 2.2. We can see that steps 1 and 2 of Algorithm 1 requires knowledge
of the mean and variance functions μ and σ . When μ and σ are unknown, running Algorithm 1
with a misspecified μ′ and σ ′ may cause inefficiency. The proposed Algorithm 2 avoids this
inefficiency by introducing prior probability density functions g and h. Intuitively, the proposed
algorithm explores each possible value of the mean and variance of the random field at a random
index (steps 1–3), and is a hybrid scheme for all σ(·) and μ(·) that take values in the support
of g and h. In the next proposition we state the uniform efficiency of the proposed change of
measure.

Proposition 2. Let Lσ,μ(b) be defined as in (3). Then there exist constants b0 and κp,
independent of σ(·), μ(·), and b, and, for b ≥ b0,

EQ[L2
σ,μ(b)]

M2b6w2
σ,μ(b)

≤ κp

for all μ and σ satisfying (C1).

Note that | log(wσ,μ(b))| = O(b2). Therefore, from the above proposition we obtain the
uniformly polynomial efficiency of Q with order q = 3 for the discrete case.

Remark 4. The parameter δb in Algorithm 2 is introduced to control the second moment of the
importance sampling estimator. Otherwise, consider the case of constant variance σ ∈ [σl, σu]
and zero mean μ = 0. Then, for σ taking the value of σu, denote the corresponding estimator
by Lσu,N (b) and the second moment of Lσu,N (b) is lower bounded by

EQ[L2
σu,N (b)]

= EQ

[(
dP

dQ

)2

; max
i

σuf (ti) > b

]

= E

[
dP

dQ
; max

i
σuf (ti) > b

]

= E

[(∫ μu

μl

∫ σu

σl

∑M
i=1 1(ςf (ti) > b)

MP(ςf (t1) > b)
g(ς)h(ν) dς dν

)−1

; max
i

σuf (ti) > b

]

≥ P(σlf (0) > b)P(max
i

σuf (ti) > b)

× E

[(∫ μu

μl

∫ σu

σl

1(maxif (ti) > ς−1b)g(ς)h(ν) dς dν

)−1 ∣∣∣∣ maxi f (ti) > σ−1
u b

]
.

However, the conditional expectation cannot be controlled and we see that the estimator
Lσu,N (b) is not efficient for σ = σu.

Remark 5. To evaluate the Radon–Nikodym derivative in (3), we need to calculate the integral

∫ μu+δb

μl

∫ σu+δ2
b

σl

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς)h(ν) dς dν.

Define

l(z) =
∫ μu+δb

μl

∫ σu+δ2
b

σl

1(ςz + ν > b)

�̄((b − ν)/ς)
g(ς)h(ν) dς dν,
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where �̄(x) = ∫ ∞
x

(1/
√

2π)e−t2/2 dt is the right tail probability of a standard Gaussian
distribution. Then we have∫ μu+δb

μl

∫ σu+δ2
b

σl

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς)h(ν) dς dν = 1

M

M∑
i=1

l(f (ti)).

Therefore, we need to evaluate only l(f (ti)) for all f (ti) simulated by Algorithm 2. We use
the following simplification for the function l(z). Let s = (b − ν)/ς . Then

l(z) =
∫ ∫

b−ςs∈I1, ς∈I2, s<z

ς

�̄(s)g(ς)h(b − sς) dς ds
,

=
∫

s<z

1

�̄(s)

∫
ς∈(b/s−(1/s)I1)∩I2

ςh(b − sς)g(ς) dς ds, (4)

where I1 = [μl, μu + δb], and I2 = [σl, σu + δ2
b]. We can then choose h(·) and g(·) so that the

inner integral in (4) has a closed-form expression. In particular, in the numerical examples in
this paper, we choose g(·) and h(·) to be the density functions of uniform distributions. In this
case, let r(s) = 1

2 (σu + δ2
b − σl)

−1(μu + δb − μl)
−1

∫
ς∈(b/s−(1/s)I1)∩I2

dς2. Then l(z) can be
further simplified as

l(z) =
∫ z

−∞
r(s)

�̄(s)
ds,

which is a one-dimensional integral and can be evaluated numerically.

3.2. Continuous case

Direct simulation of a continuous random field is typically not a feasible task, and the
change of measure proposed in the previous subsection is not directly applicable. Thus, we use
a discrete object to approximate the continuous fields for the implementation. In particular,
we create a regular lattice covering T in the following way. Let GN,d be a countable subset
of Rd : GN,d = {(i1/N, i2/N, . . . , id/N) : i1, . . . , id ∈ Z}. That is, GN,d is a regular lattice
on Rd . Furthermore, let

TN = GN,d ∩ T ,

which is the sub-lattice intersecting with T . Since T is compact, TN is a finite set. We enumerate
the elements in TN = {t1, . . . , tM}. Since T is compact, we have M = O(Nd). Let

wσ,μ,N (b) = P

(
sup

ti∈TN

σ (ti)f (ti) + μ(ti) > b
)
.

