
A Method for Searching Optimal
Routes with Collision Avoidance on

Raster Charts

Ki-Yin Chang and Gene Eu Jan

(National Taiwan Ocean University, Taiwan)

Ian Parberry

(University of North Texas, USA)

Collision avoidance is an intensive discussion issue for navigation safety. This article in-
troduces a new routing algorithm for finding optimal routes with collision detection and
avoidance on raster charts or planes. After the required data structure of the raster chart is

initialized, the maze routing algorithm is applied to obtain the particular route of each ship.
Those ships that have potential to collide will be detected by simulating the particular routes
with ship domains. The collision avoidance scheme can be achieved by using the collision-

area-marking method with collision avoidance rules at sea. The algorithm has linear time and
space complexities, and is sufficiently fast to perform real-time routing on the raster charts.

KEY WORDS

1. Charts. 2. Raster charts. 3. Maze routing. 4. Optimal route.

1. INTRODUCTION. The technology of Electronic Navigational Charts
(ENC) and digital electronic maps (DEM) has been used increasingly in marine
navigation, GPS applications and geographic information systems. Reduced man-
ning levels, the lack of skilled maritime labour and new satellite navigation systems
have created a need for electronic navigational charts in merchant ships (Beattie,
1995). In the ENC system, the most common application is to determine an optimal
or a most economical route (path) leading from any source (start) cell (point, port)
to the destination cell without crossing any landmass (also called obstacle or bar-
rier) including shoals. There are two kinds of ENC formats; those are raster and
vector data. Since the raster charts are cheaper and simpler to produce and update
than official vector charts, officially produced raster charts now cover most of paper
charts (Dawson, 1997). The major drawback of the raster charts is that due to lack
of adequate information, their emulation and implementation for ocean shipping is
limited. To enhance the capability of the raster chart, some vector functions are
emulated and implemented in the raster chart systems. But, the vector emulation is
not sufficient for navigating in a sophisticated landmass and shoal areas. It is also
clear that in the future ENC data with Automatic Identification Systems (AIS) will
become widely available for vessels. Therefore, the more highly intelligent path

THE JOURNAL OF NAVIGATION (2003), 56, 371–384. f The Royal Institute of Navigation
DOI: 10.1017/S0373463303002418 Printed in the United Kingdom

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

searching and collision avoidance systems on the charts are imminently required for
safe navigation (Norris, 1998).

The efficiency of the algorithms is an important issue when searching an optimal
route in the raster chart that is composed of a million pixels (cells). The most common
resources required during computation are time (how many steps does it take to solve
a problem) and space (how much memory does it take to solve a problem) complex-
ities. Complexity differs from computability, which deals with whether a problem can
be solved at all, regardless of the resources required. The big O notation is useful for
the analysis of algorithm complexity since it captures the asymptotic growth pattern
of functions and ignores the constant multiple (which is out of control anyway when
algorithms are translated into programs). The time complexity of a problem is the
number of steps that it takes to solve an instance. If an instance that hasN number of
cells can be solved in N 2 steps, then we say it has a time complexity of O(N 2) in the
worst case. Thus, an algorithm that has linear time complexity, O(N), or time com-
plexity of O(N 2) makes a large difference if the size of the data is huge.

Many earlier works in the shortest path problem were related to Dijkstra’s (1959)
single-source shortest path algorithm in the Euclidean plane that is dependent on the
shape of obstacles (Viegas and Hansen, 1985; Chen and Ramanan, 1991; Fagerholt
et al., 2000). Among them, Fagerholt presented a vector model for solving a shortest
path with obstacles and to implement its application to ocean shipping. Their worst-
case time complexity was O(N 2). Some efficient implementations of Dijkstra’s single-
source shortest path algorithm proposed using Fibonacci heaps (F-heaps) to find the
shortest path in the graph model (Ahuja et al., 1990; Henzinger et al., 1997). But, in
a raster plane the situation is naturally presented in a grid plane. In order to apply
the vector-based scheme in the graph model there has to be extensive pre-processing
to convert the situation to adjacency matrices in order to apply the algorithm. For a
grid with N cells, the implementations use up to N F-heaps and the total complexity,
including pre-processing, has not been improved to O(N). Furthermore, all of the
vector-based schemes are still poor at solving cases involving complicated concave
obstacles.

