
J. Fluid Mech. (2021), vol. 912, A19, doi:10.1017/jfm.2020.1116

Spatio-temporal microstructure of sprays: data
science-based analysis and modelling

Akshay S. Acharya1, Srivallabha Deevi1, K. Dhivyaraja1, Arun K. Tangirala2,†
and Mahesh V. Panchagnula1,†
1Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, India
2Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, India

(Received 9 April 2020; revised 15 September 2020; accepted 27 November 2020)

This empirical study aims to characterize the dynamical behaviour of sprays using
time-series analysis of the size–velocity data acquired using a phase Doppler particle
analyser. The prime motivation of this analysis is to capture the spatio-temporal
correlations using time-series modelling paradigms that provide valuable new insights into
spray dynamics. As a first step, we study long-held assumptions, especially on stationarity
and time unsteadiness. We show that air-blast sprays have increased drop size as well as
velocity ordering near the edge of the spray. Analysis of the inter-particle time of the
droplets shows non-Poisson behaviour where droplets that are closely spaced in time are
also closely spaced in the size and velocity coordinates. Temporal auto-correlation and
partial auto-correlation calculations reveal the presence of inherent correlated features in
the spray. This correlation is stronger and short lived in an air-blast spray and weaker
but more persistent in a pressure swirl spray. These correlations render the probability
density function (p.d.f.) estimate obtained from standard methods inaccurate; therefore, we
propose a technically correct way of estimating the p.d.f. using a suitable downsampling
and averaging method. Statistical analysis of residuals (from appropriate autoregressive
integrated moving average time-series models) uncovers an interesting feature of spray
data pertaining to heteroskedasticity (stochastically changing variance) of the diameter
series. In order to account for heteroskedasticity, appropriate generalized autoregressive
conditional heteroskedasticity models are developed. Finally, we present a utilitarian view
of these results as an empirically consistent boundary condition implementation tool for
computational fluid dynamics (CFD).
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1. Introduction

Sprays are a collection of droplets dispersed in a moving gaseous phase. They have
wide-ranging engineering applications, almost always to inexpensively increase the
interfacial area by several orders of magnitude to enhance transport of mass, momentum
and energy. Several modern diagnostic techniques have allowed the research community
to probe sprays, the most popular among them being the phase Doppler particle analyser
(PDPA). This instrument is a single particle counter which records drop size and velocity
as well as the time of arrival of every drop that crosses a probe volume. Given the wealth
of high quality data generated by these diagnostic tools, it is attractive to systematically
apply time-series methods to obtain deeper physical insights – an exploration that the
fluid mechanics community stands to benefit from. Time-series analysis (TSA) is a
branch of modern data science with a long history of excellent contributions from the
broad fields of statistics, econometrics, meteorology and engineering (Brockwell & Davis
2002; Shumway & Stoffer 2017). TSA offers a rich repertoire of tools that show great
promise in extracting valuable information from fluid dynamic data. As Brunton, Noack
& Koumoutsakos (2020) point out in a recent review article, the use of these tools coupled
with domain expertise is likely to yield insights into the governing processes that are
translatable into application knowledge. In the closely related but relatively modern world
of machine learning, several modelling paradigms and algorithms such as recurrent neural
networks, genetic algorithms, dynamic mode decomposition and Koopman analysis have
been applied to a variety of fields to understand complex processes from data. Emerging
applications of these tools for dynamical (time- or space-correlated) data largely borrow
ideas from TSA. Therefore, the techniques of TSA occupy a prominent place in the world
of data science and yet their application to fluid dynamic data has been absent in the
literature. On the other hand, most fluid dynamic simulations and experiments of any
complexity yield a time series of data, which is usually discarded after estimating a
probability density function (p.d.f.) of the data. Therefore, it is only natural to believe
that employing formal TSA techniques to understand fluid dynamics data potentially holds
higher value than the mere construction of a p.d.f. of the raw variable(s), as has been the
standard practice.

We begin with a brief description of the motivation for this work. Droplets in a spray
experience two kinds of forces – a drag force due to its interaction with the surrounding
gaseous phase and an effective collision force due to collisions between neighbouring
droplets. These forces are generally stochastic in nature and, as a result, spray evolution can
be modelled as a random process. Since the spray is embedded in a continuous gas phase,
coherent structures in the gas phase could induce correlated motion among the droplets.
Therefore, as observed from a frame of reference fixed to the instrument probe volume,
droplets arrive in a partly correlated and partly random sequence. A core motivation of
this work is to understand the nature of this underlying correlation structure and to explore
applications of the inferences from this knowledge. As an example, consider successive
droplets arriving in the probe volume in a PDPA. They can be completely uncorrelated in
properties – size and volume – which would make the spray transport a random process.
If the properties exhibit any form of a correlation, then the process is no longer an ideal
random process. Real sprays, as we will show later, fall in the latter category and the
temporal microstructure differs across sprays and is rich in physics.

It is well known that sprays from different types of atomizers are characterized by
droplets whose diameters and velocities vary over several orders of magnitude. The
corresponding p.d.f. may be non-Gaussian, but qualitatively similar. Furthermore, it is
only natural to assume that the droplets are possibly influencing each other in time rather
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Microstructure of sprays

than not, due to the nature of forces governing their motion. Therefore, using moments
of such distributions to describe the entire process would not yield the complete picture.
A p.d.f. representation of the data also pays no regard to the time sequence in which the
drops crossed the probe volume. Therefore, a more appropriate framework would treat the
spray as a time-unsteady process and apply TSA to discover the physics hidden in the time
sequence. These arguments constitute the core motivation of the current work, which is
to study the spatio-temporal microstructure by analysing the data as a time series using
modern data science tools. While this work will be restricted to spray data analysis, we
believe that the inferences have import for the broader area of fluid mechanics.

Earliest attempts to characterize sprays as a statistical process were due to Edwards and
Marx. In a sequence of four ground-breaking papers, Edwards & Marx (1995a,b, 1996a,b)
relied on single and multi-point statistical descriptions of sprays to provide a framework
in which sprays can be analysed as a random process. They posed a set of assumptions
that would characterize an ideal spray. They are: (i) droplets are non-interacting point
particles, (ii) each droplet contains a set of marks that represent droplet characteristics,
(iii) the droplet field is not highly ordered and (iv) the statistics of the droplet field are not
affected by the events in the past or future but only by the present. They considered a spray
to be a superposition of several Poisson processes, one for each of the classes that make
up the spray. In continuation, Widmann et al. (2000), studied PDPA data from methanol
sprays and concluded that spray arrival times can be adequately modelled by a Poisson
process. Gupta et al. (1996) examined the effect of combustion on a spray and found that
it suppresses recirculation. Presser et al. (1997) found that larger droplets migrated to the
edge of a swirling spray in comparison to a non-swirling spray. In both cases, the active
role of the fluid dynamics of the background air on droplet transport was emphasized.
Edwards & Marx (1995b) evaluated the idea of steadiness of the spray using inter-particle
arrival times. First, they classified sprays based on a governing intensity function λ(t).
A constant λ(t) would imply a steady spray. Non-steady sprays were further classified
as either deterministic or stochastic based on whether λ(t) is a deterministic function of
time or not. Stochastic sprays can be further classified based on the order of stationarity
as strictly stationary, weakly stationary or non-stationary. They showed criteria based
on the inter-particle arrival times to classify sprays based on the degree of stationarity.
However, this characterization of stationarity is only limited to the inter-particle arrival
time distribution. It is of interest to expand the definition to other properties of the spray
where a prior distribution is not known.