We use wσ,μ,N (b) as a discrete approximation of wσ,μ(b). We estimate wσ,μ,N (b) by impor-
tance sampling, which is based on the change of measure proposed in Section 3.1. In particular,
we define QN and PN as the discrete versions (on TN ) of Q and P, respectively. Then dQN/dPN

takes the form

dQN

dPN

=
∫ μu+δb

μl

∫ σu+δ2
b

σl

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς)h(ν) dς dν.

Note that here M depends on N and goes to ∞ as N → ∞. This yields the importance
sampling estimator

Lσ,μ,N (b) :=
(∫ μu+δb

μl

∫ σu+δ2
b

σl

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς)h(ν) dς dν

)−1

× 1(supi : ti∈TN
σ (ti)f (ti) + μ(ti) > b).
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The discretization usually introduces bias. In the next two theorems we control the bias and
variance of the estimator Lσ,μ,N (b) under the following conditions.

(C2) There exists a positive constant κm such that supt∈T mint ′∈TN
|t − t ′| ≤ κm/N for all N .

(C3) The Gaussian random field f is almost surely continuous.

(C4) Define the correlation function r(s, t) = E[f (s)f (t)]. There exists β ′ > 0 and κ ′
H > 0

such that

|r(t, s) − r(t ′, s′)| ≤ κ ′
H[|t − t ′|β ′ + |s − s′|β ′ ] for all s, t, s′, t ′ ∈ T .

Theorem 1. Let β∗ = min(β, β ′) and N0(ε, b) = b2/β∗(3d/β∗+2−ε0)ε−2/β∗+ε0 . Under condi-
tions (C1)–(C4), for any ε0 > 0, there exist constants κ0 and b0 such that, for any ε ∈ (0, 1),
if N ≥ N0(ε, b) and b > b0, then

|wσ,μ,N (b) − wσ,μ(b)|
wσ,μ(b)

< ε uniformly for μ, σ ∈ C(μl, μu, σl, σu, β, κH).

Theorem 2. Let N0(ε, b) be defined as in Theorem 1. Under conditions (C1)–(C4), if N ≥
N0(ε, b), then there exist constants b0 > 0 (depending on ε0) and κc > 0 such that

sup
b≥b0, ε∈(0,1)

EQN L2
σ,μ,N (b)

bqw2
σ,μ(b)ε−q1

< κc uniformly for μ, σ ∈ C(μl, μu, σl, σu, β, κH)

with q = 4d/β∗(3d/β∗ + 2 + ε0) + 6 and q1 = 4d/β∗ + 2dε0.

We consider the relative accuracy of the importance sampling estimator based on QN . Let
L

(i)
σ,μ,N (b) be i.i.d. copies of Lσ,μ(b) for i = 1, . . . , n. Let

Zσ,μ,N (b) = 1

n

n∑
i=1

L
(i)
σ,μ,N (b). (5)

With the aid of Chebyshev’s inequality, we have

P(|Zσ,μ,N (b) − wσ,μ(b)| > εwσ,μ(b)) ≤ E[Zσ,μ,N (b) − wσ,μ(b)]2

ε2w2
σ,μ(b)

.

The MSE E[Zσ,μ,N (b) − wσ,μ(b)]2 can be written as

E[Zσ,μ,N (b) − wσ,μ(b)]2 = [E(Zσ,μ,N (b) − wσ,μ(b))]2 + var(Zσ,μ,N (b)).

The first and second terms on the right-hand side of the above display are the squared bias
and the variance of the estimator Zσ,μ,N (b), respectively. If we choose N = N0(εδ

1/2, b)

according to Theorem 1 and let n = 2κcb
qε−q1−2δ−q1/2−1, where q and q1 are defined in

Theorem 2, then the MSE is well controlled relative to wσ,μ(b) and so is the relative accuracy.
We summarize this result in the next corollary.

Corollary 1. Under conditions (C1)–(C4), let Zσ,μ,N (b) be defined as in (5). If we choose
n = 2κcb

qε−q1−2δ−q1/2−1 and N = N0(εδ
1/2, b), then

P

(∣∣∣∣Zσ,μ,N (b)

wσ,μ(b)
− 1

∣∣∣∣ > ε

)
< δ. (6)
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Remark 6. The computational complexity for generating Zσ,μ,N (b) is n multiplied by the
cost for generating one copy of Lσ,μ,N (b). The cost for generating Lσ,μ,N (b) is of order
O(M3) = O(N3d), which is mainly the cost of generating a multivariate Gaussian vector
(step 5 of Algorithm 2). The overall computational cost is also a polynomial in ε, δ, and b.
An algorithm with such a computational cost to achieve (6) is sometimes referred to as a fully
polynomial randomized approximation scheme; see [3] for more details.

