
TLP 16 (5–6): 866–883, 2016. C© Cambridge University Press 2016

doi:10.1017/S1471068416000211

866

The dlvhex system for knowledge
representation: recent advances

(system description)�

CHRISTOPH REDL

Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria

(e-mail: redl@kr.tuwien.ac.at)

submitted 6 May 2016; revised 8 July 2016; accepted 22 August 2016

Abstract

The dlvhex system implements the hex-semantics, which integrates answer set programming

(ASP) with arbitrary external sources. Since its first release ten years ago, significant

advancements were achieved. Most importantly, the exploitation of properties of external

sources led to efficiency improvements and flexibility enhancements of the language, and

technical improvements on the system side increased user’s convenience. In this paper, we

present the current status of the system and point out the most important recent enhancements

over early versions. While existing literature focuses on theoretical aspects and specific

components, a bird’s eye view of the overall system is missing. In order to promote the system

for real-world applications, we further present applications which were already successfully

realized on top of dlvhex.

KEYWORDS: Answer Set Programming, Nonmonotonic Reasoning, Knowledge representa-

tion

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach which

has been gaining popularity for many applications in artificial intelligence and

beyond (Brewka et al. 2011). Features such as the use of variables as a shortcut for

all ground instances, aggregates and optimization statements, distinguish ASP from

SAT and simplify the process of problem solving in many cases. However, since not

all data or computation sources can (easily and effectively) be encoded in an ASP

program, extensions of the formalism towards the integration of other formalisms

are needed.

To this end, hex-programs extend ASP with arbitrary external sources (which are

realized in C++ or Python) by the use of so-called external atoms. Intuitively, the

logic program sends information, given by constants and/or predicate extensions,

� This research has been supported by the Austrian Science Fund (FWF) project P27730.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 867

to the external source, which returns output values that are imported into the

program. For instance, the external atom &synonym[metro](X) might be used to

find the synonyms X of metro, e.g. subway and tube. Notably, external atoms can

be nonmonotonic, introduce new values which are not part of the program (value

invention), and can be used in recursive rules. The generality of external sources is

in contrast to previous and dedicated formalisms such as DL-programs (Eiter et al.

2004) or constraint ASP (Ostrowski and Schaub 2012), which integrate ASP only

with a concrete other formalism. hex-programs subsume these other formalisms and

also well-known ASP extensions such as aggregates.

However, expressiveness of a formalism alone it not sufficient. Instead, also an

efficient and convenient implementation is needed to attract users; recall that also the

success of ASP depends considerably on expressive, efficient and easy-to-use systems

like clasp (Gebser et al. 2011)1, DLV (Leone et al. 2006)2, and smodels (Simons

et al. 2002)3. The hex-semantics was implemented in the dlvhex system (Eiter et al.

2006a)4 on top of gringo and clasp (Gebser et al. 2011). The system celebrates its

10th anniversary this year and was released in version 2.5.0 earlier this year. While

early versions were mainly intended to be used for experimental purposes, only in

the last three years much effort was spent on turning dlvhex into a system for KR

tasks which can conveniently be used beyond experimental purposes. To this end,

we have overcome former limitations of the system which prevented its application

in practice, including former efficiency problems, restrictions of the language, and

technical limitations on the system side.

In this paper, we report about this progress. While some (but not all) of the

enhancements discussed in the following have already been presented in dedicated

works, this was from an algorithmic perspective and with focus on specific subprob-

lems which occur when evaluating a hex-program. In contrast, this paper provides

a bird’s eye view of the system from the user’s perspective, which is missing so far.

After briefly recalling hex-programs in Section 2, we present the novelties

compared to earlier versions of the system. We group the enhancements in two

main sections:

• Section 3 presents enhancements based on the exploitation of known properties

of external sources such as monotonicity or functionality. We first discuss the

types of properties supported by the system and show how they are specified

(Section 3.1). Afterwards, we give an overview about how they are used within

the system. To this end, we present the two main features based on them, namely

scalability boosts by advanced learning techniques (Section 3.2) and language

flexibility due to reduced syntactic limitations (Section 3.3).

• Section 4 presents recent extensions towards usability and system features. This

includes a novel convenient programming interface for providers of external

sources (Section 4.1), the integration of support for popular ASP extensions and

1 http://potassco.sourceforge.net
2 http://www.dlvsystem.com
3 http://www.tcs.hut.fi/Software/smodels
4 http://www.kr.tuwien.ac.at/research/systems/dlvhex

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

868 C. Redl

interoperability (Section 4.2), and a new dissemination strategy which respects

previous user feedback.

Afterwards, we give an overview about existing applications based on hex-programs

in Section 5 and discuss how they can benefit from the system improvements. We

conclude in Section 6.

2 hex-Programs

hex-programs (Eiter et al. 2005) are a generalization of (disjunctive) extended logic

programs under the answer set semantics (Gelfond and Lifschitz 1991) with external

atoms. Besides ordinary atoms of the form p(t), where p is a predicate and t = t1, . . . , t�
is a list of terms (such as strings, integers, symbolic constants, nested function terms),

rule bodies may also contain external atoms of the form &g[X](Y), where &g is an

external predicate, X = X1, . . . , Xl and each Xi is an input parameter (which can be

either a constant or variable term, or a predicate), and Y = Y1, . . . , Yk and each Yi

is an output term.

Syntax. A hex-program (or program) consists of rules r of form

a1 ∨ · · · ∨ ah ← b1, . . . , bm, not bm+1, . . . , not bn , (1)

where each ai is an (ordinary) atom and each bj is either an ordinary atom or an exter-

nal atom, and h+ n > 0; for such a rule r let B(r) = {b1, . . . , bm, not bm+1, . . . , not bn}
denote its body.