To work out this problem efficiently, this paper proposes a new maze routing
algorithm on the raster charts. The algorithm improves the 2-geometry maze routing
to a higher geometry (4-geometry, 8-geometry, 16-geometry, etc.) maze routing. Our
algorithm solves this problem by using the suitable data structures to perform uni-
form wave propagation and the correctness of which has been proven (Jan and
Chang, 2002). Several similar uniform wave propagation methods arise in the field of
pattern recognition (Kimmel et al., 1995) and computer-aided design (Xing and Kao,
2002). But, their method is not suitable for applying in the raster plane. The appli-
cation of our algorithm is naturally favourable for a pixel-based plane such as the
raster charts since the algorithm is developed in a grid plane. Furthermore, the al-
gorithm is a directional improvement of the 2-geometry maze routing algorithm and
it therefore inherits the two main advantages of the 2-geometry algorithm, such that it
is independent of (the shapes of) the obstacles and guarantees to find the shortest path
if one exists. The algorithm is similar to the breadth-first search algorithm until the
time of arrival of the planar cells is completed or the given condition is reached. The
computation for searching the optimal route is not as extensive as the graph scheme
since the problem is independent of the shapes of the obstacles and no pre-processing
effort is required to construct a suitable search structure. In addition, the algorithm

372 KI-YIN CHANG AND OTHERS VOL. 56

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

can be applied to find the optimal route in the varied terrain of a raster chart. Influ-
ence factors that can be considered as varied terrain that can affect navigational
tracks include ocean currents, and safety and weather conditions.

If multiple ships sail in the same area, the collision detection and avoidance method
is necessary to search for their optimal routes. Several researchers in this field have
done some work in computerized collision avoidance. Davis (1982) used Goodwin’s
domain in simulation of multi-ship encounters. Colley (1984) designed a circle to
circumscribe Goodwin’s model and simulated marine traffic flow and collision
avoidance, which is based on the concept of ‘range to domain over range rate ’
(RDRR). Coenen (1989) introduced an expert and knowledge-based system to assist
the progress of collision avoidance. Most of this research work was emulated by using
direct vector functions in the vector (format) plane. But, our routing algorithm
adopts a pixel-based scheme in the raster plane for application. The algorithm can
easily handle multiple ships navigating in the same area since the cost function of the
algorithm is represented by the time of arrival ; such that the arrival time of each cell
in the desired path has been determined. The collision detection and avoidance
method for those ships can be achieved by simulating the path of multiple ships with
their ship domains and space marking of the collision area. The main difference
between the vector method and ours is that once it decides to take action on the
alternation of a course for a specific ship, our algorithm not only precisely avoids
possible collisions, but also searches an optimal route for the give-way ship.

The rest of this paper is organized as follows: Section 2 describes the maze routing
algorithm and its required data structures ; implementation of collision detection with
ship domains and collision avoidance scheme is discussed in Section 3; some appli-
cation examples are shown in Section 4 and finally, the conclusions are presented in
Section 5.

2. THE MAZE ROUTING ALGORITHM. First, an overview of the
original 2-geometry maze routing algorithm is introduced. Following that, the
l-geometry that is the general form of our algorithm is described. The required data
structure and the algorithm will be described in the 4-geometry that is convenient
for the reader to understand the concept of the algorithm. Further, the varied ter-
rain problem and the 8-geometry or higher geometry, is discussed.

2.1. The 2-geometry maze routing algorithm. The original goal of maze routing
problems is to find a shortest path between a given pair of cells on a rectangular grid
of cells without crossing any obstacles. The maze routing algorithm was first pres-
ented by Lee (1961). To this date, Lee’s algorithm and its variations are probably the
most widely used maze routing methods, with application in maze games (Rubin,
1974; Hoel, 1976), in VLSI design (Lin et al., 1990; Ercal and Lee, 1997) and in road
map routing problems (Fawcett and Robinson, 2000). The popularity of Lee’s al-
gorithm lies in its simplicity and the guarantee to find a shortest path if one exists.
However, Lee’s algorithm is intrinsically based on the 2-geometry (also known as the
Manhattan geometry, rectilinear geometry, etc.) of the grid plane. Each cell is con-
sidered to have only four neighbours, corresponding to, at most, four directions (left,
right, up and down) to move along an admissible path as shown in Figure 1(a). There
were numerous works that have been presented to improve the performance of the
2-geometry maze routing algorithm, but none of them were able to improve it to a
higher geometry, such as 4-geometry, 8-geometry, 16-geometry, etc. The procedure of