4. Simulation studies

In this section we present numerical examples to demonstrate the performance of the
proposed algorithm. All the results are based on n = 104 independent simulations. The
discretization size is chosen as M = 40 in Examples 2–5. In each numerical example, we report
the estimated tail probabilities (EST, as before) along with the estimated standard deviations

(SD, as before), that is, SDQ{Lσ,μ(b)} =
√

varQ{Lσ,μ(b)}. The standard error of the estimator

with 104 Monte Carlo samples is SD /100. We also report the coefficient of variation (CV, as
before) of the estimators, which is the ratio SD/EST of the estimators.

We start with the discrete setting in Example 1, where T = {1, . . . , 100} and {f (t), t =
1, . . . , 100} are i.i.d. standard normal random variables. We take μ(t) = 0 and σ(t) = σ

with σ ∈ [0.3, 1.0] for all t ∈ T , and the probability of interest is P(σ maxt f (t) > b) for
b = 3. In Table 2 we present the simulation results for σ = 0.3, 0.6, and 1.0 using the proposed
method. For different values of σ , the estimates are close to the true values. Compared with
the results of Algorithm 1 (Table 1), the proposed method yields a better overall performance.

We proceed to an example of a continuous Gaussian random field, whose tail probability of
the supremum is in closed form.

Example 2. Consider the Gaussian random field f (t) = X cos t + Y sin t , where X and Y

are independent standard Gaussian variables and T = [0, 3
4 ]. We let b = 4 and consider the

class of constant variance and mean functions: σ(t) = σ and μ(t) = μ, with σ ∈ [ 1
2 , 1] and

μ ∈ [− 1
2 , 1

2 ].
For constant mean and variance functions considered in this example, the probability

P(sup
t∈T

(σf (t) + μ) > b)

is known to be in closed form [1]:

P

(
sup

0≤t≤3/4
(σf (t) + μ) > b

)
= �̄

(
b − μ)

σ

)
+ 3

8π
exp

(
− (b − μ)2

2σ 2

)
. (7)

The simulation results for Example 2 are summarized in Table 3. Similar to Example 1, we report
the estimated probability, the standard deviation of the estimator, and its coefficient of variation.

Table 2: Estimates of wσ (b), SDQ(Lσ,μ(b)), and SDQ(Lσ,μ(b))/wσ (b). All results are based on 104

independent simulations and, thus, the standard errors of the estimates are SDQ(Lσ,μ(b))/100.

σ EST SD CV Theoretical value

0.3 7.55 × 10−22 5.33 × 10−21 7.05 7.62 × 10−22

0.6 2.93 × 10−5 1.33 × 10−4 4.52 2.87 × 10−5

1.0 1.26 × 10−1 5.92 × 10−1 4.69 1.26 × 10−1
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Table 3: Simulation result for Example 2 with b = 4 and δb = 1/b. Theoretical
values are computed according to (7).

σ μ EST SD CV Theoretical value

0.5 0.5 4.18 × 10−12 2.59 × 10−11 6.2 4.01 × 10−12

0.6 0.3 1.03 × 10−9 4.38 × 10−9 4.2 1.01 × 10−9

0.7 0.1 3.34 × 10−8 1.18 × 10−7 3.5 3.43 × 10−8

0.8 −0.1 3.68 × 10−7 1.19 × 10−6 3.2 3.85 × 10−7

0.9 −0.3 2.10 × 10−6 5.97 × 10−6 2.8 2.20 × 10−6

1.0 −0.5 8.11 × 10−6 2.20 × 10−5 2.7 8.18 × 10−6

The theoretical value is computed according to (7). We can see that for all combinations of σ

and μ in Table 3, the estimated probabilities are close to the theoretical values. We also see
that as the probability of interest decreases from 8.18 × 10−6 to 4.01 × 10−12, the CV of the
estimator does not increase substantially (from 2.7 to 6.2). This finding is consistent with our
theoretical efficiency analysis of the proposed estimator.

We proceed to examples where the mean and variance functions are not constants. We con-
sider a continuous and centered Gaussian random field {f (t) : 0 ≤ t ≤ 1}, whose covariance
function is

r(s, t) = E[f (s)f (t)] = e−|s−t |. (8)

In particular, in Example 3 we consider a Gaussian random field with nonconstant mean
and constant variance; in Example 4 we consider a Gaussian field with constant mean and
nonconstant variance; and in Example 5 both mean and variance functions are nonconstant.

Example 3. Consider the Gaussian random field f (t) defined in (8), and the class of variance
and mean functions σ(t) = 1 and μ(t) = β1t for β1 ∈ [− 1

2 , 1
2 ]. The probability of interest is

P(supt∈[0,1] f (t) + β1t > b) for b = 7.

We summarize the simulation results for Example 3 in Figure 1. In Figure 1(a) we present
the scatter plot of the estimated probability (EST) against β1 and in Figure 1(b) we present
the scatter plot of the CV against β1. We see that the probability of interest is an increasing
function in β1. Moreover, when the estimated probability is within the range 1 × 10−11 to
2 × 10−10, the CV of the estimator is always controlled within the range 1.8 to 3.2, showing
good performance of the proposed estimation method.