Semantics. An assignment A is a consistent set of literals of form Ta or Fa, where

a is an atom which is said to be true in A if Ta ∈ A, false if Fa ∈ A, and undefined

otherwise. We say that A is complete over a program Π if for all atoms a in Π we

have either Ta ∈ A or Fa ∈ A.

The semantics of a hex-program Π is defined via its grounding grnd (Π) over a

Herbrand universe of constants C as usual, where C can contain constants which

are not in the program and might even be infinite. The value of a ground external

atom &g[p](c) wrt. an assignment A is given by the value f&g(A, p, c) of a decidable

1+k+l-ary three-valued oracle function f&g , where k and l are the lengths of p and

c, respectively5. The oracle function evaluates to true, false or unknown (T, F or U),

where we assume that (i) it evaluates to true or false if A is complete over Π, and

(ii) we have f&g(A
′, p, c) = f&g(A, p, c) whenever A′ ⊇ A and f&g(A, p, c) ∈ {T,F},

i.e., evaluations to true or false do not change when the assignment becomes

more complete; we call this property knowledge-monotonicity. In practice, one often

abstracts from the Boolean view and sees an external predicate with input list

&g[p] as computation of output values c, i.e., determining all values c such that

f&g(A, p, c) = T.

We note that the definition of the oracle function for assignments which are not

complete is only for efficiency improvement, as explained in detail in Section 3.2. For

5 In previous works, oracle functions were two-valued; we come back to this extension (Eiter et al. 2016)
in Section 3.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 869

user’s convenience and for backwards compatibility, it is also possible to use a two-

valued (Boolean) oracle function which is only defined over complete assignments.

It is then implicitly assumed to evaluate to unknown for all assignments which are

not complete.

For (a set of) ground literals, rules, programs, etc., say O, satisfaction wrt. a

complete assignment A extends naturally from ASP to hex-programs, by taking

external atoms into account. Satisfaction of O under A is denoted by A |= O. In this

case we say that A is a model of O.

An answer set of a hex-program Π is a model A of the FLP-reduct6 fΠA of

Π wrt. A, given by fΠA = {r ∈ grnd (Π) | A |= B(r)} (Faber et al. 2011), which is

subset-minimal, i.e., there exists no model A′ of fΠA s.t. {Ta ∈ A′} � {Ta ∈ A}.
Technically, external atoms are realized as plugins of the reasoner using a

programming interface. To this end, the provider of an external source basically

implements its oracle function.

Example 1

Consider the program

Π=

{
r1 : start(s).

r2 : scc(X)← start(X). r3 : scc(Y) ← scc(X),&edge[X](Y).

}

where r1 selects a node s from an externally defined (finite) graph, and r2 and r3
recursively compute the strongly connected component of s. To this end, the external

atom &edge[X](Y) is used, which is true if Y is directly reachable from X (and false

otherwise).

The implementation of &edge[X](Y) may look as follows (API details follow in

Section 4.1):

d e f edge (x):

graph =((1 ,2) , (1 , 3) , (2 , 3)) # s i m p l i f i e d imp l em e n t a t i o n ; r e a l one s may read a DOT f i l e

f o r edge i n graph : # s e a r c h f o r o u t g o i n g edge s o f node x

i f edge[0]==x . i n tVa l u e ():

d l v h ex . o u t p u t ((edge [1] ,)) # ou t pu t edge t a r g e t

3 Exploiting external source properties

External sources were seen as black boxes in earlier versions of dlvhex. It was

assumed that the system does not have any information about them, except that

there is an oracle function which decides satisfaction of an external atom under a

complete assignment. As a consequence, the room for optimizations in the algorithms

was limited because the value of an external atom under one assignment did not

allow for drawing any conclusions about its behavior under other assignments.

However, in many practical applications the provider of an external source and/or

the hex-programmer have additional knowledge about the behavior of the source,

for instance, that the source is monotonic, functional, has a limited domain, returns

6 The FLP-reduct is equivalent to the traditional reduct for ordinary logic programs (Gelfond and
Lifschitz 1991), but more attractive for extensions such as aggregates or external atoms.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

870 C. Redl

only elements which are smaller than the input (according to some ordering),

etc. Knowing such properties allows for implementing more specialized algorithms

which are tailored to the particular external sources used in a program. We therefore

identified a set of properties that external sources might have, and allow the user to

specify the ones which are fulfilled by a concrete external source.

Example 2

Suppose &tail [X](Y) is true whenever Y is the string which results from string X

if the first character is dropped. Then the output is always smaller than the input

wrt. string length.

The system exploits these properties automatically, mainly for two purposes: in

the learning algorithms for scalability enhancements and in the grounding component

for more flexibility of the language due to reduced syntactic limitations; we discuss

these two aspects in more detail in Sections 3.2 and 3.3, respectively. In addition,

there are several other system components which exploit the properties to further

speed up the evaluation, such as skipping various checks if their result is definite due

to known behavior of external sources, partitioning a reasoning task into smaller

independent tasks, avoiding unnecessary evaluations of external atoms, and drawing

deterministic conclusions rather than guessing.

However, as this paper presents the system from user’s perspective, we focus on

which properties can be specified, how the user can do that, and give a rough idea

of how the system makes use of this information, but we refrain from discussing

the involved algorithms in detail. This is in line with the goal of these properties:

the user can benefit from the advantages when specifying them, but without the

need to care about how the system is going to exploit this information. Instead,

the user can generally expect that the more information is available to the system,

the more efficient evaluation will be; if the added information does not yield a

speedup, it does at least no harm.7 Some of the properties, such as monotonicity,

do even lead to a drop of complexity from ΣP
2 to NP for answer set existence

checking over ground disjunction-free programs, provided that external sources are

polynomial (Faber et al. 2011).