NO. 3 COLLISION AVOIDANCE ON RASTER CHARTS 373

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

Lee’s algorithm can be described as a wave propagation process. Two queues plist
and nlist are defined to keep track of the cells on the wavefront (also called frontier
cells) and their equal-distance step neighbouring cells respectively. Putting the source
cell in queue plist initializes the search. After all the neighbouring cells in plist are
included in nlist, the queue nlist is processed so that an expanded wavefront is found.
Then any cell in plist is deleted if all of its neighbouring cells have been processed
(updated) and plist is updated by this new wavefront. The search is terminated if the
destination cell is found. Using a simple induction can prove that the path taken by
the router is the quickest route from the source.

2.2. The l-geometry. For an mrn rectangular grid of N cells, a cells map has a
finite set of values and indicates, at the very least, which cells constitute obstacles.
Each cell represents a pixel in the raster plane. Thus, there should not be any significant

Figure 1. Cell connection styles.

374 KI-YIN CHANG AND OTHERS VOL. 56

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

distortion between the original geometry map and the raster chart because the size
and the shape of the cells are exactly the same as the pixels. The l-geometry allows
edges with angles ip/l, for all i, l=2, 4, 8, 16 and ‘ correspond to rectilinear (90x),
45x, 22.5x, 11.25x and Euclidean geometries respectively (Sherwani, 1999). For a
2-geometry neighbourhood, we are only interested in the cells above, below, to the left
and to the right of a cell, that is, all of the cells that are distance 1 unit from the centre
cell as shown in Figure 1(a). If the four cells on the diagonal are included, we are
working in a 4-geometry, also called 45x geometry, neighbourhood. For a 4-geometry
neighbourhood, we are interested in eight cells that have distances of 1 and

ffiffiffi

2
p

units
from the centre cell as shown in Figure 1(b).

In the 8-geometry neighbourhood, each cell has 24 related neighbours. The distance
of the 24-cell connected neighbourhoods to the centre cell is shown in Figure 1(c).
There are 16 solid-line reachable neighbours required to compute for each move. The
8 dashed-line reachable neighbours do not need to be calculated since they can be
extended by the next computation and will be computed in the next move. Note that
each divided angle in the 8-geometry is not exactly, 22.5x, a half of 45x because the
angle is divided in the grid plane, not in a circle. For the 16-geometry neighbourhood,
the running time for computation and condition statements is about twice that of
the 8-geometry. But, the 16-geometry routing has twice the selective directions for
searching a shortest path than that of the 8-geometry.

Lee’s algorithm fails for a higher geometry if different distances occur. A straight-
forward attempt to improve Lee’s algorithm by using equal cost wavefronts causes a
substantial increase in time complexity (Fawcett and Robinson, 2000). Our algorithm
works in a general context and uses a different data structure than that of Lee’s
algorithm. But in the case of the 2-geometry, the two algorithms are the same. Our
algorithm has the same time and space complexities of O(N) as Lee’s algorithm,
where N is the number of cells in the grid plane. It is worth mentioning that although
we focus on the 4-geometry in this article, the algorithm works in more general
situations. It can be easily adapted to handle general l-geometry for l>4, and it can
be used without substantial modification for higher dimensions.

2.3. The required data structures. The required data structure for the 4-geometry
maze routing algorithm includes a cell map, some buckets and lists, and particular
routes. The number of data fields in the cell map for collision avoidance implemen-
tation require at least four parameters for cell storage, that is, SL, AT, SD and Vis.
The SL (Sea or Land) parameter distinguishes whether a cell is a landmass in which
case the value is infinity, or a navigable area in which case the value is one. If the SL
parameter of any area has a finite value that is not equal to one, we are working on
the optimal path of the varied terrain. The AT, time of arrival, parameter stores the
time needed to travel from the source cell to the current cell and its initial value is
infinity. The SD (Ship Domain) parameter records whether this cell belongs to one of
the ship domains. The fourth parameter Vis (Visited) distinguishes whether the cell
has been visited and its initial Boolean value is false. The initial cell conditions are
illustrated in Figure 2, where the black cells represent landmass and the white cells
represent navigable areas.