As elegant as the work of Edwards & Marx (1995a,b, 1996a,b) was, it has not been
applied to real experimental data to test the validity of the underlying assumptions as
well as to analyse a spray in their framework. Noymer (2000) and Hodges et al. (1994)
used single point measurements from PDPA to characterize the dynamical behaviour in
sprays, especially from the point of view of cluster formation. They defined a framework
to identify groups of droplets that are in close proximity to each other and obtained a
characteristic frequency of that group using Fourier transform. Kolakaluri, Subramaniam
& Panchagnula (2014) recognized the principal challenges in spray modelling, studied
various modelling approaches and presented a comparative assessment. They compared
two flow modelling approaches, the random field approach, where both carrier and
dispersed phases are random in the Eulerian frame, and the point process approach,
where the dispersed phase is stochastic in a Lagrangian frame while the carrier phase
is random in the Eulerian frame. Subramaniam (2000, 2001) modelled sprays using the
droplet distribution function and showed the relationship between the droplet distribution
function and the p.d.f. associated with the droplets themselves. Heinlein & Fritsching
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(2006) analysed inter-particle arrival times to identify unsteady characteristics in the flow,
namely droplet clustering. They concluded that clustering occurs at the centre of the spray
in a pressure atomizer and, for the air-blast atomizer, at the outside spray area. More
recently, Godavarthi et al. (2019) analysed the same spray data as are analysed in this work,
but using multifractal techniques. From their analysis, they demonstrated a way to classify
different sprays using the Hurst exponents and the width of the multifractal distributions.
While these approaches attempted to study the dynamical behaviour in sprays, each from
their own motivations, they do not provide a generalized and rigorous time-series and
modern data analytics approach to multiphase flows.

1.1. Conditional probability matrix
We reinforce our motivation by presenting a conditional probability analysis of two sprays.
The PDPA generates a data set as a time series recording the time of arrival, drop size and
velocity sequentially. Considering one such data set, we divide the diameters (d) of all the
sampled drops into three classes sorted by drop size – tiny (T), intermediate (I) and big (B)
– such that each set contains an equal number of drops and where the set T contains the
smallest 1

3 of all the droplets and so on. Now if one were to identify from the time series
that the ith drop was tiny (di ∈ T), a question of interest is: Can one make a predictive claim
about the next (i + 1)th drop? If each of the droplet size classes were independent, then the
conditional probability P given by the expression P(di+1 ∈ X|di ∈ Y) would be equal to 1

3 ,
since each of the three drop classes contains equal counts. Here, X and Y are either T , I or
B. Therefore, these conditioned probabilities can be presented as a 3 × 3 matrix. We now
ask the question whether any of the elements of this matrix are significantly different from
1
3 . The droplet diameter time series is classified into three bins – tiny, intermediate and
big, based on percentile. Similarly, the droplet velocity is classified into slow, medium and
fast, while the droplet inter-particle arrival time is classified as quick, normal or delayed.

Consider the case of droplet diameter. Given that a particular droplet is small, the
probability that the following drop is small, intermediate or big is calculated from the time
series. This gives us a 3 × 3 matrix of values. If the spray were to be perfectly random, all
the entries of this matrix will be 1/3 when scaled with the total number of entries in each
row. This would mean that there is an equal probability for the droplet following a tiny drop
to be tiny, intermediate or big. Surprisingly, the experimental measurements show that this
is not the case, indicating that the spray is not a pure or ideal random process, but rather one
with some element of predictability. Table 1(a) shows the conditional probability matrix
for the droplet diameter at the edge of the spray (AL3, r = −25 mm). The entries of this
matrix are significantly different from 1/3. Statistically significant values are shown in
boldface text, and it can be seen that all the terms are significant at the edge of the spray.
Also, the diagonal terms show high values, indicating that the probability of droplets of
similar size following one another is significant. A similar matrix computed at the centre of
the spray (AL3, r = 5 mm) is shown in table 1(b). The diagonal terms are still significant,
with a higher probability of tiny droplets following tiny droplets and big droplets following
big droplets.

The foregoing analysis clearly shows that the clustering characteristics at the edge of the
spray and near the centre are fundamentally different. The differences in their behaviour,
as we will show later, can be studied rigorously using tools from time-series analysis.

In an effort to highlight a shortcoming of standard practices in spray data analysis, we
present two aspects here. The first one is concerned with the probability distribution of
the data from two spatial locations – one near the edge of the spray (AL3, r = −25 mm)
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(a) Edge of spray (b) Centre of spray

P(xi+1,j/xi,k) Tiny Intermediate Big P(xi+1,j/xi,k) Tiny Intermediate Big

Tiny 0.54 0.25 0.20 Tiny 0.36 0.34 0.29
Intermediate 0.24 0.43 0.32 Intermediate 0.34 0.32 0.33
Big 0.20 0.31 0.51 Big 0.29 0.33 0.40

Table 1. Conditional probability matrices for droplet diameter.
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Figure 1. Droplet distributional properties at the edge (r = −25 mm) and centre of the spray (r = 5 mm) for
(a) diameter and (b) velocity in an air-blast spray for z = 25 mm.

and another near the centreline of the spray (AL3, r = 5 mm). Figure 1(a) shows the
droplet diameter p.d.f. at these two locations. The p.d.f. shows a significant variation at
the centre of the spray in comparison to the edge of the spray, where it can be seen
that diameter varies over two orders of magnitude. In contrast, the axial velocity p.d.f.
shown in figure 1(b) appears to be normally distributed near the centre of the spray,
while it is distinctly non-Gaussian near the edge of the spray. While these standard
inferences from this type of data presentation are quite common in the spray literature,
such a presentation discards all information pertaining to the temporal correlation in the
data. Unfortunately, the distribution plots in figures 1(a) and 1(b) provide very little to
no meaning of the distributional characteristics of the underlying stochastic process in
the presence of correlations since p.d.f.s provide meaningful inferences only when the
data constitute a random sample, i.e. independent and identically distributed (i.i.d) data.
In fact, this naive presentation of fluid mechanic data as a p.d.f., which is common in
the multiphase flow and turbulence literature, is technically incorrect. We will later on
suggest a correct method for constructing a fluid mechanic data p.d.f. when the data exhibit
temporal correlation.

To illustrate the second aspect, consider figure 2, which shows the time series of the
arrival time, diameter and velocity of typical data obtained from an air-blast spray. The
abscissa in these figures is the droplet index i, which indicates a sequential index number
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Figure 2. Time series of droplet (a) inter-particle arrival time, (b) droplet diameter and (c) velocity on the
edge (r = −25 mm) of an air-blast spray at z = 25 mm.

associated with each measured drop. Figure 2(a) shows the inter-particle arrival time,
which is the difference between the actual arrival times of successive droplets. One can
qualitatively observe clusters where drops are likely to arrive in the probe volume closely
spaced in time. This could be due to the dynamics of the underlying gas phase flow,
including that associated with vortices. Figure 2(b) is a plot of the time series of droplet
diameter. It can be seen that the drop size data indicate that small drops in the time series
are likely but occur in clusters. Figure 2(c) is the time series of the droplet streamwise
velocity, which is closely distributed around a mean value between 10 and 15 m s−1.
In conclusion, as can be seen, a time-series model which predicts an entire time series
including the p.d.f. would present a more accurate model of the droplet transport than the
p.d.f. alone. From these figures, especially from figure 2(c), one can observe qualitatively
that the mean shows correlated behaviour on short time scales. Such a correlation contains
information that cannot be discovered without a formal TSA of the data and will be the
subject of investigation.

With the above motivation, we ask the following specific questions:

(i) Are time series of droplet inter-particle times, diameters and velocities stationary in
the sense discussed above? If not, what are the physical causes of non-stationarity?

(ii) Does there exist an internal spatio-temporal correlation in the droplet property space
viz., inter-particle time, diameter and velocity?