Furthermore, properties also serve as assertions: if the reasoner observes a

behavior of external sources which contradicts the declared properties, appropriate

error messages are printed.

3.1 Specifying Properties

The specification of properties is supported in two ways. The first option is to

declare them as part of the external source implementation via the external source

interface. The second option is to specify them as part of the hex-program using

so-called property tags.

7 The only property related to potential performance decrease is provision of a three-valued semantics as
additional calls of the external source are sometimes counterproductive (Eiter et al. 2016). However,
even then the property itself does not harm since it is only exploited by certain (non-default) evaluation
heuristics selected via command-line options.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 871

Specification via the External Source Interface. Properties are mostly specified via

the (C++ or Python) programming interface for external sources. To this end,

the procedural code which implements external atoms calls specific setter methods

provided by the programming interface to inform the system that the source has

certain properties.

Example 3

The implementation of a hash function &md5 [X](Y) which computes for a string

X its MD5 hash value Y might call prop.setFunctionality(true) to let dlvhex

know that for each X there is exactly one Y . This allows the system, for instance, to

conclude that &md5 [x](y2) is false without evaluating the external source, if it has

already found a value y1 �= y2 such that &md5 [x](y1) is true.

If a property is declared in this way, the external source is meant to always

provide a certain behavior, independent of its usage in a certain hex-program, like

in case of the computation of a hash value. Another example is &diff [p, q](X),

which computes all values X which are in the extension of p but not in that of q

wrt. assignment A (formally, these are all values x such that f&diff (A, p, q, x) = T).

This external atom it is always monotone/antimonotone in the first/second parame-

ter, which can be specified by calling prop.addMonotonicInputPredicate(0) and

prop.addAntimonotonicInputPredicate(1) (cf. Example 8).

Specification via property tags. However, it might also be the case that only a

specific usage of an external source in a concrete program has a property. Then

the implementer of the external source cannot declare it yet; instead, only the

implementer of the hex-program has sufficient knowledge and can declare the

property as part of an external atom in the program.

Example 4

Suppose &greaterThan[p, 10]() checks if the sum of integer values c s.t. p(c) is true

is greater than 10. It is not monotone in general if negative integers are allowed,

but it is monotone if a program uses only positive integers. While the provider of

the external source cannot assert the property, the user of the external source in a

concrete program, who knows the context, can.

To this end, the hex language and implementation were extended such that

external atoms can be followed by property tags of form 〈list of properties〉, where

the list of properties is comma-separated. Each property is then a whitespace-

separated list of constants, consisting of a property type (first element in the

list), and a number of property parameters (remaining elements in the list), whose

number depends on the property type and may also have default values. For

example, &diff [p, q](X)〈monotonic p, antimonotonic q〉 specifies two properties which

declare that the external atom is monotonic in p and antimonotonic in q wrt. their

extension in the input assignment. Here, the first property monotonic p uses the

property type monotonic and the property parameter p, while the second property

antimonotonic q uses the property type antimonotonic and the property parameter

q. Another example is &greaterThan[p, 10]()〈monotonic〉, which declares that the

external source is monotonic in all parameters (because it is monotonic in p and it

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

872 C. Redl

is trivially monotonic in constant input parameters because they are independent of

the input assignment); the property type is monotonic and no property parameters

are explicitly specified, which indicates by default that the source is monotonic

in all inputs. Properties declared by tags are understood to hold in addition to

those declared via the external source interface (stating conflicting properties is not

possible with the currently available ones).

Supported properties. The following list gives an overview about the currently

available properties and how to specify them if the property tag language is used

(but all of them can be specified both via the external source interface or in property

tags). Each property is explained with an example in order to show the property

type and the expected property parameters.

• Functionality: &add [X,Y](Z)〈functional〉
The external atom adds integers X and Y and is true for their sum Z . The

source provides exactly one output value for a given input. There are no property

parameters.

• Monotonicity in a parameter: &diff [p, q](X)〈monotonic p〉
The external atom computes the difference of the extensions of p and q. The

source is monotonic in predicate parameter p (i.e., if the extension of p increases,

the output does not shrink), as indicated by the property parameter.

• Global monotonicity: &union[p, q](X)〈monotonic〉
The source computes the set union of the extensions of p and q. It is monotonic in

all parameters (indicated by the default value of the missing property parameter).

• Antimonotonicity in a parameter: &diff [p, q](X)〈antimonotonic q〉
The source is antimonotonic in predicate parameter q (i.e., if the extension of q

shrinks, the output does not shrink).

• Global antimonotonicity: &complement[p](X)〈antimonotonic〉
The source computes the complement of the extension of p wrt. a fixed domain.

It is antimonotonic in all parameters.