In an mrn grid of N cells, any cell ci has four parameters SLi, ATi, SDi and Visi,
where 0fifNx1 and N=mrn. To reduce the memory space, the buckets are
replaced with three circular buckets. The three buckets are marked as LLbucket_index,
where the bucket_index is an integer variable and 0fbucket_indexf2.

NO. 3 COLLISION AVOIDANCE ON RASTER CHARTS 375

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

The data structure of a particular route for this algorithm includes the particular
route (or vessel path), the source cell, the destination cell, the speed, etc. as shown in
Figure 3. The speed field stores the vessel speed, which is the number of cells travelled
by the vessel per unit time. The vessel path is stored in a list in which each node
represents a cell in the path. Each node of the list for the path contains four fields,
Row, Col, AT and Next. The Row and Col fields store each cell’s coordinate that is
extracted from index i. The AT field stores the ATi value of the cell ci. The Next field
is a link to the next node. For example, if a vessel travels from the source cell, located
at (2, 2), to the destination cell (4, 3) through the cell (3, 2), the data fields (Row, Col,
AT) in the first node of its linked list can be represented as (3, 2, 1). By modifying the
value of the AT field in the list of the path, we can adjust the vessel speed. To illustrate
multiple ships with different speeds on one chart, the AT field values should be

Figure 2. The cell map.

Figure 3. The data structure of a particular route.

376 KI-YIN CHANG AND OTHERS VOL. 56

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

modified. The method for the speed-varying system is to update the ATi value for
each node in the list, which is the value of the AT field divided by the value of the
speed field.

2.4. The 4-geometry maze routing algorithm. The 4-geometry maze routing al-
gorithm is described in a general form of one terrain. This is to simplify our presen-
tation and make it easy to point out the main concept of the algorithm. The detailed
description of the 4-geometry maze algorithm is shown in Appendix A.

There are some distinguishable aspects between the 4-geometry algorithm and the
other 2-geometry algorithms. First, buckets are introduced to control the propa-
gation speed of several single-step distances (or cost functions), which are non-equal
to a uniform propagation without a sorting process. Second, the Vis parameter is
introduced to make sure each cell is inserted into a temporary list (temp-list) and later
removed from its corresponding bucket exactly once. Due to these two aspects, the
algorithm keeps a linear time complexity. Furthermore, the SL parameter is in-
troduced for the varied terrain problem, in which the speed of the vessel for those cells
in the specific terrain is divided by the value of its SL parameter. The uniform wave
propagation for varied terrain can be achieved by increasing a certain number of
buckets.

For the 8-geometry maze router, the 4-geometry maze router can be simply modi-
fied to increase the number of circular buckets to four for the

ffiffiffi

5
p

step increment and
add one more parameter Dir to keep track of which predecessor causes the minimum
AT value. The 8-geometry uses, at most, twice the time of the 4-geometry. Thus, for
the higher geometry, the number of circular buckets and condition statements are
increased. The running time is O(lN) for the l-geometry algorithm.

As a whole, the algorithm is capable of performing the various speeds for multiple
ships and finding optimal routes for varied terrain in the raster plane. But the col-
lision avoidance and detection scheme is required for finding the optimal routes of
multiple ships. If there is only one terrain in the raster plane, the optimal route found
by the maze routing algorithm is also called the shortest path of the algorithm.

3. METHOD FOR COLLISION DETECTION AND AVOIDANCE.
3.1. Domain representation. The international regulations for preventing colli-

sions at sea, published by IMO (International Maritime Organization) (Cockcroft
and Lameijer, 1996), are the standard to govern the behaviour for navigational col-
lision avoidance. According to rule 8(d) of the international regulations for preven-
ting collisions at sea, ships should keep a safe distance while collision avoidance
action is taken. In general, the safe distance is defined by the concept of ship domain.