Answers to these questions are important to two specific modelling directions that are
generally pursued in the literature. Firstly, typical discrete particle modelling of multiphase
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transport currently relies on particle injection from a spatial location, where the particle
size and velocity are obtained from a joint size–velocity p.d.f. in a time-uncorrelated
fashion. In contrast, it would be realistic to include any temporal correlation inherent in
the injector characteristics. Secondly, the physical phenomenon determining the strength
of the temporal correlation could be different in different injectors. Therefore, the strength
of the temporal correlation could be used as a marker to identify a class of injectors.
More importantly, the strength of this temporal correlation could bear an effect on several
engineering applications. For example, designing the ignition system in a spray combustor
will rely on the fact that a cloud of small (readily volatile) drops is beneficial for good
ignition.

The overall strategy for the proposed work is as follows. Time-series data of droplet
diameter and velocity are measured at various radial locations. At a given radial location,
the conditional probability matrix of drop size and velocity is evaluated. A scalar measure
is used to quantify the distance of this matrix from a perfectly random state. The
variation of this scalar measure indicates the change in ordering/predictability of the spray.
Subsequently, a systematic TSA of the data with the aid of auto- and partial-correlation
functions is carried out. This is also supplemented by conducting statistical tests of
integrating effects (random walk behaviour) and changing variability in the acquired
data. The latter is termed unconditional heteroskedasticity in the time-series literature.
After pre-treating the data for these special characteristics, whenever required, optimized
linear time-series models, namely, auto-regressive moving average (ARMA) models,
are developed for variables at different spatial locations as deemed appropriate by the
correlation analysis.

Time-series (ARMA) models optimally predict the mean values of the respective
variables using endogenous driving forces that have constant variance. However, several
processes (e.g. econometric series) do not lend themselves to this model and are likely to be
self-driven by a randomness that has changing variance that is additionally stochastic. This
is statistically known as conditional heteroskedasticity (CH), a term that was popularized
due to a pioneering work by Engle (1982a). A simpler perspective of CH is that there exists
a correlation among squared prediction errors, giving the process a flavour of nonlinearity.
An appropriate test to determine the presence of these characteristics is carried out on the
prediction errors. Subsequently, generalized autoregressive conditional heteroskedasticity
(GARCH) models are developed for all those measurements at spatial locations that test
positive for CH.

2. Data acquisition and pre-processing

Two classes of experimental data are analysed in this paper – (i) air-blast spray data and
(ii) pressure swirl spray data. The air-blast spray data were obtained from a swirling
axisymmetric free jet spraying calibration fluid MIL-PRF-7024 type 2. Details of the
experimental set-up and atomizer configuration are available in Rayapati et al. (2011).
The pressure swirl spray data were obtained using water as a working fluid and have been
reported by Dhivyaraja et al. (2019). The pressure swirl atomizer data were obtained on
a series of specially manufactured micro-electro-mechanical-system (MEMS) atomizers.
These sprays were of a very low Reynolds number and high Weber numbers, causing small
droplet sizes comparable with air-blast sprays, which makes these two sprays comparable
from a drop size p.d.f. perspective. In both cases, a PDPA was used to acquire the data
from several downstream locations of air-blast atomizer sprays and pressure swirl sprays
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(see Bachalo & Houser (1984) for details). The information pertaining to optical settings
of the PDPA transmitter and receiver are given in Dhivyaraja et al. (2019).

The air-blast atomizer was mounted on a traverse system and a full radial scan was
performed in order to obtain PDPA data at regularly spaced radial locations 1 mm apart,
ranging from the centreline to the edge of the spray. Measurements were made at three
axial locations from the atomizer, z = 9.5, 12.5 and 25 mm. At each axial location, PDPA
measurements of droplet arrival time, diameter, streamwise velocity and radial velocity
were made at a number of radial locations – 36 radial locations (−17 mm to 18 mm)
at z = 9.5 mm, 40 radial locations (−19 mm to 20 mm) at z = 12.5 mm and 71 radial
locations (−35 mm to 35 mm) at z = 25 mm. Similarly the pressure swirl atomizer data
were captured at four axial locations: 11, 21, 33 and 44 mm. A radial scan was performed at
regularly spaced locations 2 mm apart spanning the entire spray. The validation rates in all
cases were greater than 95 %, ensuring that the time-series data of successively sampled
drops are preserved to a high degree of fidelity.

From the analysis of figure 1 we know that the density distributions of several of
the spray parameters are not normally distributed. It is well known that linear time
series give optimal results when the underlying density function is Gaussian. Hence, a
transformation is required to transform the variables in such a way that their density
is Gaussian distributed. We have employed a two-step transformation procedure to
accomplish this objective: (i) a probability integral transform (PIT) to map a variable (say
diameter, velocity or inter-particle times) to a variable that is uniformly distributed, (ii)
inverse mapping of the uniform distributed variable to a standard normal distribution,
i.e. zero mean and unity variance, using its corresponding quantile value assuming
normal distribution. PIT uses a variable’s empirical cumulative distribution function as
an algebraic map to a new variable, which is expected to be uniformly distributed. This
transformation conserves both the original density distribution as well as the time serial
nature of the data, since both steps (i) and (ii) are strictly monotonically increasing
algebraic transformations.

3. Results and analysis

The presentation in this section is arranged as follows. In § 3.1, we present the results
from a requisite first-stage analysis of process characteristics, specifically investigating the
time invariance of statistical properties (known as stationarity) and other non-idealities.
Detailed results from the conditional probability matrix analysis discussed earlier in § 1.1
are presented. Then, the main results from time-series modelling including the requisite
temporal correlation analysis are presented in § 3.2.

3.1. Investigating non-idealities in the spray data
We investigate two forms of idealities (or the lack thereof) in spray data, namely,
stationarity and the Poisson process assumption. A first step in statistical modelling would
be to understand the nature of the data we are working with, especially their fundamental
characteristics such as stationarity. It is widely assumed that fluid mechanic data are
stationary. It is under this assumption that most turbulence models (for example) are
constructed. In general, a time series, or more strictly, the generating random process,
can either be stationary or non-stationary. Stationarity, as is well known, refers to the
time invariance of the statistical properties of the associated random process. In the most
restricted sense, stationarity requires time invariance of the joint p.d.f. of observations of
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all sizes. This is usually an idealism that is rarely satisfied. Fortunately, for linear Gaussian
processes, it suffices to require the time invariance of first- and second-order properties –
this is known as wide-sense stationarity (WSS), weak stationarity or second-order
stationarity. The three requirements are essentially mean invariance, finite variance and
that the auto-correlation (internal correlation) function be dependent only on the lag
(observation distance) and not on time. We shall only concern ourselves with WSS.

Deviations from stationarities (non-stationarities), are of many different types. However,
it suffices to discuss the three most commonly observed forms of non-stationarity,
viz., trend (where the mean shows a smooth deterministic trend), integrating effects
and changing variance (also known as unconditional heteroskedasticity). Trend-type
non-stationarity is observed when stochasticity is superposed on a mean that varies
deterministically (usually a polynomial function) with time. For example, it is expected
that an unsteady turbulent velocity field (where the mean velocity is a slower function
of time) would show this form of non-stationarity. The integrating effect, also known as
unit root non-stationarity from a time-series modelling perspective, belongs to a class of
random walks with persistent memory of the past (initial conditions). Changing variability,
i.e. heteroskedasticity, are of two classes; unconditional and conditional. The former,
which we shall refer to simply as heteroskedasticity (without the prefix), is associated
with a non-constant variance as a function of time, while the latter refers to non-constant
variance of conditioned time series, which are essentially prediction errors. While a
trend-type non-stationarity arises out of the time-varying behaviour of the mean (first
moment of the instantaneous p.d.f.), unconditional heteroskedasticity arises out of the
time-varying nature of the variance (second moment of the instantaneous p.d.f.). CH is
primarily due to the inherent nonlinearities, which unfortunately cannot be determined
through either a visual or statistical analysis of the data. It can only be determined through
a test on the prediction errors. It is therefore necessary to construct predictions or a model
before a test of CH can be conducted. The CH characteristics were initially observed
in econometric series and intrigued many an econometrician, until a successful model
in the name of ARCH was proposed by Engle (1982b). Interestingly, our study reveals
the presence of CH in the spray data, bringing up certain curious similarities among
the characteristics of these two completely different phenomena. In passing, it may be
noted that a process could be trend stationary while still being heteroskedastic. We show
evidence of this behaviour in the spray data of interest.