• Linearity on atoms: &union[p, q](X)〈atomlevellinear〉
We have domain independence on the level of atoms, i.e., the source can be

separately evaluated for each input atom s.t. the final result is the union of the

results of all evaluations. For instance, the evaluation under assignment A =

{Tp(a),Tp(b),Tq(c)}, which yields {a, b, c}, can be split up into three evaluations

under A1 = {Tp(a)}, A2 = {Tp(b)} and A3 = {Tq(c)}, which yield {a}, {b} and

{c}, respectively, and their union the result of the evaluation under A. There are

no property parameters.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 873

• Linearity on tuples: &diff [p, q](X)〈tuplelevellinear〉
We have domain independence on the level of tuples in the extensions of

predicate input parameters, i.e., the source can be separately evaluated for each

pair of atoms p(c) and q(c) for all vectors of terms c s.t. the final result is

the union of the results of all evaluations. For instance, the evaluation under

A = {Tp(a),Tp(b),Fq(a),Tq(b)}, which yields {a}, can be split up into two

evaluations under A1 = {Tp(a),Fq(a)} and A2 = {Tp(b),Tq(b)}, which yield {a}
and ∅, respectively, and their union in the result of the evaluation under A.

However, it would not be correct to split A2 further up into A2.1 = {Tp(b)} and

A2.2 = {Tq(b)} as they would yield the results {b} and ∅, which would put b into

the final result, which differs from the evaluation under A. There are no property

parameters.

• Finite domain: &edges[graph .dot](X,Y)〈finitedomain 0 , finitedomain 1 〉
Imports the edges of a predefined graph. Both output values can have only

finitely many different values. To this end, we specify two properties with type

finitedomain with property parameters that identify the output terms X and Y

by index (0 and 1, respectively).

• Finite domain wrt. the input: &diff [p, q](X)〈relativefinitedomain 0 0 〉
Only constants which already appear in the 0-th input (indicated by the first

property parameter 0; points in this case to the predicate p) may occur as

first output term (indicated by the second property parameter 0). Informally,

the difference between sets represented by predicates p and q can only contain

elements which appear in the set represented by p.

• Finite fiber: &sqrt[X](Z)〈finitefiber〉
The source computes the square root of X. Each element in the output is only

produced by finitely many different inputs (in this case, in fact, only by a single

input value). There are no property parameters.

• Well-ordering wrt. string lengths: &tail [X](Z)〈wellorderingstrlen 0 0 〉
The source drops the first character of string X and returns the result in Z . The

0-th output (indicated by the second property parameter 0) is no longer than the

longest string in the 0-th input (indicated by the first property parameter 0).

• General well-ordering: &decrement[X](Z)〈wellordering 0 0 〉
The external atom decrements a given integer. There is an ordering of all

constants such that the 0-th output (second parameter) is no greater than the

0-th input (first parameter) wrt. this ordering.

• Three-valued semantics: &g[X](Y)〈providespartialanswer〉
The external source can be evaluated under partial assignments, i.e., it can handle

assignments which do not define all atoms, but may evaluate to undefined (U) in

this case (can be used with any external source if implemented).

Note that properties are only useful if they are exploited by at least one solving

technique or algorithm implemented in the reasoner. It is therefore not intended

that typical users introduce custom properties, but only tag external atoms with

existing ones from the above list. However, for advanced users who contribute

to or customize the reasoner itself, the framework supports easy extension of the

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

874 C. Redl

parser and data structures. Exploiting such a new property in the algorithms might

be more sophisticated depending on the particular property and the envisaged

goal.

3.2 Scalability Boost

Traditionally, ground hex-programs have been evaluated by replacing each external

atom &e[p](c) by an ordinary atom e&e[p](c) and introducing a rule e&e[p](c) ∨
ne&e[p](c) ← to guess its truth value; the resulting program is evaluated by an

ordinary ASP solver to produce model candidates. Each candidate A is subsequently

checked by testing (i) if the external atom guesses are correct, i.e., if A |= e&e[p](c)

iff A |= &e[p](c) for all external atoms &e[p](c), and (ii) if assignment A is a

subset-minimal model of fΠA. If both conditions are satisfied, an answer set has

been found. However, this approach did not scale well because there are exponen-

tially many independent guesses in the number of external atoms in the ground

program.

Basic approach. To overcome the problem, novel evaluation algorithms based on

conflict-driven techniques have been introduced (Eiter et al. 2012). As in ordinary

ASP solving, the input program is translated to a set of nogoods, i.e., a set of literals

which must not be true at the same time. Given this representation, techniques from

SAT solving are applied to find an assignment which satisfies all nogoods (Gebser

et al. 2012). Notably, as the encoding as a set of nogoods is of exponential size due

to loop nogoods which avoid cyclic justifications of atoms, those parts are generated

only on-the-fly. Moreover, additional nogoods are learned from conflict situations,

i.e., violated nogoods which cause the solver to backtrack; this is called conflict-driven

nogood learning.

The extension of this algorithm towards the integration of external sources into

the learning component works as follows. Whenever an external atom &e[p](c) is

evaluated under an assignment A in the checking part (i), the actual truth value

under the assignment becomes evident. Then, regardless of whether the guessed value

was correct or not, one can add a nogood which represents that e&e[p](c) must be

true under A if A |= &e[p](c) or that e&e[p](c) must be false under A if A �|= &e[p](c).

If the guess was incorrect, the newly learned nogood will trigger backtracking, if the

guess was correct, the learned nogood will prevent future wrong guesses.

Example 5

As above, suppose &diff [p, q](X) computes the set difference between the extensions

of predicates p and q and that it is evaluated under A = {Tp(a),Tp(b),Fq(a),Tq(b)}
with Herbrand universe C = {a, b}. Then it can be learned that A |= e&e[p,q](a) by

adding the nogood {Tp(a),Tp(b),Fq(a),Tq(b),Fe&e[p,q](a)}, i.e., whenever p(a), p(b), q(b)

are true and q(a) is false, then &e[p, q](a) must not be false. Conversely, one can

learn that A �|= &e[p, q](b) by adding nogood {Tp(a),Tp(b),Fq(a),Tq(b),Te&e[p,q](b)}.