The concept of the ship domain was first presented by Fujii and others (1971). The
original purpose of this model was to analyze the traffic capacity in a particular
waterway or sea area. The model of his domain is an ellipse where the horizontal axis
is 3.2 times the ship length and the vertical axis is 8 times the ship length. Further,
Goodwin (1975) observed the required distance and considered the international
regulations for preventing collisions at sea while ships are being navigated in open
water. He obtained a non-symmetric ship domain that is divided by 112.5x from the
central ship for port and starboard sides and three sectors with different radii. These
three sector domains were used to illustrate the difference in risk. In the eighties,
Coldwell (1983) established models of ship domains for end-on encounters and
overtaking situations in restricted waters. Since then, the theory and models of ship

NO. 3 COLLISION AVOIDANCE ON RASTER CHARTS 377

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

domains have been widely used in ship collision avoidance and marine traffic simu-
lation, estimation of encounters rates, traffic lane design criteria, etc. Generally
speaking, the ship domains of Fujii and Coldwell are suitable for restricted water
areas where the traffic density in the passage is considered. Goodwin’s model is
suitable for the open water area, where the navigator has more effective sea room and
safety is the first priority (Zhao, 1993).

To simplify the ship domain described in this paper, two basic models, Fujii’s and
Goodwin’s model, are switched in the restricted water and the open water, respect-
ively. If a ship is considered as a cell on the raster chart, the basic representation of
both ship domains can be filled black as shown in Figures 4 and 5. While a ship
configuration is considered as the combination of many cells in the raster plane, the
model of the ship domain will be much closer to the situations in reality. If a ship is
considered as an object on the raster chart, virtually expanding the obstacles (land-
masses) are required before implementation of the routing algorithm. The virtual
obstacles can be expanded by treating each boundary cell of obstacles as a special
case of source cell with limited propagation radius (Jan et al., 2003).

3.2. Method for collision detection. There is one necessary and sufficient condition
that ships may collide at sea; that is, those two or more ships appear in one area at the
same time. Thus, the path position and time domain of each ship is required for
simulation. After the shortest path of each ship is obtained by the 4-geometry maze
router, the possible collision area will be detected by simulating their particular routes
with ship domains. To simulate the possible collision situation, the path lists of each
ship are moved from cell to cell according to their AT value in the particular route.
The simulation is divided into three steps: (1) Remove the previous ship domain,
(2) Move each ship to the next cell according to its corresponding AT value, (3) Mark
a new ship domain for the next cell. From these steps, the particular route of each
ship is simulated by marking her ship domain from cell to cell. If the SD value of the

Figure 4. Fujii’s domain and its basic representation (if a ship is considered as one cell)

in the grid plane.

378 KI-YIN CHANG AND OTHERS VOL. 56

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

cell has been marked by another ship domain, then they may collide in this area and
the collision avoidance process is required.

3.3. Collision avoidance scheme. To avoid the collision, alteration of course and/
or speed must be large enough to be readily apparent to another ship observing
visually or by radar. According to rules 8 (c) and (e) of the international regulations
for preventing collision at sea, if there is sufficient sea room, alteration of course alone
may be the most effective countermeasure to avoid collision. Only if it is necessary to
avoid a collision or allow more time to assess the situation, shall a ship reduce her
speed or take all way off by stopping or reversing her means of propulsion. In fact,
reducing or increasing speed is not very effective for collision avoidance since a
moving power-driven ship has an inertial momentum. Based on the above assump-
tion, this paper only considers the alteration of course to avoid collision. If reduction
or increase of speed were to be included, an assist from the knowledge-based collision
avoidance system (Coenen, 1989) would be required to ensure no collisions occur.

After the collision detection is simulated, the multi-ship collision avoidance scheme
is implemented by the collision-area-marking method in the raster plane. The possible
collision area that is considered as an impassable area or landmass is called the
collision-area marking method. The algorithm then recalculates and obtains the op-
timal route of the give-way ship by taking a detour around the impassable area. The
shortest path with collision avoidance scheme for multiple ships is summarized as
several steps. After the maze routing algorithm is applied to obtain the shortest path
of each ship, the next step is to simulate those ships by marking ship domains from
time to time. If a collision is detected, then the rule will decide which ship needs to
alter course. If a Ship1 from the S (source cell) is to alter course, then Ship1 marks the
collision area as an impassable area. After that, the Ship1 route is recomputed by the
shortest path program, the AT value of each cell determines a new optimal route that
detours around the impassable area as shown in Figure 6(a). Therefore, the Ship1

follows the new optimal route and takes action in advance to alter course, so that the

Figure 5. Goodwin’s domain and its basic representation (if a ship is considered as one cell)

in the grid plane.