Example 4. Consider the Gaussian random field {f (t), t ∈ T } defined in (8) and the class of
variance and mean functions σ(t) = 1 − 1

2 (t − β2)
2 and μ(t) = 0, where β2 ∈ [0, 1]. The

probability of interest is P(supt∈[0,1][1 − 1
2 (t − β2)

2]f (t) > b) for b = 7.

For Example 4, the scatter plot of the estimated probability and the CV of the estimator are
presented in Figure 2. Note that in Example 4, the maximum variance maxt∈T var(σ (t)f (t)) =
var(σ (β2)f (β2)) = 1. Therefore, for all β2 ∈ [0, 1], the probability of interest has the same
exponential decay rate

P

(
sup

t∈[0,1]
σ(t)f (t) > b

)
= exp

(
−(1 + o(1))

b2

2 maxt∈T var(σ (t)f (t))

)

= exp

(
− (1 + o(1))b2

2

)
as b → ∞.
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Figure 1: Simulation results for Example 3, where b = 7 and δb = 1/b. (a) Estimates as a function of
β1, (b) CV as a function of β1.

Figure 2: Simulation results for Example 4, where b = 7 and δb = 1/b. (a) Estimates as a function of
β2, (b) CV as a function of β2.

In Figure 2(a), we see that the estimated probability is relatively small when β2 is close to the
boundary values 0 or 1, compared to the case when β2 ∈ [0.2, 0.8], when it is far away from
the boundary values. For β2 ∈ [0.2, 0.8], the estimated probability stays around 9 × 10−12 and
does not fluctuate much. For all β2 ∈ [0, 1], the maximum CV of the estimator is controlled
within the range 5 to 10. This is again consistent with our theoretical results.

Example 5. Consider the Gaussian random field {f (t), t ∈ T } defined in (8), and the class of
variance and mean functions σ(t) = 1 − 1

2 (x − β2)
2 and μ(t) = β1t , where β1 ∈ [− 1

2 , 1
2 ] and

β2 ∈ [0, 1]. The probability of interest is

P

(
sup

t∈[0,1]
{[

1 − 1
2 (t − β2)

2]f (t) + β1t
}

> b
)

for b = 7.
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Table 4: Simulation results for Example 5, where b = 7 and δb = 2/b.

β1 β2 EST SD CV

−0.50 0.00 4.20 × 10−12 4.03 × 10−11 9.6
−0.33 0.17 5.60 × 10−12 3.69 × 10−11 6.6
−0.17 0.33 5.69 × 10−12 3.29 × 10−11 5.8

0.00 0.50 8.78 × 10−12 5.09 × 10−11 5.8
0.17 0.67 2.09 × 10−11 1.27 × 10−10 6.1
0.33 0.83 5.82 × 10−11 4.04 × 10−10 6.9
0.50 1.00 1.16 × 10−10 1.15 × 10−9 9.9

In Table 4 we present the simulated results for different choices of β1 and β2. We see that
the estimated probabilities range from 4.2 × 10−12 to 1.16 × 10−10. The maximum CV in
Table 4 is 9.9. This means that the standard error of the averaged Monte Carlo estimator with
104 samples is controlled within 9.9% × EQLσ,μ(b).

5. Proofs of the main results

Throughout the proofs, we write a(b) = O(c(b)) if there exists a positive constant κ ,
independent of b, σ(·), and μ(·), such that |a(b)|/|c(b)| ≤ κ . We also write a(b) = o(c(b)) if
|a(b)|/|c(b)| → 0 as b → ∞ uniformly in σ(·) and μ(·) satisfying condition (C1). We will
use κ̃ as a generic notation to denote large and ‘not-so-important’ constants (independent of
μ, σ , and b) whose value may vary from place to place. Similarly, we use ε̃ as a generic notation
for small positive constants.

Proof of Proposition 1. (i) We see that if maxti∈T σ ′(ti)f (ti) + μ(ti) > b then

max
ti∈T

σ (ti)f (ti) + μ(ti) > b

always happens and the change of measure is well defined. We have

EQ†
[(

dP

dQ†

)2

; max
ti∈T

σ ′(ti)f (ti) + μ(ti) > b

]

= E

[
dQ†

dP

(
dP

dQ†

)2

; max
ti∈T

σ ′(ti)f (ti) + μ(ti) > b

]

= E

[
dP

dQ† ; max
ti∈T

σ ′(ti)f (ti) + μ(ti) > b

]

= E

[∑M
i=1 P(σ (ti)f (ti) + μ(ti) > b)∑M
i=1 1(σ (ti)f (ti) + μ(ti) > b)

; max
ti∈T

σ ′(ti)f (ti) + μ(ti) > b

]
.