Experimental results show a significant, up to exponential speedup (Eiter et al.

2014). This is explained by the exclusion of up to exponentially many guesses by the

learned nogoods.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 875

Exploiting external source properties. The technique was refined by exploiting

additional knowledge about external sources in order to keep the learned nogoods

small. In the previous example, atoms p(a) and q(a) in the assignment are in

fact irrelevant when deciding whether &e[p, q](b) is true because constants a and

b are independent (similarly for p(b) and q(b) when deciding &e[p, q](a)). If this

information is available to the system, it can be exploited to shrink nogoods to the

relevant part such that the search space is pruned more effectively.

One way to gain the required information is to make use of the properties

introduced in Section 3.1. In particular, the independence of a and b in the previous

example can be derived from the property ‘linearity on tuples’. Then the nogood

{Tp(a),Tp(b),Fq(a),Tq(b),Fe&e[p,q](a)} can be reduced to {Tp(a),Fq(a), Fe&e[p,q](a)}
and the nogood {Tp(a),Tp(b),Fq(a),Tq(b), Te&e[p,q](b)} to {Tp(b), Tq(b),Te&e[p,q](b)}.
If monotonicity in p is known in addition, then nogood {Tp(b), Tq(b),Te&e[p,q](b)}
can be further simplified to {Tq(b),Te&e[p,q](b)} by dropping Tq(a) because &e[p, q](b)

will remain false even if q(a) becomes false.

Exploiting three-valued oracle functions. Alternatively or in addition to external

source properties, also three-valued oracle functions (cf. Section 2) can be exploited

for shrinking learned nogoods to the essential part (Eiter et al. 2016). If the truth

value is already known and will not change when the assignment becomes more

complete, then the set of yet unassigned atoms is irrelevant for the output of the

external source. This is exploited for nogood minimization as follows. Whenever a

nogood is learned, the system iteratively tries to remove one of the input atoms

and evaluate again in order to check if the truth value is still defined. If this

is the case, the according atom is not necessary and can be removed from the

nogood.

For instance, a proper implementation of a three-valued oracle function in

the previous example allows for reducing {Tp(a),Tp(b),Fq(a),Tq(b),Te&e[p,q](b)} to

{Tq(b),Te&e[p,q](b)} because whenever Tq(b) is in the assignment, it is already definite

that &diff [p, q](b) is false.

Discussion and Extensions. Whether to exploit external source properties, three-

valued oracle functions, or both, depends largely on the use case. Depending on

the type of external source to be realized, the implementation of a three-valued

oracle function might be more challenging than of a Boolean one (implementing an

algorithm which decides over partial assignments is in general more difficult than

if all information is known). However, it allows for exploiting application-specific

knowledge in an optimal way (Eiter et al. 2016). In contrast, tagging external sources

with properties from a list is easy and can still lead to good efficiency.

3.3 Language flexibility

External atoms may introduce constants which do not appear in the program (value

invention). Obviously, this can in general lead to programs which do not have a finite

grounding that has the same answer sets as the original program (which are defined

via the full, possibly infinite grounding grnd (Π)). Since this inhibits grounding in

general, it is crucial to identify classes of programs for which the existence of such a

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

876 C. Redl

finite grounding is guaranteed; we call this property finite groundability. Traditionally,

strong safety was used, which basically forbids value invention by recursive external

atoms (i.e., external atoms whose input possibly depends on its own output wrt. the

predicate dependency graph, for a formal definition cf. Eiter et al. (2006b)). If

only non-recursive external atoms introduce new values, termination is guaranteed.

However, it turns out that this is only a sufficient but not a necessary criterion, i.e.,

strong safety is overly restrictive.

Example 6

The program Π from Example 1 is not strongly safe because &edge[X](Y) is

recursive (output Y may be input to the same external atom by another application

of r3) but may introduce values for Y which do not appear in Π. However, if one

knows that the graph is finite, one can conclude that the recursive introduction of

new values will end at some point.

In the example, the criterion may be circumvented by importing the full domain

a priori and adding domain predicates, i.e., adding node(Y) to the body of r3 and

another rule node(X) ← &node[](X) to import all nodes. Then &edge[X](Y) does

no longer invent values because all possible values for Y are determined in a non-

recursive fashion using &node[](X). However, this comes at the price of importing the

whole graph although only a small set of nodes might be in the strongly connected

component of s.

Therefore, new safety criteria have been introduced which allow for exploiting

both syntactic and semantic conditions to derive finite groundability, where the

latter are based on external source properties as introduced in Section 3.1. So-called

liberally safe hex-programs are guaranteed to have a finite grounding which can be

computed using a novel algorithm (Eiter et al. 2016).

Example 7

Let &tail [X](Y) drop the first character of string X and return it as Y . Then Y

is no longer than X and – even if used recursively – it is guaranteed that it can

generate only finitely many strings because there are only finitely many strings with

a length up to the one of X.

In addition to the declaration of predefined properties, the generic framework is

also extensible such that custom knowledge about external sources can be exploited.

To this end, providers may implement safety plugins, which are integrated into the

safety check. The safety check itself is fast (at most quadratic in the size of the

non-ground program).

The system combines the available information, given by syntactic conditions,

specified semantic properties and safety plugins in order to check safety of the

program. This does not only allow for writing programs with fewer syntactic

restrictions, but the implementation of some applications may be possible in the first

place. For instance, in route planning applications, importing the whole map material

a priori is practically impossible due to the large amount of data, while a selective

import using liberal safety makes the application possible (Eiter et al. 2016).