NO. 3 COLLISION AVOIDANCE ON RASTER CHARTS 379

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

give-way ship, Ship1, and stand-on ship, Ship2, have ample time to keep a safe passing
distance as shown in Figure 6(b). To ensure the new optimal route does not collide
with other ships, the re-simulation or routing with dynamic ship domains is required.
The algorithm for multiple ships can be summarized in the following algorithm for
the shortest path with collision avoidance scheme.

Algorithm for the shortest path with collision avoidance scheme:

Step 1: Acquisition of the shortest path for each ship.
For each Shipk, we indicate the source cell Sk and destination cell Dk by the
maze routing program and obtain the shortest path, where 1fkftotal
number of ships, respectively.

Step 2: The collision detection.
Simulate all of the routes with ship domains and mark their SD value in the
cell map from time to time.

Step 3: The collision avoidance scheme.
If any two ships have the same SD value in some cells, the rule of the inter-
national regulations for collision avoidance at sea decides which ship needs to
alternate course and mark this area as impassable area for this ship.

Step 3.1: Recompute the path for this give-way ship. (It is noticed that the re-
computed path is no longer the shortest path, it is an optimal path.)

Step 3.2: Simulate the new optimal path.
If the new optimal path collides with another ship, then erase the new optimal
path and do the routing with dynamic ship domains.
Otherwise return, ‘‘Complete the shortest path or optimal path calculation’’.

END {Algorithm for the shortest path with collision avoidance scheme}

After the possible collision area is detected, the give-way ship recomputes the opti-
mal path and considers the possible collision area as the impassable area or landmass.
If more than two ships may collide in the same area, an order of priority is given to
determine which ship takes action first. While routing with dynamic ship domains,
the AT value of each cell is expanded (propagated) from the cell of the alternate

Figure 6. A collision-area-marking method for collision avoidance.

380 KI-YIN CHANG AND OTHERS VOL. 56

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

course and the domains of other ships are also moved according to their AT value,
that is the uniform propagating cells have dynamic ship domains (SD) in the cell map.
Thus, the collision can be avoided in the new route since those cells are considered as
impassable at this specific AT value if the AT value of propagating cells in the bucket
(considered as a time domain) match the domains of other ships. The routing with
dynamic ship domains is useful for multi-ship sailing in the restricted water area. But,
in the real world, the trajectory and speed of those ships may change with time. Thus,
continual routing computation is required with dynamic ship domains. This is called
real-time routing in the raster charts.

Regarding to the performance of this algorithm, step 1 obviously has time com-
plexity of O(qN), where q is the number of ships. Steps 2 and 3 also have the obvious
time complexity ofO(qN). Thus, the algorithm has the total time complexity ofO(qN).

4. EXAMPLES OF APPLICATION AND DISCUSSION. The search
time for the shortest path with the collision avoidance algorithm was only a small
fraction of one second on a 400r300 raster electronic chart with a Pentium III PC
using DirectX. Assume that the size and speed of all ships are known for the appli-
cations. An execution result for two ships is illustrated in Figure 7. The source (ex-
pressed by S) and the destination cells (expressed by D) of two ships are illustrated.
After finding the shortest path of each ship, a collision detection method is applied to
simulate and spot the potential collision area as shown in Figure 7(a). Figure 7(b)
indicates the recomputed optimal route presented by a curve after the collision
avoidance scheme is implemented.

If there is a multi-ship simulation on a raster chart, an adjustment is made for the
various speeds because multiple ships may have different or piecewise speeds. An
example of the shortest path algorithm for five ships is illustrated in Figure 8.