Since
∑M

i=1 1 (σ (ti)f (ti) + μ(ti) > b) ≤ M , the above display is further bounded from below
by

1

M

( M∑
i=1

P(σ (ti)f (ti) + μ(ti) > b)

)
wσ ′,μ(b)

≥ 1

M
max
ti∈T

P(σ (ti)f (ti) + μ(ti) > b)wσ ′,μ(b)
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= exp

{
−(1 + o(1))

b2

2 maxti∈T σ (ti)2 − (1 + o(1))
b2

2 maxti∈T σ ′(ti)2

}
,

where we used the following lemma, whose proof can be found in Section 5.1, to obtain

wσ ′,μ(b) = exp

{
−(1 + o(1))

b2

2 maxti∈T σ ′(ti)2

}
.

Lemma 1. Let {f (t) : t ∈ T } be a centered, unit variance and continuous Gaussian random
field living on a compact set T . Assume that σ(t) > 0 and μ(t) are continuous functions. Then
there exist positive ε̃ such that

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b
)

= exp

(
−(1 + o(1))

b2

2 maxt∈T σ 2(t)

)
,

or

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b
)

≥ ε̃b−1 max
t∈T

exp

(
− (b − μ(t))2

2σ 2(t)

)
.

Under the assumption that maxti∈T σ ′(ti) < maxti∈T σ (ti), we know that, for ε < 1
2 (1 −

max σ ′(ti)/ max σ(ti)),

EQ† [(dP/dQ†)2; maxti∈T σ ′(ti)f (ti) + μ(ti) > b]
w2−ε

σ ′,μ(b)
≥ w−ε

σ ′,μ(b),

which tends to ∞ as b → ∞.
We return to the proof of Proposition 1. (ii) Let t ′max = arg maxt∈T σ ′(t). We consider the

event

F =
{

b

σ ′(t ′max)
< f (t ′max) < min

ti∈T

[
b

σ(ti)

]}
.

Since maxti∈T σ ′(ti) > maxti∈T σ (ti), F is nonempty and F ⊂ {maxti∈T σ ′(ti)f (ti)+μ′(ti) >

b}. Moreover, according to the sampling scheme in Algorithm 1, we have Q†(F ) > 0. On the
other hand, when the event F happens,

∑M
i=1 1 (σ (ti)f (ti) > b) = 0, therefore Q†(dP/dQ† =

∞) ≥ Q†(F ) > 0. In other words, dP/dQ† is not well defined. �

Proof of Proposition 2. Define the random index t∗ := arg maxt∈T [σ(t)f (t) + μ(t)]. We
restrict our analysis to the integral over the region [μ(t∗), μ(t∗) + δb] × [σ(t∗), σ (t∗) + δ2

b]
and arrive at

EQ[L2
σ,μ(b)] = EQ

[(∫ μu+δb

μl

∫ σu+δ2
b

σl

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς) dς dν

)−2

;

max
ti∈T

σ (ti)f (ti) + μ(ti) > b

]

≤ EQ

[(∫ μ(t∗)+δb

μ(t∗)

∫ σ(t∗)+δ2
b

σ (t∗)

∑M
i=1 1(ςf (ti) + ν > b)

MP(ςf (t1) + ν > b)
g(ς)h(ν) dς dν

)−2

;

max
ti∈T

σ (ti)f (ti) + μ(ti) > b

]
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= EQ

[(∫ μ(t∗)+δb

μ(t∗)

∫ σ(t∗)+δ2
b

σ (t∗)

∑M
i=1 1(ςf (ti) + ν > b)

M�̄((b − ν)/ς)
g(ς)h(ν) dς dν

)−2

;

max
ti∈T

σ (ti)f (ti) + μ(ti) > b

]
. (9)

Note that, for all (ς, ν) ∈ [μ(t∗), μ(t∗) + δb] × [σ(t∗), σ (t∗) + δ2
b], we have ςf (t∗) + ν ≥

maxti∈T σ (ti)f (ti) + μ(ti). Therefore, the event maxti∈T σ (ti)f (ti) + μ(ti) > b implies that
ςf (t∗)+ν ≥ b. Consequently,

∑M
i=1 1(ςf (ti)+ν > b) ≥ 1 on the event maxti∈T σ (ti)f (ti)+

μ(ti) > b. Therefore, (9) is further bounded from above by

EQ[L2
σ,μ(b)]

≤ M2EQ

[(∫ μ(t∗)+δb

μ(t∗)

∫ σ(t∗)+δ2
b

σ (t∗)

g(ς)h(ν)

�̄((b − ν)/ς)
dς dν

)−2

; max
ti∈T

σ (ti)f (ti) + μ(ti) > b

]

≤ O(1)M2EQ

[(∫ μ(t∗)+δb

μ(t∗)

∫ σ(t∗)+δ2
b

σ (t∗)
g(ς)h(ν)b exp

(
(b − ν)2

2ς2

)
dς dν

)−2

;

max
ti∈T

σ (ti)f (ti) + μ(ti) > b

]
. (10)

Note that, for all (ς, ν) ∈ [μ(t∗), μ(t∗) + δb] × [σ(t∗), σ (t∗) + δ2
b], we have

b exp

(
(b − ν)2

2ς2

)
= O(1)b exp

(
(b − μ(t∗))2

2σ 2(t∗)

)
.