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 877

In case a program is not safe, the system prints hints such as the rule and

the variable for which finiteness during instantiation could not be proven. This

information is intended to guide the user when providing more information in order

to make the program safe, e.g., by adding properties from Section 3.1 which constrain

the values of this variable further. Alternatively, a command-line option allows to

disable the safety check altogether, in which case there is no guarantee that the

reasoner terminates (putting this burden on the user).

4 Usability and system features

In this section we present recent work on the system side to improve the user’s

convenience. We start with general remarks on the dlvhex software and its dissemi-

nation. dlvhex was previously only available in source format (released under GNU

LGPL) and only for Linux platforms. This deployment method turned out to be

inconvenient for ASP programmers who want to use the system as is without custom

modifications, thus we now provide pre-built binaries for all major platforms (Linux-

based, OS X and Windows) in addition. We further created an online demo of the sys-

tem under http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

which allows for evaluating hex-programs directly in the browser (the user may

specify both the logic program and custom Python-implemented external atoms in

two input fields). The demo comes with a small set of examples to demonstrate the

main features of the KR formalism. We further provide a manual to support new

users of the system (Eiter et al. 2015).

Next, the following two subsections give an overview of the new Python program-

ming interface and interoperability of the system.

4.1 Python programming interface

With earlier versions of the system, users who wanted to integrate custom external

sources had to write plugins in C++. While this was natural as the reasoner itself

is implemented in C++, it was cumbersome and introduced development overhead

even for experienced developers. This is because multiple configuration, source and

header files need to be created even when realizing only a small and simple plugin.

Also, the compilation and linking overhead during development and debugging was

considered inconvenient.

As a user-friendly alternative, dlvhex 2.5.0 introduces a plugin API for Python-

implemented external sources. A plugin consists of a single file (unless the user

explicitly wants to use multiple files), which imports a dedicated dlvhex package

and specifies a single method for each external atom. Thanks to higher-level features

of Python and modern packages, this usually results in much shorter and simpler

code than with C++-implemented plugins. A central register method exports

the available external atoms and (optionally) their properties from Section 3.1 to

dlvhex.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

878 C. Redl

Reasoning
Component

C ++ Program-
ming Interface

C ++ Plugins

Python Program-
ming Interface

Python Plugins

DLVHEX

Fig. 1. Architecture of the Python Programming Interface

Example 8

The following snippet implements &diff [p, q](X) for computing the values X which

are in the extension of p but not in that of q. It is monotonic in p and antimonotonic

in q.

impor t d l v h ex

d e f d i f f (p , q):

f o r x i n d l v h ex . ge tTrue Inpu tAtoms (): # f o r a l l t r u e i n p u t atoms

i f x . t u p l e ()[0] == p : # i s i t o f form p(c)?

i f d l v h ex . i s F a l s e (d l v h ex . s to reAtom (# i s t h e c o r r e s p o n d i n g q(c) f a l s e ?

(q , x . t u p l e ()[1]))):

d l v h ex . o u t p u t ((x . t u p l e ()[1] ,)); # then c i s i n t h e ou t p u t

d e f r e g i s t e r ():

prop = d l v h ex . Ex t Sou r c eP r o p e r t i e s () # in f o rm d l v h ex about

prop . a ddMono t on i c I npu tP r ed i c a t e (0) # mono t o n i c i t y / a n t i m o n o t o n i c i t y

prop . a d dAn t imono t o n i c I n p u tP r e d i c a t e (1) # i n t h e f i r s t / s e cond parame t e r

d l v h ex . addAtom(” d i f f ” , (d l v h ex . PREDICATE, d l v h ex . PREDICATE) , 1 , prop)

On the command-line, the call dlvhex2 --python-plugin=plugin.py prog.hex

loads the external atoms defined in plugin.py and then evaluates hex-program

prog.hex.

In the system, the Python programming interface is realized as a wrapper of the

generic C++ interface as shown in Figure 1, where arcs model both control and

data flow. That is, the Python interface uses only the C++ interface but does not

communicate with the core reasoning components otherwise. This turns the Python

interface in fact into a special C++ plugin. The performance gap between C++

and Python plugins is normally negligible (the update of the Python data structures

it in the worst case linear in the number of input atoms), unless the plugin is itself

computationally expensive. Wrappers for other languages can be added similarly

and can also be implemented externally, i.e., they do not necessarily need to be part

of the dlvhex solver.

For a complete API description we refer to http://www.kr.tuwien.ac.at/

research/systems/dlvhex/.

4.2 ASP-Core-2 Standard, Extensions and Interoperability

In the course of the organization of the fourth ASP competition, the input

language of ASP systems was standardized in the ASP-Core-2 input language

format (Calimeri et al. 2013). The dlvhex system in its current version supports all

features defined in the standard, including function symbols, choice rules, conditional

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 879

literals, aggregates, and weak constraints. The supported language is therefore a strict

superset of the standard.

The system further supports input and output in CSV format to improve inter-

operability with other systems such as Unix commands or spreadsheet applications.

That is, facts may be read from the lines of a CSV file, where the different values

are mapped to the arguments of a predicate. After the computation, the extension

of a specified predicate may be written in CSV format to allow a seamless further

processing by other applications. For instance, consider salary.csv:

joe,smith,2000

sue,johnson,2200

It can be read as facts emp(1, joe, smith , 2000) and emp(2, sue, johnson , 2200) (where

the first element is the original line number if relevant) using the dlvhex command-

line option --csvinput=emp,salary.csv. Conversely, results can be output in CSV

format.

5 Applications

We now discuss some applications which were realized on top of hex-programs.