The presence of trends, integrating effects and unconditional heteroskedasticity
can be ascertained with the help of statistical hypothesis tests. The augmented
Dickey–Fuller (ADF) test is used to check for unit roots (integrating effects), while the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is used to check for trend stationarity.
The Mcleod–Li and Priestley–Subba Rao (PSR) tests are used to check for unconditional
heteroskedasticity. See appendix A.1 for details pertaining to these tests. The results of
these tests are presented graphically in figures 3 and 4 for air-blast and pressure swirl spray
data, respectively. CH tests can be conducted only after a time-series model is developed.
Therefore, it shall be discussed in § 3.2.

Figure 3 presents a graphical representation of non-stationarity observed in each of the
three parameters characterizing the droplet time series for an air-blast spray. This figure
is a plot of the physical locations in the spray (axial versus radial location). Every one
of these locations is marked by a symbol, indicating the observation of weak stationarity
or non-stationarity at that location. These symbols (as described in the legend) are also
indicative of the type of non-stationarity, if present at that location. It is possible that two
symbols are present at a given location, indicating multiple forms of non-stationarity at
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Figure 3. Plot indicating locations where non-stationary behaviour is observed in an air-blast spray for (a)
diameter, (b) axial velocity and (c) inter-particle time. Here, T indicates trend-type non-stationarity, H indicates
heteroskedasticity and S indicates stationary behaviour (or lack of T- or H-type non-stationarity). Although we
tested the data for integrating (I) type non-stationary behaviour, it was not observed in any of our data sets.
Diameter and inter-particle time distributions show non-stationary behaviour at fewer locations in the spray
than velocity distributions.

that location. Figure 3(a) is a plot showing the distribution of the stationary/non-stationary
behaviour across spatial locations in the diameter series. Similarly, figures 3(b) and 3(c)
are plots for velocity and inter-particle time series, respectively. As can be seen, the
air-blast spray data are non-stationary in at least one of the coordinates at all locations
measured. Both a trend and heteroskedastic behaviour can be observed. However, unit root
non-stationary behaviour was not observed in any of the time series.
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Figure 4. Plot indicating locations where non-stationary behaviour is observed in a pressure swirl spray for (a)
diameter, (b) axial velocity and (c) inter-particle time. Here, T indicates trend type non-stationarity, H indicates
heteroskedasticity and S indicates stationary behaviour (or lack of T- or H-type non-stationarity). Although we
tested the data for integrating (I) type non-stationary behaviour, it was not observed in any of our data sets. The
data exhibit non-stationary behaviour at farther downstream locations.

Three conclusions can be drawn from this figure. Firstly, the velocity time series is
non-stationary at almost all measurement locations. This is somewhat expected since an
air-blast spray involves a high momentum flux gas jet laden with droplets. The turbulent
coherent structures in the gas jet cause the velocity of the drops to develop spatial
correlation. In addition, the dominant source of non-stationarity is heteroskedasticity,
indirectly implying that the role of turbulent fluctuations in determining drop velocities.
Secondly, the inter-particle time series is also non-stationary, but more prominently only
at the most downstream location. This indicates that, while droplet arrival statistics at the
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nearest axial location measured are mostly stationary, non-stationarity accrues, possibly
due to clustering effects dominating downstream. We will revisit this thought later.
Lastly, and most intriguingly, the drop size time series, especially at the farthest
downstream location, is non-stationary. Again, the most probable reason is that the
series is heteroskedastic, indicating that the variance of the drop size series is varying
in a time-unsteady (but deterministic) manner. This seems to imply that, while droplet
clustering has been discussed in the literature, size-selective clustering which is a new
observation, seems to be prevalent in this spray.

Figure 4 is similar to figure 3 except that the data presented correspond to pressure
swirl atomizer. From a comparison of the data in the two figures, one can conclude that
pressure swirl data are non-stationary at fewer near nozzle locations in the spray than the
air-blast data. This finding seems to strongly imply that the lack of a dominant background
air flow in the near nozzle region of the pressure swirl spray could be a reason for this
difference. In both figures 3 and 4, we observe that the data are non-stationarity at the
farthest downstream locations. This implies that non-stationary behaviour (due to either
clustering or ordering in velocity) is an accrued property. In conclusion, we believe that
this is the first systematic and rigorous investigation of non-stationarity in any multiphase
flow data set. These preliminary investigations point to a need for a more detailed study.

We next attempt to understand if the particle arrivals follow a Poisson process as has
been idealized in previous modelling approaches. Figure 5 presents a p.d.f. of inter-particle
times at a representative location in an air-blast spray and the pressure swirl spray. We
have performed a hypothesis test on this p.d.f. to test whether it can be modelled as an
exponential distribution, indicating a steady spray in the definition of Edwards & Marx
(1995a). The test shows that inter-particle times are not exponentially distributed, in spite
of the fact that most of the p.d.f. shows an exponential decay. Specifically, a far larger
fraction of droplets is closely spaced in time (near t = 0) than would be allowed by an
exponential distribution. This could be a result of the vortical transport which rearranges
droplet spacing. Similar tests on a pressure swirl spray also indicate that the inter-particle
time distribution suggests a non-Poisson process. However, it can be noted that the peak
in the p.d.f. for small t is qualitatively less prominent in the case of a pressure swirl spray
than in the case of an air-blast spray.

The foregoing analysis clearly suggests that spray data exhibit non-stationarity whose
nature varies with the axial and radial locations. In addition, the processes are non-Poisson.
Therefore, we develop time-series models that respect the statistical nature of the data
being modelled. The focus of this work, keeping the prime objectives in mind, is to
develop linear time-series models which allow us to reveal the spatio-temporal correlation
microstructure in such non-ideal spray data.

In order to understand the source of non-idealities, we discuss temporal correlations that
cause a breakdown of the ideal spray assumptions. As a first step, a scalar measure Σ is
calculated from the conditional probability matrix (see table 1 for an example calculation)
as follows:

Σ = ||A − J/3||
||I − J/3|| . (3.1)

In this equation, I is a 3 × 3 identity matrix, while J is a similarly shaped matrix with 1
as all of its entries; A is the conditional probability matrix from a time series, which has
been shown for diameter in table 1; Σ measures the distance of this matrix from a perfectly
deterministic case, where a drop of given class only follows another drop of the same class.
If the spray was fully predictable, with droplets of same class following each other, then
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Figure 5. Probability distribution function of inter-particle arrival time of (a) air blast spray (z = 25 mm, r =
−25 mm) and (b) pressure swirl spray (z = 33 mm, r = −40 mm). The distribution is generally exponential
except for the anomalous peak for small t. This is a result of closely clustered droplets. The peak is more
obvious for the air-blast spray presented in (a).

the matrix A will be an identity matrix and the scalar measure Σ will have a value of 1. On
the other hand, if the spray is fully random, with no determinism, all the entries of A will
be equal to 1/3 and the scalar measure would be zero. Thus, Σ is a measure of ordering
in spray, with 1 representing perfect lock-on and 0 indicating complete randomness.