Figure 8(a) indicates the source cells (expressed by S) and the destination cells
(expressed by D) of five pairs. The shortest path algorithm would be called five times
for the five ships to obtain the shortest paths. Figure 8(b) indicates the recomputed
optimal and shortest path after collision detection and avoidance is implemented for
the five ships. With multiple ships navigating in a restricted waterway, routing with
dynamic ship domains is a feasible way to prevent collisions, but there may not be
sufficient width in a restricted and crowded waterway to permit just the use of course

Figure 7. Illustration of the shortest path algorithmwith collision avoidance scheme for two ships.

NO. 3 COLLISION AVOIDANCE ON RASTER CHARTS 381

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

alterations. The assistance from a knowledge-based collision avoidance system would
be required should it be necessary to apply speed variation to maintain safe passing
distances.

5. CONCLUSIONS. This paper presents a new and practical searching algor-
ithm with collision avoidance for navigation on raster charts. The algorithm is also
applicable for an ECDIS display on a raster plane. After the optimal route of each
ship is obtained by carrying out the shortest path algorithm, the precise collision
detection is simulated to verify whether or not ships using those optimal routes
may collide. If a possible collision area is detected, the give-way ship recomputes an
optimal route. Many of the factors that influence a navigational track can be con-
sidered as a varied terrain area on the chart. The algorithm is suitable for most
navigational situations at sea. In addition, if AIS is widely used, the algorithm is
capable of extending to a real-time routing system with the domains based on the
actual size and speed of the target ships. This is an algorithm for a future path
searching and intelligent collision avoidance system on raster charts.

The maze routing algorithm hasO(N) time and space complexities, and guarantees
to find an optimal route if it exists. When q ships navigate in the same area, the
algorithm has the time complexity of O(qN). In future work, the algorithm will be
extended to a search and interception system or target chasing system with a time-
matching search scheme on raster electronic charts.

ACKNOWLEDGEMENTS

We would like to thank the National Science Council of Taiwan, ROC, for their financial
support.

APPENDIX A
The input for the 4-geometrymaze router is a cell map, the source (S) and destination
(D). The cell cj is the neighbour of the cell ci. SLj denotes if a cell cj is an obstacle or
free space in the cell map. Visj denotes whether or not a cell cj is visited. ATj denotes
the time of arrival for a cell cj from the source cell to the cell cj. The linked list temp-
list is used to keep track of cells on their neighbour cells. The three circular buckets

Figure 8. Illustration of the shortest path algorithmwith collision avoidance scheme for five ships.

382 KI-YIN CHANG AND OTHERS VOL. 56

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

Lbucket_index keep a uniform propagation. The procedure INSERT, inserts the index of
ci into the temp-list. The procedure RETRACE, retraces from the destination cell to
the source cell according to their smallest AT value and form a path LLpath, which is
the output of the 4-geometry maze router. The formal description of the 4-geometry
maze router is summarized below:

Algorithm 4-GEOMETRY-ROUTER (Cell-map, S, D, LLpath)
Input : Cell-map, S, D
Output : LLpath

begin

bucket_index=0;
Lbucket_index=S ; VisS=TRUE;
temp-list=w ;
path-exists=FALSE;

while (Lbucket_indexlw or Lbucket_index+1lw) do
if D cell in Lbucket_index then

{

path-exists=TRUE;
break while ;
}

for each cell ci in Lbucket_index do

{

for each cell cj neighbouring ci do
{

if SLj=1 then

{

if Visj=FALSE then

{

Visj=TRUE;
INSERT(cj, temp-list) ;

}

Case 1: 2-geometry neighbours
ATnew=ATi+1;

Case 2: diagonal neighbours
ATnew=ATi+

ffiffiffi

2
p

;
if (ATnew<ATj) then ATj=ATnew

}

}

}

if temp-listlw then

for each cell cj in temp-list do
INSERT(cj, Lfloor(ATj) mod3) ;

else bucket_index= (bucket_index+1) mod 3;
end while ;
if (path-exists=TRUE) then RETRACE (Cell-map(ATD), LLpath) ;
else path does not exist ;
end ;

NO. 3 COLLISION AVOIDANCE ON RASTER CHARTS 383

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

REFERENCES

[1] Ahuja, R. K., Mehlhorn, K., Orlin, J. B. and Tarjan, R. E. (1990). Faster algorithms for the shortest

path problem. Journal of ACM, 37, 213–223.