In this paper, we focus on applications whose purpose was not to demonstrate

hex-programs or to evaluate the reasoner. Instead, the following applications are

motivated by real needs and are interesting by themselves, while hex-programs were

merely a means for their realization. This witnesses that hex-programs and dlvhex

can be fruitfully applied for real-world problems.

We discuss the effects of the described system improvements on the applications.

However, since this paper gives an overview of the system and not all of the presented

improvements are related to efficiency, not all of the following applications are

suited as performance benchmarks. For an extensive empirical evaluation focused

on efficiency we refer to Eiter et al. (2014) and Eiter et al. (2016).

Hybrid planning. The application comes from the robotics domain and consists of

high-level planning and low-level feasibility checking (Erdem et al. 2016). High-level

plans are sequences of actions towards a goal, while low-level constraints (such as

stability issues of robots or intersections of routes) exclude some of the sequences.

Thus, not all such plans which are possible from high-level perspective are actually

executable. The separation of the two levels is motivated by the observation that the

full integration of low-level constraints into the model for high-level planning might

blow up the encoding (while it might be feasible in other cases). An implementation

of hybrid planning on top of hex-programs was presented, where external atoms

are used to perform low-level feasibility checking of high-level plans generated in

the program.

Effects of improvements: The application uses hand-crafted custom learning functions

which add custom nogoods during evaluation to improve efficiency, cf. Erdem

et al. (2016). With the new dlvhex version, three-valued oracle functions can be

used instead, which allow for an easier realization of a similar learning behavior.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

880 C. Redl

Furthermore, the property tuplelevellinear can be exploited whenever feasibility

checks can be split into multiple independent checks (e.g. of independent robots),

and relativefinitedomain can be exploited for external atoms used for sensing objects

(only objects which appear in the description of the world can be sensed).

Route planning. The combination of route planning with side constraints was

realized on top of hex (Eiter et al. 2016). An example is planning a tour through

multiple locations, where the possibility to get refreshments should be included if

the tour is longer than a limit.

Effects of improvements: Since the traditional criterion of strong safety disallows

recursive value invention, previous system versions must import the whole map a

priori. As this is infeasible for real-world data, the application can in fact only be

realized on top of hex by exploiting the improvements from Section 3.3. To this

end, finiteness of the map used with liberal safety allows for importing only relevant

parts of the map and solving the problem efficiently (Eiter et al. 2016).

Multi-context systems. Multi-context systems are a framework for integrating

heterogeneous knowledge-bases, called contexts, which are abstractly identified by

sets of belief sets (Brewka and Eiter 2007). Their integration works via dedicated

bridge rules which derive information in one context based on atoms in other

contexts. The whole system may become inconsistent although the individual

contexts are all consistent. A typical reasoning task is then inconsistency analysis,

i.e., the computation of an inconsistency explanation (Eiter et al. 2010), which was

realized on top of hex-programs (Bögl et al. 2010). The main idea is to realize

contexts as external sources. Then a hex-program can access all contexts, compute

candidate explanations, and check them against all contexts. Experimental results,

which demonstrate effectiveness of the learning techniques from Section 3.2, can be

found in the work by Eiter et al. (2014).

Effects of improvements: Already plain learning (general part of Section 3) is highly

effective, cf. (Eiter et al. 2014). The external atoms are functional, which does however,

since their output is 0-ary, not lead to additional performance improvements, but

does at least not harm.

Complaint management. Citizens may raise complaints about issues such as noise or

traffic jams as part of e-government. A system was realized on top of dlvhex, which

ranks complaints by their severity, such that priorities can be assigned (Zirtiloglu

and Yolum 2008). While ontologies capture parts of the application, the authors

combine them with hex-programs due to the inherent support for nonmonotonic

reasoning. This is motivated by the dynamic behavior of complaint management

systems, which might need to adopt the ranking if new complaints are added.

Effects of improvements: The encoding makes use of recursive rules over external

atoms, thus the evaluation involves nondeterministic guessing. However, as the

external atoms use only constant input, they are independent of the assignment

are thus trivially monotonic and antimonotonic. In this case, the techniques from

Section 3.2 assign the correct truth value permanently after the first evaluation and

thus this application is expected to benefit significantly from the improvements.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 881

AI in computer games. Angry-HEX is an AI agent for the computer game Angry

Birds8 (Ianni et al. 2016) and was developed since 2012 for participation in the

AIBirds competition9; it was a finalist in 2015. The goal is to shoot birds with a

slingshot at pigs located in buildings of wood, stone and ice blocks in order to

destroy them. While the game is a strategy and skills game when playing manually,

an AI agent can precisely compute the trajectory and the angle and speed in order

to hit the desired target. Thus, the main issue is the selection of the best target.

The strategy employed by Angry-HEX is to select the target which maximizes the

estimated damage to pigs (primary goal) and to other objects (secondary goal). This

is encoded as a hex-program which guesses possible targets, estimates the damage

for each, and uses weak constraints for optimization. However, the estimation of the

damage requires physics simulation for deciding, for instance, which objects will fall

if others are destroyed. As such a simulation cannot easily be done with rules alone,

external atoms are used to interface with a physics simulator. Hence, the low-level

simulation is done in external atoms while the high-level strategy is rule-based. The

idea of this two-level approach is similar to the hybrid planning domain.

Effects of improvements: The application mainly benefits from the improvements in

Section 4. It uses new language features from the ASP-Core-2 standard such as

optimization statements. Moreover, until now a significant amount of development

time was spent on low-level coding for interfacing physics libraries. The new

Python interface is expected to speed up the development of the agent. Finally,

the availability of binaries is more important than for other applications since the

application needs to be run in an environment provided by the organizers of the

competition.