Figure 6(a) shows the radial variation of scalar measure for droplet diameter (Σx) at
three axial locations. It can be seen that the ordering increases towards the edge of spray.
This is remarkable, in that a time sequence analysis of the data shows that a large drop
is mostly followed by a large drop; similar drops appear to cluster together. Therefore,
clustering is not just a phenomenon where droplet spacing is reduced; it is actually a case
(at least near the edge of the spray) where drops of similar diameter form clusters. The
physical mechanism underlying increased size-segregated clustering near the edge is not
clear. However, the air-blast spray had a strong swirling outer air stream. The shear layer
formed between the spray and this outer air stream could generate a vortex sheet. As a
hypothesis, we suggest that each vortex could act as a miniature centrifuge to produce this
size-segregated clusters in the bulk flow. The fact that these data were obtained sufficiently
far away from the injector (where PDPA validation rates were high) did not destroy the
correlation. The central spikes at z = 9.5 and 12.5 mm are due to the vortex core near the
nozzle. The ordering in the centre disappears with breakdown of vortex core, as can be
seen for z = 25 mm.

Figure 6(b) shows the radial variation of the scalar measure (Σu) for droplet velocity.
Firstly, it can be seen that the pairwise correlation is statistically significant and stronger
than that for the droplet diameter series. The data at z = 9.5 and 12.5 mm show central
peaks similar to figure 6(a). The twin peaks at z = 25 mm are due to the nature of the
air-blast nozzle. Air-blast spray transport is dominated by a surrounding annular gas jet.
Droplets embedded in this gas jet attain equilibrium with the gas motion. In other words,
the drop velocities are more deterministic in regions where the gas and droplet phases have
reached equilibrium. Figures 6(c) and 6(d) are similar to figures 6(a) and 6(b), except that
they are for the pressure swirl spray data. As can be seen, both drop size and velocity series
are close to the statistically significant threshold. Therefore, the patterns in pressure swirl
sprays are not as dominant as in the case of the air-blast spray.
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Figure 6. Radial variation of scalar measure Σ for ordering in (a) droplet diameter, (b) droplet velocity at
various axial locations of air-blast spray, (c) droplet diameter and (d) droplet velocity at various axial locations
of pressure swirl spray. The dotted line in all the plots indicates a confidence threshold for Σ .

It is somewhat expected that droplet velocity shows a correlated structure in a spray,
since the continuous medium (air) provides the necessary channel for communication
of properties. What is remarkable is that the droplet diameter (in figure 6a) shows
a statistically significant correlation, with the value of the correlation becoming more
significant as the radial location increases (near the edge). In other words, drops of a
similar size appear to be aggregating near the edge of the air-blast spray far more than
in the pressure swirl spray. This radially increasing diameter correlation deserves further
investigation as an aspect of clustering, since it has practical implications for engine
operation in terms of a spray’s ability to ignite at cold start.

3.2. TSA and modelling
Conditional probability analysis reveals timewise correlations in spray, but the correlations
are limited to one step separation – between the current drop and the preceding drop or
vice versa. To analyse correlations spread across higher temporal lags in time, partial
auto-correlation functions of the data are studied. We consider univariate models for
modelling spray data. We develop ARMA models of appropriate order as guided by the
correlation functions and residual analysis. Since droplet arrivals are unstructured in time,
a droplet number (termed lag) is used as the independent variable.
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Figure 7. Comparison of conditional probability scalar measure (Σ) and partial auto-correlation coefficient
(PACF, at lag l = 1) for diameter data from (a) air-blast sprays at z = 25 mm and (b) pressure swirl sprays at
z = 33 mm. The correlation is much stronger in the case of air-blast sprays than in pressure swirl sprays.

As explained in appendix A, the kth PACF captures the direct correlation between the
ith and (i + k)th measurement as against the auto-correlation function (ACF) coefficient,
which measures the total (direct plus mediated) correlation (with the exception of the
first PACF coefficient since the direct and total correlations are identical). This contrast is
particularly important in several applications. In the present context, this characteristic of
PACF is useful in developing autoregressive models since the order of an auto-regressive
(AR) model determines the most lagged observation that directly affects the present
observation.

Figure 7 is a plot of the scalar measure Σ and the first PACF coefficients for drop size
data, as a function of radial location for the air-blast and pressure swirl sprays. There is a
good agreement between the two quantities, indicating that the scalar measure captures the
correlation between two neighbouring events in time. The values of both Σ and the PACF
are much lower for the pressure swirl data in comparison to the air-blast data. In addition,
Σ and the PACF values for the air-blast data exhibit a radial structure. Note that PACF at
lag l = 1 is the same as the coefficient of an AR(1) (first-order) model, while at any other
lag l, it represents the last coefficient of an AR(l) model.

We are now interested in identifying differences in the structure of the time series
between pressure swirl and air-blast atomizer data. Towards this end, we use the ACF
and the PACF at various lags. Figure 8(a) is a plot of the ACF as a function of the lag
distance for the velocity variable. This plot is obtained from single point data at the
highest volume flux locations in both pressure swirl as well as air-blast cases. As can
be seen from this plot, the auto-correlation characteristics in an air-blast spray decay
exponentially and the correlation remains significant till almost 30 lag locations. In other
words, a sequence of 30 drops show correlated motion with a random forcing (analogous
to Brownian motion). On the other hand, the correlation in the data for a pressure swirl
spray shows two distinct phases. There is a distinct short range power law decay (see inset
in figure 8) which persists until approximately 4 or 5 drops followed by a sharp change
in behaviour to an exponentially decaying correlation. This phase persists till almost 200
drops, which is remarkable. In other words, the short range behaviour appears to show
signs of a scale-free Lèvy walk, while the long range correlation shows the signature
of Brownian motion (Zaburdaev, Denisov & Klafter 2015). The PACF (see figure 8b) is
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Figure 8. Plot of (a) ACF and (b) PACF as a function of lag distance for drop velocity data in air-blast spray
(z = 25 mm, r = −9 mm) and pressure swirl spray (z = 44 mm, r = −12 mm). These plots are at the radial
locations with the highest volume flux locations in each case. The inset in (a) shown in logarithmic coordinates
demonstrates a short lag behaviour that is exponentially decaying and a long lag power law decay of the
auto-correlation coefficient for air-blast sprays. For pressure swirl sprays (see (b)), autocorrelation between
velocities of drops shows an initial power law decay for short lag and an exponential decay for long lags. The
partial ACF is short lived in both cases, indicating that a statistically significant and direct correlation exists
between the velocity the ith drop and the (i + 4)th drop.

short lived in both cases, indicating that a statistically significant and direct correlation
exists between the velocity of the ith drop and the (i + 4)th drops. This shows that the
time correlation signatures of the two classes of sprays are fundamentally different. This
approach can therefore potentially be used to both understand the physics as well as to
identify differences between sprays.

Figure 8(b) depicts a plot of the PACF in the two data sets as a function of lag. This
analysis is performed at the same location in the sprays as in figure 8(a). The PACF shows
a decaying trend for both the pressure swirl as well as air-blast sprays. The correlation also
decays below significant levels after approximately the same number of lags. These data
imply that approximately 4 to 6 drops are independently correlated in their motion. In other
words, the velocity of the ith drop and the (i + 4)th drop are correlated independent of the
‘pass through’ correlation through the intermediate drops. This is an important finding of
this work and can be used to identify length and time scales within which coherent motion
can occur. From the mean inter-particle time as well as the mean speed of the drops, one
can estimate the mean distance and time over which independent correlation persists at
this location.