Therefore, (10) is bounded from above by

EQ[L2
σ,μ(b)]

≤ O(1)M2EQ

[(∫ μ(t∗)+δb

μ(t∗)

∫ σ(t∗)+δ2
b

σ (t∗)
g(ς)h(ν)b exp

(
(b − μ(t∗))2

2σ 2(t∗)

)
dς dν

)−2

;

max
ti∈T

σ (ti)f (ti) + μ(ti) > b

]

= O(1)M2δ−6
b b−2EQ

[
exp

(
− (b − μ(t∗))2

σ 2(t∗)

)
; max

ti∈T
σ (ti)f (ti) + μ(ti) > b

]

≤ O(1)M2δ−6
b b−2 max

ti∈T
exp

(
− (b − μ(ti))

2

σ 2(ti)

)
. (11)

On the other hand, according to Lemma 1, we have

P

(
sup
ti∈T

σ (ti)f (ti) + μ(tti ) > b
)

≥ ε̃b−1 max
ti∈T

exp

(
−b − μ(ti)

2σ 2(ti)

)
.

Combining this and (11), it follows that there exists b0 sufficiently large such that, for b ≥ b0,

EQ[L2
σ,μ(b); maxti∈T σ (ti)f (ti) + μ(ti) > b]

M2b6w2
σ,μ(b)

= O(1). �
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Proof of Theorem 1. Note that as supt∈T σ (t)f (t) + μ(t) ≥ supt∈TN
σ (t)f (t) + μ(t), we

have ∣∣∣P(
sup
t∈T

σ (t)f (t) + μ(t) > b
)

− P

(
sup
t∈TN

σ (t)f (t) + μ(t) > b
)∣∣∣

= P

(
sup
t∈T

σ (t)f (t) + μ(t) > b, sup
t∈TN

σ (t)f (t) + μ(t) ≤ b
)
.

We split the above probability into two parts:

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b, sup
t∈TN

σ (t)f (t) + μ(t) ≤ b
)

= P

(
b < sup

t∈T

σ (t)f (t) + μ(t) ≤ b + γ

b
, sup
t∈TN

σ (t)f (t) + μ(t) ≤ b

)

+ P

(
sup
t∈T

σ (t)f (t) + μ(t) > b + γ

b
, sup
t∈TN

σ (t)f (t) + μ(t) ≤ b

)
,

which is further bounded from above by

P

(
b < sup

t∈T

σ (t)f (t) + μ(t) ≤ b + γ

b

)

+ P

(
sup
t∈T

σ (t)f (t) + μ(t) > b + γ

b
, sup
t∈TN

σ (t)f (t) + μ(t) ≤ b

)
, (12)

where we will choose γ later. We proceed to obtain upper bounds of the above two terms
separately. For the first term, we apply the following lemma.

Lemma 2. (Proposition 6.5 of [3].) Under conditions (C1), (C3), and (C4), for any v > 0,
let β∗ = min(β, β ′) and ρ = 2d/β∗ + dv + 1, where d is the dimension of T . There exist
constants b0, λ ∈ (0, ∞) such that, for all b ≥ b0 ≥ 1,

P

(
max
t∈T

σ (t)f (t) + μ(t) ≤ b + γ

b

∣∣∣∣ max
t∈T

σ (t)f (t) + μ(t) > b

)
≤ λabρ.

With the aid of the above lemma with v = 1/β∗, we have, for b ≥ b0,

P

(
b < sup

t∈T

σ (t)f (t) + μ(t) ≤ b + γ

b

)

= P

(
max
t∈T

σ (t)f (t) + μ(t) > b
)

× P

(
max
t∈T

σ (t)f (t) + μ(t) ≤ b + γ

b

∣∣∣∣ max
t∈T

σ (t)f (t) + μ(t) > b

)

≤ λγ bρP

(
max
t∈T

σ (t)f (t) + μ(t) > b
)

with ρ = 3d/β∗ + 1. We choose γ := 2−1λ−1b−ρε. The above display yields the following
upper bound for the first term in (12):

P

(
b < sup

t∈T

σ (t)f (t) + μ(t) ≤ b + γ

b

)
≤ ε

2
wσ,μ(b).
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We proceed to the second term in (12). According to condition (C2), we have

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b + γ

b
, sup
t∈TN

σ (t)f (t) + μ(t) ≤ b

)

≤ P

(
sup

t,s∈T , |t−s|≤κm/N

|σ(t)f (t) + μ(t) − (σ (s)f (s) + μ(s))| >
γ

b

)
,

which is further bounded from above by

P

(
sup

t,s∈T , |t−s|≤κm/N

|σ(t)f (t) − σ(s)f (s)| + sup
t,s∈T , |t−s|≤κm/N

|μ(t) − μ(s)| >
γ

b

)
. (13)

According to condition (C1), we have

sup
t,s∈T , |t−s|≤κm/N

|μ(t) − μ(s)| = O

(
κ

β∗
m

Nβ∗

)
.