6 Conclusion

The dlvhex system implements hex-programs and was first released ten years

ago (Eiter et al. 2006a). Over time, it was significantly extended with new algorithms,

features, programming interfaces, and user’s resources. While it served mainly as

an experimental framework in the beginnings, its advancement towards practical

applicability started only in the last three years. We now reached a stable state,

where all extensions envisaged for this major release are implemented.

In this paper, we gave a summary of version 2.5.0 and the most important recent

enhancements. While literature on theoretical aspects and algorithms is preexisting,

this paper focuses on the practical aspects which are relevant when realizing an

application on top of hex. After receiving positive feedback from individual users,

we believe that informing the users succinctly about the enhancements will push the

use not only of the new features but also of the system altogether.

The improvements concern exploitation of known properties of external sources

for novel efficient evaluation algorithms and more flexibility of the language, and

8 https://www.angrybirds.com
9 https://aibirds.org

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

882 C. Redl

recent system extensions for improved user’s convenience; the latter include a Python

programming interface, additional material and a new dissemination strategy. Real

applications, which emerged independently of the research on hex, but were realized

on top of dlvhex, confirm the practicability of the approach.

References

Bögl, M., Eiter, T., Fink, M. and Schüller, P. 2010. The MCS-IE system for explaining

inconsistency in multi-context systems. In JELIA 2010, 356–359.

Brewka, G. and Eiter, T. 2007. Equilibria in Heterogeneous Nonmonotonic Multi-Context

Systems. In AAAI, AAAI Press, 385–390.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.

Comm. ACM 54, 12, 92–103.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Roland Kaminski, T. K., Leone, N., Ricca,

F. and Schaub, T. 2013. ASP-Core-2 Input Language Format.

Eiter, T., Fink, M., Krennwallner, T. and Redl, C. 2012. Conflict-driven ASP solving with

external sources. Theory and Practice of Logic Programming: Special Issue ICLP .

Eiter, T., Fink, M., Krennwallner, T. and Redl, C. 2016. Domain expansion for asp-

programs with external sources. Artif. Intell. 233, 84–121.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. 2014. Efficient HEX-

program evaluation based on unfounded sets. Journal of Artificial Intelligence Research 49,

269–321.

Eiter, T., Fink, M., Schüller, P. and Weinzierl, A. 2010. Finding explanations of

inconsistency in Multi-Context Systems. In KR, AAAI Press, 329–339.

Eiter, T., Ianni, G., Schindlauer, R. and Tompits, H. 2005. A Uniform Integration of

Higher-Order Reasoning and External Evaluations in Answer-Set Programming. In IJCAI

2005, 90–96.

Eiter, T., Ianni, G., Schindlauer, R. and Tompits, H. 2006a. dlvhex: A Prover for Semantic-

Web Reasoning under the Answer-Set Semantics. In the ICLP’06 Workshop on Applications

of Logic Programming in the Semantic Web and Semantic Web Services (ALPSWS2006),

CEUR WS, 33–39.

Eiter, T., Ianni, G., Schindlauer, R. and Tompits, H. 2006b. Effective Integration of

Declarative Rules with External Evaluations for Semantic-Web Reasoning. In ESWC 2006,

273–287.

Eiter, T., Kaminski, T., Redl, C. and Weinzierl, A. 2016. Exploiting partial assignments

for efficient evaluation of answer set programs with external source access. In IJCAI 2016,

To appear.

Eiter, T., Lukasiewicz, T., Schindlauer, R. and Tompits, H. 2004. Combining Answer

Set Programming with Description Logics for the Semantic Web. In KR 2004, D. Dubois,

C. Welty, and M.-A. Williams, Eds., AAAI Press, 141–151.

Eiter, T., Mehuljic, M., Redl, C. and Schüller, P. 2015. User guide: dlvhex 2.x. Tech.

Rep. INFSYS RR-1843-15-05, Vienna University of Technology, Institute for Information

Systems. September.

Erdem, E., Patoglu, V. and Schüller, P. 2016. A Systematic Analysis of Levels of Integration

between High-Level Task Planning and Low-Level Feasibility Checks. AI Communications,

IOS Press .

Faber, W., Leone, N. and Pfeifer, G. 2011. Semantics and complexity of recursive aggregates

in answer set programming. Artif. Intell. 175, 1, 278–298.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

Theory and practice of logic programming 883

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T. and Schneider, M.

2011. Potassco: The Potsdam Answer Set Solving Collection. AI Commun. 24, 2, 107–124.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From

theory to practice. Artif. Intell. 187–188, 52–89.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9, 3–4, 365–386.

Ianni, G., Calimeri, F., Germano, S., Humenberger, A., Redl, C., Stepanova, D., Tucci, A.

and Wimmer, A. 2016. Angry-HEX: an artificial player for angry birds based on declarative

knowledge bases. IEEE Transactions on Computational Intelligence and AI in Games .

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.

2006. The DLV system for knowledge representation and reasoning. ACM Trans. Comput.

Log. 7(3), 499–562.

Ostrowski, M. and Schaub, T. 2012. ASP modulo CSP: the clingcon system.

CoRR abs/1210.2287.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and Implementing the Stable Model

Semantics. Artificial Intelligence 138, 181–234.

Zirtiloglu, H. and Yolum, P. 2008. Ranking semantic information for e-government:

complaints management. In OBI 2008, Karlsruhe, Germany, October 27, 2008, pages 5:1–5:7.

https://doi.org/10.1017/S1471068416000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000211