It is to be noted that although the partial auto-correlation characteristics of the two
sprays are similar, the auto-correlation characteristics in figure 8(a) are markedly different,
pointing to fundamentally different physical transport processes in the two cases. In
the case of the pressure swirl spray, the background air motion is initiated due to the
entrainment initiated by drop motion. Therefore, one could construe the motion of the
drops in this case (at least far away from the injector) as nearly being in equilibrium with
the background air flow. Hence, the auto-correlation is persistent over several hundred
successive drops. On the other hand, the air motion in the case of an air-blast spray is
initiated by the nozzle. Droplet transport is largely enforced by the air motion (even far
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Figure 9. Droplet properties of an air-blast spray for z = 25 mm at the edge (r = −25 mm) and centre of the
spray (r = 5 mm) for (a) diameter and (b) velocity after a suitable downsampling of raw data. This method
used to construct the p.d.f. is technically superior to that used in constructing the p.d.f. in figure 1.

away from the injector). The finite length scale associated with coherent structures in the
air flow, therefore, defines the spatial extent within which the velocity field in the gas
phase would exhibit correlated motion, which goes to zero after a finite number of lags.
This difference in the nature of the momentum exchange between the air and the droplets
is exemplified as differences in the time correlation structure.

As seen in figure 8, the air-blast atomizer sprays show a sharp cutoff of ACF after a
finite number of lags. For example, the ACF goes to zero after approximately 50 lags in
figure 8(a) for the air-blast spray data. This implies that drops separated by approximately
50 are essentially uncorrelated in velocity. As we remarked earlier in the context of
figure 1, it is incorrect to represent data as a p.d.f. if the data are correlated. From
the ACF of the data, it is possible to identify the number of drops that are correlated.
Figure 9 is a replot of the same data as in figure 1, except that the data are sampled after
skipping as many drops as are correlated. This ensures that all such downsampled data are
uncorrelated. The p.d.f.s presented in figure 9 are mostly similar to those in figure 1, except
for a few subtle but important differences. The main differences are visible in figure 9(b)
where the peak in the p.d.f. corresponding to r = 5 mm is shifted slightly to the right in
comparison with the corresponding figure 1(b). Similarly, the peak corresponding to the
p.d.f. for r = −25 mm is lower than in figure 1(b). We would like to point out that this
gives a more accurate estimation of the true p.d.f. of fluid mechanic data than taking the
raw signal and extracting a p.d.f. from it. In other words, it is important to only retain those
samples in the p.d.f. that are uncorrelated, in order for the density plot to be interpretable.

3.3. GARCH modelling
Linear time-series models, as explained earlier, model the conditional mean, but are not
equipped to handle dependency of the prediction error variance on the past data or on
time. In essence, they cannot model CH (refer to the earlier discussion in § 3.2 on CH),
which can also be viewed as a particular manifestation of nonlinearity in the series. It
must be remarked that a generic nonlinear time-series modelling of the data is outside the
scope of this work. On the other hand, the variables have been transformed algebraically
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1. Consider a time series of a fluid dynamic variable, x[k], k = 1, 2, . . . , N, where k refers to the kth
sample.

2. Transform x[k] into a normally distributed new series y[k] using the PIT. See § 2 for details. This
ensures the requirement for the optimality of predictions using a linear time-series model (for y[k]).

3. Determine the optimal ARMA(m, n) model for the time series y[k] using a systematic procedure
(start with the simplest model guided by the ACF and PACF, apply statistical tests to avoid underfit
or overfit and refine the model to adequacy).

4. Conduct tests of whiteness on the squared residuals from the ARMA model built in step 3. If the
outcome is positive for correlation, build a GARCH model for the residuals of appropriate order (see
appendix A.1 for details).

5. Construct one step ahead predictions for y[k], call them ŷ[k] using the ARMA model developed in
step 3.

6. Transform the predicted series ŷ[k] back to obtain the prediction of the original fluid dynamic
variable x̂[k] using the inverse PIT.

Table 2. Stepwise procedure for time-series modelling and series reconstruction.

to be normally distributed so that the linear models provide optimal predictions of the
conditional averages. However, we take this opportunity to highlight the presence of CH
in spray data, a feature that is usually characteristic of econometric and hydrological data.

A standard test for the presence of CH in data is to test for the presence of serial
correlation in squared residuals. For this purpose, we perform the well-known Ljung–Box
test (for testing whiteness or significance of auto-correlation, see appendix A.1) on the
squared residuals. The P-value from the resulting test is found to be 2.2 × 10−16 with L =
20, the maximal lag considered for the test (see appendix A.1 for more details), thereby
confirming the significance of auto-correlation, or alternatively rejecting the whiteness
of squared residuals at a significance level of α = 0.05. In contrast, the P-value from
the Ljung–Box test for auto-correlation in the residuals is 0.9903, thereby not rejecting the
test of whiteness among the residuals of ARMA model. The CH thus determined in the
diameter series was modelled using a GARCH(0, 4) model through a standard systematic
procedure. The final optimal model for the droplet diameter time series at the z = 25 mm,
r = 30 mm location is thus ARMA(5, 5) superposed with a GARCH(0, 4). Therefore, we
can derive an optimal time-series model to capture the correlation structure in any fluid
dynamic variable. For brevity, we present a stepwise procedure in table 2 to derive such a
model for any fluid dynamic variable.

4. Utilitarian view of the results

The time-series model developed in §§ 3.2 and 3.3 captures not only the probability
distribution of the variable, but also the inherent temporal structure of the time series.
To demonstrate the utility of such a time-series modelling approach to computational fluid
dynamics (CFD) practitioners, we apply the procedure given in table 2 to test data collected
from an air-blast spray at axial location z = −25 mm (AL3) and radial location r = −25
mm. Figure 10(a) is a plot of the density of the observed data and the reconstructed series.
As can be seen, the density plot of the reconstructed series matches that of the original
series despite its non-Gaussianity and the fact that the time-series model was developed
on the transformed series. Not only can one observe the qualitative similarity between the
time series, but also the close agreement with the probabilities of extreme events. This plot,
however, as pointed out earlier, is not sufficient to establish the goodness of the developed
model since it ignores the correlation structure. For this reason, we compare the ACFs of
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Figure 10. Plot showing comparison of (a) probability density distributions and (b) ACFs of original data and
reconstructed time series (using the procedure in table 2). The time series of droplet diameter of (c) original
data and (d) reconstructed time series. The time-series model is able to capture the probability density as
well as the ACF accurately. The original data correspond to the diameter of the air-blast spray for z = 25 and
r = −25 mm.

the observed and reconstructed series. Figure 10(b) compares the ACFs, clearly suggesting
a close agreement between the two. Once again, given that the time-series model was
developed on the transformed series, it is remarkable that the auto-correlations in the
original series have also been captured very well by the model. Finally, a comparison of the
time series is presented in figures 10(c) and 10(d), which show a satisfactory qualitative
agreement with each other. Collectively, through these plots, we have shown that it is
possible to simulate a sequence of droplets and their properties such that the densities and
temporal correlation characteristics of the time series are well captured.

Apart from the insights gained from such an analysis, we wish to describe a utility of this
capability for CFD practitioners. Klein, Sadiki & Janicka (2003) have pointed out the need
for boundary conditions in CFD simulations to capture the temporal microstructure as well
as the p.d.f. of the fluid mechanic variable. In keeping with their suggestion, let us consider
the current practice in Lagrangian particle tracking simulations of sprays, which is to inject
particles into the domain from a point of injection. One would require an empirical p.d.f.
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of the size and velocity for such an injection to be initiated. The particles are injected
into the domain after randomly choosing a size and velocity from the empirical p.d.f.,
an approach that does not pay heed to the temporal microstructure of the spray, such as
the one we have demonstrated in air-blast sprays. In contrast, a time-series model could
create a synthetic sequence of droplets closely mimicking the experimental data in both the
p.d.f. and the temporal microstructure. More generally, CFD simulations of turbulent flows
could also benefit from implementing time-varying boundary conditions from empirically
derived time-series models, since the temporal coherence information would be accurately
captured in such an approach.