[2] Beattie, J. H. (1995). The future of electronic chart in merchant ships. This Journal, 48, 335–348.

[3] Chen, Y. M. and Ramanan, P. (1991). Euclidean shortest paths in the presence of obstacles.Networks,

21, 257–265.

[4] Cockcroft, A. N. and Lameijer, J. N. (1996). A guide to the collision avoidance rules: International

Regulations for Preventing Collisions at Sea. (5th ed.): Oxford.

[5] Coenen, F. P., Smeaton, G. P. and Bole, A. G. (1989). Knowledge-based collision avoidance. This

Journal, 42, 107–116.

[6] Coldwell, T. G. (1983). Marine traffic behaviour in restricted waters. This Journal, 36, 430–444.

[7] Colley, B. A., Curtis, R. G. and Stockel, C. T. (1984). A marine traffic flow and collision avoidance

computer simulation. This Journal, 37, 232–250.

[8] Davis, P. V., Dove, M. J. and Stockel, C. T. (1982). A computer simulation of multi-ship encounters.

This Journal, 35, 347–352.

[9] Dawson, J. (1997). Digital charting, now and in the future. This Journal, 52, 251–255.

[10] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,

1, 269–271.

[11] Eracl, F. and Lee, H. C. (1997). Time-efficient maze routing algorithms on reconfigurable mesh

architectures. Journal of Parallel and Distributed Computing, 44, 133–140.

[12] Fagerholt, K., Heimdal, S. and Loktu, A. (2000). Shortest paths in the presence of obstacles: an

application to ocean shipping. Journal of the Operational Research Society, 51, 683–688.

[13] Fawcett, J. and Robinson, P. (2000). Adaptive routing for road traffic. IEEE Comput. Graph. Appl.,

20, 46–53.

[14] Fujii, Y. and Tanaka, K. (1971). Traffic capacity. This Journal, 24, 543–552.

[15] Goodwin, E. M. (1975). A statistical study of ship domains. This Journal, 28, 328–344.

[16] Henzinger, M. R., Klein, P., Rao, S. and Subramanian, S. (1997). Faster shortest-path algorithms for

planar graphs. Journal of Computer and System Sciences, 55, 3–23.

[17] Hoel, J. H. (1976). Some variations of Lee’s algorithm. IEEE Trans. Comput., c-25, 19–24.

[18] Jan, G. E. and Chang, K. Y. (2002). An improved Lee’s algorithm on electronic maps. Proceeding

of Int. Computer Symposium, 776–786.

[19] Jan, G. E., Chang, K. Y. and Parberry, I. (2003). A new cell decomposition method to automatic path-

planning for a mobile robot. The Seventh Int. Conference on Automation Technology, Sept. 2003.

[20] Kimmel, R., Amir, A. and Bruckstein, A. M. (1995). Finding shortest paths on surfaces using level sets

propagation. IEEE Trans. Pattern Anal. Machine Intell. 17, 635–640.

[21] Lee, C. Y. (1961). An algorithm for path connection and its applications. IRE Trans. Electron.

Comput., EC-10, 346–365.

[22] Lin, Y. L., Hsu, Y. C. and Tsai, F. S. (1990). Hybrid routing. IEEE Trans. Computer-Aided Design,

9, 151–157.

[23] Norris, A. P. (1998). The status and future of the electronic chart. This Journal, 51, 321–326.

[24] Rubin, F. (1974). The Lee path connection algorithm. IEEE Trans. Comput., c-23, 907–914.

[25] Sherwani, N. A. (1999). Algorithms for VLSI physical design automation, 3rd ed. Boston: Kluwer

Academic Publishers, 260–279.

[26] Viegas, J. and Hansen, P. (1985). Finding shortest paths in the plane in the presence of barriers to

travel (for any lp-norm). European Journal of Operational Research, 20, 373–381.

[27] Xing, Z. and Kao, R. (2002). Shortest path search using tiles and piecewise linear cost propagation.

IEEE Trans. Computer-Aided Design, 21, 145–158.

[28] Zhao, J., Wu, Z. and Wang, F. (1993). Comments on ship domains. This Journal, 46, 422–436.

384 KI-YIN CHANG AND OTHERS VOL. 56

https://doi.org/10.1017/S0373463303002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463303002418