Substituting this into (13), we have

P

(
sup

t,s∈T , |t−s|≤κm/N

|σ(t)f (t) + μ(t) − σ(s)f (s) + μ(s)| >
γ

b

)

≤ P

(
sup

t,s∈T , |t−s|≤κm/N

|σ(t)f (t) − σ(s)f (s)| >
γ

b
− κ

β∗
m

Nβ∗

)
.

We choose N ≥ κ̃λ1/β∗
b(ρ+1)/β∗

ε−1/β∗
for sufficiently large κ̃ , then γ /b − κ

β∗
m (1/Nβ∗

) >

γ/2b. Therefore, we have

P

(
sup

t,s∈T , |t−s|≤κm/N

|σ(t)f (t) + μ(t) − σ(s)f (s) + μ(s)| >
γ

b

)

≤ P

(
sup

t,s∈T , |t−s|≤κm/N

|σ(t)f (t) − σ(s)f (s)| >
γ

2b

)
.

To control the above probability, we use the following lemma, known as the Borell–TIS lemma,
which was proved independently by Borell [10] and Tsirelson et al. [33].

Lemma 3. (The Borell–TIS lemma.) Let {f (t); t ∈ U}, where U is a compact set, be a zero-
mean Gaussian random field with f almost surely bounded on U. Then E[supU f (t)] < ∞
and P(supt∈U f (t)−E[supt∈U f (t)] ≥ b) ≤ exp(−b2/2σU2), where σ 2

U = supt∈U var[f (t)].
We define a new Gaussian random field

ξ(s, t) = σ(s)f (s) − σ(t)f (t).

We use the next lemma to characterize E[supt,s∈T , |t−s|≤κm/Nξ(s, t)] (see Section 5.1 for the
proof).

Lemma 4. For all σ , μ, and f satisfying conditions (C1), (C3), and (C4), there is a uniform
constant κξ > 0 such that

E

[
sup

t,s∈T , |t−s|≤κm/N

|ξ(s, t)|
]

< κξN
−β∗/2 log N.
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Furthermore, the variance of ξ(s, t) is bounded from above by

var(ξ(s, t)) = (σ (s) − σ(t))2 + 2σ(s)σ (t)(1 − r(s, t))

≤ κ2
H|s − t |2β∗ + 2σ 2

u |s − t |β∗

≤ O(|s − t |β∗
). (14)

According to conditions (C1) and (C4), the above display is further bounded from above by

var(ξ(s, t)) ≤ O(N−β∗
).

We choose N such that κξN
−β∗/2 log N ≤ γ /4b. Then, according to the Borell–TIS lemma

and Lemma 4, we have

P

(
sup

|t−s|≤κm/N

|ξ(s, t)| >
γ

4b

)
≤ exp

(
−ε̃

γ 2

N−β∗
b2

)
.

The above display is of order o(εwσ,μ(b)) if γ 2/N−β∗b2 ≥ κ̃β∗
max(− log ε, b2) for a large

enough and possibly different constant κ̃ . Therefore, it is sufficient to choose

N ≥ κ̃ max(− log ε, b2)1/β∗
b2/β∗

γ −2/β∗
(log b)κ̃ .

Combining this with our choice of γ , and recalling our choice of ρ in Lemma 2, it is sufficient
to choose

N ≥ κ̃ max(− log ε, b2)1/β∗
b2/β∗+2/β∗(3d/β∗+1)ε−2/β∗

(log b)κ̃ ,

which is bounded by N0 = b2/β∗(3d/β∗+2+ε0)ε−2/β∗−ε0 for any ε0 > 0 and sufficiently large b.
This completes the proof. �

Proof of Theorem 2. According to Proposition 2 with M = O(Nd), we have

EQ[L2
σ,μ,N (b)] = O(1)N2dδ−6

b w2
σ,μ,N (b).

According to the choice of N0 in Theorem 1, we have

EQ[L2
σ,μ,N (b)] = O(1)b4d/β∗(3d/β∗+2+ε0)+6ε−4d/β∗−2dε0w2

σ,μ,N (b)

uniformly for μ, σ ∈ C(μl, μu, σl, σu, β, κH). �
Proof of Corollary 1. The MSE of Zσ,μ,N (b) is decomposed as the sum of its bias and

variance:

E[Zσ,μ,N (b) − wσ,μ(b)]2 = [EZσ,μ,N (b) − wσ,μ(b)]2 + var(Zσ,μ,N (b))

= [wσ,μ,N (b) − wσ,μ(b)]2 + var(Lσ,μ,N (b))

n
.