We have also shown that sprays originating from different atomizer classes exhibit a
different spatio-temporal microstructure. In particular, we have shown that size clustering
near the edge of the spray is relevant in some cases, but not in others. A spray that exhibits
a higher probability of size-segregated clusters is likely to perform better on ignition
tests. Therefore, one could rely on this analysis to understand the relation between cold
spray measurements and ignition characteristics. Finally, Widmann & Presser (2002) have
presented a comprehensive database of measurements of cold and combustion sprays. As
is well known, combustion is very likely to disrupt the spatio-temporal microstructure in
the spray. It would be good to apply this analysis to datasets such as the one cited above
to understand the correlation between cold spray characteristics to that in the combustion
condition. This is a topic of future study.

5. Conclusion

The primary aim of this work was to adopt a data science, especially a TSA-based approach
to understand the dynamical and spatio-temporal characteristics of sprays. To this end,
we employed TSA techniques and models with the objective of obtaining insights that
complement existing physics-based understanding of sprays. A scalar distance measure
was developed to ascertain the presence of correlation in the spray drop size and velocity
data. The variation of this distance measure with the radial location revealed that air-blast
sprays showed more ordering towards the edges of the spray. In continuation, we showed
that all sprays are inherently non-stationary albeit to differing degrees, primarily due to
heteroskedasticity and due to the presence of a trend in the drop size and velocity time
series. In addition, we showed that the droplet arrival time statistics are non-Poisson.
While most of the inter-particle time distributions showed an expected exponential decay,
an anomalous peak was observed for small drop spacing, indicating droplet clustering.
The core part of this study involved temporal correlation analysis of diameter and velocity
series at different radial locations. The analysis not only indicated predictability in the
series but interestingly reflected the differences in the underlying physical transport
processes. A first fallout of these correlations is that the standard method of estimating the
p.d.f. does not yield a correct estimate. To remedy this issue, we proposed a technically
correct way of estimating the density of droplet sizes. This method relies on a combination
of suitable downsampling of the time-series data (to eliminate temporal correlation) along
with time translation, followed by an averaging of the p.d.f. estimates obtained from
each such downsampled record. ARMA models were developed for both air-blast and
pressure swirl data series to capture the predictable portions of the series. These models
further paved the way for examining the stochasticity of the self-driving random forces,
essentially for the presence of CH. The diameter series in particular, tested positive for the
presence of heteroskedasticity while the streamwise velocity series showed the absence
of it. GARCH models were developed for the diameter residual series to explain
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the observed heteroskedasticity. The auto-regressive integrated moving average
(ARIMA)–GARCH or the plain ARIMA models, thus developed, are not only significant
because of their novelty in the literature but also important because they serve to
generate more physically consistent spray data. Such models are potentially useful in
several other numerical studies of sprays that require appropriate implementation of
initial and boundary conditions. Models developed in this work are univariate and
linear in nature. Although being somewhat simplistic from a modelling viewpoint,
the insights obtained from the analysis and models developed are quite valuable and
demonstrate the merit of our approach. The present work also lays foundations for a more
sophisticated multivariate and nonlinear analysis of spray data, which is a subject of future
study.

Declaration of interests. The authors report no conflict of interest.
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Mahesh V. Panchagnula https://orcid.org/0000-0003-2943-6900.

Appendix A

Two classes of techniques are used for analysis of PDPA data – (a) techniques to study the
aspects of the process and (b) techniques to understand the correlations present in the time
series. For completeness of presentation, some definitions of the terms used in this paper
are presented herein.

A.1. Some definitions
Conditional probability: conditional probability is used to determine the probability of an
event, given the occurrence of another event. Mathematically, P(A|B) is the probability
of event A occurring, given event B occurs, where P(A) and P(B) /= 0 are probabilities
of events A and B occurring irrespective of each other. In the experimental measurements,
this analysis is used to identify events where drops of similar size or similar velocity follow
each other.

Poisson process: in sprays, droplet arrival times are expected to follow a Poisson process
(Edwards & Marx 1995a). If the number of droplets arriving at a given location per unit
time follows a Poisson distribution, it indicates that the droplet arrivals are independent
events, i.e. each arriving drop does not have any knowledge of another drop that has arrived
before it. If arrivals follow a Poisson process, inter-particle time, which is the time interval
between consecutive arrivals, follows an exponential distribution. Analysis of arrival times
in the measurements is done to test if droplet arrivals follow a Poisson process.

Stationarity: stationarity in time series can be of two types namely, strict and weak
stationarity. Strict stationarity implies that all statistical properties of the series should be
invariant to shifts in time. In terms of joint probability density it can be written as,

f (v[1], v[2], . . . , v[N]) = f (v[1 + T], v[2 + T], . . . , v[N + T]) ∀T, N ∈ N. (A1)

However, rarely do we find a process that meets this stringent requirement. Real sprays are
no exception in this regard. For linear processes only the first two moments (of the joint
p.d.f. of a pair of observations) are of interest. Since we develop linear time-series models
for analysing sprays, it is sufficient to concentrate on the first two moments. Requiring
that these first two moments remain invariant with time is termed as weak stationarity (it
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is essentially a highly relaxed version of strict stationarity). Formally, a series is called
weakly stationary if

(i) E(v[k]) = μk = μ ∀k ∈ N (time invariance of mean)
(ii) σ 2

k = Var(v[k]) = σ 2 < ∞ ∀k ∈ N (boundedness and time invariance of variance).
(iii) covariance(v[k], v[k + l]) = E((v[k] − μ)(v[k + l] − μ)) = σvv[l] ∀k ∈ N (time

invariance and lag-only dependence of covariance between a pair of observations.

Serial correlation measures: serial correlations of droplet velocity and diameter are
measured to build a mathematical description for the droplet generation process. The
correlation measures used are described in the rest of this section. Given a series
of observations for a random process, {v[1], v[2], . . . , v[k]}, a causal mathematical
description of the process is built to predict future observations (Tangirala 2014).
Correlation is a natural measure of predictability of the series, and if a correlation can
be found between the current observation v[k] and any past observation v[k − l] for
some l > 0, it can be used to predict a future observation v[k + l]. Auto-covariance and
auto-correlation are two measures used for this purpose.

Auto-covariance: the auto-covariance function (ACVF) is the covariance between two
observations of a series v[k1] and v[k2],

σvv[k1, k2] = E([v[k1] − μk1][v[k2] − μk2]), (A2)

where μki is the mean of the process at ki instant and E is the expectation of the process.
For a stationary process, the mean remains invariant and the ACVF is only a function of
the distance between the sampling instants l = k1 − k2, therefore simplifying to

σvv[l] = E([v[k] − μv][v[k − l] − μv]) (A3)

where μv = E[vk] is the mean of the stationary process. ACVF measures the linear
dependence between v[k] and v[k − l]. It is a symmetric measure and depends on the
units of v[k].

ACF: the ACF is a normalized measure of auto-covariance, defined as

ρxx[l] = σvv[l]
σvv[0]

. (A4)

The maximum value of ACF is unity, attained at lag l = 0. It is a bounded (above by unity
in magnitude) symmetric measure which is invariant to the choice of units for v[k]. By
definition, the ACF measures the direct and indirect (mediated) association between v[k]
and v[k − l].

PACF: the PACF, introduced to measure only ‘direct’ (no mediation effects), at any lag
l is defined as

φvv[l] =
{

corr(v[k], v[k − l]|z) |l| > 1,

ρvv[l] |l| = 1,
(A5)

where z is the set of confounding variables z = {v[k − l + 1], . . . , v[k − 2], v[k − 1]}.
Please refer to Tangirala (2014) and Shumway & Stoffer (2017) for a detailed discussion.
The main difference between the two statistics is that the ACF measures the overall
correlation (direct and indirect) between two observations at lag l while the PACF
measures the direct correlation between the variables, as shown in figure 11.

Estimation: the foregoing definitions are provided for the ensemble. However, in the real
world, experiments yield a single realization (sample) with finite number of observations
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Direct pathway

Indirect pathways

v(k – 2) v(k – 1) v(k )

Figure 11. Direct and indirect pathways for calculating auto-correlation and partial auto-correlation functions
for an AR process of order 2; v[1], v[2], . . . , v[k − 2], v[k − 1], v[k] are consecutive observations in the series.

(measurements). Hence, the statistical properties calculated from a finite-sized realization
are only estimates of the true values. These estimates are then used for testing a hypothesis
on statistical properties of signals (or their derivatives, such as residuals). Estimates of
statistical properties relevant to this work are obtained as follows. Given a finite series
with N observations, {v[1], v[2], . . . , v[N]}, the mean of the series is estimated (A6) and
the maximum likelihood estimate of the variance is defined by (A7) the, based on these
estimates, the estimates for ACF is given by (A8) and (A9)

μ̂ = 1
N

N∑
i=1

v[i] (A6)

σ̂ 2
N = 1

N

N∑
i=1

(v[i] − μ̂)2 (A7)

ρ̂vv[l] = σ̂vv[l]
σ̂vv[0]

(A8)

σ̂vv[l] = 1
N

N−1∑
i=l

(v[i] − μ̂)(v[i − l] − μ̂); l > 0. (A9)

PACF estimates are obtained using a well-established fact that the PACF at lag l is the
coefficient of the last term of an AR model of order l. For computational efficiency, a
recursive Durbin–Levinson algorithm is used (Tangirala 2014; Shumway & Stoffer 2017).
Finally, estimates of (AR, moving average (MA), ARMA and GARCH) model parameters
are obtained using either a maximum likelihood estimation (MLE) or least-squares (LS)
methods, as the case may be. The reader is referred to Shumway & Stoffer (2017), Tangirala
(2014) and Brockwell & Davis (2002) for full technical details.

Statistical tests: the estimates obtained, as above, are critical to the conduct of several
hypothesis tests on statistical properties and/or assumptions. The tests relevant to the
present work are that of whiteness (zero serial correlation), integrating effects (random
walk behaviour) and unconditional and conditional heteroskedasticity. These tests are
summarized in table 3.

The Box–Ljung test (Brockwell & Davis 2002) of whiteness for a given process or series
y[k] uses the test statistic

Q = N(N + 2)

L∑
l=1

ρ̂2
yy[l]

N − l
, (A10)

where N is the sample size, L is the lag up to which the auto-correlations are included (a
user-defined parameter) and ρ̂yy[l] is the ACF estimate at lag l. When the null hypothesis
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Test Null hypothesis Alternative hypothesis

Box-Ljung test ACF is zero at all lags (white process) ACF is non-zero (coloured process)
ADF Test Time series has a unit root No unit root
KPSS Test Time series is level or Non-stationary

trend stationary
PSR test Time series is homoskedastic Heteroskedasticity present

Table 3. Statistical tests for non-stationarity.

holds, Q follows a χ2(L) distribution. Technical details pertaining to the ADF, KPSS and
PSR tests are available in Shumway & Stoffer (2017), Kwiatkowski (1992) and Priestley &
Rao (1969), respectively.

Tests on the significance of model parameter estimates are conducted by constructing
the appropriate confidence intervals for the respective parameters using the asymptotic
results for the MLE and LS methods (Tangirala 2014; Shumway & Stoffer 2017).

Significance level: all hypothesis tests and confidence intervals in this work use a
significance level of α = 0.05 (the probability of false positives).

Linear time-series modelling: the PACF and ACF signature (i.e. variation of PACF with
different lag) plays an important role in identifying the underlying process that drives time
series. Once the presence of correlation between events at times t1 and t2(>t1) is identified,
linear models for the outcome at t2 based on the outcome at t1 can be constructed. Linear
models for time series are primarily of three types (i) AR models, (ii) MA models and
(iii) ARMA models. All three models for a given process v[k] involve the unpredictable
uncertain component of v[k], called the white noise term (e[k]). The term ‘linear’ stems
from the fact that all three models can be represented by a single model that expresses v[k]
as a linear weighted combination of past, present and future uncertain component e[k].

AR models: the AR specifies that the output variable depends linearly on its own
previous values and a stochastic term. An AR model of order p is essentially a linear
regression of the observation v[k] on p past observations and the indispensable error term
e[k]

v[k] =
p∑

i=1

(−di)v[k − i] + e[k], (A11)

where e[k] is white noise, usually assumed to be from a Gaussian distribution.
AR processes are detected by their ACF and PACF signatures. A stationary AR( p)

process always possesses an exponentially decaying ACF (irrespective of the order),
whereas it is characterized by a PACF that abruptly goes to zero (theoretically) after p
lags.

The ACF and PACF estimates (obtained from 1000 observations) of a synthetic
AR(2)-order process are shown in figure 12. The 95 % significance band is also shown
for each of these estimates. Based on the figures, one can infer that ACF estimates decay
exponentially with lag, while the PACF is statistically insignificant after lag l = 2, which
is the order of a generating AR process. Hence, the PACF signature plays an important
role in identifying the order of underlying AR process.

Moving average model: the moving average model is a linear regression of the current
value of the series on the current and previous white noise terms. A moving average model
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Figure 12. Plots of (a) ACF and (b) PACF estimates (with 95 % significance bands) from 1000 observations
of a synthetic second-order AR process.

of order q can be formulated as

v[k] =
q∑

i=1

hie[k − i] + e[k]. (A12)

The MA(q) process is easily recognized by its ACF signature. The theoretical ACF of an
MA(q) process abruptly goes to zero after q lags whereas the PACF decays to zero, but not
necessarily monotonically. Thus, the ACF provides a good initial estimate of the order for
a MA process.

ARMA model: the ARMA model is basically a combination of both, an AR part and a
MA part. The model is generally described as an ARMA( p, q) model where p is the order
of the autoregressive part and q is the order of the MA part. An ARMA( p, q) model can
be formulated as shown below

v[k] +
p∑

i=1

div[k − i] =
q∑

i=1

hie[k − i] + e[k]. (A13)

There is no set ACF or PACF signature for ARMA processes. Hence, an appropriate
model for the underlying process driving the time series is chosen based on information
criterion statistics such as the Akaike information criteria (Sakamoto & Kitagawa 1987).
These criteria are also applied to both AR and MA models along with the crucial residual
analysis (whiteness test) for detecting model underfit. Overfitting is tested by examining
the errors in model parameter estimates. Any parameter for which the 100(1 − α)%
confidence interval includes a zero is deemed to be statistically insignificant at the
significance level α and therefore omitted from the model.

GARCH: the GARCH model describes stochastic processes that exhibit the property of
CH. This is a special characteristic of all processes that cannot be predicted with uniform
precision, i.e. whose predictions have varying levels of uncertainties. Optimal ARMA
models are not fully suited for such processes since they model only the conditional
mean. The GARCH nature of a process is detected by examining the auto-correlations
of squared prediction errors. If this auto-correlation is significant, the process is said
to be conditionally heteroskedastic. The GARCH model is essentially an add-on to the
linear model for the series, where an optimal ARMA model is first fit to the series and
subsequently an ARMA model is fit to the changing variance using the past squared
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residuals and past variances as regressors. Let ε[k] be the residuals of the optimal model.
A GARCH(m, n) model for ε[k] would be,

ε[k] = σkw[k], (A14a)

σ 2
k = c0 +

m∑
i

biε
2[k − i] +

n∑
j=1

ajσ
2
k−j, (A14b)

where w[k] is an i.i.d.(0,1) process and is independent of ε[k − l], l � 1, ∀k. The orders
of a GARCH model are determined in a similar way as that of an ARMA model. Model
adequacy is determined by residual analysis (whiteness test) and significance of parameter
estimates.
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