Setting ε := εδ1/2 in Theorem 1, we have [wσ,μ,N (b) − wσ,μ(b)]2 < ε2δw2
σ,μ(b)/2 for

N ≥ N(εδ1/2, b). Furthermore, according to Theorem 2, we have var(Lσ,μ,N (b))/n ≤
ε2δw2

σ,μ(b)/2 for n ≥ 2κcb
qε−q1−2δ−q1/2−1. Consequently, for such N and n, we have

E[Zσ,μ,N (b) − wσ,μ(b)]2 ≤ ε2δ. Thanks to Chebyshev’s inequality, we have

P(|Zσ,μ,N (b) − wσ,μ(b)| > ε) <
E[Zσ,μ,N (b) − wσ,μ(b)]2

ε2 ≤ δ.

Therefore, Zσ,μ,N (b) satisfies (6). �
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5.1. Proofs of supporting lemmas

Proof of Lemma 1. First, according to Lemma 3, we have

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b
)

≤ P

(
sup
t∈T

σ (t)f (t) > b − max
t∈T

μ(t)
)

≤ exp

(
−(1 + o(1))

b2

2 maxt∈T σ 2(t)

)
. (15)

On the other hand, for each t ∈ T , we have

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b
)

≥ P(σ (t)f (t) + μ(t) > b) = P

(
f (t) >

b − μ(t)

σ (t)

)
,

which is further bounded from below by

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b
)

≥ 1√
2πσ(t)

(
σ(t)

b − μ(t)
− σ 3(t)

(b − μ(t))3

)
exp

(
− (b − μ(t))2

2σ 2(t)

)

= ε̃b−1 exp

(
− b2

2σ 2(t)

)
.

To obtain the last equation in the above display, we used the fact that μ(t) ∈ [μl, μu] and
σ(t) ∈ [σl, σu] with σl > 0. Taking the maximum of the right-hand side of the above display,
we have

P

(
sup
t∈T

σ (t)f (t) + μ(t) > b
)

≥ ε̃b−1 max
t∈T

exp

(
− (b − μ(t))2

2σ 2(t)

)
.

Combining the above expression with (15), we complete the proof. �
Proof of Lemma 4. To prove this lemma, we will need the following entropy bound [14].

Lemma 5. Let f be a centered Gaussian field living on a metric space U. Define the pseudo-
metric

df (s, t) =
√

E[f (s) − f (t)]2.

Assume that U is a compact space under the metric df and for each ε > 0. Denote by N(ε)

the smallest number of balls with radius ε under the metric df . Then there exists a universal
constant K such that

E

[
sup
t∈U

f (t)
]

≤ K

∫ diam(U)

0
(log N(ε))1/2 dε.

Let U = {(s, t) : s, t ∈ T , |s − t | ≤ κm(1/N)} and

d2
ξ ((s, t), (s′, t ′)) = E[ξ(s, t) − ξ(s′, t ′)]2 = E[ξ(s, s′) − ξ(t, t ′)]2.

We first investigate the metric dξ . We have

d2
ξ ((s, t), (s′, t ′)) ≤ 2 var(ξ(s, s′)) + 2 var(ξ(t, t ′)).

Applying (14) to the above display, it follows that there is a κ̃ uniformly for all σ, μ satisfying
condition (C1), such that

dξ ((s, t), (s
′, t ′)) ≤ κ̃

√
|s − s′|β∗ + |t − t ′|β∗

. (16)
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According to the relationship between the lp-norms, we have (|s − s′|β∗ + |t − t ′|β∗
)1/β∗ ≤

d1/2−1/β∗√|s − s′|2 + |t − t ′|2. The result, together with (16), implies that B((s, t), ε̃ε2/β∗
) ⊂

Bdξ ((s, t), ε) for some constant ε̃ that depends only on d, β∗, and κ̃ , where B and Bξ denote
balls under the Euclidean norm and dξ metrics, respectively. Note that the set T × T can be
covered by κ̃ε−4d/β∗

many B(ε̃ε2/β∗
) balls with a possibly different κ̃ . Consequently, the set U

can be covered by the same number of Bdξ (ε) balls. Therefore, we have

log(N(ε)) ≤ log κ̃ + 4d

β∗ log ε−1.

On the other hand, we have dξ ((s, t), (s
′, t ′)) ≤ 2 var(ξ(s, t))+2 var(ξ(s′, t ′)). Also, according

to (14), we have d2
ξ ((s, t), (s′, t ′)) = O(|s − t |β∗ + |s′ − t ′|β∗

). Therefore, for |s − t | ≤ κm/N ,

we have dξ ((s, t), (s
′, t ′)) = O(N−β∗/2). Consequently, diam(U) ≤ κ̃N−β∗/2. According to

Lemma 5, we have

E

[
sup

t,s∈T , |t−s|≤κm(1/N)

]
≤ κ̃

(
4d

β∗

)1/2 ∫ κ̃N−β∗/2

0
(log ε−1)1/2 dε = O(N−β∗/2 log N). �
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